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Fig. 3.5 Left: 3 of the 13 
rotational axes that leave a 
cube unchanged; right: the 
centers of a cube’s faces 
form a regular octahedron δ 

δ 
δ3,1 

4,1 

2,1 

(iii) three four-fold axes .δ4,i (.i = 1, 2, 3) passing through the centers of opposite 
faces. 

The group has a total of 24 elements. Its sub-groups include . T ,.D4,.D3, and their 
respective sub-groups. The class structure of the group is (.r = 5), 

. O = {E} ∪ {3δ4,i , 3δ34,i } ∪ {3δ24,i } ∪ {6δ2,i } ∪ {4δ3,i , 4δ23,i } .

The group .O is isomorphic (and even equivalent 4) to the symmetry group of a 
regular octahedron. This can be seen in Fig. 3.5, where it becomes evident that the 
centers of the faces of a cube are the vertices of a regular octahedron. 

3.2.5 Icosahedron Group . Y

The final point group of the first kind is the Icosahedron Group. Y , which comprises 
all rotations that leave a regular icosahedron unchanged. An icosahedron is a body 
with .20 equilateral triangles as faces, as shown in Fig. 3.6 (left). The 120 elements 
of . Y consist of: 

(i) .15 two-fold axes .δ2,i (.i = 1, . . . , 15) through the centers of opposite edges. 
(ii) .10 three-fold axes.δ3,i (.i = 1, . . . 4) through opposite vertex corners and faces. 
(iii) Three four-fold axes .δ4,i (.i = 1, 2, 3) through the centers of opposite faces. 

The group. Y is isomorphic to the symmetry group of a dodecahedron, as depicted in 
Fig. 3.6 (right). However, the icosahedron group does not occur in solids, as we will 
demonstrate in the next section, so we will not elaborate on it further here.

4 See Footnote 2. 
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With (3.6) we have established the necessary criterion to determine possible rota-
tional symmetries in solids. Later on, we will see that all of these rotational symme-
tries do indeed occur in some lattices. The point groups of the first kind that satisfy 
(3.6) are listed as follows: 

.C1, C2, C3, C4, D2, C6, D3, D4, D6, T, O . (3.7) 

It was previously shown in Sect. 3.1 that any improper rotation can be expressed 
as a product of a proper rotation and the inversion. Since the inversion is always a 
symmetry of a Bravais lattice, the angles (3.6) are also the only possible ones that 
can occur in the rotational part of improper rotational symmetries in solids. 

3.4 The Point Groups of the Second Kind 

If.G is an improper point group, then its sub-group.G0 consisting of proper rotations 
is a normal sub-group of .G with index. 2. This means that there exist two cosets, . G0

and .L0, where .L0 contains all the improper rotations. 

Proof Demonstrating that .G0 and .L0 have equal numbers of elements would be 
sufficient to establish their index as . j = g/g0 = 2. Since .E is always an element 
of .G0, the latter cannot be empty. Let .Õ be an element of .L0. Then, we have 

. {Õ · G0, ,, ,
=L0

, Õ · L0, ,, ,
=G0

} (2.4)= G ,

because the elements .Õ · G0 and .Õ · L0 have determinants . 1 and .−1 respectively. 
This proves the above statement. . 

√
It should be noted that the inversion itself may not be a member of.L0. For instance, 

in a tetrahedron, there are mirror planes in addition to the rotational axes, but the 
inversion is not a symmetry operation. In the following sections, we will examine 
improper point groups that either include or exclude the inversion. 

3.4.1 Improper Point Groups Without the Inversion 

As we will demonstrate now, improper point groups that do not include the inversion 
are isomorphic to one of the proper point groups already introduced in Sect. 3.2, mak-
ing them mathematically identical. In Sect. 3.5, however, we will provide physical 
justifications why it is still meaningful to introduce these groups and to distinguish 
them from their proper counterparts.
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Table 3.2 The.32 inequivalent point groups in solids 

Order Abstract point 
group 

Point groups of 
the 1. kind 

Point groups of 
the 2. kind with I 

Point groups of 
the 2. kind 
without I 

.1 .C1 . C1 [1]

.2 .C2 .C2 [2] .Ci [1̄] . Cs

.3 .C3 . C3 [3]

.4 .C4 .C4 [4] . S4 [4̄]

.4 .D2 .D2 [222] .C2h
[ 2

m

]
. C2v

[
2 2

m
2
m

]

.6 .C6 .C6 [6] .S6 [3̄] . C3h 6̄

.6 .D3 .D3 [32] . C3v
[
3 2

m

]

.8 .D4 .D4 [422] .C4v
[
4 2

m
2
m

]
, 

. D2d
[
4̄2 2

m

]

.8 .C4 × C2 . C4h
[ 4

m

]

.8 .D2 × C2 . D2h
[ 2

m
2
m

2
m

]

.12 .D6 .D6 [622] .D3d
[
3̄ 2

m

]
.C6v

[
6 2

m
2
m

]
, 

. D3h
[
6̄ 2

m 2
]

.12 .T . T [23]

.12 .C6 × C2 . C6h
[ 6

m

]

.16 .D4 × C2 . D4h
[ 4

m
2
m

2
m

]

.24 .O .O [432] . Td
[
4̄3 2

m

]

.24 .D6 × C2 . D6h
[ 6

m
2
m

2
m

]

.24 .T × C2 . Th
[ 2

m 3̄
]

.48 .O × C2 . Oh
[ 4

m 3̄ 2
m

]

8 

48 
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Fig. 3.9 The sub-group relationships of the.32 point groups in solids
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Exercises 

1. Verify the class division of the group .D3 claimed in Sect. 3.2 using the multipli-
cation Table 2.5. 

2. We consider the molecule shown in Fig. 3.13 which has a point group .G with 
. 8 elements. 

(a) List all the elements of .G along with their inverses and construct the multi-
plication table. Determine the international notation of this group. 

(b) Find a normal sub-group .H of .G with . 2 elements. Give the corresponding 
cosets and determine the group table of the factor group .G/H . 

.Hint: The point group .G has three two-fold axes of rotation, two of which one 
may not see immediately. To construct the multiplication table, which can be quite 
time-consuming, it may again be helpful to write a computer program. 

3. Consider a solid with (identical) atoms on a simple cubic lattice. Into this solid 
we bring another atom on 

(a) an edge, 
(b) a surface diagonal, 
(c) a space diagonal, 

of a cubic unit cell, see Fig. 3.12. Determine in all three cases the proper and the 
full point group at the site of the atom. 

.Note: In all three cases one has to distinguish between the respective points in 
the middle and all other points. In your considerations, you should assume that 
the position of the other atoms remains unchanged, i.e. they simply generate a 
(constant) potential for the additional atom. 

4. What point group does a body have that is infinitely extended in one spatial 
direction and has the shape of a 

(i) square, 
(ii) rectangle, 

Fig. 3.12 Cubic unit cell 
and the three lines (in green 
and dashed) on which the 
additional atom is brought 

z 

x 

x 

y
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The left-hand side of (4.10) is evidently an element of .V d̄ . Consequently, for 
all . i , .D̃i · →sk must also be in .V d̄ . Thus, either .d̄ = d or .d = 0, as otherwise 
there would exist a non-trivial subspace that is invariant under all .D̃i , which 
contradicts the irreducibility of .D̃i . We shall examine both possibilities: 

(a) When .d̄ = d, it follows  that  .d ' ≥ d since .d ' vectors .→sk cannot span a .d-
dimensional vector space .V d . 

(b) If .d̄ = 0 it must be .S̃ = 0̃. 

(ii) If we take the adjoint of (4.9) and follow the same arguments as in case (i), we 
obtain either.d̄ = d ', which implies.d ≥ d ', or.S̃ = 0̃. Here we have used the fact 
that, if.D̄ is an irreducible matrix group, then its adjoint group. D̄† ≡ D̃†

1, . . . , D̃†
g

is also irreducible. 

The results from i) and ii) combined mean that it is either .d = d ' = d̄ (and. S̃ is then 
non-singular) or .S̃ = 0̃.. 

√

4.1.2.2 Schur’s Lemma, Part Two 

Let .D̄ be an irreducible matrix group. If there is a square matrix .S̃ /= 0̃ which com-
mutes with all .D̃i ∈ D̄, 

. D̃i · S̃ = S̃ · D̃i ∀i ,

then . S̃ is a multiple of the identity matrix, 

.S̃ = λ · 1̃ . (4.11) 

Proof Let .λ ∈ C be an eigenvalue of . S̃. Then .S̃' ≡ S̃ − λ · 1̃ also commutes with 
all .D̃i . However, .S̃' is singular, and therefore it is .S̃' = 0̃ because of the first part of 
Schur’s lemma, which proves (4.11).. 

√

4.2 Representations 

Representations of groups play a crucial role in establishing the relationship between 
group theory and its applications in physics. Let.G be a group and. [̄ a matrix group. 
If there exists a homomorphic map. f : G → [̄, then. f is said to be a representation 
of . G. By definition, a homomorphic map satisfies the following condition: 

.[̃(a · b) = [̃(a) · [̃(b) ∀ a, b ∈ G . (4.12) 

For those new to this field, it can be confusing that the same term ‘representation’ is 
used for both the map. f itself and the image of the map, which is the matrix group. [̄.
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. [̃(r)(δ2x ) =

(
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ , [̃(r)(δ2y) =

(
⎜⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ , [̃(r)(δ2z) =

(
⎜⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠ .

Proof (of the previous statement) We prove successively the representation property 
and the isomorphism 

(i) To show that.[̄(r) is a representation, we multiply (4.17) from the left with another 
element . ak , 

. ak · (ai · a j )
(4.7)=

∑

l

[
(r)
l, j (ai ) · ak · al (4.6)=

∑

l

[
(r)
l, j (ai ) ·

∑

m

[
(r)
m,l(ak) · am

=
∑

m

[ ∑

l

[
(r)
l, j (ai ) · [

(r)
l, j (ai )

]
· am . (4.18) 

The brackets on the left side of this equation are, of course, meaningless because 
of the associative law and it is equal to 

.(ak · ai ) · a j
(4.17)=

∑

m

[
[

(r)
m, j (ak · ai )

]
· am . (4.19) 

A comparison of (4.18) and (4.19) then proves that 

. [̃(r)(ak · ai ) = [̃(r)(ak) · [̃(r)(ai ) .

(ii) If .G and.[̄(r) were not isomorphic there would be at least two elements . ai /= a'
i

with .[̃(r)(ai ) = [̃(r)(a j ). But then, because of (4.17), 

. ai · a j = a'
i · a j ⇒ ai = a'

i ,

which leads to a contradiction. 

Similar to Schur’s lemma, we will need the regular representation only in the proofs 
in Chap. 5, but it will not play a role in the rest of the book. 

Theorem 3 The reduced form of the regular representation .[̄(r) of a group .G con-
tains each of the irreducible representations .[̄ p of .G exactly .dp times, where .dp is 
the dimension of the irreducible representation .[̄ p. 

Since the reduced representations have the same dimensions as the original rep-
resentation (see (4.16)), the following equation results from Theorems 1 and 3 

.g =
r∑

p=1

d2
p , (4.20)
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5.2.2 Proof of Theorems 1–4 

We prove the Theorems 1–4 in 4 steps. 

(i) We consider only unitary representations . ̄ p, which is possible because every 
representation is equivalent to a unitary one (see Sect. 4.1.1) and the corre-
sponding character .χp is invariant under similarity transformations. For each 
(not necessarily irreducible) representation .  ̄, we define the .r -dimensional 
character vector 

.→v ≡
(/

r1
g

χ 1 , . . . ,

/
rr

g
χ r

)T

. (5.11) 

If . ̄ =  ̄ p is irreducible, it holds for the associated character vector .→v p that 

. 
(→v p

)† · →vq = δp,q .

To prove this equation, we evaluate the left hand side, 

. 
(→v p

)† · →vq (5.11)=
r∑

i

ri

g
· (

χ
p
i

)∗ · χ
q
i = 1

g

∑

a

(χi (a))
∗ · χi (a) ,

where. a are the elements of the group. With the definition (4.15) of the character 
we then find 

.
(→v p

)† · →vq = 1

g

dp∑

i=1

dq∑

j=1

 
p
i,i (a

−1) ·  p
j, j (a)

(5.1)= δp,q
1

d

dp∑

i=1

= δp,q .
√

(5.12) 

Equation (5.12) establishes the validity of (5.9). Conversely, it can be deduced 
that the maximum number of irreducible representations is . r , based on the fact 
that an.r -dimensional space can contain no more than. r orthogonal vectors.→v p. 
In order to prove Theorem 1, it is necessary to demonstrate that there are 
also at least . r irreducible representations, which will bring the total number 
to exactly . r . This will be done in connection with point (iii). However, before 
that, we address Theorem 3. 

(ii) Let 
.  ̄(r) =

∑

p

n(r)p ·  ̄ p ,

be the reduction of the regular representation. The same relation then applies 
to the corresponding character vectors 

.→v(r) =
∑

p

n(r)p · →v p , (5.13)
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Then we can deduce from Schur’s lemma (part two) 

. S̃ j = μ j · 1̃ .

Especially for the irreducible representations . ̄ p with dimension .dp we find 
the matrices 

.S̃ p
j = μ

p
j · 1̃ . (5.19) 

The trace of the two sides of this equation and 

. 

∑

a∈C j

1 = r j ,

yields 

.μ
p
j = riχ

p
i

dp
. (5.20) 

On the other hand, because of the definition of (5.18), it is 

. S̃ p
i · S̃ p

j =
∑

a∈Ci
b∈C j

S̃ p(a · b)
(2.8)=

r∑

k=1

fi jk · S̃k ,

where . fi jk are the multiplication coefficients introduced in Sect. 2.3.3. With 
(5.19) and (5.20) we find 

. ri · r j · χ
p
i · χ

p
j = dp

r∑

k=1

ci jk · rk · χ
p
k .

Next we carry out the sum over . p on both sides and use (5.17), 

. ri · r j

∑

p

χ
p
i · χ

p
j = ci j1 · r1 · g .

Recall that .r1 = 1 and with (2.8) we obtain 

.

∑

p

χ
p
i · χ

p
j = g

r j
δi, j̄

j→ j̄=⇒
∑

p

χ
p
i · χ

p
j̄
= g

r j
δi, j , (5.21) 

where we have used that a class and its inverse have the same number of 
elements, .r j̄ = r j . To finish this part of the proof, we have to evaluate .χ

p
ī
in 

(5.21). With .a ∈ Ci and .a−1 ∈ C j̄ we show in Exercise 7 that
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. G1 = {a1 . . . , ag1} ,
G2 = {b1 . . . , bg2} ,

and 

.  ̄1 = { ̃1(a1), . . . ,  ̃
1(ag1)} ,

 ̄2 = { ̃2(b1), . . . ,  ̃
2(bg2)} ,

(not necessarily irreducible) representations of .G1 and .G2. 

(a) Show that two elements.(ai ; b j ) and.(a'
i ; b'

j )of. G are in a class  (i.e.. (ai ; b j ) ∼
(a'

i ; b'
j )) if, and only if .ai ∼ a'

i in .G1 and .b j ∼ b'
j in .G2. What classes are 

there in .G = G1 × G2 and how many elements does each class have? 
(b) Show that the product matrices 

.  1⊗2
(i j),(kl)(anbm) ≡  1

i,k(an) ·  2
j,l(bm)

are a representation of the group .G (product representations). 
(c) Show that . ̄1⊗2 is irreducible if . ̄1 and . ̄2 are irreducible (use the result 

from Sect. 5.2.3). 

2. Using the result from Exercise 1, determine the irreducible representations of 

. D3d = D3 × (E, I ) .

Use the fact that .(E, I ) is isomorphic to .C2 (see Table 6.1) and the irreducible 
representations of .D3 (see the example in Sect. 4.2). 

3. It is evident that a group comprising of orthogonal matrices, 

. G = {D̃1, . . . , D̃g} ,

forms a (real, faithful) three-dimensional representation of the corresponding 
(abstract) point group (as explained in Sect. 3.5). This representation, however, 
is typically reducible. Determine the irreducible components of these represen-
tations for the groups .D2 and .D3. 
Hint: A helpful approach is to employ (5.23) in combination with the character 
tables 5.1. 

4. Let.G ' be a sub-group of a group. G and. ̄ p one of the irreducible representations 
of . G. Then . ̄ p is obviously also a (in general reducible) representation of .G ', 
the so-called ‘subduced representation’ . ̄(s). Determine for the group . G = D3

and its sub-groups 

(a) .G ' = {E, δ3, δ23}, 
(b) .G ' = {E, δ2,x },
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.[A : ψA(√r) = f (|√r |) or ψA(√r) = z · f (|√r |) , (6.3)

[B : ψB(√r ) = x · f (|√r |) or ψB(√r ) = y · f (|√r |) ,  

where. f (|√r |) is any rotationally symmetric function in the Hilbert space.L2. To check 
whether .ψA and .ψB are representation functions, one must apply the symmetry 
operators .Ûa to them, 

. ÛEψA(√r) = ψA(√r) , ÛEψB(√r) = ψB(√r) ,

Ûδ2ψA(√r) = ψA(√r) , Ûδ2ψB(√r) = −ψB(√r) .
√

6.1.2 Representation Functions of Irreducible 
Representations 

The . d basis functions of a .d-dimensional irreducible representation .[̄ p form an 
orthogonal function system. 

Proof We consider the scalar product of two basis functions .|λ), .|μ) , 

. (λ|μ) = 1

g

∑

a∈G
(λ|Û †

a · Ûa|μ) ,

where we have used that 

. 1 = Û †
a · Ûa = 1

g

∑

a∈G
Û †

a · Ûa .

With (6.1) we then find 

. (λ|μ) = 1

g

∑

λ',μ'

∑

a∈G

(
[

p
λ',λ(a)

)∗ · [
p
μ',μ(a) · (λ'|μ') (5.2)= 1

d
δλ,μ

∑

λ'
(λ'|μ') ∼ δλ,μ .

√

In the following, we assume that the representation functions are normalized. The 
representation functions of a .d-dimensional representation .[̄ form a basis for a 
.d-dimensional subspace .V d of the Hilbert space . H . This subspace is referred to 
as the representation space of . [̄. It is possible for a representation to have mul-
tiple representation spaces, which may be infinite in number. For instance, there 
exists an infinite set of states of the form (6.3), since there are infinitely many func-
tions. f (|√r |) that can be chosen to be orthogonal. On the other hand, a representation 
space uniquely determines the corresponding representation (up to equivalence).
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Therefore 
. Dλ',λ(a · b) =

∑

λ''
Dλ',λ''(a) · Dλ'',λ(b) .

√

6.1.4 Irreducibility of Representation Spaces 

If a representation space.V d of dimension. d can be expressed as a direct sum of two 
representation spaces of smaller dimension, i.e. 

.V d = V d1 ⊕ V d2 (d1 + d2 = d) , (6.5) 

it is referred to as reducible. 
Otherwise, it is called irreducible. The representation corresponding to .V d is 

reducible if and only if .V d itself is reducible. 

Proof We have to give the proof in both directions: 

(i) We assume that.V d is reducible and is spanned by the states.{|λ)} . Then we have 
to show that the representation. [̄ defined by the matrices.[̃(a)with the elements 

. [λ',λ(a) ≡ (λ'|Ûa|λ) ,

are reducible. Since .V d is reducible, there are bases .{|μ)} (.μ = 1, . . . , d1) 
and.{|μ)} (.μ = d1 + 1, . . . , d) that span representation spaces.V d1 and.V d2 with 
the property (6.5). The two bases are linked via some matrix . S̃, i.e. 

.|λ) =
∑

μ

Sμ,λ|μ) . (6.6) 

The assumption that the bases are orthogonal does not limit the generality of the 
proof. Then, the matrix . S̃ is unitary. With this and (6.4) we find (.D̃ → [̃) 

. (λ|Ûa|λ') = [γ,γ'(a)
(6.6)=

∑

μ,μ'
S∗

μ,λ · Sμ',λ' · (μ|Ûa|μ') .

In matrix form, this equation is given by (.['
μ,μ'(a) ≡ (μ|Ûa|μ')) 

. S̃−1 · [̃'(a) · S̃ = [̃(a) ⇒ [̃'(a) = S̃ · [̃(a) · S̃−1 .

Since .[̄' is block diagonal, . [̄ is reducible.. 
√

(ii) We assume that. [̄ is reducible and.V is one of its representation spaces spanned 
by the vectors .{|λ)}. The proof that .V is then reducible uses the same steps as 
under (i). Let. S̃ be the (unitary) matrix that reduces. [̄. Then, one can easily show 
that in the base
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.|λ̄)p ≡
n p∑

m=1

U1,(p,m,λ)|p, m, λ̄) . (6.13) 

Note that, on the right-hand side of this equation, the index of .Ũ is indeed . λ, i.e. 
the value of . λ in .|λ)p and not . λ̄ which is the label for the partner functions of .|λ)p. 
The states.|λ̄) (of which.|λ)p is one for .λ̄ = λ) indeed form a representation space, 
because 

. Ûa|λ̄)p (6.13)=
n p∑

m=1

U1,(p,m,λ) · Ûa|p, m, λ̄)

(6.11)=
∑

λ̄'

[
p
λ̄',λ̄ · U1,(p,m,λ)|p, m, λ̄') (6.13)=

∑

λ̄'

[
p
λ̄',λ̄|λ̄')p √

.

Before we look at examples of the development theorem, we will first derive a 
practical way to determine the components in (6.7) in the following section. This is 
based on the projection operators introduced by Wigner [ 1]. 

6.2 Projection Operators 

Let .[̄ p be the .dp-dimensional (unitary) representations of a group G of unitary 
operators .Ûa (.p = 1, . . . , r ). Then, for each . p we define the .d2

p operators 

.P̂ p
λ,λ' ≡ dp

g

∑

a

(
[

p
λ,λ'(a)

)∗ · Ûa . (6.14) 

The following is true 

(i) The .dp operators .P̂ p
λ,λ are projection operators 3 and applied to an arbitrary 

state .|ψ) in (6.7), yield exactly the component .|λ)p. 
(ii) For fixed. λ, the .dp − 1 operators applied to .|ψ) (.μ /= λ) yield the partner func-

tions .|μ)p of .|λ)p . 

Proof 

(i) .P̂ p
λ,λ is a projection operator, because 

.

(
P̂ p
λ,λ

)† (6.14)= dp

g

∑

a
[

p
λ,λ(a)

, ,, ,
=

(
[

p
λ,λ(a−1)

)∗

· Û†
a,,,,

=Ûa−1

(a−1 → a)= dp

g

∑

a

(
[

p
λ,λ(a)

)∗ · Ûa = P̂ p
λ,λ ,

3 Recall that a projection operator.P̂ has the properties.P̂† = P̂ and .P̂2 = P̂ . 
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Proof Using (6.18) we find 
. Ĥ = Ûa · Ĥ · Û †

a ,

which we substitute into the matrix element (6.22), 

.H (p,λ)

m,m' = (ϕp,m,λ|Ĥ |ϕp,m',λ) = (ϕp,m,λ|Ûa · Ĥ · Û†
a |ϕp,m',λ) (6.24) 

(6.1)/(6.21)=
∑

λ'
[λ',λ(a)

(
[λ',λ(a)

)∗ (ϕp,m,λ' | Ĥ |ϕp,m',λ' ) . 

Since the left-hand side does not depend on. a, the same must be true for the right-hand 
side. We can now sum over . a on both sides in (6.24), which then leads to 

. (ϕp,m,λ|Ĥ |ϕp,m ',λ) = 1

dp

∑

λ'
(ϕp,m,λ' |Ĥ |ϕp,m ',λ' ) .

where we used the orthogonality theorem (5.2). Since the right-hand side is indepen-
dent of . λ, the assertion follows.. 

√

Example As an example, we consider a rectangular ‘molecule’ with one orbital 
per site on which a single quantum mechanical particle is located (see Fig. 6.2). 
The Hamiltonian contains a hopping .t, t ' to the nearest neighbors which in first 
quantization reads 

. Ĥ =
4∑

i, j=1

ti, j |i)( j | ,

where the values of .ti, j are specified in Fig. 6.2. In matrix form the Hamiltonian is 
given as 

. H̃ =

⎛
⎜⎜⎝

0 t ' 0 t
t ' 0 t 0
0 t 0 t '
t 0 t ' 0

⎞
⎟⎟⎠ .

There are obviously . 4 symmetry operations, besides the one-element a rotation . δ2
around the .z-axis with angle . π as well as the two mirror planes .σ1 (.x = 0) and . σ2

Fig. 6.2 A rectangular 
‘molecule’ with one orbital 
per site 

|1 |2 

|3|4 

t 

t’ 

t’ 

t 
x 

y
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Table 6.2 Character table of 
the group. C2v

.C2v .E .δ2 .σ1 . σ2

.A1 .1 .1 .1 . 1

.A2 .1 .1 .−1 . −1

.B1 .1 .−1 .1 . −1

.B2 .1 .−1 .−1 . 1

(.y = 0). Therefore, the symmetry group of the molecule is .C2v (see Chap. 3). It 
has . 4 (of course one-dimensional) irreducible representations, which are shown in 
the character Table 6.2. To use  (6.21), we need a basis of representation spaces. We 
can determine it with the projection operators (6.16). In this case, it is sufficient to 
take only one of the four states .|i) and apply the . 4 operators .P̂ p to it, 

. P̂ A1 |1) 6.2.1= 1

4

(
ÛE |1) + Ûδ2 |1) + Ûσ1 |1) + Ûσ2 |1)

)

= 1

4
(|1) + |4) + |2) + |3)) ≡ √

4|ψA1) ,

P̂ A2 |1) = 1

4
(|1) + |4) − |2) − |3)) ≡ √

4|ψA2) ,

P̂ B1 |1) = 1

4
(|1) − |4) + |2) − |3)) ≡ √

4|ψB1) ,

P̂ B2 |1) = 1

4
(|1) − |4) − |2) + |3)) ≡ √

4|ψB2) .

where the factor .
√
4 has been introduced to normalize the . 4 states .|ψp) . These . 4

states are orthogonal and therefore form a base of the Hilbert space. Since they belong 
to different representations,.Ĥ must be diagonal in this basis, i.e. the matrices (6.22) 
here are one-dimensional with respect to .m p, m p' , 

. H̃ ' =

⎛
⎜⎜⎝

(ψA1 |Ĥ |ψA1) 0 0 0
0 (ψA2 |Ĥ |ψA2) 0 0
0 0 (ψB1 |Ĥ |ψB1) 0
0 0 0 (ψB2 |Ĥ |ψB2)

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

t + t ' 0 0 0
0 t − t ' 0 0
0 0 −t + t ' 0
0 0 0 −t − t ')

⎞
⎟⎟⎠ .

In this simple case, we have therefore succeeded in diagonalizing a Hamiltonian 
just by choosing a proper basis based on group theory.
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Table 7.1 Character table of the group. OH

.OH .E .6C4 .3C2
4 .8C3 .6C '

2 .I .3σh .6σd .8S6 . 6S4

.x2 + y2 + z2 = r2 .xyz .A1g .1 .1 .1 .1 .1 .1 .1 .1 .1 . 1

.A2g .1 .−1 .1 .1 .−1 .1 .1 .−1 .1 . −1

.A1u .1 .1 .1 .1 .1 .−1 .−1 .−1 .−1 . −1

.A2u .1 .−1 .1 .1 .−1 .−1 .−1 .1 .−1 . 1

.(x2 − y2, 3z2 − r2) .Eg .2 .0 .2 .−1 .0 .2 .2 .0 .−1 . 0

.Eu .2 .0 .2 .−1 .0 .2 .−2 .0 .1 . 0

.T1g .3 .1 .−1 .0 .−1 .3 .−1 .−1 .0 . 1

.(zx, yz, xy) .(x, y, z) .T2g .3 .−1 .−1 .0 .1 .3 .−1 .1 .0 . −1

.

(x(z2 − y2),

y(z2 − x2),

z(x2 − y2))

.T1u .3 .1 .−1 .0 .−1 .−3 .1 .1 .0 . −1

.T2u .3 .−1 .−1 .0 .1 .−3 .1 .−1 .0 . 1

the representation matrices from the representation functions using (6.8). 2 Let us 
examine this table in greater detail. 

(i) We have only provided representation functions that are linear, quadratic, or 
cubic in terms of . x , . y, and . z. Higher-order functions are required for other 
representations. As explained later in Chap. 8, the linear, quadratic or cubic 
functions are applicable to atoms with filled shells of. s,. p,. d or. f orbitals. Orders 
beyond three are usually not relevant in solid-state physics. For completeness, 
we also give the missing representation functions of orders .3 − 6 in .x, y, z: 

.A2u : xyz , (7.1) 

. A2g : x4(y2 − z2) + y4(z2 − x2) + z4(x2 − y2) ,

A1u : xyz
[
x4(y2 − z2) + y4(z2 − x2) + z4(x2 − y2)

]
,

Eu : xyz
[
(x2 − y2, 3z2 − r2)

]
,

T1g : xy(x2 − y2), xz(x2 − z2), yz(y2 − z2) . (7.2) 

(ii) A convention has been established for the naming of representations: 

– One-dimensional representations are labeled as .A or . B. The difference 
between. A and. B denotes the positive or negative character of proper rotations 
around the main symmetry axis. 

– Two- and three-dimensional representations are denoted by .E and. T , respec-
tively.

2 As an alternative, one can find all the representation matrices for the 32 point groups on https:// 
www.cryst.ehu.es/. Unlike the customary practice in this book, we provide this specific webpage 
as it is, to the best of the author’s knowledge, the only source that provides all the representation 
matrices not only for the point groups, but also for other groups. 
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Table 7.2 Character table of the group. C4

.C4 .E .C4 .C2
4 = C2 . C3

4

.x2 + y2, z2 .z .A .1 .1 .1 . 1

.x2 − y2, xy .B .1 .−1 .1 . −1

.(zx, zy) .(x, y) .E .

(
1

1
.
i

−i
.
−1

−1
. 
−i

i

)

– If.I ∈ G, the subscript. g or. u indicates whether the representation is symmetric 
or antisymmetric under inversion. 3

– Representations such as .A' and .A'' differ in their symmetry or antisymmetry 
relative to the mirror plane perpendicular to the main symmetry axis.. 2

(iii) When dealing with groups that have complex-valued characters, it is neces-
sary to analyze their character tables more closely. For instance, consider the 
group.C4, whose character table is presented in Table 7.2. This group is Abelian, 
and therefore its four irreducible representations are one-dimensional. However, 
in accordance with the literature, the character table shows two representations 
with complex characters that are denoted as two-dimensional. Here we explain 
why: the functions 

. p[x,y] ≡ f (|r|)[x, y] ,

define a two-dimensional representation space of .C4 with the representation 
matrices 

. [̃(E) =
(
1 0
0 1

)
, [̃(C4) =

(
0 1

−1 0

)
,

[̃(C2) =
(−1 0

0 −1

)
, [̃(C3

4) =
(
0 −1
1 0

)
.

These representation matrices, however, are reducible and can be diagonalized 
via the transformation 

. Ψ+ ≡ px + ipy , Ψ− ≡ px − ipy .

In this basis, the representation matrices are 

.[̃'(E) =
(
1 0
0 1

)
, [̃'(C4) =

(
i 0
0 i

)
,

[̃'(C2) =
(−1 0

0 −1

)
, [̃'(C3

4) =
(−i 0
0 i

)
.

3 In Exercise 5.2.3 of Chap. 5 we show that all representation functions must have one of the two 
properties. 
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8.3 Degenerate Perturbation Theory 

In the first order of the perturbation theory, a degenerate representation space.V p (of 
a representation .┌̄ p) of .Ĥ0 is given as 4

.V p = Ṽ
p1 ⊕ Ṽ

p2 ⊕ . . . , (8.3) 

where the .Ṽ
pi must be irreducible representation spaces to the symmetry group 

of .Ĥ = Ĥ0 + V̂ . The reason is that in the first order only a basis change is made 
in.V p. The representations.Ṽ

pi
that are involved then result, as in Sect. 8.2, from the  

reduction of .┌̄ p, i.e. with the help of the respective correlation tables. 

Example To provide an example, we revisit the scenario of a particle in a cubic 
box discussed in Sect. 7.2. Specifically, we focus on the first three eigenspaces, 
which serve as proper representation spaces of an irreducible representation of .Oh . 
We introduce the term .V̂ = αẑ2 to the system’s Hamiltonian, leading to . G0 = Oh

and .G = D4. As the first eigenspace of .Ĥ0 is non-degenerate, it cannot experience 
energetic splitting. Consequently, we examine the second and third eigenspaces: 

(i) The eigenspace .V [1,1,2] belongs to the representation .T1u. According to the cor-
relation Table 8.2 it is 

. T1u
Oh→D4h→ A2u ⊕ Eu .

The states introduced in Sect. 7.2 are already bases of the spaces .V A2u and .V Eu , 
where 

. A2u : 𝚿112 (∼ z) ,

Eu : {𝚿121,𝚿211} (∼ {x, y}) .

(ii) Likewise, the eigenspace .V [1,2,2] belongs to the representation .T1g and the cor-
relation table yields 

. T2g
Oh→D4h→ B2g ⊕ Eg ,

where 

. B2g : 𝚿221 (∼ x · y) ,

Eg : {𝚿122,𝚿212} (∼ {x · y, y · z}) .

It is crucial to understand the following fact: The splitting of .G into irreducible 
representation spaces .Ṽ

pi
, which occurs at zeroth order, remains valid beyond 

the realm of perturbation theory. If this was not the case, there had to be a point 
where, as. V̂ steadily increases, a sudden transition into a fundamentally different

4 The first order of degenerate perturbation theory with regard to the energy is also referred to as 
the zeroth order with regard to the eigenstates. 
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which also commute with .Ĥ0, it follows, e.g. 

. L̂± Ĥ0|n, l, m> = En,l L̂±|n, l, m> ∼ En,l |n, l, m ± 1>
= Ĥ0 L̂±|n, l, m> ∼ Ĥ0|n, l, m ± 1> = En,l |n, l, m ± 1> .

Therefore, all states .|n, l, m> (.m = −l, . . . , l) have the same energy and there is 
an .(2l + 1)-fold degeneracy of the spectrum. In real space the eigenfunctions (in 
spherical coordinates) have the form 

. 𝚿n,l,m(t, θ,ϕ) = Rn,l(r)Yl,m(θ,ϕ) ,

with the spherical harmonics 

. Yl,m(θ,ϕ) ∼ Pm
l (cos (θ))eimϕ ,

and the associated Legendre polynomials .Pm
l (cos (θ)). The exact form of the func-

tions.Pm
l (cos (θ)) and.Rn,l(r) is irrelevant for our following considerations. The wave 

functions for the lowest values of . l are 

(i) .l = 0, .s-orbitals: 
. Y0,0 ∼ const ,

(ii) .l = 1, .p-orbitals: 

. Y1,±1 ∼ sin (θ)e±iϕ, Y1,0 ∼ cos (θ) ,

(iii) .l = 2, .d-orbitals: 

. Y2,±2 ∼ sin2 (θ)e±2iϕ, Y2,±1 ∼ sin (θ) cos (θ)e±iϕ, Y2,0 ∼ (3 cos2 (θ) − 1) ,

(iv) .l = 3, . f -orbitals: 

. Y3,±3 ∼ sin (θ)3e±3iϕ, Y3,±2 ∼ sin (θ)2 cos (θ)e±2iϕ,

Y3,±1 ∼ sin (θ)(5 cos (θ)2 − 1)e±iϕ, Y3,0 ∼ (5 cos (θ)3 − 3 cos (θ)) .

Group-Theoretical Treatment of the Problem 

The symmetry group of.Ĥ0 is.O(3), which comprises of operators.ÛD̃ with arbitrary 
orthogonal matrices . D̃. Our objective is to find the representation matrices and, 
more importantly, the characters of this group (in order to use again (5.23)). To avoid
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dealing with infinite groups, we will take a pragmatic approach and make use of the 
results obtained in Sect. 8.4.1. 

As.O(3) represents the maximum symmetry group of.Ĥ0, the functions. Yl,m(θ,ϕ)

(.m = −l, . . . , l) must form a representation space of dimension (.2l + 1) for  .O(3), 
as stated by our postulate from Sect. 6.3.3. This enables us to determine some repre-
sentation matrices and the corresponding characters. 

(i) Let .D̃ be a matrix that describes a rotation around the .z-axis with the angle . α. 
Then obviously 

. ÛD̃ · Yl,m(θ,ϕ) = e−i·m·α · Yl,m(θ,ϕ) .

The representation matrix of .D̃ is therefore diagonal and given as 

. ┌̃l(α) =

⎛
⎜⎜⎜⎝

e−ilα 0
e−i(l−1)α

. . .

0 eilα

⎞
⎟⎟⎟⎠ .

Using the well-known geometric sum formula, we can calculate the charac-
ter .χl(α) as: 

.χl(α) =
l∑

m=−l

ei·m·α = sin
[(

l + 1
2

)
α
]

sin
[

α
2

] . (8.4) 

It is worth noting that for other axes of rotation, the representation matrices are 
not diagonal, but the characters remain independent of the axis, as long as the 
rotation angle . α is the same. Since we will only be using these characters in 
the following, we do not need to consider the representation matrices of other 
axes of rotation. 

(ii) As one shows in all textbooks on quantum mechanics, the spherical harmonics 
behave under inversion . Ĩ as 

. ÛĨ · Yl,m(θ,ϕ) = (−1)lYl,m(θ,ϕ) .

which means that 
. χl(I ) = (−1)l l(l + 1) .

(iii) For a rotational inversion .S̃ ≡ Ĩ · D̃ one finds analogously 

.χ̄l(α) = (−1)l sin
[(

l + 1
2

)
α
]

sin
[

α
2

] . (8.5) 

In particular, in the special case of a reflection on a plane, we find. χ̄l(α = π) = 1
(since .sin [(l + 1/2) π] = (−1)l).
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8.4.2 Splitting of Orbital Energies in Crystal Fields 

We can use the character tables of our 32 point groups along with the characters of 
the group.O(3) (derived above) to evaluate the qualitative splitting of atomic orbitals 
using (5.23). 5 As an example, we consider the case of the group .G = Oh . 

By reducing the subduced representation of the first 4 atomic eigenspaces (.l ≤ 2), 
we obtain: 

.┌
(s)
l=0 = Ag , (8.6) 

. ┌
(s)
l=1 = T1u ,

┌
(s)
l=2 = Eg + T2g ,

┌
(s)
l=2 = A2u + T1u + T2u . (8.7) 

Real linear combinations of functions .Yl,m(θ,ϕ) and .Yl,−m(θ,ϕ) are called axial 
or tesseral orbitals, 

. Al,m ≡ 1√
2
(Yl,m + Yl,−m) (0 ≤ m ≤ l) ,

Al,−m ≡ 1√
2i

(Yl,m − Yl,−m) (0 < m ≤ l) .

In the case of the . s, . p and . d shells, these are also the orbitals that arise in a cubic 
environment. For these shells, they are therefore also denoted as cubic orbitals. Since 
all other point groups in solids are sub-groups of .Oh , they are also a proper starting 
point to find the suitable orbitals of the other point groups. In the case of the. s and. p
orbitals, there is no splitting and one finds the (probably well-known) real orbitals 

. αs(r, θ,ϕ) = Rs(r)Y0,0(θ,ϕ),

βx (r, θ,ϕ) = 1√
2

Rp(r)
[
Y1,1(θ,ϕ) + Y1,−1(θ,ϕ)

] ∼ x ,

βy(r, θ,ϕ) = 1√
2i

Rp(r)
[
Y1,1(θ,ϕ) − Y1,−1(θ,ϕ)

] ∼ y ,

βz(r, θ,ϕ) = Rp(r)Y1,0(θ,ϕ) ∼ z .

For the 5 d-orbitals we obtain the triple degenerate.t2g-orbitals, which can be written, 
for example, as follows

5 A critical reader might object that we have proved (5.23) only for finite groups. In physics, however, 
we can always argue with the fact that our results agree with the experiment. 
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for all .a ∈ G. The proof of .[̄ p⊗p'
being a representation is simple, 

. [
p⊗p'
(ik),( jl)(a · b)

(9.6)= [
p
i, j (a · b) · [

p'
k,l(a · b)

=
∑

n,m

[
p
i,n(a) · [

p
n, j (b) · [ p'

k,m(a) · [
p'
m,l(b)

(9.6)=
∑

n,m

[
p⊗p'
(ik),(nm)(a) · [

p⊗p'
(nm),( jl)(b) ,

where, in the second step, we have used that .[̄ p, [̄ p'
are representations. 

Product representations can, of course, also be created with reducible representa-
tions. We then denote these as .[̄ ⊗ [̄'. In this chapter, we will mainly consider such 
product representations. 

Even for two irreducible representations, .[̄ p⊗p'
is, in general, reducible. This 

already follows from the dimension, because if, for example, .[̄ p has the maximum 
occurring dimension .dp of a group, then .[̄ p⊗p has the dimension . d2

p, so it must be  
reducible. Therefore, in general, 

. [̄ p⊗p' =
∑

p̃

c(p, p'| p̃) · [̄ p̃ ,

with coefficients .c(p, p'| p̃) ∈ N0 . 
The determination of the coefficients .c(p, p'| p̃) succeeds as usual with (5.23). 

For this we need the characters of the product representation, which can readily be 
calculated, 

.χp⊗p'
(a) =

∑

k,l

[
p⊗p
(kl),(kl)(a)

(9.6)=
∑

k,l

[
p
k,k(a) · [

p'
l,l(a) = χp(a) · χp'

(a) . (9.7) 

With (5.23) we then find 

.c(p, p'| p̃) = 1

g

∑

i

ri · χ
p⊗p'
i ·

(
χ

p̃
i

)∗ (9.7)= 1

g

∑

i

ri · χ
p
i · χ

p'
i ·

(
χ

p̃
i

)∗
. (9.8) 

With this equation and with the help of the character tables, we are now in the position 
to find all the coefficients of interest. 

Example As an example we consider the group .D3, and use its character Table 8.1 
to find, for example, for the reduction of .[̄E⊗E :
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Table 9.1 The multiplication table for the irreducible representations of the group .D3. Since the 
table is symmetrical (see (9.8)) we have not specified all elements 

.D3 .A1 .A2 . E

.A1 .A1 .A2 . E

.A2 .A1 . E

.E . A1 + A2 + E

. c(E, E |A1) = 1

6
( 1,,,,

=r1

· 2 · 2,,,,
=χE⊗E

1

· 1,,,,
=χ

A1
1

+2 · (−1) · (−1) · 1 + 3 · 0 · 0 · 1) = 1 ,

c(E, E |A2) = 1

6
(1 · 2 · 2 · 1 + 2 · (−1) · (−1) · 1 + 3 · 0 · 0 · 1) = 1 ,

c(E, E |E) = 1

6
(1 · 2 · 2 · 2 + 2 · (−1) · (−1) · (−1) + 3 · 0 · 0 · 0) = 1 .

Hence, we obtain 
. [̄ p⊗p' = [̄A1 + [̄A2 + [̄E .

The results of reducing product representations from irreducible representations are 
summed up in tables known as multiplication tables. An example of such a table 
for the group.D3 can be seen in Table 9.1. It is worth noting that the use of the same 
names for both these tables and the group multiplication tables is unlikely to cause 
confusion in most cases. Multiplication tables are readily available on numerous 
websites. 

The multiple product representations are defined in the same way 

. [̄ ≡ [̄1 ⊗ [̄2 ⊗ · · · ⊗ [̄n ,

with the representation matrices 

.[I,L(a) ≡ [(i1,...,in),(l1,...,ln)(a) ≡ [i1,l1(a) · [i2,l2(a) · · · [in ,ln (a) , (9.9) 

where we have introduced the multiple indices 

.I ≡ (i1, . . . , in), L ≡ (l1, . . . , ln) . (9.10) 

9.3 Independent Tensor Components 

Our objective now is to identify all the interdependencies among the tensor compo-
nents .αI and a set of independent components. Although in some specific cases, the 
components .αI can be selected independently, this is not generally the case. As we
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Our objective now is to examine which of the tensor components .β(p,m p,λp) can 
have non-zero values without violating (9.11). To achieve this, we substitute (9.13) 
into (9.11), 

. 

∑

p,m p,λp

S∗
I,(p,m p,λp)

β(p,m p,λp) =
∑

L ,p,m p,λ̄p

[L ,I (a) · S∗
L ,(p,m p,λ̄p)

· β(p,m p,λ̄p)
.

We multiply this equation with.SI,(p',m p' ,λp' ) and sum over. I . Then, with the unitarity 

of . S̃ and (9.12), it follows 

.β(p,m p,λp) =
∑

λ̄p

[
p
λp,λp' (a) · β(p,m p,λ̄p)

. (9.14) 

If we represent the components in a vector with respect to .λp and .λ̄p, i.e. 

. →βp,m p ≡ (βp,m p,1, . . . ,βp,m p,dp )
T ,

we see that (9.14) simply means that . →βp,m p is an eigenvector of every matrix . [̃ p(a)

to the eigenvalue 1. We will now show that this implies that. →βp,m p = 0 for all.p /= 1, 
where .p = 1 corresponds to the trivial representation .A1, i.e. the one-dimensional 
representation for which .[1(a) = 1 for all . a. 

Proof 

(i) If .dp > 1, the direction of . →βp,m p /= →0 would be a one-dimensional subspace that 
is invariant with respect to all .[̃ p(a). This leads to a contradiction with the 
statement that we formulated and proved at the beginning of Sect. 4.1.2. 

(ii) If .dp = 1 and .βp,m p /= 0 then it follows 

. [ p(a) · βp,m p = βp,m p ∀a .

which proves the statement. 

With these findings we can now summarize the main results: 

(i) There are exactly .n1 independent tensor components .β1,m1 , i.e. as many as 
the number of occurrences of the representation .[̄1 in the product represen-
tation (9.9). 

(ii) The tensor .αI can then be written as 

.αI =
n1∑

m1=1

S∗
I,(1,m1)

· β(1,m1) . (9.15) 

where .β(1,m1) are the independent tensor components.
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As usual, finding the number .n1 is easy in practice because one can use the stan-
dard Equation (5.23) for this purpose. The determination of the coefficients . S∗

I,(1,m1)

in (9.15) is a bit more difficult, but at least possible with elementary methods of 
linear algebra. The reason is that in (9.12) we are only interested in the sector of the 
one representation, so we have to consider 

. S̃† · [̃(a) · S̃ = 1̃n1×n1 ,

instead of (9.12). Here 
.S̃ = (→s1, . . . , →sn1) , (9.16) 

is a rectangular matrix and the vectors .→sm1 are exactly the coefficients . S∗
I,(1,m1)

in (9.15). When we multiply (9.16) with . S̃ from the left we obtain 

. [̃(a) · S̃ = S̃ .

This implies that the vectors.→sm1 are eigenvectors of all matrices.[̃(a) with an eigen-
value of 1. Although we cannot rule out the possibility that numerical mathematics 
may offer a better method, we provide a way to solve this problem numerically: First, 
we determine all eigenvectors of the matrices.[̃(a) that have an eigenvalue that is not 
equal to 1. Then, using the singular value decomposition, 3 we can find a basis .→bi of 
the subspace spanned by these vectors. The vectors .→sm1 that we need to find must be 
orthogonal to all . →bi . This leads to a homogeneous linear system of equations given 
by 

. (→b1, →b2, . . .) · →sm1 = →0 .

Once more, when it comes to numerically solving this problem, the singular value 
decomposition is likely the most effective tool. 

Example As an example, we consider a polarizability tensor .α̃(2) of rank . 2 which 
we can analyze analytically. This leads to the.9-dimensional representation matrices 

.[(i, j),(k,l)(a) = Di,k(a) · D j,l(a) . (9.17) 

With these, we obtain for the characters 

. χ(a) =
∑

i

Di,i (a)

, ,, ,
≡χ̄(a)

·
∑

j

Di,i (a) = χ̄(a)2 = χ̄2
i

for all elements in a class . Ci . The number .n1 then becomes

3 William H. Press et al. Numerical Recipes in C: the Art of Scientific Computing. Cambridge 
[Cambridgeshire]; New York: Cambridge University Press, 1992. 
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for the number of independent tensor components, i.e. there are no dependencies 
in the tensor .α̃(2) for this group and none of the matrix elements vanishes. 

(iii) In Exercise 4, it is shown that for the group .Oh one finds .n1 = 1. Thus, 

. α̃(2) = α · 1̃ ,

i.e. in a cubic solid the polarizability tensor is of the same form as in homoge-
neous matter like liquids or gases. 

In closing this section, we briefly examine tensors containing axial components, 
such as the magnetic susceptibility tensor .χ̃(2), which describes the leading order 
relationship between a magnetic moment and an applied magnetic field, both of 
which are axial vectors, via the equation 

. →M = χ̃(2) · →B .

Here, one can proceed in exactly the same way as in our previous considerations, 
since the matrices .D̃'(a), defined as (the meaning of .G0 and .L0 is explained in 
Sect. 3.4) 

. D̃'(a) ≡ D̃(a) for |D̃(a)| = 1 (i.e. a ∈ G0) ,

D̃'(a) ≡ −D̃(a) for |D̃(a)| = −1 (i.e. a ∈ L0) ,

are also a representation of the point group, because 

(i) .a, b ∈ G0: it is obviously . D̃'(a · b) = D̃'(a) · D̃'(b)
√

(ii) .a ∈ G0, .b ∈ L0: 

. D̃'(a · b,,,,
∈L0

) = −D̃(a · b) = (−D̃(a)) · D̃(b) = D̃'(a) · D̃'(b)
√

(iii) .a, b ∈ L0: 

. D̃'(a · b,,,,
∈G0

) = D̃(a · b) = (−D̃(a)) · (−D̃(b)) = D̃'(a) · D̃'(b)
√

The same then applies to product representations built with the matrices .D̃'(a) . 
√
.
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An alternative basis consists of eigenstates of . →̂J
2
, . Ĵz and . →̂J

2

i where 

. →̂J ≡ →̂J 1 + →̂J 2 .

The eigenvalue equations of . →̂J
2
and . Ĵz are 

. →̂J
2
| j, m; j1, j2( = j ( j + 1)| j, m( , j = | j1 − j2|, | j1 − j2| + 1, . . . , j1 + j2 ,

Ĵz| j, m; j1, j2( = m| j, m; j1, j2( m = − j, . . . , j .

Apparently, the two bases can be expressed by each other, 

. | j, m; j1, j2( =
∑

m1,m2

(
j1 j2 j

m1 m2 m

)
| j1, m1; j2, m2( ,

where the coefficients in this equation are denoted as Clebsch-Gordan coefficients. 
How to calculate these coefficients is shown in most books on quantum mechanics. 
They play a crucial role in the Wigner-Eckart theorem, which we formulate next. 

10.1.2 The Wigner-Eckart Theorem for Angular Momenta 

Some readers may have already learned about the Wigner-Eckart theorem for angular 
momenta in their introductory lecture on quantum mechanics. We will briefly review 
this theorem before generalizing it for general symmetry groups. 

Analogous to (9.26), we define a set of .2 j + 1 operators .T̂ j,m . (m = − j, . . . , j)
that behave like 

. ŨD̃ · T̂ j,m · Ũ †
D̃

=
j∑

m '=− j

R j
m,m '(D̃) · T̂ j,m '

under rotations .D̃ ∈ O(3) as irreducible spherical tensor operators of rank . k. Here  
the rotation matrix .R j

m,m '(D̃) is given by the matrix elements 

. R j
m,m '(D̃) ≡ ( j, m|Ũ †

D̃
| j, m '(

of the rotation operator.Ũ †
D̃
in the subspace. j . For example, a tensor operator of rank 

. j = 1 consists of three components which results from an arbitrary vector operator. →̂V , 
if we define



Appendix A
The Schoenflies and the International
Notation

There are two established ways of naming point groups, the Schoenflies and the

international notation. The Schoenflies notation is used more often if one is only

interested in the point groups. In contrast, the international one is mainly to denote

the rotational part of space groups. We will give a brief introduction to both notations

in this appendix.

A.1 The Schoenflies Notation

In the Schoenflies notation, the proper point groups are named in the same way as

they were introduced in Sect. 3.2. Most of the names of the improper point groups

are derived from those of the proper ones by specifying which additional improper

symmetry operations exist in the group. Historically, the notation of the groups

argued with the existing mirror planes and did not use the inversion. We go a slightly

different way here to motivate the notation:

(i) The groups .Ci , C2h, S6, C4h, D2h, D3d , C6h, D4h, D6h, Th, Oh :

These groups are constructed by adding the inversion .I to the respective .11

proper point groups .G0 in (3.7), .G = G0 × (E, I ). For the proper point

groups .G0 = {C1, C6} the notations .Ci , .S6 are used instead of .C1h , .C6h .

Remember that all these groups also contain some mirror planes, since these

correspond to a product of a two-fold rotation and the inversion (see Sect. 3.1).

(ii) The groups .Cs, C3h, D3h :

These groups are constructed by adding a mirror plane.σh perpendicular to the

main symmetry axis .δn to the respective proper point groups .C1, C3, D3. In

case of .D3 the two-fold axes, perpendicular to .δn , must obviously lie in .σh .
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(iii) The groups .Cnv (.n = 2, 3, 4, 6):
These groups are constructed by adding .n mirror planes to.Cn (.n = 2, 3, 4, 6)
that all contain the axis of symmetry and have the same angle relative to each
other.

(iv) The groups .S4, D2d , Td (.n = 2, 3, 4, 6):
These groups are constructed by replacing the two-fold symmetry axis in
.C2, D2, T by a four-fold rotary inversion axis .σ4 ≡ I · δ4. Since .(σ4)

2 = δ2,
the corresponding proper groups are subgroups in all three cases. Note that .Td

is the symmetry group of a tetrahedron.

A.2 The International Notation

The international notation considers the three possible types of rotational symmetry
axes:

(i) proper .n-fold rotation axes .δn are denoted as .n = 2, 3, 4, 6.
(ii) .n-fold rotary inversion axes.I · δn are denoted as .n̄ with.n = 1, 2, 3, 4, 6. Then,

an axis .n̄ contains the symmetry elements shown in Table A.1. In that table we
use the common abbreviations

.σ2 ≡ σ ≡ I · δ2 , σ6 ≡ I · δ3 , σ4 ≡ I · δ4 , σ3 ≡ I · δ6 .

Since a rotary inversion axes .2̄ is equivalent to a mirror plane, one often writes
‘m’ instead of ‘.2̄’ .

(iii) If .n is odd, .n̄ necessarily contains .I , because

.(I · δn)
n = I n

    
I

· δn
n    

E

= I

Therefore, the definition of the third kind of axes of rotation only makes sense
for even .n:

.
n

m
≡ n̄ ∪ I

Table A.1 Elements of a rotary inversion axes.n̄

.n̄ Elements Order.g(n̄)

.1̄ .E .I 2

.2̄ .E .σ 2

.3̄ .E .σ6 .δ−1
3 .I .δ3 .σ−1

6 6

.4̄ .E .σ4 .δ2 .σ−1
4 4

.6̄ .E .σ3 .δ3 .σ .δ−1
3 .δ−1

3 6



Appendix B
Solutions to the Exercises

Chapter 1

1. It is sufficient to show that

.  r |T̂D̃−1 · T̂D̃| r   = δ( r −  r  ) , (B.1)

for all basis states .| r , .| r   . When we insert a one-operator .1̂ built with these

states, we find

.  r |T̂D̃−1 · T̂D̃| r   =
 

d3r     r |T̂D̃−1 | r      r   |T̂D̃| r   

=
 

d3r    D̃−1 ·  r | r     D̃ ·  r   | r   . (B.2)

Since

. D̃−1 ·  r | r    =   r |D̃ ·  r    = δ( r − D̃ ·  r   )

and

. D̃ ·  r   | r   = δ( r  − D̃ ·  r   )

Equation (B.1) follows from (B.2).

2. (a) With the definition of the momentum operator .  ̂p = − i
 
 ∇, it follows

.T̂ a · ( r) =
∞ 

j=1

1

j ! ( a ·  ∇) j ( r)

which is just the Taylor-expansion of . ( r +  a).
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(b) In spherical coordinates it is .L̂ z =  
i

∂
∂ϕ

. Thus, we find

.T̂α · (r, θ,ϕ) =
∞ 

j=1

1

j !
 

∂

∂ϕ

 j

 (r, θ,ϕ) =  (r, θ,ϕ + α) .
√

Since the.z-direction is not distinguished from all other, for any other direc-
tion . e (.| e| = 1) of the rotation it must be

.T̂α, e = exp

 
i

 
α
 
 e ·  ̂L

  
= exp

 
 α ·  ̂L

 
≡ T̂ α

with a vector . α ≡ α ·  e.
3. We follow the idea for a proof proposed in the exercise:

(i) Using well-known properties of determinants we can derive:

.|1̃ − D̃| = |D̃|    
=1

|1̃ − D̃| = |D̃T ||1̃ − D̃| = |D̃T − 1̃| = |D̃ − 1̃|

= −|1̃ − D̃| .

Therefore, it is.|1̃ − D̃| = 0, which means that.λ = 1 is an eigenvalue of.D̃.
(ii) In a complex vector space, .D̃ has 3 complex eigenvalues .λi and there is a

unitary matrix .Ũ such that

.Ũ · D̃ · Ũ † = D̃d ≡
⎛
⎝

λ1 0 0
0 λ2 0
0 0 λ3

⎞
⎠ .

With

.D̃d · (D̃d)† = Ũ · D̃ · Ũ † · Ũ · D̃† · Ũ † = Ũ · D̃ · D̃† · Ũ † = Ũ · Ũ † = 1̃ ,

we can conclude that
.λ2

i = 1 ⇒ λi = ei’i ,

with .ϕi ∈ R. Since one of these eigenvalues is 1 (e.g. .ϕ3 = 0) and .|D̃| =
|D̃d| = 1, it must be .ϕ1 = −ϕ2 ≡ ϕ.

(iii) For .ϕ /= 0, the three eigenvectors . vi are orthogonal, because1

. v†
i · D̃ ·  v j = eiϕi  v†

i ·  v j = eiϕ j  v†
i ·  v j ⇒  v†

i ·  v j = δi, j .

1 Remember that.D̂T  vi = e−iϕ vi .
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Chapter 2

1. (a) Suppose that there are two elements.E1 /= E2 with.E1 · a = a and.E2 · a =
a for all .a ∈ G. Multiplying

.E1 · a = a

from the right with .a−1 yields .E1 = E2. .
√

(b) The proof is the same as in (a) replacing .Ei by .a−1
i .

(c) Let us assume that for every .a ∈ G there is a left inverse element .a−1
L with

.a−1
L · a = E .

If we multiply this equation from the left with .a it follows

.a · a−1
L · a = a ⇒ a · a−1

L = E ⇒ a−1
R = a−1

L .
√

2. With Table 2.5 we find for the class multiplications (.C1 · Ci = Ci obviously holds)

.C2 · C3 = {δ3 · δ21, δ3 · δ22, δ3 · δ23, δ
2
3 · δ21, δ

2
3 · δ22, δ

2
3 · δ23}

= {δ23, δ21, δ22, δ22, δ23, δ21} = 2C3 ,
√

C3 · C3 = {δ21 · δ21, δ21 · δ22, δ21 · δ23, δ22 · δ21, δ22 · δ22, δ22 · δ23,

δ23 · δ21, δ23 · δ22, δ23 · δ23}
= {E, δ3, δ

2
3, δ

2
3, E, δ3, δ3, δ

2
3, E} = 3C1 · C2 .

√

3. If . f (a) = a−1 satisfies (2.15), we have

. (a−1 · b−1)−1

    
=b·a

= (a−1)−1 · (b−1)−1

    
a·b

.
√

4. (a) The elements of .G are .E , the three 4-fold rotations .δ4, .δ2
4 , .δ3

4 around the
symmetry axis of the molecule and the 4 mirror planes.σ1, . . . ,σ4 shown in
Fig. B.1. The inverse elements are

.(δ4)
−1 = δ3

4 ,

(δ2
4)

−1 = δ2
4 ,

(δ3
4)

−1 = δ4 ,

(σi )
−1 = σi (i = 1, . . . , 4) .

As illustrated in the example of the group.D3 in Sect. 2.2.3, each group ele-
ment corresponds to an arrangement of the vertices of the molecule (here.A,

.B,.C ,.D) after the group transformation. These are for the 8 group elements
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(b) position 1:
proper point group: .C2,
improper point group: .C2+2 mirror planes .= C2v ,
position 2:
proper point group: .D4,
improper point group: .D4 + I = D4h .

(c) position 1:
proper point group: .C3,
improper point group: .C3+3 mirror planes .= C3v ,
position 2:
proper point group: .O ,
improper point group: .O + I = Oh .

4. (i) .D4h ,
(ii) .D2h ,

(iii) .D3d ,
(iv) .C2v .

5. (i) In the case of the group .D2, one possible way is to start from the cuboid
with which we illustrated this group in the Chap. 2, and to position an atom
on each of the 8 vertices (see Fig. 2.1). There we had ignored consciously
the improper symmetries of this body, since its actual point group is .D2h .
We must now add atoms that preserve the proper symmetry transformations
but eliminate the improper ones. Here, it is sufficient to break the inversion
symmetry. This succeeds, for example, in the (artificial) molecule in Fig. B.4.

(ii) The group .D3h contains a 6-fold rotation inversion axis, as well as three
2-fold axes of rotation and mirror planes. The inversion is no symmetry
operation. This leads to a similar situation as in Fig. B.2, except that the two
faces (left and right) must be chosen as regular hexagon (see the six (red)
atoms in Fig. B.5).

6. The only symmetry that exists in any 2-dimensional system is the mirror plane.
Together with the identity element, this leads to the group .Cs .

7. It becomes .D4h .

Fig. B.4 An artificial
molecule with the symmetry
group.D2
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Fig. B.5 An artificial
molecule with the symmetry
group.D3h . Shown are the
6-fold rotation inversion axis
(.σ3) and one of the three
2-fold rotation axes (.σ2) and
one of the mirror planes.σ

δ 2

σ
σ

3

8. Given that two point groups are equivalent, there is, then, a matrix .S̃ with

.S̃−1 · D̃i · S̃ = D̃ 
i ,

for all matrices .D̃i , .D̃ 
i of the two groups. This equation then obviously also

defines the isomorphism.D̃i ↔ D̃ 
i , because

.D̃ 
l = D̃ 

i · D̃ 
j = (S̃−1 · D̃i · S̃) · (S̃−1 · D̃ j · S̃) = S̃−1 · D̃i · D̃ j · S̃ = S̃−1 · D̃l · S̃ .

√

9. Suppose that .C2 × C4 is isomorphic to .C8. Then, there must be a generating
element .(a; b) ∈ C2 × C4 with .a ∈ C2 and .b ∈ C4 and

.(a; b)l = E . (B.3)

for (and only for).l = 8..a and.b can be written as.a = am
g ,.b = bn

g with generating
elements .ag, .bg and some natural numbers .m, n. Then, it follows

.(a; b)4 = (am
g ; bn

g)
4 = (a4m

g ; b4n
g ) = (E; E) = E

in contradiction to (B.3) , i.e. .C2 × C4 is not isomorphic to .C8.

Chapter 5

1. (a) If .ai ∼ a 
i and .b j ∼ b 

j there must be .a ∈ G1 and .b ∈ G2 such that

.ai = a−1 · a 
i · a ∨ b j = b−1 · b 

j · b ⇒ (ai ; b j ) = (a; b)−1 · (a 
i ; b 

j ) · (a; b)

and therefore.(ai ; b j ) ∼ (a 
i ; b 

j ). Since the argument also works in the oppo-
site direction, the assertion holds. Hence, for every pair of classes .Ck ∈ G1,

.Cl ∈ G2 there exists a class.C[k,l] ∈ G1 × G2 that consists of all pairs.(ai , b j )

with .ai ∈ Ck , .b j ∈ Cl . The number of elements in .C[k,l] is .r[k,l] = rk · rl .
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Table B.5 Irreducible representations of the group.D3d . The matrices.D̃i are defined in (2.16)

E .δ3 .δ2
3 .δ21 .δ22 .δ23 I .(Iδ3) .(Iδ2

3) .(Iδ21) .Iδ22) .Iδ23)

. A⊗A 1 1 1 1 1 1 1 1 1 1 1 1

. A⊗B 1 1 1 1 1 1 .−1 .−1 .−1 .−1 .−1 .−1

. A⊗E .D̃1 .D̃2 .D̃3 .D̃4 .D̃5 .D̃6 .D̃1 .D̃2 .D̃3 .D̃4 .D̃5 .D̃6

. B⊗A 1 1 1 .−1 .−1 .−1 1 1 1 .−1 .−1 .−1

. B⊗B .−1 .−1 .−1 1 1 1 .−1 .−1 .−1 1 1 1

. B⊗E .D̃1 .D̃2 .D̃3 .D̃4 .D̃5 .D̃6 .−D̃1 .−D̃2 .−D̃3 .−D̃4 .−D̃5 .−D̃6

For the group .D3 the relevant characters are

.χ(E) = 3,χ(δ3) = χ(δ2
3) = 0,χ(δ2,i ) = −1 .

Hence,

.n A1 = 1

6
(1 · 1 · 3 + 2 · 0 · (−1)+ 3 · 1 · (−1)) = 0 ,

n A2 = 1

6
(3 + 0 + 3) = 1 ,

nE = 1

6
(6 + 0 + 0) = 1 ,

i.e.
. =  A2 ⊕  E .

4. We use (5.23). In this case, all characters (.χp
i and .χ) are given in Tables 5.1

and 6.1.

(a) .G  = {E, δ3, δ
2
3}  = C3

(i) . ̄(s) = A1:

.n A = 1

3
(1 + 1 + 1) = 1 ,

nE1 = 1

3
(1 + ω + ω2

    
−1

) = 0 = nE2 .

Hence
.A1 → A .

(ii) . ̄(s) = A2: same result as in (i),

.A2 → A .
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However, for some one-dimensional representation . ̄ p it applies

. p(c) =  p(a) ·  p(b) =  p(b) ·  p(a) =  p(d)

i.e. the two different group elements .c and .d have the same character in each
representation. This contradicts the orthogonality theorem (5.9) and therefore.G
must be Abelian. .

√
10. For both elements .a = I or .a = σ it applies .a2 = E , hence

. (a2) =  (a)2 =  (E) = 1 .

Thus it is . (a) = ±1̃. .
√

11. In a non-Abelian group there are at least two group elements .a, b for which

.a · b /= b · a

applies. This means that
.a · b · a−1 /= b

and there must therefore be an element

.c ≡ a · b · a−1 /= b

that is in the same class as.b. Hence, there would be at least one class with more
than one element. If there were only one-dimensional representations, however,
all classes would have to consist of only one element according to (5.24) and
Theorem 1 in Sect. 4.2. This contradicts our above finding and therefore there
cannot be only one-dimensional representations. .

√

Chapter 6

1. To use (6.14), we need the effect of the rotations in .C3 on a vector . r . With (3.3)
we find for .δ3 (.ϕ = 2π

3 )

.x → − x

2
−

√
3

2
y ,

y →
√

3

2
x − y

2
,

z → z ,

and for .δ2
3 (.ϕ = 4π

3 )
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of .C3v using the operators .P̂ p
λ,λ,

.P̂ A1
1,1|1 = 1

6

 
T̂E |1 + T̂δ3 |1 + T̂δ2

3
|1 + T̂σ1 |1 + T̂σ2 |1 + T̂σ3 |1 

 

= 1

6
(|1 + |2 + |3 + |2 + |1 + |3 )

= 1

3
(|1 + |2 + |3 ) ≡ √

3| A1 

where the state .| A1 is normalized. For the 3 other operators we find

.P̂ A2
1,1|1 = 1

6

 
T̂E |1 + T̂δ3 |1 + T̂δ2

3
|1 − T̂σ1 |1 − T̂σ2 |1 − T̂σ3 |1 

 
= 0 ,

P̂ E
1,1|1 = 2

6

 
T̂E |1 + ωT̂δ3 |1 + ω2T̂δ2

3
|1 

 

= 2

6

 |1 + ω|2 + ω2|3  ≡ √
3| E

1  ,

P̂ E
2,2|1 = 2

6

 |1 + ω2|2 + ω|3  ≡ √
3| E

2  .

Because of our findings in Sect. 6.3.5, the Hamiltonian must be diagonal
with respect to the three basis states .| A1 , .| E

1,1 , .| E
2,2 with diagonal

elements

.  A1 |Ĥ | A1 = 2t ,

  E
1 |Ĥ | E

1  =   E
2 |Ĥ | E

2  = −t . (B.4)

Note that (B.4) confirms our general finding (6.23).
(b) With the 3 states .|4 , .|5 , .|6 we can define analogously

.| ̃ A1 = 1√
3
(|4 + |5 + |6 ) ,

| ̃E
1  = 1√

3
(|4 + ω|5 + ω2|6 ) ,

| ̃E
2  = 1√

3
(|4 + ω2|5 + ω|6 ) .

In the basis of the 6 states .| A1 , . . . , | ̃E
2  the Hamiltonian is block-

diagonal with .2 × 2 blocks of states .{| A1 , | ̃ A1 }, .{| E
i  , | ̃E

i  }. The
off-diagonal elements are

.  A1 |Ĥ | ̃ A1 =   ̃E
i |Ĥ | E

i  = t  .

Thus, the Hamiltonian matrix has the form


