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and imperfection sensitivity close to the buckling pressure

Lorenz Baumgarten1,2,* and Jan Kierfeld2,†

1Institute for Theoretical Physics, University of Bremen, 28359 Bremen, Germany
2Physics Department, TU Dortmund University, 44221 Dortmund, Germany

(Received 24 August 2018; revised manuscript received 1 November 2018; published 26 February 2019)

We study the axisymmetric response of a complete spherical shell under homogeneous compressive pressure
p to an additional point force. For a pressure p below the classical critical buckling pressure pc, indentation
by a point force does not lead to spontaneous buckling but an energy barrier has to be overcome. The states
at the maximum of the energy barrier represent a subcritical branch of unstable stationary points, which are
the transition states to a snap-through buckled state. Starting from nonlinear shallow shell theory, we obtain a
closed analytical expression for the energy barrier height, which facilitates its effective numerical evaluation as a
function of pressure by continuation techniques. We find a clear crossover between two regimes: For p/pc � 1
the postbuckling barrier state is a mirror-inverted Pogorelov dimple, and for (1 − p/pc ) � 1 the barrier state
is a shallow dimple with indentations smaller than shell thickness and exhibits extended oscillations, which
are well described by linear response. We find systematic expansions of the nonlinear shallow shell equations
about the Pogorelov mirror-inverted dimple for p/pc � 1 and the linear response state for (1 − p/pc ) � 1,
which enable us to derive asymptotic analytical results for the energy barrier landscape in both regimes. Upon
approaching the buckling bifurcation at pc from below, we find a softening of an ideal spherical shell. The
stiffness for the linear response to point forces vanishes ∝ (1 − p/pc )1/2; the buckling energy barrier vanishes ∝
(1 − p/pc )3/2; and the shell indentation in the barrier state vanishes ∝ (1 − p/pc )1/2. This makes shells sensitive
to imperfections which can strongly reduce pc in an avoided buckling bifurcation. We find the same softening
scaling in the vicinity of the reduced critical buckling pressure also in the presence of imperfections. We can also
show that the effect of axisymmetric imperfections on the buckling instability is identical to the effect of a point
force that is preindenting the shell. In the Pogorelov limit, the energy barrier maximum diverges ∝ (p/pc )−3

and the corresponding indentation diverges ∝ (p/pc )−2. Numerical prefactors for proportionalities both in the
softening and the Pogorelov regime are calculated analytically. This also enables us to obtain results for the
critical unbuckling pressure and the Maxwell pressure.
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I. INTRODUCTION

When a complete spherical elastic shell is put under ho-
mogeneous mechanical compressive pressure, the spherical
shape remains stable over a considerable pressure range un-
til it finally collapses at the critical buckling pressure pc.
This pressure has been known for over one hundred years
since the work of Zoelly [1] and buckling is an ubiquitous
mode of failure for curved thin-walled shells with significant
implications for all engineering applications [2]. Buckling
represents a hysteretic bifurcation analogously to a hysteretic
first-order transition in a thermodynamic system because the
buckled state is already metastable below pc [3]. Therefore,
the shell can be “pushed” into a buckled state containing a
single axisymmetric dimple already below pc by applying an
additional localized point force. A threshold force is required
to create a stable dimple, and the required threshold value
increases for decreasing p further below pc. This corresponds
to an energy barrier that has to be overcome by applying
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the additional point force before the spherical shell buckles.
This energy barrier has been subject of a number of recent
studies both for spherical [4–10] and cylindrical [8,10,11]
shells. Obviously, it is an important feature that governs
the mechanical stability of spherical shell structures slightly
below the buckling threshold with respect to localized point
forces, but also with respect to thermal fluctuations [9,12].
It also plays a prominent role for the buckling behavior of a
shell containing inhomogeneities or imperfections in the form
of “frozen-in” normal displacements in the rest state of the
shell [13–15] or soft spots [16]; both are problems that we
will also revisit. The energy barrier represents also an impor-
tant feature of an spherical shell from a general theoretical
point of view as the barrier vanishes upon approaching the
buckling bifurcation and how it vanishes characterizes the
critical behavior of the buckling bifurcation. In the mechanics
literature, the unstable barrier state is often referred to as
postbuckling state [14], as the shell already contains a dimple;
the catastrophic nature of the buckling instability is reflected
in a decreasing pressure p < pc of the barrier state, which
leads to a snap-through buckling [3,17]. Many quantitative
analytical results on buckling of spherical shells are based on
the Pogorelov theory, where the dimple is approximated as a
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mirror-inverted spherical cap-shaped indentation [18]. Here,
we present a rigorous quantitative approach on the energy
barrier based on systematic expansions of nonlinear shallow
shell theory. Expanding about the Pogorelov mirror-inverted
dimple, we find analytical results for the energy barrier in
the Pogorelov limit p/pc � 1. This extends recent work of
Gomez et al. on the Pogorelov indentation in the absence of
pressure [19] and is conceptually similar to the boundary layer
approach of Evkin et al. [5,20,21]. We also derive analytical
results for the “critical” regime of pressures close to pc by an
expansion about the linear response state for (1 − p/pc) � 1.
This enables us to characterize the softening of the capsule
close to the critical pressure.

Elastic shells are thin-walled elastic structures with a
curved reference shape. Bending energy penalizes deviations
in curvature from the spontaneous curvature of the reference
shape, and two-dimensional elastic energy penalizes stretch-
ing and shear deformations of the quasi-two-dimensional solid
shell with respect to the reference shape, in which the capsule
is stress free. Examples for elastic shells shells range from the
micro- to the macroscale. On the microscale, artificial micro-
capsules enclosing a liquid [22–25] can be described as elastic
shells. On the macroscale, all thin-walled spherical structures
in mechanical engineering (vessels, domelike structures, egg
shells [26]) provide examples. Red blood cells [27–30] and
shells of viruses [31,32] have elastic properties similar to
continuum elastic shells but there are important differences,
for example, regarding the reference shape and crystallinity.
Here, we consider elastic shells with a spherical reference
shape with radius R0. For red blood cells, the rest shape is,
however, not spherical but an oblate spheroid [29,30]. Because
a sphere has minimal area for a given volume, any deforma-
tion of the spherical rest shape involves stretching, whereas
red blood cells are known to undergo shape transformations at
(even locally) conserved area [27–30]. Viruses are crystalline
spherical shells consisting of discrete protein building blocks.
Any triangulation of a sphere must contain at least 12 fivefold
disclinations. Continuum shell theory cannot account for such
defects, which give rise to faceted equilibrium shapes of large
viruses, while sufficiently small viruses remain spherical [31].
The faceted equilibrium shape of large viruses is an impor-
tant difference to spherical shells. In contrast to quasi-two-
dimensional elastic shells, vesicles are quasi-two-dimensional
fluid membranes made from lipid bilayers. Vesicles also have
a bending and stretching energy but lack a shear energy
because of their fluidity. They show a distinct deformation
behavior as compared to elastic capsules [33]. In particular,
their response to additional point forces is different because of
the lack of an elastic reference state. For vesicles, additional
point forces lead to tube formation [34,35] rather than the for-
mation of a dimple; such tubes can also be stabilized by actin
protrusions [36]. Only in its gel phase can a vesicle acquire a
shear modulus and exhibit elastic features similar to an elastic
shell. Also, biological cells have an elastic cortex which can
be modeled as an elastic shell if it is sufficiently thin [37]. If
the cortex spans the entire cell, the cell should be treated as a
solid elastic sphere [37,38]. Moreover, active motor-induced
stresses can modify the actin cortex elasticity [39].

If the capsule material can be viewed as a thin shell of
thickness h (� R0) made from an isotropic and homogeneous

elastic material with bulk Young’s modulus E , the shell has
a bending modulus κ ∝ Eh3 but a two-dimensional Young’s
modulus Y ∝ Eh [40,41]. Therefore, bending deformations
are energetically preferred over stretching or shear deforma-
tions for thin shells, as long as R0 � (κ/Y )1/2 ∝ h. As a
result, spherical elastic shells or capsules are very resistant
to compressive forces because there are no isometric, stretch-
and shear-avoiding deformations of a sphere. Only above the
critical pressure pc does a perfect spherical shell become
unstable and buckling occurs [40,42].

At pc, the buckling instability is triggered by a short-
wavelength mode, which spreads over the whole sphere
and leads to many small-amplitude dimples appearing on
the sphere, as can be found in a linear stability analy-
sis [13,14,16]. After this mode has developed, the shell can
further lower its energy by increasing the amplitude, and
nonlinearities in the elastic theory finally lead to coalescence
of small dimples into a single dimple in the buckled energy
minimum [9]. Following Pogorelov [18], the final dimple can
be viewed as an approximative inverted spherical cap whose
sharp edge at the rim is rounded to avoid infinite bending
energies. Such a rounded spherical cap is an approximative
isometry of the spherical rest shape. For a fixed mechanical
pressure p � pc, the dimple will actually snap through and
grow until opposite sides are in contact, whereas for osmotic
pressure control or even volume control, a stable dimple shape
is reached before opposite sides come into contact [3,17]. A
deep dimple can also assume a polygonal shape in a secondary
buckling transition [43–45].

Understanding the critical properties of the buckling insta-
bility is important both from a structural mechanics perspec-
tive for macroscopic spherical shells and for many applica-
tions of spherical microcapsules. For ideal spherical shells,
the classical buckling pressure pc is known exactly. For a shell
with rest radius R0, bending rigidity κ , two-dimensional (2D)
Young’s modulus Y , one finds [1,42,46]

pc = 4

√
Y κ

R2
0

= 4
Eh2

R2
0

√
12(1 − ν2)

= 4
Y

R0
γ −1/2. (1)

The second equality applies for thin shells of thickness h made
from an isotropic elastic material with bulk Young modulus
E and Poisson ratio ν, where κ = Eh3/12(1 − ν2) and Y =
Eh [46]. We also introduced the Föppl–von Kármán number

γ ≡ Y R2
0

κ
= 12(1 − ν2)

(
R0

h

)2

, (2)

which is an inverse dimensionless bending rigidity. The ideal
critical pressure pc is, however, not reached in experiments on
macroscopic shells, because imperfections reduce the buck-
ling pressure significantly [13,14].

Buckling represents a hysteretic bifurcation analogous to
a hysteretic first-order transition in a thermodynamic system;
metastable buckled states and a corresponding unstable transi-
tion state appear already subcritically for p < pc [3,5,7,9,17].
The buckled state with a single axisymmetric dimple be-
comes energetically favorable already for p > pc1, above the
so-called Maxwell pressure, which can be obtained from a
Maxwell construction of equal energies [3,5,7,17] resulting
in a parameter dependence pc1 ∼ pcγ

−1/4 [17]. As a result,
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FIG. 1. Numerical results for the shape of a buckled spherical
shell with γ = 5000 and rest radius R0 in the postbuckling barrier
state for pressures p/pc = 0.2 (a) and p/pc = 0.5 (b) according to
nonlinear shallow shell equations (only the relevant part of the sphere
is shown). The red arrow indicates the normal displacement zB at the
pole, which is also the direction of the applied point force. The blue
ring indicates the width ρB of the barrier state.

there is a rather wide pressure window pc > p > pc1, where
buckling is energetically possible but an energy barrier has to
be overcome; the barrier state is an unstable transition state.
One way to probe the energy barrier is by application of
an additional point force, which “pushes” the shell into the
buckled state [4–8,10]; see Fig. 1. If the dimple is created
by a point force, it is axisymmetric about the force axis. We
exclusively study the axisymmetric situation in this paper.
SURFACE EVOLVER simulations have shown, however, that the
axisymmetric dimple is also the relevant barrier state if the
dimple is not forced into an axisymmetric shape by a point
force [9].

Below the Maxwell pressure, there is also a critical unbuck-
ling pressurepcu ∼ 3pc1/4, below which no stable buckled
shape exists and which has the same parameter dependence as
pc1 [3,5,16,47]. This pressure is also called minimum buckling
load in the literature [14,48]. This gives the following general
bifurcation scenario: Buckled states and the unstable barrier
transition state appear in a bifurcation at p = pcu. In the range
pcu < p < pc, three stationary shapes are present: Spherical
and buckled states are (meta)stable and separated by the
unstable barrier state. At p = pc, the barrier state and the
spherical state vanish in a second bifurcation.

Whereas the value of the critical buckling pressure pc is
known analytically, many aspects of the buckling bifurcation
are unexplored, in particular with respect to the buckling
energy barrier. One example is the properties of the subcritical
axisymmetric barrier state for p close to pc. They characterize
the bifurcation at pc but have, so far, not been explored
systematically. A systematic numerical and analytical inves-
tigation in this regime is the focus of the present paper. Most
of the known results for the barrier state and the energy barrier
height have been derived in the limit p � pc, either from
numerical work starting from energy minimization [6,7,9]
or based on the Pogorelov energy scaling of the buckled
state, which is only valid for relatively deep mirror-buckled
indentations at p � pc. The scaling of the energy barrier
height EB ∝ (p/pc)−3 and the depth of the barrier inden-
tation zB ∝ (p/pc)−2 can be derived using this Pogorelov
scaling [9,16,17]. In the Pogorelov approach, numerical pref-
actors in the scaling results can be obtained from only an

approximative variational energy minimization for the round-
ing of the sharp edge of inverted spherical cap shapes. Further
progress has been made by Evkin and coworkers using a more
systematic boundary layer formulation in shallow shell theory
but still relying on variational energy minimization [5,20,21].

In this paper, we start from the force equilibrium for
axisymmetric states and use the nonlinear shallow shell equa-
tions to systematically derive properties of the buckling en-
ergy barrier. First, we will present numerical results based
on an exact and explicit expression for the energy barrier in
axisymmetric nonlinear shallow shell theory. Then we will
focus both on the Pogorelov limit p � pc, where we system-
atically expand about a mirror-symmetric barrier state with a
deep indentation, and on the limit of compressive pressures
below but close to pc, where the barrier state is a very shallow
dimple such that we can systematically expand about Reissner
solutions of the linearized shallow shell theory. In both limits,
we derive the exact asymptotic behavior including numerical
prefactors. This enables us to obtain a complete picture of the
buckling energy landscape in both limits and shed light on the
critical properties of the buckling bifurcation.

In numerical calculations, application of a point force
allows us to slowly push the shell into a buckled state, to
explore thereby the buckling energy landscape, to detect the
barrier state as the unstable force-free transition state, and to
quantify the energy of the barrier state by measuring the work
performed by the point force until the barrier is reached. Point
forces are, however, also an important experimental tool to test
shells [4]. Of particular interest in applications is the initial
linear response of a shell to point forces because many me-
chanical compression techniques (plate compression [49,50]
or compression by microscopy tips [50,51]) are equivalent
to point force indentation in the initial small displacement
regime. We provide an expression for the linear stiffness of
the elastic shell, which is valid for the entire pressure range
and extends results for pressurized capsules with stretching
pressures [52] to compressive pressures up to the critical
buckling pressure. Knowledge of the linearized stiffness can
be used for measuring elastic capsule properties and capsule
pressure [52].

Within the same framework of nonlinear shallow shell
equations, we finally consider the effect of axisymmetric
imperfections within the systematic expansion for shallow
indentations. This allows us to explore how softening of the
shell close to pc makes shells sensitive to imperfections and
results in an avoided buckling bifurcation. We compare the
effect of a point force that is preindenting the shell with
the effects of axisymmetric imperfections on the buckling
instability and find striking similarities.

II. NONLINEAR SHALLOW SHELL THEORY

We employ nonlinear shallow shell theory for a thin spher-
ical shell with equilibrium radius R0 [41,46], which is subject
to a homogeneous compressive pressure p and an additional
indenting point force F normal to the surface (see Fig. 1).
We focus on isotropic elastic materials; isotropic Hookean
elasticity can describe the deformation behavior of most arti-
ficial microcapsules rather well [53]. Using polar coordinates
r and φ on the two-dimensional reference plane over which
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shallow shell configurations are parametrized with the point
force acting at the pole, shallow shell theory gives two coupled
equations for the normal displacement w(r, φ) (negative for
inward displacement) and the Airy stress function �(r, φ).
For axisymmetric states, as they are enforced by the point
force, these functions become independent of φ, and we have
two equations for w(r) and the negative derivative of the Airy
stress function ψ (r) = −�′(r), which have been derived and
are described in detail in the literature [13,16,19,46,52] [see
also Eqs. (87) and (88) in Appendix B with wI = 0],

κ∇4w + 1

R0

1

r
∂r (rψ ) − 1

r
∂r (ψ∂rw) = −p − F

2π

δ(r)

r
, (3)

1

Y
r∂r

[
1

r
∂r (rψ )

]
= r

R0
∂rw − 1

2
(∂rw)2 (4)

(with ∇2... = ( 1
r ∂r ) + ∂2

r )... = 1
r ∂rr∂r ...). Positive p corre-

sponds to a compressive pressure, a positive F corresponds
to a compressive point force, and the point force acts at
r = 0. The first equation, (3), is the force balance in vertical
direction, and the second equation, (4), is the (integrated)
compatibility of strains. The in-plane stresses are obtained as
σφφ = ψ ′ and σrr = ψ/r. We assume thin shells h/R0 � 1
and shallow shells, i.e., small slopes |w′| � 1 [46], in the
above equations.

Equations (3) and (4) have to be solved with boundary
conditions w(∞) = w′(∞) = 0 and ψ (∞) = 0 (or ψ ′(∞) =
0) for r → ∞; at r = 0, we require a given indentation
w(0) < 0, w′(0) = 0 corresponding to the absence of kinks
and limr→0(rψ ′(r)) − νψ (0) = 0 corresponding to vanishing
radial in-plane displacement to avoid tearing the shell. We
prescribe the indentation w(0) < 0 at the origin, solve Eq. (3)
in the domain r > 0 where F = 0, and calculate the necessary
force F to induce this indentation only afterward from an
integrated version of Eq. (3) [19,52].

In the absence of a point force, the pressure p puts the shell
into a uniformly pre-compressed state with w(r) = w0 <

0 and ψ (r) = ψ0(r) = −pR0r/2 corresponding to stresses
σrr = σφφ = σ0 = −pR0/2. We consider changes with re-
spect to this precompressed state and substitute w(r) → w0 +
w(r) and ψ (r) → ψ0(r) + ψ (r), such that Eq. (3) becomes

κ∇4w + 1

R0

1

r
∂r (rψ ) − σ0∇2w − 1

r
∂r (ψ∂rw)

= − F

2π

δ(r)

r
(5)

while Eq. (4) remains unchanged. The boundary conditions
for w(r) and ψ (r) are unchanged by this substitution, and we
define the indentation depth z (z > 0) at the pole with respect
to the precompressed state; i.e., we require w(0) = −z < 0
at r = 0 after substitution. The additional term +σ0∇2w in
Eq. (5) induces a tendency of the precompressed state for
oscillating w fluctuations as it is the variation of an effective
energy − 1

2σ0
∫

d2r(∇w)2, which is lowered by oscillating
w modes. This is the driving force for the classical insta-
bility with respect to oscillatory w modes at the buckling
pressure pc.

We introduce dimensionless quantities

w̄ ≡ w/(κ/Y )1/2, ρ ≡ r/
(
κR2

0/Y
)1/4

,
(6)

ψ̄ ≡ ψ/
(
κ2Y/R2

0

)1/4
, Ē ≡ E/2π

(
κ3/Y R2

0

)1/2
;

i.e., we measure normal displacements w (and indentations z
at the pole) in units of (κ/Y )1/2 = R0γ

−1/2 = hk−2, which is,
apart from factors of k ≡ [12(1 − ν2)]1/4, the shell thickness
h (the dimensionless radius is thus R̄0 = γ 1/2), radial dis-
tances in units of the elastic length scale lel = (κR2

0/Y )1/4 =
R0γ

−1/4 = (hR0)1/2k−1 (the radial scale on which bending
and stretching energy are balanced), which is also the unstable
wave length at the buckling transition at pc [13], normal
forces in units of κ/R0 = Y R0γ

−1, and energies in units of
2π (κ3/Y R2

0)1/2 = 2πY R2
0γ

−3/2. The dimensionless shallow
shell Eqs. (5) and (4) become

∇4
ρw̄ + 1

ρ
∂ρ (ρψ̄ ) + 2

p

pc
∇2

ρw̄ − 1

ρ
∂ρ (ψ̄∂ρw̄)=− F̄

2π

δ(ρ)

ρ
,

(7)

ρ∂ρ

[
1

ρ
∂ρ (ρψ̄ )

]
= ρ∂ρw̄ − 1

2
(∂ρw̄)2 (8)

with ∇2
ρ... = 1

ρ
∂ρ (ρ∂ρ...), and F̄ ≡ Fγ /Y R0. We compare

to other nondimensionalization schemes of the problem in
Table I in Appendix C. Shallow shell theory is applicable as
long as ∂rw � 1 [46], which implies ∂ρw̄ � γ 1/4 in dimen-
sionless quantities.

A. Exact analytical results

Because w̄(ρ) decays exponentially for ρ � 1, we can
obtain

ψ̄ ∼ −F̄/2πρ for ρ → ∞ (9)

from integrating (7) over a circle of radius ρ → ∞ on both
sides,

∫ ρ

0 dρ̃ρ̃..., resulting in ρ̃ψ̄ |ρ0 ∼ ρψ̄ = − F̄
2π

[52]. Equa-
tion (9) also follows from force balance in the point force
direction [19].

From the shallow shell Eqs. (7) and (8), two exact relations
can be obtained. Multiplying by ρ and integrating from ρ to
infinity on both sides of Eq. (7) and using (9) at infinity gives
the first relation

− ρ∂ρ (∇2
ρw̄) − ρψ̄ + ψ̄∂ρw̄ − 2

p

pc
ρ∂ρw̄ = F̄

2π
. (10)

Dividing by ρ and integrating from ρ to infinity on both
sides of Eq. (8), multiplying by ρ and integrating from 0 to
infinity on both sides, and using (9) at infinity and one partial
integration on the right-hand side give the second relation

− F̄

2π
=

∫ ∞

0
dρρw̄ +

∫ ∞

0
dρρ

1

4
(∂ρw̄)2. (11)

Both of these equations can be employed to determine the
point force F̄ for a given indentation z̄ and thus the force-
indentation relation F̄ = F̄ (z̄) numerically.

The force-indentation relation can be integrated to obtain
the indentation energy Ēind as a function of the indentation
depth, Ēind(z̄) = 1

2π

∫ z̄
0 F̄ (˜̄z)d ˜̄z. We note that this is the total
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TABLE I. Units for nondimensionalization and dimensionless quantities.

Here Gomez et al. [19] Hutchinson et al. [4,7] Evkin et al. [5,21]

Norm. displacement unit (κ/Y )1/2 = R0γ
−1/2 wR ≡ √

12hk−2

= hk−2 h = h(1 − ν2)−1/2

Norm. displacement w̄ ≡ wk2/h W = w̄k−2 w/wR = ξg(s̃, ξ )

= −w̄/
√

12

Indentation depth z̄ ≡ −w̄|ρ=0  ≡ −W |ρ=0 = z̄k−2 ξ ≡ w/wR|s̃=0 = z̄/
√

12 ε−2 = z̄/4

Pressure p/pc p = 0 p/pc = f (ξ ) q̄ = p/pc

Radial distance unit (κR2
0/Y )1/4 = R0γ

−1/4

= (hR0)1/2k−1 (hR0)1/2 121/4(hR0)1/2

Radial distance ρ ≡ rk/(hR0)1/2 ρGomez = ρk−1 s̃ � ρ/121/4

Indentation volume V B ≡ −2π
∫ ∞

0 dρρw̄ – V B = 24πh(ξ )

Force unit Y R0/γ = κ/R0

= (Y h2/R0 )k−4 Y h2/R0 2πκ/R0 [4]

Force F̄ F = F̄ k−4 F̄Marthelot = F̄/2π [4] Q̄ = F̄/12π

Energy unit e ≡ 2π (κ3/Y R2
0 )1/2 – Wc = 1

2 pcVcCh/R0 = 48e UA = 1
2 (p/pc )2 pcVc

= 96π (κ3/Y R2
0 )1/2

C ≡
√

3

(1−ν )
√

1−ν2

Barrier energy ĒB – W/Wc = ĒB/48 Ē = ĒB
2(p/pc )2λ2 (1−ν )

= q(ξ ) − f (ξ )h(ξ ) λ2 ≡ 4k2R0/h

energy difference with respect to the precompressed spherical
state (at pressure p) if an additional indentation of depth z̄
is generated (by applying a point force F̄ ). At the barrier
state, the indentation energy has a maximum as a function
of the indentation z̄. If we call the indentation in the barrier
state z̄B (see Fig. 1), it fulfills ∂Ēind/∂ z̄(z̄B) = 0 or F̄ (z̄B) = 0.
We introduce the barrier energy as energy difference between
barrier state and the precompressed spherical state, ĒB =
Ēind(z̄B). Vice versa, the force-indentation relation F̄ = F̄ (z̄)
is obtained from the energy Ēind(z̄) by minimizing the tilted
indentation energy landscape Ēind(z̄) − F̄ z̄/2π . The slope of
the energy landscape Ēind(z̄) at z̄ gives the necessary point
force F̄/2π to achieve an indentation z̄. A pushing compres-
sive point force is necessary to achieve indentations where the
energy landscape is increasing; at the maximum in the barrier
state a force-free unstable equilibrium is achieved; at indenta-
tions where the energy landscape decreases, the shell can only
be stabilized by a pulling point force. Figure 2 summarizes
important features of a schematic buckling energy landscape.

The energy barrier, i.e., the difference in total energy
Etot = Es + Eb + pV (the sum of stretching, bending,
and mechanical pressure work) between barrier state and the
precompressed spherical state is given by the simple, explicit
formula

ĒB = Ētot = −1

4

∫ ∞

0
dρψ̄ (∂ρw̄)2, (12)

where ψ̄ and w̄ are solutions of the shallow shell Eqs. (7)
and (8) for F̄ = 0. Equation (12) is derived in Appendix A.
This result allows direct numerical access to the value of the
energy barrier. Moreover, it will allow us to obtain analytical
results both for the critical behavior of the energy barrier
close to pc, i.e., for shallow barriers with small indentations

z̄ � 1) and for p � pc, i.e., for barrier states with deep inden-
tations z̄ � 1, which are mirror-inverted Pogorelov dimples.
Equation (12) actually gives a positive energy because there
is mainly compressive hoop stress (ψ̄ < 0) in the regions
where (∂ρw̄)2 > 0 is large, i.e., at the rim of the indentation.
For a Pogorelov dimple, this is exactly the inner rim of the
Pogorelov ridge [44,45] [see also Fig. 4(c)].

The terms in the second exact relation (11) are directly
related to the dimensionless volume change by indentation,
V = V/(κR0/Y ), and the dimensionless area change by

FIG. 2. Schematic energy landscape Ēind as a function of inden-
tation depth z̄. The indentation at the energy barrier maximum is z̄B,
the height of the energy barrier is ĒB. At depth z̄1, unindented and
indented state have equal energies.
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indentation, A = A/(κ/Y ),

V ≈ 2π

∫ ∞

0
dρρw̄ < 0, (13)

A ≈ 2π

∫ ∞

0
dρρ

[
2w̄ + 1

2
(∂ρw̄)2

]
, (14)

where we work in shallow shell approximation, i.e., assuming
w/R � ∂rw � 1 or w̄γ −1/2 � ∂ρw̄γ −1/4 � 1. Therefore,
relation (11) is equivalent to a relation

−F̄ = −∂Ēind

∂ z̄
= 1

2
A (15)

for the area change by point force indentation. This implies
that the area is decreased (A < 0) by a compressive point
force indentation or an increasing indentation energy up to
the barrier, whereas it is increased (A > 0) for a decreasing
indentation energy. It also shows that the force-indentation
relation F̄ (z̄) = ∂Ēind/∂ z̄(z̄) directly gives the area change
A(z̄) = −F̄ (z̄)/2 as a function of indentation. Right at the
barrier state with F̄ = 0, the area change by indentation
exactly vanishes,

0 = −∂Ēind

∂ z̄
(z̄B) = 1

2
A(z̄B). (16)

The mirror-inverted Pogorelov dimple exactly fulfills this
requirement by definition but this result not only holds in
the Pogorelov limit p/pc � 1 but for all pressures p. In
particular, it also holds close to pc, where the barrier state
does not resemble a Pogorelov dimple but becomes shallow
and oscillatory. At the maximal point force F̄max, which has
to be applied to overcome the energy barrier and which is
the characteristic maximal point force for structural stability
below pc (see Fig. 2), the shell area is minimal, and −F̄max =
1
2Amin.

After nondimensionalization (6), the shallow shell Eqs. (7)
and (8) only depend on the parameters p/pc and F̄ , which is
a function of the indentation depth z̄. Therefore, properties of
the barrier state that can be directly obtained from solution
of the dimensionless shallow shell equations, such as the di-
mensionless indentation z̄B will only depend on p/pc. Because
the dimensionless energy barrier ĒB can also be expressed
directly by solutions of the shallow shell equations at F̄ = 0
via Eq. (12), also ĒB will only depend on p/pc; see our main
results (33) and (53) below. In particular, ĒB does not depend
on the Poisson number ν in shallow shell theory.

B. Numerical method

We solve the nonlinear shell theory boundary prob-
lem (7) and (8) numerically on a finite domain ρmin < ρ <

ρmax (ρmin = 10−5, ρmax = 5000) using the MATLAB routine
bvp4c with boundary conditions w̄(ρmax) = w̄′(ρmax) = 0
and ψ̄ ′(ρmax) = −ψ̄ (ρmax)/ρmax at “infinity”; the last condi-
tion is crucial to enforce the correct asymptotics ψ̄ ∝ 1/ρ [see
Eq. (9)]. At “ρ = 0”, we use ρminψ̄

′(ρmin) − νψ̄ (ρmin) = 0
for vanishing radial in-plane displacement (with ν = 1/3),
w̄′(ρmin) = 0, and a prescribed indentation depth w̄(ρmin) =
−z̄ < 0 instead of the point force, which is absent in the
domain ρ > 0 [19,52].

Inserting the numerical solution into Eqs. (10) (which
holds pointwise for each ρ but is used after averaging over
all ρ) or (11) gives the value of the force F̄ for the pre-
scribed indentation depth z̄, which allows us to scan the
force-indentation relation F̄ = F̄ (z̄) by gradually increasing
z̄. Knowledge of the entire force-indentation relation F̄ (z̄)
enables us to calculate the energy barrier by numerical inte-
gration ĒB = 1

2π

∫ z̄B

0 F̄ (˜̄z)d ˜̄z up to the barrier indentation z̄B

where the force vanishes, F̄ (z̄B) = 0.
While calculation of the entire force-indentation rela-

tion and numerical integration up to the barrier state where
F̄ (z̄B) = 0 is an intuitive approach, there is a much more
efficient way to numerically calculate the energy barrier: The
exact result (12) can be employed to evaluate the energy
barrier directly for a barrier state with F̄ = 0. To obtain the
energy barrier as a function of p, we continuate numerical
solutions of the shallow shell Eqs. (7) and (8) for the barrier
states with F̄ = 0 for small changes in p and evaluate the
energy barrier directly at each barrier state using (12). This
supersedes calculation of the entire force-indentation relation
F̄ (z̄) in order to calculate a single energy barrier value by
numerical integration of the force-indentation relation. We
checked that we obtain numerically identical results with both
methods.

III. LINEAR RESPONSE, SHELL STIFFNESS,
AND SOFTENING CLOSE TO BUCKLING

Many mechanical compression tests such as plate compres-
sion [49,50] or compression by microscopy tips [50,51] are
equivalent to point force indentation in the initial small dis-
placement regime, which can be described by linear response.
We will rederive the linear stiffness of the shell and show that
the result for a pressurized spherical shell with p > 0 [52] can
be continued to compressive pressures 0 < p < pc.

Linearizing Eqs. (7) and (8) gives the Reissner equa-
tions [16,52,54]

∇4
ρw̄ − ∇2

ρ�̄ + 2
p

pc
∇2

ρw̄ = − F̄

2π

δ(ρ)

ρ
, ∇4

ρ�̄ = −∇2
ρw̄

(17)

with the dimensionless Airy stress function �̄ (ψ̄ = −∂ρ�̄).
In the domain ρ > 0, where the δ function on the right-
hand side vanishes, these equations can be solved using the
original ansatz of Reissner [54], f± ≡ w̄ + λ∓�̄, which de-
couples equations to ∇4

ρ f± − λ±∇2
ρ f± = 0 if λ± = −p/pc ±

i[1 − (p/pc)2]1/2 (λ+λ− = 1). This finally leads to solutions

w̄lin = z̄

ln λ+
[K0(λ1/2

+ ρ) − K0(λ1/2
− ρ)], (18a)

�̄lin = z̄

ln λ+
[λ+K0(λ1/2

− ρ) − λ−K0(λ1/2
+ ρ)

+ (λ+ − λ−) ln ρ], (18b)

ψ̄lin =− z̄

ln λ+

[
λ

1/2
− K1(λ1/2

+ ρ) − λ
1/2
+ K1(λ1/2

− ρ) + λ+ − λ−
ρ

]
,

(18c)

satisfying all boundary conditions.
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The force F̄ for given z̄ and thus the force-indentation
relation in the linear approximation remains to be determined.
It can be obtained from Eq. (11) by neglecting the last term,
which is quadratic in z̄,

− F̄ (z̄)

2π
=

∫ ∞

0
dρρw̄lin = z̄

λ− − λ+
ln λ+

≈ −2
√

2z̄

π
(1 − p/pc)1/2, (19)

where the last approximation holds for p ≈ pc. Alternatively,
we can inspect the asymptotics of the linear solution (18c) for
ρ → ∞,

ψ̄lin = −∂ρ�̄lin ≈ z̄
λ− − λ+

ln λ+

1

ρ
, (20)

which should be ψ̄ ∼ −F̄/2πρ according to (9) or (10).
Both (19) and (20) lead to the same dimensionless linear
stiffness

k̄ = dF̄

dz̄
= 4π i(1 − τ 2)1/2

ln[τ + i(1 − τ 2)1/2]
= 4π [1 − (p/pc)2]1/2

π/2 + arcsin(p/pc)

(21)

≈ 4
√

2(1 − p/pc)1/2, (22)

where τ ≡ −p/pc and with an arcsin branch −π/2 �
arcsin x � π/2. Reverting the nondimensionalization, we find
the stiffness k = Y γ −1/2k̄(p/pc) = (Y 1/2κ1/2/R0)k̄(p/pc). In
Ref. [52], the same result has been obtained for stretching
pressures p � 0 (τ � 0). We thus conclude that this result can
be analytically continued also to compressive pressures 0 <

p/pc < 1. The stiffness (22) vanishes as k̄ ∝ (1 − p/pc)1/2

close to pc corresponding to a softening of the capsule upon
approaching the critical buckling pressure. Figure 3 clearly
shows that the linear stiffness (21) is monotonously decreas-
ing with compressive pressure p and exhibits essentially
two scaling regimes, one for stretching pressures −p/pc �
1, where k̄ ≈ 4π |p/pc|/ ln(2|p/pc|) [52] and the softening

FIG. 3. Double logarithmic plot of dimensionless linear stiff-
ness k̄ as a function of pressure 1 − p/pc according to Eq. (21)
both in the stretching (1 − p/pc > 1) and compressive (1 − p/pc <

1) regimes (solid blue line). For p = 0 (vertical dashed line),
we have k̄ = 8. Dashed lines are the asymptotic results for k̄ ≈
4π |p/pc|/ ln(2|p/pc|) in the stretching regime (right green line) and
k̄ ∝ (1 − p/pc )1/2 in the compressive regime (left orange line); see
Eq. (22).

regime k̄ ∝ (1 − p/pc)1/2 close to pc according to (22). The
crossover between both regime happens around the pressure-
free case, where the Reissner results k̄ = 8 applies [54].

The linear stiffness k can be tested in various compres-
sion experiments in the initial small displacement regime.
For microcapsules, most frequently used are plate compres-
sion [49,50,55] or compression by microscopy tips [50,51].
In Ref. [55], the result for the stiffness (21) could also be
generalized if additional surface tensions are present, which
can arise, for example, from the shell-liquid interfaces or
also as motor-induced active pressures if biological cells are
considered [37] and which effectively act as an additional
stretching pressure. Our result for the linear softening of
shells could be experimentally tested in linear compression
tests, where an additional compressive pressure 0 < p < pc is
applied.

The fact that k > 0 for all p < pc implies that the barrier
condition F̄ = 0 can only be fulfilled for vanishing inden-
tations at p = pc; therefore, the barrier state is not directly
accessible in the linear response regime, and we will have to
employ an additional expansion around the linearized solu-
tions.

Close to pc the linearized solutions (18a) and (18c) ap-
proach (λ1/2

± ≈ ±i)

w̄lin ≈ z̄

iπ
[K0(iρ) − K0(−iρ)] = −z̄J0(ρ), (23)

ψ̄lin ≈ −w̄′
lin ≈ −z̄J1(ρ), (24)

where Jν (x) and Kν (x) are Bessel functions. The normal
displacement thus exhibits extended oscillations with a period
ρ ≈ 2π corresponding to r = 2π lel. This is reminiscent
of the appearance of an unstable wavelength λc = 2π lel at
the buckling threshold p = pc in the absence of an additional
point force which localizes the dimple [13].

IV. NUMERICAL RESULTS FOR THE BARRIER STATE

Figure 1 shows numerical results for the shell configuration
in the barrier state, and Fig. 4 shows the normalized dis-
placement w̄(ρ)/z̄B, the stress function, and stress distribution
along the shell for various pressures.

In the following, we present numerical results for the
energy barrier ĒB and the corresponding pole indentation z̄B

at the barrier state (the indentation, where F̄ (z̄B) = 0) as a
function of pressure. The scaling of these quantities with
pressure starting from p close to pc down to p/pc � 1 always
shows a clear crossover between two scaling regimes. One
scaling regime governs the softening behavior close to pc

and characterizes the critical properties and exponents of the
buckling instability; the other scaling regime for p/pc � 1
corresponds to a barrier state, which is a well-developed
mirror-inverted Pogorelov dimple. The crossover between
both regimes takes place at z̄B ∼ 1 corresponding to zB ∼ h
or pressures p/pc ∼ 1/2.

For p � pc, we find the typical Pogorelov scaling for the
energy barrier. Here, the indentation at the barrier state is
deep (z̄B � 1) and typically an inverted spherical cap which
is localized to ρ < ρB ∼ z̄1/2

B ; see also Fig. 4(a). For p � pc,
a deep indentation by a point force is necessary to carry
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(a) (b) (c)

FIG. 4. Numerical results for the barrier state of a buckled spherical shell (see also shapes in Fig. 1). Arrows indicate increasing pressure. (a)
Normalized dimensionless normal displacement w̄(ρ )/z̄B, (b) normalized dimensionless stress function ψ̄ (ρ )/z̄B, and (c) dimensionless hoop
stress σ̄φφ = ∂ρψ (solid lines) and radial stress σ̄rr = ψ/ρ (dashed lines); vertical lines indicate the indentation width ρB = (2V B/π z̄B)1/2.

the shell into the snap-through buckled state. The Pogorelov
dimple consists of a mirror-inverted spherical cap whose sharp
edge at the rim becomes rounded to avoid infinite bending
energies [18]. This rounding happens over a boundary layer
of width ξ ∼ R0γ

−1/4k = (hR0)1/2 ∼ lelk [44,45] or, in di-
mensionless units, ξ̄ ∼ k ∼ O(1). For z̄B < 1 or ρB < 1 (cor-
responding to larger pressures p/pc > 1/2), the Pogorelov
dimple at the barrier state becomes too shallow to fully
develop this boundary layer, and a crossover to the softening
regime happens close to pc.

Close to pc, not only the linear stiffness k vanishes. Also
the energy barrier, which protects the unbuckled state from
spontaneous buckling, and the corresponding indentation z̄B

at the barrier state must vanish at pc in order to connect
smoothly to an unstable energy landscape with ∂zEtot (z =
0) < 0 corresponding to a spontaneous buckling instability
for p > pc. In this regime, the indentation w̄(ρ) in the barrier
state is very shallow [see Fig. 4(a)] and exhibits extended
oscillations on the typical length scale ρ ∼ 1 corresponding
to r ∼ lel reminiscent of the linearized theory. If p is already
close to pc, a small additional localized indentation by a point
force is sufficient to carry the shell over the energy barrier into
the snap-through buckled state.

After presenting the numerical results along with some
scaling arguments, we will derive exact analytical results
for the asymptotics of the barrier energy ĒB and the barrier
indentation z̄B in both limits close to pc and for p � pc in the
following sections.

A. Indentation in the barrier state

Close to pc the indentation in the barrier state becomes
small z̄B � 1, such that it resembles the oscillating linearized
solutions (18a) and (18b). For p � pc, on the other hand, also
the barrier state is a mirror-inverted Pogorelov dimple with
z̄B � 1. Many of its scaling properties can be explained based
on the Pogorelov approach in this regime [9]. Figure 5 shows
numerical shallow shell results for the relation between z̄B and
pressure p/pc.

Close to pc, the indentation z̄B at the barrier [F̄ (z̄B) = 0]
becomes small, z̄B � 1. Numerically, we find for z̄B as a func-
tion of pressure a crossover between just two scaling regimes,

z̄B ∝
{

(1 − p/pc)1/2 for p ≈ pc

(p/pc)−2 for p � pc
, (25)

with a clear crossover at z̄B ∼ 1; see Fig. 5(b). The indentation
z̄B at the barrier is monotonously decreasing as a function of p,
which shows that increasingly deep indentations are necessary

(a)

(b)

et al.

et al.

et al.

FIG. 5. Numerical shallow shell results for relation between
indentation z̄B at the barrier state and pressure p/pc. (a) Pressure
p/pc as a function of z̄B together with the asymptotic analytical
results (46) (lower solid red line, p1 � 0.8337) and (64) (upper solid
blue line). (b) Double logarithmic plot of z̄B as a function of p/pc

(upper curve and upper horizontal scale) together with the analytical
result (33a) (upper solid red line and as a function of 1 − p/pc

(lower curve and lower horizontal scale) together with the analytical
result (53a) (lower solid blue line). In both panels (a) and (b), we also
show the interpolation formula (74) (black dashed line) and the data
for the function p/pc = f (ξ ) versus z̄B = √

12ξ from Hutchinson
et al. [7,10]; see Table I in Appendix C. In panel (a), we also show
Padé interpolations from Evkin et al. [21] (black dotted line) and as
derived below [see Eq. (75), black solid line].
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(a) (b) (c)

et al. et al.

FIG. 6. Numerical shallow shell results for the indentation volume V B and the effective indentation width ρB ≡ (2V B/π z̄B)1/2 at the
barrier state. (a) Dimensionless indentation volume V B as a function of indentation depth z̄B as compared to analytical results (33b) (blue line
fitting shallow indentations z̄B � 1) and (53b) (red line, p1 � 0.8337, fitting deep indentations z̄B � 1). (b) V B/2π as a function of pressure
p/pc (upper curves and upper horizontal scale) together with analytical result (33b) (upper red line) and as a function of 1 − p/pc (lower
curves and lower horizontal scale) together with analytical result (53b) (lower blue line). We also show the data from Hutchinson et al. [7,10]
for the function V B = 24πh(ξ ) plotted as a function of z̄B = √

12ξ (a) or as a function of p/pc = f (ξ ) and 1 − p/pc (b); see Table I. (c)
Effective indentation width ρB at the barrier state as a function of pressure p/pc and 1 − p/pc together with the analytical results (33c) (upper
red line) and (53c) (lower blue line), respectively.

to reach the metastable barrier beyond which the shell will
spontaneously fall into the snap-through buckled state.

Both scaling results in the limits p close to pc and p � pc

are nontrivial results, which we will rationalize in the course
of this paper. In Fig. 5, we compare with the exact asymptotics
including numerical prefactors that will be calculated in the
following sections and find excellent agreement. We also see
that the numerical data given in Refs. [7,10] is in excellent
agreement but does not cover the asymptotics for p close to
pc. The scaling of the depth of the barrier state for p � pc has
been obtained previously in Ref. [16] based on the Pogorelov
energy estimate and in Refs. [20,21] using a boundary layer
approach with variational energy minimization that turns out
to be equivalent to the systematic expansion that we will
employ below.

The dimensionless indentation volume V B =
−V (z̄B) > 0 [see Eq. (13)] at the barrier state shows a
characteristic dependence on the indentation z̄B at the barrier:

V B = ∝
{

z̄B for z̄B � 1

z̄2
B for z̄B � 1

, (26)

see Fig. 6(a), with a clear crossover at z̄B ∼ 1 (z ∼ h) between
shallow and deep indentations. Figures 6(a) and 6(b) also
show that the numerical data from Refs. [7,10] are in excellent
agreement. When we combine (25) and (26), the pressure
dependence of the indentation volume follows as

V B ∝
{

(1 − p/pc)1/2 for p ≈ pc

(p/pc)−4 for p � pc
, (27)

in agreement with the numerical results in Fig. 6(b).
From the indentation volume V B and the indentation

depth z̄B at the barrier state, we can define an effective width
ρB of the indentation as

ρB ≡ (2V B/π z̄B)1/2 ∝
{

const for p ≈ pc

z̄1/2
B ∝ (p/pc)−1 for p � pc

;

(28)

see Fig. 6(c). We choose the numerical prefactor in the def-
inition of ρB such that a mirror-inverted Pogorelov dimple

with w̄(ρ) = −z̄B + ρ2 and V B = π z̄2
B/2 has ρB = z̄1/2

B in
accordance with w̄(ρB) = 0. This is exactly the behavior of
V B and ρB for z̄B � 1 or p � pc. The effective indentation
width ρB remains remarkably constant � 0.70 for pressures
p close to pc corresponding to an indentation width rB ∼ lel.
This behavior will have interesting consequences for the buck-
ling behavior of small soft spots. The depth z̄B is vanishing for
p close to pc such that the indentation at the barrier becomes
not only increasingly shallow but also increasingly broad
with a width-to-depth ratio rB/zB ∝ γ 1/4(1 − p/pc)−1/2 [note
the different dimensionless units for rB and zB in Eq. (6)].
For p � pc, the width of the barrier state increases with
decreasing pressure such that the indentation becomes not
only increasingly deep but also increasingly narrow with a
depth-to-width ratio ∝ γ 1/4(p/pc)−1.

For a Pogorelov dimple, the scaling V B ∼ (p/pc)−4 has
been shown in Ref. [9] based on the Pogorelov energy es-
timate for the elastic energy of a mirror-inverted dimple.
Together with the geometric result V B = π z̄2

B/2 for mirror-
inverted dimples, this rationalizes the numerically observed
scaling (25) of the indentation for p � pc. We will present a
strict derivation in the framework of nonlinear shallow shell
theory below.

Because the indentation z̄B at the barrier remains small
close to pc, the solution w̄(ρ) resembles the linear approxima-
tion (18a) in this regime. We can use the exact relation (11)
at F̄ = 0 and see that the indentation volume [the first term
on the right-hand side of relation (11)] must be given by the
second term on the right-hand side, which is of second order
in z̄. Our numerics confirm that this term can still be obtained
using the linearized solution (18a) to a good approximation,

−V

2π
= 1

4

∫ ∞

0
dρρ(∂ρw̄)2 ≈ 1

4

∫ ∞

0
dρρ(∂ρw̄lin )2

≈ − z̄2

4 ln2 λ+

(
1 − ln λ+

λ+ + λ−
λ+ − λ−

)

≈ z̄2

4
√

2π
(1 − p/pc)−1/2 (29)
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for z̄ � 1. The numerical results (26), (27), and (25) suggest,
on the other hand, that

−V

2π
= −

∫ ∞

0
dρρw̄ = const z̄ (30)

still holds at the barrier, i.e., that the term is still linear
in z̄ to a good approximation and the indentation extends
over ρ = O(1). The indentation volume does, however, not
contain a factor (1 − p/pc)1/2 as in the linearized solution
[see Eq. (19)]. Nonlinear corrections are affecting the shape
of the indentation at the barrier such that the cancellation of
oscillating contributions that governs the linearized result (19)
no longer happens but the indentation still extends over ρ =
O(1) as in the linearized solution. Equating with Eq. (29) at
the barrier gives

z̄B ∝ (1 − p/pc)1/2,

which explains the numerically observed scaling (25) of the
indentation close to pc. We will present a strict derivation in
the framework of nonlinear shallow shell theory below.

B. Energy barrier

Now we address the energy barrier itself. Numerically, we
find for the energy barrier height

ĒB ∝
{

z̄3
B for z̄B � 1

z̄3/2
B for z̄B � 1

, (31)

again with clearly two regimes and a crossover at z̄B ∼ 1; see
Fig. 7(a). For small indentations z̄ � 1, the linear regime with
ψ̄, w̄ ∝ z̄ is a good approximation up to the barrier, and the
typical radial extent of the indentation is ρ = O(1), resulting
in ĒB ∝ z̄3

B according to (12). For deep indentations z̄ � 1,
the characteristic behavior of a mirror-inverted Pogorelov
dimple is ∂ρw̄ ∼ z̄1/2 and ψ̄ ∼ z̄1/2 over a width ρ = O(1)
at ρ ∼ z̄1/2 (in the absence of pressure) [19], which results in
ĒB ∝ z̄3/2

B according to (12). This means both scaling limits
in (31) can be rationalized by nonlinear shallow shell theory.
In Fig. 7(a), we compare with the exact asymptotics including
numerical prefactors that will be calculated rigorously in the
following sections.

Together with (25), this results in a pressure dependence

ĒB ∝
{

(1 − p/pc)3/2 for p ≈ pc

(p/pc)−3 for p � pc
, (32)

in agreement with the numerical results in Fig. 7(b). The scal-
ing ĒB ∝ (p/pc)−3 for deep indentations has been obtained
before in Refs. [9,17,21] (and implicitly also in Ref. [16])
based on the arguments of Pogorelov for the energy cost
of a buckling indentation. The scaling ĒB ∝ (1 − p/pc)3/2

governs the softening of the shell close to the buckling pres-
sure and is a new result that corrects the conjecture ĒB ∝
(1 − p/pc)2 that has been obtained based on numerical data
from SURFACE EVOLVER simulations in Ref. [9]. The SURFACE

EVOLVER is, however, not well suited to investigate very shal-
low dimples as they occur close to pc. Shallow shell theory
and the numerical continuation approach give much better
results in this regime, which extend over several decades of
the small parameter 1 − p/pc and reveal the actual exponent

(a)

(b)

et al.

et al.

FIG. 7. Numerical shallow shell results for the energy barrier ĒB.
(a) Double logarithmic plot of ĒB as a function of barrier indentation
z̄B with the analytical results (33d) (red line, p1 � 0.8337, fitting
deep indentations z̄B � 1) and (53d) (blue line fitting shallow in-
dentations z̄B � 1). (b) Double logarithmic plot of ĒB as a function
of pressure p/pc (upper curves and upper horizontal scale) together
with the analytical result (33e) (upper red line) and as a function of
1 − p/pc (lower curves and lower horizontal scale) together with the
analytical result (53e) (lower blue line). Also shown are the data from
Hutchinson et al. [7,10] and the interpolation formula (73) (black
dashed line in panel (b)).

3/2. In Fig. 8, we compare our numerical results from shallow
shell theory to the SURFACE EVOLVER simulation, to numer-
ical data from Hutchinson and coworkers from Refs. [7,10]
from moderate rotation theory, to an analytical interpolation
formula from Evkin et al. [5], and to experimental data from
Marthelot et al. [4]. We find excellent agreement and see that
only the present numerical approach accesses the asymptotics
for p close to pc.

V. SHALLOW SHELL THEORY FOR THE POGORELOV
BARRIER STATE

In this section, we derive several analytical results for the
energy barrier state from nonlinear shallow shell theory in the
Pogorelov limit p � pc corresponding to a deep indentation
z̄B � 1 in the barrier state:

z̄B = p2
1 (p/pc)−2 + O[(p/pc)0], (33a)

V B ≈ π

2
z̄2

B ≈ π p4
1

2
(p/pc)−4, (33b)

ρB ≈ p1 (p/pc)−1, (33c)

022803-10



SHALLOW SHELL THEORY OF THE BUCKLING ENERGY … PHYSICAL REVIEW E 99, 022803 (2019)

(a)

(b)

FIG. 8. Comparison of our numerical shallow shell results for the
energy barrier ĒB as a function of p/pc or 1 − p/pc [(a) logarithmic,
(b) double-logarithmic] to different analytical, numerical, and ex-
perimental energy barrier results from the literature: numerical data
from Hutchinson et al. [7,10] (orange big squares), energy barrier
from integrating an analytical interpolation of the force-indentation
relation from Evkin et al. [5] (green crosses), experimental data from
Marthelot et al. [4] (blue small squares), and SURFACE EVOLVER

data (red diamonds) and an approximative numerical interpolation
formula from Ref. [9] (dashed line). We also compare to the new
interpolation formula (73) (solid line). Clearly, shallow shell theory
is correct through the whole range of pressures.

ĒB = p1

3
z̄3/2

B + O(z̄B), (33d)

ĒB = p4
1

3
(p/pc)−3 + O[(p/pc)−2] with (33e)

p1 � 0.83370854. (33f)

Thus, we derive all Pogorelov scaling exponents [see
Refs. [5,9,17] and Eqs. (25)–(28), (31), and (32)] from nonlin-
ear shallow shell theory and also obtain exact numerical pref-
actors. The number p1 can be written as analytic expression
in terms of an integral over a solution of simple differential
equations and is numerically easily accessible [see Eq. (45)
below]. The prefactors accurately agree with the asymptotic
numerical results; see Figs. 5–7. We will further show that the
total indentation energy landscape in the presence of pressure
is given by

Ēind(z̄) = Ēind,p=0(z̄) + pV (z̄)

= 4p1

3
z̄3/2 − p

pc
z̄2; (34)

i.e., the pressure dependence is only via the mechanical work
and the elastic part of the indentation energy Ēind(z̄) is inde-
pendent of pressure. For deep dimples with z̄ � 1 and p �
pc, where Eq. (34) is valid, an additional pressure represents
only a small perturbation which is apparently not modifying
the elastic energy in leading order.

In the regime p � pc, where the barrier state is a deep
mirror-inverted dimple with z̄B � 1, we can start from the
following mirror-inverted solution of shallow shell equations
at the barrier F̄ = 0:

w̄(ρ) =
{

−z̄B + ρ2 for ρ < z̄1/2
B

0 for ρ > z̄1/2
B

,

(35)

ψ̄ (ρ) =
{

4(p/pc)ρ for ρ < z̄1/2
B

0 for ρ > z̄1/2
B

,

which is an exact solution everywhere except right at the rim
of the dimple at ρ = z̄1/2

B , where it exhibits discontinuities.
Following Ref. [19] (where the case p = 0 and F̄ > 0 was
considered), we smooth these discontinuities by an ansatz
(x ≡ ρ − z̄1/2

B )

∂ρw̄(ρ) = f (x) +
{

2
(
z̄1/2

B + x
)

for x < 0

0 for x > 0
, (36a)

ψ̄ (ρ) = χ (x) +
{

4(p/pc)
(
z̄1/2

B + x
)

for x < 0

0 for x > 0
, (36b)

where the functions f (x) and χ (x) have discontinuities at x =
0 in order to lead to smooth functions w̄ and ψ̄ . This ansatz is
conceptually similar to the boundary layer approach of Evkin
et al. [20,21].

As in Ref. [19], we determine f , χ , and p in an expansion
in inverse powers of z̄B. Gomez et al. considered the Pogorelov
dimple created by a point force F̄ > 0 in the absence of
pressure and calculated the force-indentation curve, i.e., the
point force necessary to maintain a given indentation z̄. Here,
we consider a metastable Pogorelov barrier state with F̄ =
0 with a given indentation z̄B and calculate the pressure
p necessary to maintain such a state. A major difference
between both cases is the behavior of ψ in the inner region
of the dimple. Because ψ̄ ∼ −F̄/2πρ for a mirror-inverted
Pogorelov state close to the ridge (the inner side of the ridge
is compressed), this divergence of ψ̄ for small ρ demands for
the existence of four additional scaling regions in the interior
of the dimple (ρ <

√
z̄) [19], resulting in the existence of a

total of seven scaling regions. For the barrier state, on the
other hand, we have F̄ = 0 and this divergence of ψ̄ is absent.
Therefore, the solution (35) is valid in the entire region ρ <√

z̄B apart from the immediate ridge region and no additional
regimes are present. In a sense, the original Pogorelov picture
with three regions—mirror-buckled inside, Pogorelov ridge,
and undeformed outside—is recovered for the barrier state.
Moreover, it is the existence of the additional inner regions
that calls for an expansion of f , χ , and p in powers of z̄−1/4. If
these regions are absent, the scaling in (36) actually suggests
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that an expansion in powers of z̄−1/2
B is sufficient:

f (x) = z̄1/2
B f0 + f1 + z̄−1/2

B f2 + · · · ,

χ (x) = z̄1/2
B χ0 + χ1 + z̄−1/2

B χ2 + · · · ,

p/pc = p0 + z̄−1/2
B p1 + · · · .

(37)

In order to assure a continuous solution, f (x) and χ (x) have
to fulfill the following jump conditions at x = 0:

f |0+
0− = 2z̄1/2

B , f ′∣∣0+
0− = 2,

χ |0+
0− = 4

p

pc
z̄1/2

B , χ ′∣∣0+
0− = 4

p

pc
. (38)

Moreover, f (x) and χ (x) vanish exponentially for x → ±∞.
We expect f (x) and χ (x) to decay exponentially on the
dimensionless length set by the width of the Pogorelov rim
ξ̄ ∼ O(1). We note that Evkin et al. [20,21] use a conceptually
similar boundary layer approach which is based on essentially
the same expansion parameter ε ∼ z̄−1/2

B .

A. Leading order

Inserting the expansion (37) and the ansatz (36) into the
integrated force balance (10) for w̄ and the compatibility
condition (8) for ψ̄ , we obtain in order z̄B the following
differential equations for f0(x) and χ0(x) [56]:

f ′′
0 + sgnx (χ0 + 2p0 f0) = f0χ0,

χ ′′
0 − sgnx f0 = − 1

2 f 2
0 . (39)

The first equation is multiplied by f ′
0, the second by χ ′

0, and
then both equations are subtracted and integrated once (with a
vanishing integration constant because of boundary conditions
at infinity) to give a first integral,

1

2

(
f ′2
0 − χ ′2

0 − f 2
0 χ0

) + sgnx f0χ0 = −sgnx p0 f 2
0 , (40)

which holds both in x > 0 and x < 0 (but not right at x = 0).
Subtracting this relation for x = 0− from the relation at x =
0+ and employing the jump conditions at order z̄1/2

B ,

f0|0+
0− = 2 , f ′

0

∣∣0+
0− = 0,

χ0|0+
0− = 4p0 , χ ′

0

∣∣0+
0− = 0,

(41)

we finally obtain the relation 2p0[ f0(0−) + 2]2 = 0, from
which we conclude

p0 = 0.

For p0 = 0, Eqs. (39) are symmetric such that

f0(x) odd, χ0(x) even.

This symmetry together with the discontinuities (41) also
requires f0(0+) = 1. A numerical solution of Eqs. (39) for
x > 0 using the MATLAB routine bvp4c is shown in Fig. 9.
The boundary conditions are f0(xmin) = 1, χ ′

0(xmin) = 0, and
f0(xmax) = 0, χ0(xmax) = 0 (using xmin = 10−7 and xmax =
1000). For p0 = 0, the above Eqs. (39) and boundary condi-
tions (41) become parameter free. Therefore, solutions fall off
exponentially on a parameter-independent length scale O(1)

FIG. 9. Leading-order functions f0(x) and χ0(x) (solid black and
red lines) and their derivatives (dashed black and red lines) for
x > 0 and p0 = 0; on the domain x < 0 functions are obtained by
symmetry: f0(x) and χ ′

0(x) are odd, and χ0(x) and f ′
0(x) are even.

All functions decay exponentially on a length scale of order unity.

(see Fig. 9), which corresponds to the width of the Pogorelov
rim ξ̄ ∼ O(1) as argued above.

B. First order

In order z̄1/2
B , we obtain for f1(x) and χ1(x)

f ′′
1 + (sgnx − f0)χ1 − χ0 f1

= − f ′
0 − x f ′′

0 + sgnx xχ0 − 2p1 f0sgnx,

χ ′′
1 + ( f0 − sgnx) f1 = −χ ′

0 − xχ ′′
0 + sgnx x f0, (42)

where we used already p0 = 0. This inhomogeneous differen-
tial equation has to be solved with the jump conditions

f1

∣∣0+
0− = 0 , f ′

1

∣∣0+
0− = 2,

χ1

∣∣0+
0− = 4p1 , χ ′

1

∣∣0+
0− = 4p0

(43)

at order z̄0
B.

Using Eq. (39), the inhomogeneous Eq. (42) can be written
as [57]

L̂

(
f1

χ1

)
=

(− f ′
0 − x f0χ0 − 2p1 f0sgnx

−χ ′
0 + 1

2 x f 2
0

)
(44)

with a linear differential operator

L̂

(
f1

χ1

)
≡

(
f ′′
1 + (sgnx − f0)χ1 − χ0 f1

χ ′′
1 − (sgnx − f0) f1

)
.

For the adjoint operator L̂+ [with respect to the scalar prod-
uct 〈(a, b), (c, d )〉 ≡ ∫ ∞

−∞ dx(a(x)c(x) + b(x)d (x))], we can
show that L̂(a, b) = 0 is equivalent to L̂+(a,−b) = 0; i.e.,
homogeneous solutions of the problem (42) are, apart from
a minus sign, also homogeneous solutions of the adjoint
problem. This holds, however, only for continuous functions
a(x) and b(x). The functions fi and χi are discontinuous at
x = 0 [see Eqs. (41) and (43)], and we have to carefully check
boundary contributions.
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Nevertheless, we will make use of the fact that one solution
of the homogeneous problem can be explicitly constructed,

L̂

(
f ′
0

χ ′
0

)
= 0 for x �= 0,

as can be checked by taking one derivative in the first-order
Eq. (39). This suggests that a Fredholm solvability condition
for the inhomogeneous problem (44) can be derived by form-
ing the scalar product 〈( f ′

0,−χ ′
0), L̂( f1, χ1)〉 on both sides. On

the left-hand side, this should give zero apart from boundary
terms from x = 0. We find〈(

f ′
0−χ ′

0

)
, L̂

(
f1

χ1

)〉
= − f ′

0 f ′
1

∣∣0+
0− − χ ′′

0 χ ′
1

∣∣0+
0−

= −2 f ′
0(0) − 2p1.

Forming the scalar product also with the right-hand side (the
inhomogeneity) of (44), using the symmetry of f0 and χ0

and the first integral (40) for p0 = 0, integrating by parts,
and using Eq. (39) for p0 = 0 finally gives the following
solvability condition for p1:

p1 = 1

4

∫ ∞

0
dx

(
χ ′2

0 − f ′2
0 + 2χ0

) = −3

5

∫ ∞

0
dxχ0

� 0.83370854, (45)

where the right-hand side has been evaluated numerically
using the solutions shown in Fig. 9. The last equality of
integrals is obtained by using Eq. (39) for p0 = 0 after partial
integration and the first integral (40) for p0 = 0. Together with
p0 = 0, we have

p/pc = p1z̄−1/2
B + O

(
z̄−1

B

)
,

z̄B = p2
1 (p/pc)−2 + O((p/pc)−1) (46)

with p2
1 � 0.69506993, which is Eq. (33a). Further correc-

tions p2, p3, etc., can be calculated by extending this scheme
to higher orders. Based on the symmetry properties that f0(x)
and χ1(x) are odd and χ0(x) and f1(x) are even, we can show
in the next order that

p2 = 0. (47)

This means that the leading nonvanishing corrections in
Eq. (46) are actually of higher order: the leading correction to
p/pc is O(z̄−3/2

B ) and the leading correction to z̄B in Eq. (33a)
is O((p/pc)0). This is supported by our numerics.

The result (46) is also in agreement with the work of
Evkin et al. [20,21]. It can be shown that the boundary layer
approach of Ref. [21] is equivalent to our expansion (37) in
powers of z̄−1/2

B (with the identification f0 = 2w′
1 and χ0 =

−2φ′
1 in the notation of Ref. [21]). Evkin et al. use a varia-

tional approach rather than Fredholm integrability conditions
to obtain the expansion coefficients p1 and p2. Using the varia-
tional approach, they obtain p/pc = (3J0/8)z̄−1/2

B + O(z̄−3/2
B )

(see also Table I) with a numerical constant J0 for which we
can show the exact equality

J0 = 2
∫ ∞

0

(
χ ′2

0 + f ′2
0

) = 8p1/3, (48)

establishing the equivalence with Eq. (46); the missing cor-
rection in order O(z̄−1

B ) corresponds to p2 = 0. Our numerical

evaluation of p1 gives a slightly different J0 � 2.22322 as
compared to J0 � 2.23 given in Ref. [21]. We also note that
the existence of only three spatial scaling regions for ψ̄ and
w̄ as a function of ρ in the barrier state cannot be justified
systematically in the approach of Evkin et al.

We now return to the remarkable coincidence between
our calculation for the barrier state (F̄ = 0, p > 0) and the
complementary calculation by Gomez et al. [19] for the force-
indentation curve in the absence of pressure (p = 0, F̄ > 0).
Both governing differential Eq. (39) for the leading-order cor-
rections f0, χ0 and (44) for the first-order corrections f1, χ1 for
the Pogorelov barrier state are identical to the corresponding
equations of Gomez et al. for the Pogorelov dimple with a
point force in the absence of pressure. We can show that
both results are exactly consistent if the elastic part of the
indentation energy Ēind(z̄) is independent of the pressure [apart
from terms of order (p/pc)2] in the Pogorelov regime z̄ �
1. This means that the Pogorelov dimple energy is actually
independent of a precompression of the spherical shape by
a pressure p, which is often tacitly assumed (for example
in Refs. [9,21]). To show this consistency, we integrate the
result from Ref. [19] for the force-indentation relation in the
Pogorelov limit for p = 0, F̄ = F2z̄1/2 + O(1) with F2/2π �
1.6674, to obtain the p = 0 indentation energy,

Ēind,p=0(z̄) = F2

3π
z̄3/2 + O(z̄1). (49)

If this is the elastic part of the indentation energy independent
of pressure p (apart from pressure dependence in higher order
terms), the only effect of an applied pressure is to add the
mechanical pressure work to the total indentation energy,

pV = 4
p

pc

∫
dρρw̄ = 2

π

p

pc
V ≈ − p

pc
z̄2,

which is the leading-order result for a mirror-inverted dimple
w̄(ρ) = −z̄ + ρ2 with V = −π z̄2/2 [corrections should be
O(z̄1) if an expansion analogous to (36a) applies with an odd
function f (x)]. The barrier state with F̄ = 0 then corresponds
to an energy extremum of Ēind(z̄) = Ēind,p=0(z̄) + pV (z̄)
with respect to variation of the indentation z̄. This leads to
our above result (46),

p/pc = F2

4π
z̄−1/2

B + O
(
z̄−1

B

)
,

if p1 = F2/4π . This is indeed fulfilled because we can show
the exact equality

F2/2π = 1

2

∫ ∞

0

(
f ′2
0 − χ ′2

0 − χ0
) = 2p1 (50)

from Eq. (45) (this equality is also exactly fulfilled on the level
of the second-order Eq. (44) [57]). Our above finding p2 = 0
suggests that the next nonvanishing term is actually smaller
than O(z̄−1

B ). This is in accordance with speculations in
Ref. [19] that the leading nonvanishing correction in Eq. (49)
is smaller than O(z̄1). Using Eq. (48), we also obtain the
relation F2 = 3πJ0/2, which shows that the force-indentation
relation at p = 0 from Ref. [19], F̄ = F2z̄1/2 + O(1), is ex-
actly identical to the force-indentation relation that has been
obtained before in Refs. [21,58].
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C. Energy barrier and force-indentation relation

We can use the exact result (12), where we insert the
ansatz (36) to find the leading-order result for the energy
barrier, which turns out to be of order O(z̄3/2

B ) = O((p/pc)z̄2
B),

ĒB = −1

4

∫ ∞

0
dρψ̄ (∂ρw̄)2

= − p

pc
z̄2

B − 1

2
z̄3/2

B

∫ ∞

0
dxχ0

(
2 − 2 f0 + f 2

0

) + O
(
z̄1

B

)
= p1

3
z̄3/2

B + O
(
z̄1

B

)
with p1/3 � 0.27793199, which leads to Eqs. (33d)
and (33e). To show the last equality, we use p0 = 0 in
the expansion of p, the first integral (40) for p0 = 0, and
the last equality in (45). Our numerics show that the next
nonvanishing terms in Eqs. (33d) and (33e) are actually
O(z̄1/2

B ) rather than O(z̄B) and O((p/pc)−1) rather than
O((p/pc)−2), respectively. It is not possible to establish this
result analytically [analogously to p2 = 0, see Eq. (47)]
from symmetry considerations only. Evkin et al. find ĒB ≈
(3/16)3J4

0 (p/pc)−3 [21] (see also Table I in Appendix C),
which agrees with our result (33e) including the identical
numerical prefactor (3/16)3J4

0 = p4
1/3 [see Eq. (48)]. Again,

our result for the energy barrier is also consistent with the
result (49) of Gomez et al. for the indentation energy if it is
independent of pressure p [apart from terms of order (p/pc)2]
because

ĒB = Ēind,p=0(z̄B) + pV (z̄B) = F2

12π
z̄3/2

B

is exactly our above result for p1 = F2/4π ; see Eq. (50).
We conclude that the total indentation energy land-

scape is given by Ēind(z̄) = Ēind,p=0(z̄) + pV (z̄) in the
Pogorelov limit z̄ � 1, which confirms Eq. (34). Differentiat-
ing the energy landscape gives the force-indentation relation
F̄ (z̄)/2π = dĒind/dz̄ in the presence of a pressure p,

F̄ (z̄)

2π
= 2p1z̄1/2 − 2

p

pc
z̄. (51)

This generalizes the p = 0 result of Ref. [19] and is valid
for z̄ � 1 and p � pc. It is also identical with the force-
indentation relation in the presence of pressure which was
conjectured in Ref. [21], tacitly assuming that the Pogorelov
dimple energy is independent of the pressure p. We can
now also obtain the maximal force needed to overcome the
buckling barrier,

F̄max

2π
= 1

2 p2
1 (p/pc)−2 = 3

2

ĒB

z̄B
,

which is the characteristic maximal point force for structural
stability below pc.

VI. SHALLOW SHELL THEORY FOR THE SHALLOW
BARRIER STATE CLOSE TO THE BUCKLING PRESSURE

In this section, we derive several analytical results for
the buckling energy landscape for p close to pc. The total

indentation energy landscape is

Ēind =
√

2

π
(1 − p/pc)1/2 z̄2 −

√
3

4π
z̄3 + O(z̄4) (52)

for shallow indentations with z̄ � 1. By maximizing with
respect to z̄ at F̄ = 0, we obtain several analytical results for
the energy barrier state for p close to pc corresponding to
shallow barrier states with z̄B � 1:

z̄B = 8
√

2

3
√

3
(1 − p/pc)1/2 + O(1 − p/pc), (53a)

V B ≈ 4

3
√

3
z̄B ≈ 32

√
2

27
(1 − p/pc)1/2, (53b)

ρB ≈
(

8

3
√

3π

)1/2

� 0.70, (53c)

ĒB =
√

3

8π
z̄3

B + O
(
z̄4

B

)
, (53d)

ĒB = 128
√

2

81π
(1 − p/pc)3/2 + O((1 − p/pc)2). (53e)

Thus, we can derive all critical properties of the buckling
transition, i.e., all relevant scaling exponents for barrier inden-
tation and barrier energy close to the bifurcation in accordance
with the numerical results [see Eqs. (25)–(28), (31), and (32)]
from nonlinear shallow shell theory. Energy barrier height and
barrier indentation vanish as ĒB ∝ (1 − p/pc)3/2 and z̄B ∝
(1 − p/pc)1/2, respectively, which gives rise to softening of
the shell close to pc. We also obtain exact numerical prefac-
tors, which accurately agree with the asymptotic numerical
results as Figs. 5–7 show.

For p close to pc the barrier state is a very shallow
dimple with z̄B � 1, and we can expand about the linear
solution (18a) and (18c),

w̄(ρ) = z̄w̄lin,0 + z̄2w̄1 + · · · ,

ψ̄ (ρ) = z̄ψ̄lin,0 + z̄2ψ̄1 + · · · ,

F̄

2π
= z̄F0 + z̄2F1 + · · · ,

(54)

where we define w̄lin,0 ≡ w̄lin/z̄ and ψ̄lin,0 ≡ ψ̄lin/z̄ as nor-
malized linear displacement and stress function. As w̄lin and
ψ̄lin from Eqs. (18a) and (18c) fulfill the correct boundary
conditions, w̄1, w̄′

1, ψ̄1, and ψ̄ ′
1 must vanish at ρ = 0 and

ρ → ∞. We note that we perform an expansion for the full
problem with p �= 0 close to pc and also F̄ �= 0; i.e., we do
not only aim at the F̄ = 0 barrier state as for the Pogorelov
limit in the previous section.

A. Leading order

We insert the expansion (54) into the Eq. (10) for w̄

and the compatibility condition (8) for ψ̄ . To leading linear
order z̄, the expansion (54) gives the linearized solutions by
construction, which motivates the form of the linear term
in the expansion (54). They fulfill an inhomogeneous linear
differential equation, which is equivalent to the Reissner
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Eqs. (17),

M̂

(
w̄′

lin,0
ψ̄lin,0

)
+

(
2(1 − p/pc)w̄′

lin,0
0

)
=

(
F0

0

)
with

M̂

(
a
b

)
≡

(
1
ρ

a − a′ − ρa′′ − ρb − 2ρa
− 1

ρ
b + b′ + ρb′′ − ρa

)
. (55)

We wrote these equations using a linear operator M̂
which is self-adjoint with respect to the scalar product
〈(a, b), (c, d )〉 ≡ ∫ ∞

0 dρ(a(ρ)c(ρ) + b(ρ)d (ρ)).
We will perform the expansion (54) by employing the

linearized solutions in the limit p → pc, where

w̄0 ≡ lim
p→pc

w̄lin,0 = −J0(ρ),

ψ̄0 ≡ lim
p→pc

ψ̄lin,0 = −J1(ρ) = −w̄′
0 (56)

[see Eqs. (23) and (24)]. The functions w̄′
0 and ψ̄0 provide a

solution of the linearized problem at p = pc where also F̄ = 0
[because the stiffness vanishes for p = pc as shown in Sec. III,
see (19)]:

M̂

(
w̄′

0
ψ̄0

)
= 0. (57)

We can use this homogeneous solution to obtain a Fredholm
solvability condition for the inhomogeneous problem (55) by
scalar multiplication with (w̄′

0, ψ̄0) on both sides resulting in

2(1 − p/pc)
∫ ∞

0
dρρw̄′

0w̄
′
lin,0 = F0

∫ ∞

0
dρw̄′

0.

Using

∫ ∞

0
dρw̄′

0 = 1, (58)

∫ ∞

0
dρρw̄′

0w̄
′
lin,0 ≈

√
2

π
(1 − p/pc)−1/2 (59)

[where the last integral is performed in the limit p → pc, see
also Eq. (29)], we rediscover our above result (21) for the
linear stiffness of the shell,

k̄ = lim
z̄→0

F̄

z̄
= 2πF0 = 4

√
2(1 − p/pc)1/2.

B. First order

In the next order z̄2, we obtain the inhomogeneous equation

M̂

(
w̄′

1

ψ̄1

)
+

(
2(1 − p/pc)w̄′

1

0

)
=

(
−ψ̄lin,0w̄

′
lin,0 + F1

− 1
2 w̄′2

lin,0

)
.

Because F1 will not vanish in the limit p → pc, we can
perform this limit explicitly and obtain

M̂

(
w̄′

1

ψ̄1

)
=

(
−ψ̄0w̄

′
0 + F1

− 1
2 w̄′2

0

)
. (60)

Again, we use the homogeneous solution (57) to obtain a
Fredholm solvability condition by scalar multiplication with

(w̄′
0, ψ̄0) on both sides. This gives [using again the inte-

gral (58)]

0 = −3

2

∫ ∞

0
dρψ̄0w̄

′2
0 + F1 = 3

2

∫ ∞

0
dρJ3

1 (ρ) + F1. (61)

Evaluating the last integral, we finally obtain

F1 = −3
√

3

4π
.

C. Energy barrier and force-indentation relation

From our results for F0 and F1, we find the force-
indentation relation

F̄ (z̄)

2π
= 2

√
2

π
(1 − p/pc)1/2z̄ − 3

√
3

4π
z̄2 + O(z̄3) (62)

in the presence of pressure p for shallow dimples z̄ � 1 and
for p close to pc. The force-indentation relation is related
by F̄ (z̄)/2π = dĒind/dz̄ to the indentation energy landscape.
As opposed to the Pogorelov limit z̄ � 1 and p � pc [see
Eq. (34)], the pressure does not only enter via the me-
chanical work term pV (z̄) for shallow dimples. [pV =
(2/π )(p/pc)V ∝ −(p/pc)z̄ would result in a constant con-
tribution in the force-indentation relation (62)]. For shallow
dimples close to pc, the softening of the shell profoundly
modifies the indentation energy already in leading order.
Structural stability is governed by the maximal force needed
to overcome the barrier,

F̄max

2π
= 8

3
√

3π
(1 − p/pc) = 3

2

ĒB

z̄B
, (63)

which becomes small close to pc, reflecting the softening of
the shell.

For F̄ = 0, we obtain the relation between pressure and
indentation in the postbuckling barrier state (53a), which can
also be written as

p/pc = 1 − 27

128
z̄2

B. (64)

This is the same asymptotic form as found by Evkin et al. [21].
Based on the incorrect assumption of zero curvature at the
pole in the barrier state [as the normal displacement profiles
in Fig. 4(a) clearly show], they find p/pc � 1 − 0.048z̄2

B with
a numerical prefactor that differs significantly from our result
27/128 � 0.211. This leads to significant deviations of their
Padé interpolation of p/pc from the numerical data [see
Fig. 5(a)], whereas Eq. (64) is in excellent agreement with
the numerics over several decades of the small parameter
1 − p/pc (see Fig. 5). An early result of Thompson for
axisymmetric postbuckling shapes (in the absence of a point
force) does not agree and features a linear term O(z̄B) [13,59].

Integrating Ēind = 1
2π

∫ z̄
0 F̄ (˜̄z)d ˜̄z, we find the total indenta-

tion energy landscape (52) and all results for the energy barrier
state. The energy barrier can also be calculated directly from
the exact result (12), where we obtain in leading order

ĒB = −1

4

∫ ∞

0
dρψ̄w̄′2 ≈ −z̄3 1

4

∫ ∞

0
dρψ̄0w̄

′2
0

= z̄3
B

1

4

∫ ∞

0
dρJ3

1 (ρ) =
√

3

8π
z̄3

B,
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FIG. 10. Solid lines: Numerical results for the rescaled energy
landscape Ēind/ĒB as a function of rescaled indentation z ≡ z̄/z̄B

for various pressures p/pc according to Eq. (65). Arrows indicate
increasing pressure. All rescaled landscapes lie between the two lim-
iting scaling curves fPog(z) and fsoft (z), which are known analytically
[dashed lines; see Eq. (67)] and approached for p/pc � 1 or p/pc

close to unity, respectively.

in agreement with (53d). The indentation volume (53b) at the
barrier state is found by using the barrier indentation (53a) in
the exact relation (11) or relation (29).

VII. ENERGY LANDSCAPE AND BARRIER

A. Energy landscape

Both in the Pogorelov limit and the softening limit close
to pc, we obtained the exact asymptotics of the full energy
landscape, (34) and (52), which also contains all information
about the energy barrier [by maximizing Ēind(z̄) with respect
to z̄] and the force-indentation curves F̄ (z̄)/2π = dĒind/dz̄.
Both limits can be written in a scaling form

Ēind = ĒB f

(
z̄

z̄B

)
, (65)

F̄ (z̄)

2π
= ĒB

z̄B
f ′

(
z̄

z̄B

)
(66)

with two characteristic scaling functions

fPog(z) = 4z3/2 − 3z2,
(67)

fsoft (z) = 3z2 − 2z3

determining the shape of the energy landscape, which is in
good agreement with our numerical results in Fig. 10. We
note that the Pogorelov result applies for z̄ � 1 and p � pc,
whereas the softening regime applies to z̄ � 1 and p close
to pc. In particular, it is not possible to calculate the linear
shell stiffness k = d2Ēind/dz̄2|z̄=0 from the Pogorelov result
for p � pc. For this, one has to resort to the linear response
result (21) as has been discussed in Ref. [52].

B. Volume and area change during indentation

During point force indentation, area and volume change
according to Eqs. (13) and (14). According to relation (15),
the indentation area change is given by the force-indentation
relation via A(z̄) = −2F̄ (z̄). The above scaling relation (66)
for the force-indentation relation is in good agreement with

(a)

(b)

FIG. 11. Numerical results for (a) the rescaled area A/(ĒB/z̄B)
and (b) rescaled volume V /V B change as a function of z ≡ z̄/z̄B

for various pressures p/pc according to Eqs. (66) and (69). The
dashed lines indicated the limiting scaling functions according to
Eqs. (67) and (69).

our numerical results for the area change, as Fig. 11(a) shows.
The area change is a nonmonotonous function of z̄ with a
minimum at the maximal point force −F̄max = 1

2Amin.
In the linear reponse regime z̄ � 1, also the volume

change V (z̄) is given by the point force via V (z̄) =
2π

∫ ∞
0 dρρw̄lin = −k̄(p)z̄ = −F̄ ; see Eqs. (19) and (21). For

deeper indentations, we can use the results (29) close to pc

and the mirror-inverted dimple result V = −π z̄2/2 to find

−V (z̄) ≈
{

k(p)z̄ + z̄2

2
√

2
(1 − p/pc)−1/2 for p ≈ pc

k(p)z̄ + π z̄2/2 for p � pc

.

(68)

Rescaling with the barrier indentation z̄B [see Eqs. (53a)
and (33a)] and the indentation volume V B at the barrier
[see Eqs. (53b) and (33b)], we find that both for p ≈ pc and
p � pc a scaling relation

−V (z̄) = V B g

(
z̄

z̄B

)
(69)

with g(z) = π z̄2/2 (70)

holds over a wide range z̄/z̄B � (1 − p/pc)1/2 and z̄/z̄B �
(p/pc)2, respectively. For intermediate pressures, however,
an additional linear regime emerges; see Fig. 11(b). Volume
and area change during point force indentation combine to a
reduced volume

v = V/(4π/3)(A/4π )3/2 = 1 + γ −1 3
4π

V(
1 + γ −1 1

2π
A

)3/2 < 1, (71)
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which is monotonously decreasing and reduced to v = 1 −
O(γ −1) up to the barrier. It becomes significantly reduced and
finally vanishes only close to the snap through where z ∝ R0

or V ∝ z̄2 ∝ γ .

C. Quantitative interpolation for energy barrier and indentation

The scaling forms (65) and (66) give quantitatively accu-
rate energy barrier shapes and force-indentation relations if
accurate interpolation results for the energy barrier height ĒB

and the barrier indentation z̄B are available. As nondimension-
alization of the shallow shell Eqs. (7) and (8) showed, the
dimensionless energy barrier ĒB at F̄ = 0 can only depend
on p/pc,

ĒB = fp(p/pc). (72)

Based on our analytic asymptotic results (33e) and (53e) for
the function fp(x), we can give a new interpolation formula,
significantly improving the interpolation formula for the func-
tion fp(x) proposed in Ref. [9] (which was based on scaling
results in the Pogorelov limit and numerical results only):

fp(x) =
(

a3x−3 + a2x−2 + a1x−1 + a0 + (1 −
3∑

n=0

an)x

)

× [b3/2(1 − x)3/2 + b2(1 − x)2

+ (1 − b3/2 − b2)(1 − x)5/2],

a3 = p4
1

3
� 0.161, a2 = −0.0168,

a1 = 1.653, a0 = 1.951,

b3/2 = 128
√

2

81π
� 0.711, b2 = 3.794. (73)

Our analytical asymptotic results constrain the values a3

and b3/2. The remaining fit parameters are determined by a
Levenberg-Marquardt fit on numerical shallow shell data for
the energy barrier that are equally distributed between p = 0
and p = 1 in steps of p = 0.01. The fact that the fit gives
|a2| � 1 is consistent with our numerical finding that the next
nonvanishing term in Eq. (33e) is actually O((p/pc)−1) rather
than O((p/pc)−2). Relative deviations from the numerical
shallow shell data are smaller than 5% for p/pc < 0.6 and
smaller then 20% over the whole range of p; see Fig. 8.

A similar interpolation can be given for the barrier
indentation:

z̄B = gp(p/pc) with

gp(x) =
(

a2x−2 + a0 + a−1x +
(

1 −
2∑

n=−1

an

)
x2

)

×[b1/2(1 − x)1/2 + b1(1 − x)

+ (1 − b1/2 − b1)(1 − x)3/2],

a2 = p2
1 � 0.695, a0 = 4.779, a−1 = −3.144,

b1/2 = 8
√

2

3
√

3
� 2.177, b1 = −1.377, (74)

see Fig. 5, where our analytical results constrain the values
a2, b1/2, and a1 = 0 [the leading nonvanishing correction in
the Pogorelov limit is O((p/pc)0) because of p2 = 0; see
Eqs. (47) and (33a)]. Relative deviations from the numerical
results are smaller than 2% for p/pc < 0.6 and smaller than
15% over the whole range of p.

We can also employ the strategy of Evkin et al. [21] and
use a Padé interpolation of p/pc as a function of z̄B. With an
ansatz

p

pc
=

∑4
n=0 αnε

n

1 + ∑4
n=1 βnεn

with ε ≡ 2z̄−1/2
B , (75)

we can incorporate the analytical constraints α0 = 0, α1 =
p1/2 � 0.417 from the Pogorelov limit ε � 1 with (46) and
constraints αn = βn for n = 1, 2, 3, 4 and α4 = 8/27 � 0.296
from the shallow dimple regime ε � 1 with (64). Further-
more, the constraint p2 = 0 from the Pogorelov limit ε � 1
[see Eq. (47)] gives α2 = p2

1/4 � 0.174. The only uncon-
strained coefficient α3 can be used for a Levenberg-Marquardt
fit of the numerical shallow shell data, which gives α3 �
0.476. Our Padé interpolation of p/pc differs significantly
from the one given in Ref. [21] because of the corrected
behavior in the limit p ≈ pc [see Fig. 5(a)]; relative deviations
from the numerical results for p/pc are smaller than 5% for
over the whole range of zB.

VIII. MAXWELL AND UNBUCKLING PRESSURE

We can use the energy landscape (34) in the Pogorelov
limit z̄ � 1 to calculate the critical unbuckling pressure pcu

and the Maxwell pressure pc1. When we reduce the com-
pressive pressure to p < pcu < pc, the buckled state can no
longer be stabilized, and both the buckled state and the
unstable barrier transition state merge and vanish in a saddle-
node bifurcation at p = pcu. The unbuckling pressure is the
smallest compressive pressure at which a metastable buckled
state still exists and is thus also called minimum buckling
load [5,14,48,60]. The stable buckled states assumed after
buckling at pc are snap-through buckled states (z ≈ 2R0) and
can no longer be described in shallow shell approximation,
which assumes small slopes |w′| ∼ z/R0 � 1, i.e., small rota-
tion angles of shell elements. By numerical solution of the full
shape equations [3], which are valid beyond the shallow shell
approximation, we find that at unbuckling at the pressure pcu

the shell is no longer fully snapped through but the indentation
is still deep and proportional to R0, i.e., z = αR0 with α ∼
1.4–1.5 (in agreement with Refs. [5,60]).

If we assume that also the unbuckling state has maxi-
mal indentation z = 2R0 or z̄ = 2γ 1/2 with z̄ � 1 for thin
shells R0 � h or large Föppl–von Kármán numbers γ � 1,
this state can only be a boundary minimum of the energy
landscape (34) with F̄ = 0 if the maximum of the energy
landscape at zB has smaller indentation zB < 2R0 or z̄B <

2γ 1/2. This is the case above the critical unbuckling pressure

pcu = p1√
2

pcγ
−1/4. (76)

For p < pcu, the precompressed spherical state is the only
accessible energy minimum and, thus, spherical shells have
to unbuckle. The parameter dependence pcu ∝ pcγ

−1/4 has
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been previously observed [5,16,47,60]. In Refs. [5,60], pcu �
2.65 pcγ

−1/4 has been found using a shell theory that allows
for large deflections and rotation angles. Solving the full
shape equations from Ref. [3] numerically we find pcu �
1.2 pcγ

−1/4, which is by a factor of 2 larger than the shallow
shell result (76) but also shows the same parameter depen-
dence. We conclude that in shallow shell theory the unbuck-
ling state is not properly accessible but can be approximately
regarded as a boundary minimum at z = 2R0 corresponding
to a snap-through state. The simple condition zB = 2R0 for
the barrier state can predict the unbuckling pressure pcu up to
a numerical factor of about 2.

We can calculate the Maxwell pressure pc1, at which the
snap-through buckled state and the unbuckled precompressed
spherical state have equal energies, from calculating the zero
Ēind(z̄1) = 0 of the energy landscape (34) (see also Fig. 2)

z̄1 = 16p2
1

9
(p/pc)−2 = 16

9
z̄B. (77)

The buckled state with equal energy is the snap-through state
if z1 = 2R0 or z̄1 = 2γ 1/2. This condition determines the
Maxwell pressure

pc1 = 4p1

3
√

2
pcγ

−1/4 = 4

3
pcu, (78)

confirming the parameter dependence pc1 ∼ pcγ
−1/4 [17].

Using the Pogorelov theory pc1 � 0.901(1 − ν2)−1/4 pcγ
−1/4

has been obtained [47], which slightly deviates from our
above result pc1 � 0.786 pcγ

−1/4 from shallow shell the-
ory. The relation pc1 = 4pcu/3 is obtained identically using
Pogorelov theory [47].

IX. SOFT SPOTS

The critical unbuckling pressure can be interpreted as a
finite-size effect that leads to spontaneous unbuckling if the
critical indentation at the barrier does no longer “fits” into
the capsule in normal direction, i.e., if zB > 2R0 or z̄B >

2γ 1/2. Because ρB ∝ z̄1/2
B � z̄B for mirror-inverted dimples

the lateral extent ρB of the critical barrier state does not
conflict with the finite size R0 of the shell. This can happen,
however, for spherical caps under pressure [61] or soft spots
on a sphere under pressure [16] if their lateral size L (or
opening angle α = L/R0 for a spherical cap) are small. Then
the finite lateral size L can trigger unbuckling of the cap or
the soft spot. The important parameter governing the buckling
of a finite spherical cap is λ ≡ L/lel = L̄ [16,61]. Although
the boundary conditions play an important role and differ
from those of a complete spherical shell both for clamped
and free caps or soft spots, we expect that unbuckling is
triggered if λ = L̄ < ρB(p) because a fully buckled state of
extent L̄ becomes an unstable boundary energy maximum
then. According to Eqs. (33c) and (53c), it will unbuckle if
p/pc < p1/L̄ for L̄ � 1 and for all L̄ < 0.70 for p close to
pc. Therefore, soft spots sufficiently small compared to the
the elastic length (L < 0.70lel) will immediately unbuckle
for p smaller than pc. This will suppress the existence of
the subcritical barrier state and hysteresis in the buckling
of sufficiently small soft spots: The soft spot buckles and
unbuckles at the same threshold pressure pc.

spherical (stable)

barrier
(unstable)

snap-through
         (stable)

FIG. 12. Bifurcation behavior of the indentation z with pressure
p as control parameter for a perfect shell (blue) or in the presence of
a preindenting force or for an imperfect shell (yellow) in shallow
shell theory. There are three types of stationary states: a stable
spherical state for p < pc (or p < pc,F , p < pc,δ) (solid lines), an
unstable barrier state corresponding to an energy maximum (dashed
lines), and a stable snap-through state above the unbuckling pressure
p > pcu (solid gray line). In shallow shell theory, the unbuckling and
snap-through states are not properly accessible but can be regarded
as boundary minimum at z = 2R0.

X. BIFURCATION BEHAVIOR AS A
FUNCTION OF PRESSURE

Our results on the buckling barrier of a perfect spherical
shell allow us to classify the buckling bifurcation as a function
of the control parameter p in more detail, as schematically
shown in Fig. 12. A suitable order parameter to trace the
bifurcation is the indentation z. The functional form of the
energy landscape (52) close to pc (containing z2 and z3 terms)
suggests a transcritical bifurcation at p = pc, but the unstable
barrier state does not continue as a stable equilibrium state
into the buckled phase p > pc, where Eq. (52) is no longer
applicable. Clearly, the bifurcation at p = pc is subcritical as
the barrier states represent a subcritical branch of unstable
stationary points, which are already present for p < pc (and
p > pcu). From this fixed point structure with an unstable
barrier state with z̄B ∝ (1 − p/pc)1/2 [Eq. (53a)] and the
stable spherical state joining at p = pc and resulting in an
unstable spherical state for p > pc, the bifurcation at p = pc

is similar to a subcritical pitchfork, in which the spherical
state z = 0 becomes unstable. We have, however, only a “one-
sided” pitchfork because we only consider compressed states
z < 0 and there is no inversion symmetry z → −z between
compression and deflation of a sphere. The buckled snap-
through state z = 2R0 is stabilized as a boundary minimum
for p > pcu and becomes the only remaining minimum af-
ter the bifurcation at p = pc. It becomes the global energy
minimum at the Maxwell pressure pc1 between pcu and pc.
The appearance of the buckled state together with the energy
barrier state at p = pcu is a saddle-node or fold bifurcation,
as results in Refs. [3,17,60] suggest. For pressures slightly
above pcu, the buckled state snaps through. Bifurcations at
pc and pcu result in hysteresis for pcu < p < pc between
saddle-node and subcritical bifurcation. Upon approaching
the buckling instability from p < pc, the shell indentation at
the energy barrier maximum vanishes ∝ (1 − p/pc)1/2 and
the linear restoring force vanishes as the linear stiffness ∝
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(1 − p/pc)1/2; see also Eq. (62). Right at the instability, the
linear restoring force vanishes and the force-indentation curve
F̄ ∝ −z̄2 misses linear terms such that we can also expect a
“critical slowing down” of the buckling dynamics [62].

XI. BIFURCATION BEHAVIOR AND SOFTENING IN THE
PRESENCE OF A PREINDENTING POINT FORCE

One view of the point force F is to consider F as a probe
of the buckling barrier for a fixed subcritical pressure p < pc,
which gives access to the bifurcation behavior as a function
of p. An alternative view is to consider the point force as
an additional control parameter and consider its effect on the
buckling bifurcation, i.e., to consider how the buckling bifur-
cation as a function of p is modified if the sphere is preloaded
by a small point force Fpre. Then, Fpre acts analogously to
an additional ordering field in a phase transition bifurcation
favoring one phase (here the buckled state), gives rise to an
avoided or perturbed bifurcation at a reduced critical pressure
pc,F < pc, and turns the bifurcation at pc,F into a saddle-
node bifurcation (see Fig. 12). The bifurcation at pcu remains
essentially unchanged as long as F̄pre is small. Interestingly,
imperfections will have a very similar effect as we will show
below.

In the presence of a preloading point force Fpre > 0, the
critical buckling pressure is reduced to pc,F < pc as it is
easier to buckle a preloaded shell. The additional force Fpre

tilts the energy landscape to Ēind − F̄prez̄/2π , resulting in
the modified force-indentation relation F̄ (z̄) = 2πdĒind/dz̄ −
F̄pre. Equivalently, we can say that F̄ is replaced by the total
force F̄ + F̄pre in the original force-indentation relation. This
turns the bifurcation at pc,F into a saddle-node bifurcation,
at which both the stationarity condition F̄pre = 2πdĒind/dz̄
for the tilted energy landscape (i.e., F̄ (z̄) = 0 for the modi-
fied force-indentation relation) and the saddle condition 0 =
d2Ēind/dz̄2 = dF̄ (z̄)/dz̄ have to be fulfilled.

For small forces F̄pre, the bifurcation still occurs close to
pc and for small indentations z̄, such that we can use the
asymptotic energy landscape (52) and the force-indentation
relation (62). Stationarity and saddle conditions then result in
a reduced critical pressure with a knockdown factor

pc,F

pc
= 1 − 3

√
3

16
F̄pre. (79)

For p < pc,F , two stationary states emerge in the saddle-node
bifurcation (see Fig. 12): a stable preindented spherical state
and the unstable barrier state. The stable preindented state
is no longer a perfect precompressed sphere with z̄ = 0 but
has a finite indentation z̄sph ≈ Fpre/k, which is very well
described by the linear stiffness k from Eq. (21). Solving
the stationarity condition F̄pre = 2πdĒind/dz̄, i.e., solving the
force-indentation relation (62) for z̄, we obtain the indentation
for both branches,

z̄B,sph = z̄+,− = 4
√

2

3
√

3

[(
1 − p

pc

)1/2

±
(

pc,F − p

pc

)1/2
]
,

which meet for p = pc,F at zB = zsph ∼
√

F̄pre. Interestingly,
we find the same softening behavior as in the absence of the

preloading force if the pressure approaches the critical value
pc,F . The indentation difference from spherical to barrier state
is

z̄B,F = z̄B − z̄sph = 8
√

2

3
√

3

(
pc,F − p

pc

)1/2

(80)

and the corresponding energy barrier is

ĒB,F = ĒB − Ēsph = 1

2π

∫ z̄B

zsph

F̄ (z)dz

= 128
√

2

81π

(
pc,F − p

pc

)3/2

=
√

3

8π
z̄3

B,F . (81)

Both results are completely analogous to Eqs. (53a), (53d),
and (53e) for F̄pre = 0, with p̄ ≡ (pc,F − p)/pc replacing
(1 − p/pc). They result in a linear stiffness

kF = d2ĒB,F

dz̄2
B,F

∣∣∣∣∣
z̄B,F =0

= 4
√

2

(
pc,F − p

pc

)1/2

,

giving rise to the same softening behavior close to pc,F as in
Eq. (21) in the absence of the preloading force. The properties
of the subcritical barrier such as the scaling z̄B,F ∝ p̄1/2

and ĒB,F ∝ p̄3/2, which characterize the softening of the
shell close to the critical pressure pc,F are universal and
independent of the applied point force F̄pre. For a saddle-node
bifurcation, where two branches of fixed points (z̄B and z̄sph)
smoothly merge at the critical value p = pc,F of the control
parameter, the behaviors z̄B,F ∝ p̄1/2 and ĒB,F ∝ p̄3/2 are
actually generic.

Figure 13 shows numerical results for the knockdown
factor, the bifurcation of the indentation, the indentation dif-
ference, and the energy barrier between barrier state and prein-
dented spherical state. The numerical method is unchanged,
in principle. In the presence of a preindenting force, the total
force F̄ + F̄pre is acting on the shell, and F̄ is replaced by
the total force F̄ + F̄pre in the shallow shell equations that
are solved numerically. Both at the barrier state and at the
preindented spherical state we have an applied force F̄ = 0,
but the total force acting on the shell is not vanishing but
equals the preindenting force F̄pre. In order to calculate the
barrier energy ĒB,F = ĒB − Ēsph directly without numerically
integrating the full force-indentation relation, we now employ
a generalized version of relation (12), which gives direct
numerical access to the energy difference Ētot,F between
a state indented with a force F̄pre and the precompressed
unindented spherical state (with the same pressure but with
z̄ = 0) as

Ētot,F = −1

4

∫ ∞

0
dρψ̄ (∂ρw̄)2 − F̄pre

4π
z̄

− 2(1 + ν)
p

pc

F̄pre

2π
. (82)

A derivation is given in Appendix A. The energy barrier
ĒB,F = Ētot,B − Ētot,sph can then be obtained as difference
of the values of Ētot,F between the barrier state and the
preindented spherical state, both of which can be obtained via
continuation of solutions of the shallow shell Eqs. (7) and (8)
with force F̄pre.
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(a) (b) (c)

FIG. 13. (a) Bifurcation of the indentation as a function of the pressure for a shell preindented with force F̄pre. Below a critical pressure
pc,F , two branches of shapes emerge in a saddle-node bifurcation, an indented spherical branch with z̄sph and an unstable barrier state with z̄B.
Dashed lines: Linear response z̄sph ≈ Fpre/k of spherical shell. Solid lines: Approximation (84). Inset: Knockdown factor pc,F /pc as a function
of preindenting force F̄pre as compared to Eq. (83) (solid line) and small F̄pre approximation (79) (dashed line). (b) Indentation difference
z̄B,F = z̄B − z̄sph as a function of pressure p/pc (upper curves and upper horizontal scale) together with analytical result (33a) for Fpre = 0 (red
line) and as a function of 1 − p/pc,F (lower curves and lower horizontal scale) together with analytical result (53a) for Fpre = 0 (blue line).
Lines are approximation (85). (c) Energy barrier ĒB,F as a function of pressure p/pc (upper curves and upper horizontal scale) together with
the analytical result (33e) for Fpre = 0 (red line) and as a function of 1 − p/pc,F (lower curves and lower horizontal scale) together with the
analytical result (53e) for Fpre = 0 (blue line). Lines are approximation (86).

The numerical results in Fig. 13 show that the above
results (80) and (81) are quantitatively correct only for very
small F̄pre � 1, where the knockdown factor (79) is close
to unity and we can use the asymptotic result (62) for the
force-indentation relation [see inset in Fig. 13(a)]. For larger
F̄pre, it turns out that prefactors in Eqs. (80) and (81) depend
weakly on the preindentation force F̄pre, and the knockdown
factor deviates from Eq. (79).

In order to explain these results quantitatively, we use
analytical estimates based on the scaling form (65) of the
energy landscape for F̄ = 0 employed in conjunction with
the interpolation formulas (73) and (74) for the pressure
dependence of ĒB,0 and z̄B,0 for Fpre = 0. The knockdown
factor pc,F /pc is then determined by the solution of

3

2

ĒB,0(pc,F /pc)

z̄B,0(pc,F /pc)
= F̄pre

2π
(83)

and

z̄B,sph = 1

2
z̄B,0

{
1 ±

[
1 − F̄pre

2π

2

3

z̄B,0(p)

ĒB,0(p)

]1/2
}

, (84)

z̄B,F = z̄B − z̄sph = z̄B,0

[
1 − F̄pre

2π

2

3

z̄B,0(p/pc)

ĒB,0(p/pc)

]1/2

, (85)

ĒB,F = ĒB,0

[
1 − F̄pre

2π

2

3

z̄B,0(p/pc)

ĒB,0(p/pc)

]3/2

, (86)

where we used the scaling function fsoft (z) appropriate for
p/pc � 0.75. This describes our numerical data for the
modified bifurcation behavior in Fig. 13 well for F̄pre � 1.
We recover again the universal properties of the subcritical
barrier z̄B,F ∝ p̄1/2 and ĒB,F ∝ p̄3/2, but prefactors in
these scaling laws now depend on the applied point force F̄pre.

Effects of the preindenting force Fpre are negligible for the
barrier state in the Pogorelov limit z̄B � 1 and p � pc. Then
the barrier state is deeply indented, and the preindenting force
F̄pre can be neglected versus the elastic and pressure terms in
the force-indentation relation (51) for z̄B � F̄ 2

pre or p/pc �

1/F̄pre. The linear shell stiffness k̄ = dF̄
dz̄ [see Eq. (21)], on

the other hand, is independent of an additional constant force
F̄pre in the force-indentation relation. Thus, the preindented
spherical state approaches z̄sph ≈ F̄pre/k � 0.8 F̄pre for p/pc ≈
0, which is also negligible versus z̄B ∼ (p/pc)−2 for p/pc �
1/F 1/2

pre . Therefore, the indentation difference from spherical
to barrier state z̄B,F ≈ z̄B and the barrier energy ĒB,F ≈ ĒB

approach the Pogorelov asymptotics (33a) and (33e) in the
Pogorelov limit for p/pc � 1/F 1/2

pre ; see also Fig. 13. There-
fore, the bifurcation at pcu/pc ∼ γ −1/4 [see Eq. (76)] remains
essentially unchanged as long as F̄pre � γ 2, which is a rather
weak condition.

XII. IMPERFECTIONS

For applications, another important class of “quenched”
defects are imperfections in form of a normal axisymmetric
displacement field wI (r), which is already present in the
strain-free state of the shell [10,13,15,63]. Then the strain is
defined relative to the configuration of a sphere with radius
R(r) = R0 + wI (r) containing already normal displacements
wI (r). Similar to the preindenting force, also imperfections
are known to affect the nature of the bifurcation at pc and
cause a pronounced reduction of the critical buckling pres-
sure pc [13–15]. We will show that the effect of localized
axisymmetric imperfections is very similar to the effect of a
preindenting force.

A. Shallow shell theory in the presence of imperfections

We consider here axisymmetric imperfections and demon-
strate that they can be incorporated in an exact manner into
our analytical barrier calculation based on the shallow shell
equations in the regime of small z̄B � 1 from Sec. VI. A
detailed derivation of the nonlinear shallow shell equations in
the presence of imperfections is given in Appendix B.

In-plane strains ui j are defined relative to the imperfect
initial shape and depend on the imperfection field wI via
nonlinear terms in the normal displacement w. Changes in
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the curvature tensor (curvature strains) ki j , on the other hand,
are independent of wI . The Hookean stress-strain relations
giving in-plane stresses σi j and bending moments in terms of
the in-plane strains ui j and curvature strains ki j , respectively,
are not modified by imperfections, as well as the Hookean
elastic energy of the shell in terms of strains [see Eq. (B1) in
Appendix B]. Variation with respect to the additional normal
displacements w(r) (and in-plane displacements) finally gives
the modified shallow shell equations

κ∇4w + 1

R0

1

r
∂r (rψ ) − 1

r
∂r[ψ∂r (w + wI )]

= −p − F

2π

δ(r)

r
, (87)

1

Y
r∂r

[
1

r
∂r (rψ )

]
= r

R0
∂rw − 1

2 (∂rw)2 − (∂rw)(∂rwI ),

(88)

which generalize Eqs. (3) and (4) in the presence of imperfec-
tions.

As in Eq. (5), we can absorb the effect of the pres-
sure p in Eq. (87) into a uniform pre-compression ψ (r) =
ψ0(r) = −pR0r/2 (corresponding to stresses σrr = σφφ =
σ0 = −pR0/2) and consider changes with respect to this
prestress by substituting ψ (r) → ψ0(r) + ψ (r) [see Eq. (B7)
in Appendix B]. Also, nondimensionalization (6) proceeds as
before. Integrating on both sides from ρ to infinity finally
gives

−ρ∂ρ (∇2
ρw̄) − ρψ̄ + ψ̄∂ρ (w̄ + w̄I ) − 2

p

pc
ρ∂ρw̄

= F̄

2π
+ 2

p

pc
ρ∂ρw̄I , (89)

which has to be solved together with the compatibility
condition

ρ∂ρ

[
1

ρ
∂ρ (ρψ̄ )

]
= ρ∂ρw̄ − 1

2 (∂ρw̄)2 − (∂ρw̄)(∂ρw̄I ). (90)

In comparison with our original Eqs. (10) for w̄ and the com-
patibility condition (8) for ψ̄ , there are three additional terms
coupling to the imperfection displacement. The first term in
Eq. (89) and the last term in Eq. (90) are couplings caused
by the nonlinearities of the shallow shell equations and are
of order O(z̄z̄I ) if z̄I is the amplitude of the imperfection dis-
placement. They correct the homogeneous part of the shallow
shell equations. The term −2(p/pc)ρw̄′

I = O(z̄I ) in Eq. (89),
on the other hand, is of lower order and corrects the inhomo-
geneity of the shallow shell equations. It can be interpreted
as an additional effective pointlike force, which is localized to
the extent of the imperfection w̄I and is caused by the response
of the imperfection displacement to additional pressure. The
effective force term gives the leading-order effect of imperfec-
tions as long as z̄ � 1. This is a first hint that the combination
of pressure and imperfection displacement leads to similar
indentation behavior as a preindenting point force.

B. The avoided buckling bifurcation

In the following, we consider axially symmetric imper-
fections in the form of a localized indentation of Gaussian

shape [15,63]

w̄I (ρ) = −δe−ρ2/ρ2
I (91)

with dimensionless depth δ (measured in the same units as
normal displacements w) and dimensionless size ρI (mea-
sured in the same units as radial distances r). In the pres-
ence of such imperfections, the critical pressure is reduced
to pc,δ < pc because it is easier to buckle the preindented
shell, in which an indentation imperfection displacement w̄I

with w̄′
I > 0 leads to additional compressive strains upon

compression by pressure.
The numerical results in Fig. 14 show that the effect of the

preindentation imperfection is indeed qualitatively very simi-
lar to the effect of a preindenting point force. For a localized
imperfection field w̄I , the additional inhomogeneous term in
Eq. (89), which is the leading order effect for z̄ � 1, becomes
a localized effective force, which acts essentially in the same
way as a preindenting point force. Therefore, we find the same
bifurcation behavior as discussed in the previous section for
a preindenting point force. The imperfection gives rise to an
avoided or perturbed bifurcation at a reduced critical pressure
pc,δ < pc, and the bifurcation at pc,δ becomes a saddle-node
bifurcation, in which two stationary states emerge (see also
Fig. 12): a stable preindented spherical state with energy Ēsph

and indentation z̄sph and the unstable barrier state with energy
ĒB and indentation z̄B (> z̄sph).

In the numerical approach, we solve the modified shallow
shell equations as given explicitly in Eqs. (B8) and (B9) in
Appendix B. In the presence of imperfections, the total energy
difference in Eq. (12) is no longer the barrier energy but
measures the energy difference between the barrier state or
the preindented spherical state with F̄ = 0 and the unindented
and precompressed state (with the same pressure but F̄ = 0
and w̄ = 0), which is no longer a stationary state satisfying
the force balance (87) but which is still an admissible and
well-defined shell state satisfying the compatibility condi-
tion (90). The total energy difference Ētot,imp to this state
can be obtained analytically; see Eq. (B11) in Appendix B.
In order to calculate the barrier energy ĒB,δ = ĒB − Ēsph,
we calculate this total energy difference for the barrier and
the preindented spherical state numerically and use ĒB,δ =
Ētot,imp,B − Ētot,imp,sph to directly access the energy barrier
by continuation methods without the need to numerically
integrate the force-indentation relation. Our numerical shal-
low shell theory results for the indentation as a function of
the pressure agree well with results from moderate rotation
theory [15,63].

For small imperfection indentations δ � 1, the bifurcation
still occurs close to pc and for small indentations z̄. Then we
employ the same expansion (54) as in Sec. VI for shallow
dimples and find in the leading order

M̂

(
w̄′

lin,0

ψ̄lin,0

)
+

(
2(1 − p/pc)w̄′

lin,0 + ψ̄lin,0w̄
′
I

w̄′
lin,0w̄

′
I

)

=
(

F0 + z̄−12(p/pc)ρw̄′
I

0

)
.
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(a) (b) (c)

FIG. 14. (a) Bifurcation of the indentation as a function of the pressure for an imperfect shell with different imperfection depths δ (and size
ρI = 1). Below a critical pressure pc,δ , two branches of shapes emerge in a saddle-node bifurcation, an indented spherical branch with z̄sph,
and an unstable barrier state with z̄B. Lines: Approximation with effective preindenting force (94) and (95). Inset: Knockdown factor pc,δ/pc

as a function of δ as compared to approximations with effective preindenting force (94) and (95) (solid line) and small δ approximation (93)
together with (79) (dashed line). (b) Indentation difference z̄B,δ = z̄B − z̄sph as a function of pressure p/pc (upper curves and upper horizontal
scale) together with the analytical result (33a) for δ = 0 (red line) and as a function of 1 − p/pc (lower curves and lower horizontal scale)
together with the analytical result (53a) for δ = 0 (blue line). Lines are approximations with effective preindenting force (94) and (95). (c)
Energy barrier ĒB,δ as a function of pressure p/pc (upper curves and upper horizontal scale) together with the analytical result (33e) for δ = 0
(red line) and as a function of 1 − p/pc,δ (lower curves and lower horizontal scale) together with the analytical result (53e) for δ = 0 (blue
line). Lines are approximations with effective preindenting force (94) and (95).

Scalar multiplication with (w̄′
0, ψ̄0) on both sides gives the

solvability condition

F0 = 2
√

2

π
(1 − p/pc)1/2 + 2

∫
dρw̄′

I (ψ̄0w̄
′
0)

− z̄−12(p/pc)
∫

dρρw̄′
Iw̄

′
0,

with an additional z̄−1 contribution to the leading order, which
means an additional imperfection force and an additional
imperfection contribution to the linear stiffness. Both con-
tributions are linear in the imperfection displacement w̄I .
We evaluated integrals approximately in the limit p → pc as
previously done in Eq. (59). The force-displacement relation
becomes

F̄ + (p/pc)ĀI = [4
√

2(1 − p/pc)1/2 + k̄I ]z̄

− 3
√

3

2
z̄2 + O(z̄3) with (92a)

ĀI ≡ 4π

∫
dρρw̄′

Iw̄
′
0, (92b)

k̄I ≡ 4π

∫
dρw̄′

I (ψ̄0w̄
′
0) = 4π

∫
dρρw̄′

Iw̄
′
0σ̄rr,0.

(92c)

Both imperfection modifications have a transparent phys-
ical interpretation. The strength of the imperfection force
(p/pc)ĀI is proportional to the pressure and the amplitude
of the imperfection displacement but also depends on the
“overlap area” of the imperfection field w̄i(ρ) and the in-
dentation mode w̄0 for p = pc and F̄ = 0 centered at the
pole. Imperfections localized away from the pole will greatly
reduce the imperfection force because w̄′

I hardly overlaps with
the indentation mode w̄′

0. The imperfection contribution k̄I to
the linear stiffness is the overlap area weighted by the radial
stress σrr,0 profile at p = pc.

The buckling bifurcation is now governed by the pres-
ence of the additional z-independent imperfection force in
the force-displacement relation, which acts analogously to a
preindentation force F̄pre = (p/pc)ĀI . For the imperfections
with shape (91), we can explicitly evaluate ĀI in Eq. (92b) as

ĀI = 2πδρ2
I

[
1 −

√
π

2
ρI e

−ρ2
I /8I1/2

(
ρ2

I

8

)]
, (93)

where Iν (x) is the modified Bessel function. This reveals that,
for fixed indentation depth δ, the overlap area ĀI and thus the
imperfection force F̄pre = (p/pc)ĀI become maximal for an
imperfection size ρI ≈ 2, i.e., if the imperfection has twice
the size of the elastic length lel = (hR0)1/2k−1 (see inset of
Fig. 15). We conclude that this imperfection size is most
effective in reducing the buckling threshold. This is confirmed
by our numerical data in Fig. 15.

The description by an effective preindentation force F̄pre =
(p/pc)ĀI also implies that the softening behavior of the shell

FIG. 15. Indentation as a function of the pressure for an imper-
fect shell with fixed imperfection depth δ = 0.5 as a function of the
imperfection size ρI = 1. The knockdown factor pc,δ/pc is maximal
for ρI ∼ 2. Inset: Overlap area AI as a function of ρI for δ = 0.5
according to Eq. (93) with a maximum at ρI = 2.
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close to the critical pressure pc,δ is universal and the in-
dentation difference z̄B,δ = z̄B − z̄sph from spherical to barrier
state and the energy barrier z̄B,δ = ĒB − Ēsph are governed
by the same exponents z̄B,δ ∝ p̄1/2 and ĒB,δ ∝ p̄3/2[p̄ ≡
(pc,δ − p)/pc] as for a preindenting point force F̄pre or as in
the absence of a preindenting point force.

We can use the results of the previous section with an effec-
tive preindenting force F̄pre = (p/pc)ĀI given by Eqs. (92b)
or (93) to describe the avoided bifurcation in the presence
of imperfections. This is quantitatively correct only for small
δ[δ < 0.1, see also inset in Fig. 14(a)] such that pc,δ remains
close to pc. Our numerical results show, however, that the
concept of an effective preindenting force F̄pre = (p/pc)ĀI ,
which is given by an “overlap area” area ĀI can be generalized
for larger δ and smaller p, if we replace the shallow shell
solution in the linear approximation w̄0 = limp→pc w̄lin/z̄ [see
Eqs. (56) and (54)] in Eq. (92b) by the general solution w̄/z̄.
The resulting effective preindenting force

F̄pre = (p/pc)ĀI = (p/pc)4π

∫
dρρw̄′

I

w̄′

z̄
(94)

can describe our numerical data for the modified bifurcation
behavior in Fig. 14 well for 0.05 � δ � 1.0 when we evaluate
ĀI using the mirror-inverted Pogorelov dimple with w̄(ρ) =
−z̄ + ρ2, which gives

ĀI = 8πδ
ρ2

I

z̄

[
1 − e−z̄/ρ2

I

(
z̄

ρ2
I

+ 1

)]
, (95)

and when we use z̄ = z̄B,0 as given by the interpolation
formula (74).

Also analogously to a preindenting force, effects of imper-
fections are negligible for the deeply indented barrier states
in the Pogorelov limit z̄B � 1 and p � pc, where elastic and
pressure terms dominate the force-indentation relation (51).
The indentation difference from spherical to barrier state
z̄B,δ ≈ z̄B and the barrier energy ĒB,δ ≈ ĒB approach the
Pogorelov asymptotics (33a) and (33e) in the Pogorelov limit
for p/pc � 1/F 1/2

pre with the effective F̄pre from Eq. (94),
which is also seen in the numerical data in Fig. 14.

XIII. DISCUSSION AND CONCLUSION

We characterized the buckling bifurcation of closed spher-
ical shells in the framework of continuum elastic theory
under the combined action of pressure and point forces.
Spherical shells have numerous realizations on the micro- and
macroscale to which our theory applies.

Typical artificial micrometer-sized capsules have shell
thicknesses of h ∼ 10 nm and are made from soft materials
with bulk Young moduli E ∼ 0.1 GPa. This results in 2D
Young’s moduli Y = Eh ∼ 1 N/m and bending moduli κ ∼
Eh3 ∼ 10−16 Nm ∼ 2 × 104kBT , in agreement with elastom-
etry measurements [53]. For R0 = 10 μm, typical Föppl–von
Kármán numbers (2) are γ ∼ 106–107.

Related but distinct systems are red blood cells, viruses,
and biological cells. Red blood cells and viruses also have
stretching, shear, and bending elasticity featuring elastic mod-
uli similar to artificial spherical microcapsules. Red blood
cells are also micrometer-sized with a somewhat smaller
shear modulus μ ∼ 10−5 N/m and bending moduli κ ∼

10−16 Nm [27,28]. One important difference from artificial
microcapsules is the local inextensibility of the lipid bilayer
membrane of the red blood cell, which enforces a local area
constraint such that lipid membranes and red blood cells are
even less extensible than shells [27]. Furthermore, there are
differences in the rest shape. The buckling of spherical shells
is governed by their spherical rest shape, which has mini-
mal area at given volume. Thus, any deformation stretches
the shell, which leaves the mirror-inverted Pogorelov dimple
as preferred buckled shape under pressure. Red blood cells
have a fixed volume V0 and fixed area A0 combining to a
reduced volume vRBC = V0/(4π/3)(A0/4π )3/2 ∼ 0.6 and an
oblate spheroidal rest shape under physiological conditions,
while the reduced volume of a sphere reaches the maximal
value vsph = 1. Under point-force indentation, the reduced
volume of a spherical shell only reduces to v = 1 − O(γ −1)
up to the barrier. The additional area that is available in a
nonspheroidal rest shape with vRBC < 1 contributes to the
rich deformation behavior of red blood cells [27–30]. Another
crucial difference is the role of spontaneous curvature (or
the conjugate integrated mean curvature or area difference)
as control parameter. For red blood cells, area difference is
an important control parameters of shape sequences [28–30],
whereas spherical shells are treated with a fixed spontaneous
curvature given by the spherical rest shape (only recently,
Pezulla et al. started to address the role of spontaneous
curvature in buckling of spherical shells [64]). Viruses range
in size from 15 to 500 nm and have elastic moduli Y = Eh ∼
0.1–1 N/m and bending moduli κ ∼ Eh3 ∼ 5 × 10−19 to 5 ×
10−15 Nm [65], similar to artificial microcapsules. Virsues
are, however, crystalline spherical shells consisting of discrete
protein building blocks. On a sphere, the crystal structure
must contain topologically unavoidable triangulation defects.
This results in faceted equilibrium shapes of large viruses
with Föppl–von Kármán numbers γ > 150, while only small
viruses maintain a spherical equilibrium shape [31]. There-
fore, our results regarding, for example, the linear stiffness k
apply only to small viruses [65].

For pressurized spherical shells, we showed that nonlinear
shallow shell theory can quantify many aspects of the energy
barrier, which has to be overcome if buckling is triggered
by “poking” with a point force F while the pressure is still
subcritical, i.e., below the classical buckling pressure pc.
In particular, we could derive the exact asymptotics of the
energy barrier properties (including the numerical prefactors)
in two relevant limiting regimes, namely in the Pogorelov
limit at small pressures p � pc, where the indentation at the
transition state is much deeper than shell thickness, zB � h,
and in the opposite limit for pressures very close to pc,
where the indentation at the transition state is shallow, zB �
h, and develops oscillations. We developed a very accurate
numerical approach, which is based on the closed analytical
expression (12) for the energy barrier height and allows us
to trace the energy barrier height by numerical continuation
techniques. The numerical study reveals that there are only
these two regimes for all barrier properties, such as the
barrier energy EB, the indentation depth zB, the indentation
volume V B, and the indentation width ρB, with a clear
crossover if the indentation zB ∼ h or z̄B ∼ 1 in dimensionless
units (6).
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Using systematic expansions of the nonlinear shallow shell
equations about the Pogorelov mirror-inverted dimple for
p/pc � 1 and the linear response state for (1 − p/pc) � 1,
we obtained a complete analytical characterization of the
energy barrier in both limits; see Eqs. (33) for the Pogorelov
limit and Eqs. (53) for pressures close to pc. The analytical
results agree with our numerical shallow shell data over
several decades of control parameters p/pc or 1 − p/pc,
respectively (see Figs. 5 and 7) and allow us to formulate
quantitatively correct interpolation formulas for the barrier
energy ĒB and the corresponding indentation z̄B [Eqs. (73)
and (74), respectively], which incorporate all analytical
constraints.

Reverting the nondimensionalization (6) gives EB =
Y R2

0γ
−3/22π fp(p/pc), and we can estimate values for

the energy barrier in applications. The typical barrier
energy scale is EB ∝ Y R2

0γ
−3/2 = (κ3/Y R2

0)1/2 = [12(1 −
ν2)]−3/2EhR2

0(h/R0)3 with a pressure-dependent numerical
prefactor 2π fp(p/pc), which is given by the interpolating
function (73). For p = pc/2 at half the buckling pressure,
2π fp(1/2) � 18. For a typical artificial thin microscale cap-
sule with R0 = 10 μm, h = 10 nm made from a soft mate-
rial with E = 0.1 GPa with ν = 1/2, this gives an energy
barrier EB ∼ 17kBT at room temperature or EB/Uc = 2.4 ×
10−4, where Uc = 1

2 pcVc = 16π (1 − ν)κ is the elastic en-
ergy stored in the spherical shape just before it buckles.
These estimates demonstrate that the buckling energy bar-
rier is rather small: It is comparable to the thermal energy
and much smaller than the total elastic energy stored in
the capsule. Therefore, capsules become very susceptible to
thermally induced buckling [9,12], small point forces, or
imperfection effects already at moderate compressive pres-
sures. The typical normal indentation at the barrier is zB ∝
R0γ

−1/2 = h/[12(1 − ν2)]1/2, i.e., the shell thickness. The
pressure-dependent numerical prefactor gp(p) is given by the
interpolation function (74) with gp(1/2) � 1.7 at p = pc/2.
This demonstrates that only small indentations have to be
achieved to overcome the energy barrier.

We also obtain a complete picture of the buckling energy
landscapes (34) and (52) in both regimes, i.e., the total in-
dentation energy Ēind as a function of the indentation z̄, from
which also the force-displacement curves can be calculated
in both regimes. In the Pogorelov limit, we could show the
equivalence of our systematic expansion of the nonlinear
shallow shell equations about the Pogorelov mirror-inverted
dimple to a boundary layer approach by Evkin et al. [21]
and establish the connection to and generalize recent work
of Gomez et al. [19] on the p = 0 case. While Gomez et al.
addressed the case F > 0 and p = 0, our analytical calcula-
tion focused on the barrier state, where F = 0, for arbitrary
0 � p � pc. We could draw conclusions for the general case
by showing that both results are consistent if the elastic part of
the indentation energy is independent of the pressure. Future
work should try to develop a systematic expansion covering
the full behavior for F > 0 and 0 � p � pc.

The regime z̄B � 1 for p close to pc is particularly in-
teresting as it characterizes the “critical properties” if the
buckling instability is approached from below. In this regime
close to pc, we find a softening of the spherical shell, which
is characterized by three critical exponents: (i) the stiffness

k for the linear response to point forces vanishes ∝ (1 −
p/pc)1/2; (ii) the buckling energy barrier maximum vanishes
∝ (1 − p/pc)3/2; and (iii) the shell indentation at the energy
barrier maximum vanishes ∝ (1 − p/pc)1/2. These results are
shown analytically and agree with our numerical shallow
shell data. They extend and correct previous findings in
Ref. [9], which were based on less accurate SURFACE EVOLVER

simulations.
The linear stiffness k with respect to a point force is

experimentally accessible in mechanical compression tests
such as plate compression [49,50] or compression by mi-
croscopy tips [50,51] because all of these compression devices
effectively act as point forces in the initial regime. Therefore,
our result (21) for the softening of the shell can be directly
tested if such compression tests are combined with external
pressure p. For microcapsules in liquids external pressure can
be generated as osmotic pressure [17], and for macroscopic
capsules as mechanical air or liquid pressure. For compressive
pressure p = pc/2 at half the buckling pressure, Eq. (21)
predicts that the stiffness reduces to only 64% of its pressure-
free value k = 8Y γ −1/2. Measurements of the linearized stiff-
ness at two different pressures can also be used to infer two
unknown quantities, for example, the shell’s Young’s modulus
and capsule pressure via Eq. (21) and thus determine elastic
properties of the shell. While the linear stiffness increases for
pressurized shells [52], it decreases for shells under compres-
sive pressures. In Ref. [55], it has been shown that a positive
interfacial tension also acts as a stretching pressure and gives
rise to linear stiffening. Softening can therefore also be in-
duced by a negative interfacial tension. This shows that active
expansion or stretching tensions generated in biological cells
by molecular motors in the cell cortex, which will give rise
to negative interfacial tension in the cortex, will effectively
soften the cell.

Knowledge of the buckling energy landscape also enables
us to calculate the Maxwell pressure pc1 ∼ pcγ

−1/4 and the
critical unbuckling pressure pcu ∼ 3pc1/4 from shallow shell
theory. The buckling energy landscape also suggests that soft
spots, which are small compared to the elastic length lel =
(R0h)1/2 will immediately unbuckle for p smaller than pc and
thus exhibit no hysteresis in buckling and unbuckling.

Our results shed light on the nature of the buckling bifurca-
tion as schematically shown in Fig. 12. The bifurcation at p =
pc is a subcritical bifurcation which has a fixed point structure
similar to a subcritical pitchfork bifurcation. The barrier states
are a subcritical branch of unstable stationary points, which
appear together with the buckled snap-through state for p >

pcu in a type of saddle-node or fold bifurcation. The snap-
through state becomes the only minimum after the bifurcation
at p = pc. Within the pressure window pcu < p < pc, there
is bistability between buckled and unbuckled solutions with
the barrier state separating these two stable branches resulting
in hysteresis. Upon approaching the instability from p < pc,
the softening of the shell with vanishing linear stiffness and
energy barrier can give rise to important dynamical conse-
quences such as a “critical slowing down” of the buckling
dynamics [62]. A complete theory of the buckling dynamics
of a shell close to pc remains to be developed.

This bifurcation behavior is modified if a preindenting
point force Fpre is applied or in the presence of localized
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axisymmetric imperfections of indentation depth δ and size rI .
Both the numerical shallow shell analysis and the analytical
approach could be extended to these situations. Interestingly, a
localized preindentation imperfection’s effect on the buckling
instability is very similar to that of a preindenting point force,
as can be immediately recognized by comparing Figs. 13
and 14. For both cases, the buckling bifurcation becomes an
avoided or perturbed bifurcation at a reduced critical pressure
pc,F < pc or pc,δ < pc. Below this critical pressure, two sta-
tionary states emerge in a saddle-node bifurcation, namely
a stable quasispherical state and an unstable barrier state.
Interestingly, the softening behavior sketched above with (ii)
the buckling energy barrier between quasispherical and barrier
state vanishing as ĒB ∝ p̄3/2 and (iii) the shell indentation
difference between quasispherical and barrier state vanishing
δz̄B ∝ p̄1/2 remains universally valid both in the presence
of a preindenting force and imperfections. This also suggests
that (i) remains valid, and the linear stiffness vanishes as
k ∝ ĒB/δz̄2

B ∝ p̄1/2.
We were able to make the equivalence between preindent-

ing point force and imperfections quantitative with Eq. (94)
and found that imperfections effectively act as a point force
proportional to the pressure p and an “overlap area” AI ,
which depends on the shape of the imperfection wI (r) and
the indentation w(r). This allowed us to conclude that there
exists an “optimal” size for an imperfection of rI = 2lel, where
it maximizes the knockdown factor for the buckling pressure.
The quantitative prediction (94) may be useful in designing
spherical shells with specific buckling thresholds.

APPENDIX A: DERIVATION OF TOTAL ENERGY
DIFFERENCE

The difference in total energy Etot = Es + Eb +
pV (i.e., the sum of stretching and bending energy and
mechanical work by pressure) between the indented barrier
state (F = 0) and the precompressed unindented spherical
state (with the same pressure but z̄ = 0) is given by the simple,
explicit formula (12)

Ētot = ĒB = −1

4

∫ ∞

0
dρψ̄ (w̄′)2, (A1)

where ψ̄ and w̄ are solutions of the shallow shell Eqs. (7)
and (8) in the barrier state with F̄ = 0.

More generally, for an arbitrary indented state with a point
force F and a corresponding indentation z, the total energy
difference Etot,F = Es + Eb + pV − Fz between the
indented state and the precompressed unindented spherical
state (with the same pressure and z = 0) is given by

Ētot,F = −1

4

∫ ∞

0
dρψ̄ (w̄′)2 − F̄

4π
z̄ − 2(1 + ν)

p

pc

F̄

2π
,

(A2)

where ψ̄ and w̄ are solutions of the shallow shell Eqs. (7)
and (8) for indentation z̄ = −w̄(0) and corresponding point
force F̄ .

In order to derive these formulas, we start with the di-
mensionless elastic energy, i.e., stretching and bending energy

of an axisymmetric state with stress function ψ̄ and normal
displacement w̄ in shallow shell theory [see also Eq. (B1)
below] [16,46],

Eel = Es + Eb

= 1

2

∫
dρρ

[
(ψ̄ ′ + ψ̄

ρ
)2 − 2(1 + ν)ψ̄ ′ ψ̄

ρ

]

+ 1

2

∫
dρρ

[(
w̄′′ + w̄′

ρ

)2

− 2(1 − ν)w̄′ w̄
ρ

]
.

(A3)

The stretching energy difference Es is the difference be-
tween the stretching energy due to the total stress function
ψ + ψ0 and the stretching energy due to the prestress ψ0 =
−pR0r/2 [or ψ̄0(ρ) = −2ρp/pc],

Ēs = 1

2

∫
dρρ

[(
(ψ̄0 + ψ )′ + ψ̄0 + ψ

ρ

)2

− 2(1 + ν)(ψ̄0 + ψ )′
ψ̄0 + ψ

ρ

−
(

ψ̄ ′
0 + ψ̄0

ρ

)2

+ 2(1 + ν)ψ̄ ′
0
ψ̄0

ρ

]

= 1

2

∫
dρρ

[(
ψ̄ ′ + ψ̄

ρ

)2
]

+ 2(1 − ν)
F̄

2π

p

pc
,

(A4)

where we used ψ̄ = 0 for ρ = 0 and ρ = ∞ and the asymp-
totics (9). The last term vanishes at the barrier state, where
F̄ = 0. For the bending energy difference, we find (note that
w was already defined as the normal displacement relative to
the precompressed state)

Ēb = 1

2

∫
dρρ

[(
w̄′′ + w̄′

ρ

)2
]
, (A5)

where we used w̄′ = 0 for ρ = 0 and ρ = ∞. The dimension-
less mechanical work is

pV = 4
p

pc

∫
dρρw̄ = 2

π

p

pc
V (A6)

(again, note that w was defined as the normal displacement
relative to the precompressed state).

Using partial integration [with w̄(∞) = 0 and w̄′(0) = 0],
the relation (10), and

∫
dρw̄′ = −w̄(0) = z̄, we can rewrite

Ēb as

Ēb = 1

2

∫
dρ

[
ρψ̄w̄′ − ψ̄ (w̄′)2 + 2

p

pc
ρw̄′

]
+ F̄

2π

1

2
z̄.

With Eq. (11), we obtain

Ēb = −pV + 1

2

∫
dρρψ̄w̄′

(
1 − w̄′

ρ

)

+ F̄

2π

(
−4

p

pc
+ 1

2
z̄

)
.
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This results in a total energy difference

Ētot,F = Ēs + Ēb + pV − F̄

2π
z̄

= 1

2

∫
dρρ

[(
ψ̄ ′ + ψ̄

ρ

)2

+ ψ̄w̄′
(

1 − w̄′

ρ

)]

+ F̄

2π

(
2(1 − ν)

p

pc
− 4

p

pc
+ 1

2
z̄ − z̄

)

= −1

4

∫ ∞

0
dρψ̄ (w̄′)2 − F̄

4π
z̄ − 2(1 + ν)

p

pc

F̄

2π
,

where we used the compatibility condition (8). This is
Eq. (A2) and specializes to Eq. (A1) at the barrier where
F̄ = 0.

A further generalization to shells containing imperfections
is given in Appendix B.

APPENDIX B: NONLINEAR SHALLOW SHELL
EQUATIONS WITH IMPERFECTIONS

1. Derivation of shallow shell equations

We follow Refs. [10,13,15,63] and consider imperfections
in form of a normal axisymmetric displacement field wI ,
which is already present in the strain-free state of the shell.
With a displacement field u = uex + vey + wez, where x
and y are Cartesian directions in the two-dimensional ref-
erence plane over which shallow shell configurations are
parametrized and ez is the outward-pointing normal, the in-
plane strain tensor in the presence of the imperfection field is
given by ui j = ui j (w + wI ) − ui j (wI ), resulting in

uxx = ∂xu + 1

2
(∂xw)2 + w

R0
+ ∂xw∂xwI ,

uyy = ∂yv + 1

2
(∂yw)2 + w

R0
+ ∂yw∂ywI ,

uxy = 1
2 (∂yu + ∂xv + ∂xw∂yw + ∂xw∂ywI + ∂xwI∂yw).

These modified strains are used in the linear Hookean stress-
strain relation

σxx = Y

1 − ν2
(uxx + νuyy),

σyy = Y

1 − ν2
(uyy + νuxx ),

σxy = Y

1 − ν
uxy,

which is unaffected by imperfections. The changes in the
curvature tensor ki j = ki j (w + wI ) − ki j (wI ) due to normal
displacement are independent of wI ,

ki j = ∂i∂ jw,

in linear order. Imperfections thus only affect the in-plane
strain tensor ui j via the nonlinear term in the normal displace-
ment w.

Also, in the presence of imperfections, the Hookean elas-
tic energy is given by the sum of stretching and bending

energies:

Eel =
∫

dxdy(es + eb),

es = Y

2(1 − ν2)

[
(uxx + uyy)2 − 2(1 − ν)

(
uxxuyy − u2

xy

)]
,

eB = κ

2

[(
∂2

x w + ∂2
y w

) − 2(1 − ν)
(
∂2

x w∂2
y w − (∂x∂yw)2

)]
.

(B1)

Variation with respect to u and v gives

∂xσxx + ∂yσxy = 0, ∂yσyy + ∂xσxy = 0,

which is automatically satisfied by the introduction of the Airy
stress function

σxx = −∂2
y �, σyy = −∂2

x �, σxy = ∂x∂y�. (B2)

These relations are unchanged in the presence of the imper-
fection field wI .

The first nonlinear shallow shell equation [cf. Eq. (3)] for
� and w is obtained from extremizing Eel with respect to w

(and expressing stresses by the Airy stress function �) to get
the elastic force in normal direction,

κ∇4w − 1

R0
∇2� + [�,w + wI ] = −p − F

2π

δ(r)

r
, (B3)

where [ f , g] ≡ ∂2
x f ∂2

y g + ∂2
y f ∂2

x g − 2(∂x∂y f )(∂x∂yg).

By eliminating the displacement fields u and v from the
stress-strain relation we obtain the additional compatibility
condition [cf. Eq. (4)]. In the presence of imperfections we
obtain

− 1

Y
∇4� = ∂2

y uxx + ∂2
x uyy − 2∂x∂yuxy

= 1

R0
∇2w − 1

2
[w,w] − [w,wI ]. (B4)

Both Eqs. (B3) and (B3) can be brought into a simpler
form for axisymmetric shapes if coordinates r, φ are used.
For axisymmetric functions w, wI , � that only depend on r,
we can use ∇2... = ( 1

r ∂r + ∂2
r )... = 1

r ∂rr∂r ... and

[ f , g] = 1

r
∂r (∂r f ∂rg).

If we also use the derivative of the stress function ψ = −∂r�

(with σφφ = ψ ′ and σrr = ψ/r) and integrate Eq. (B4) once,
we find

κ∇4w + 1

R0

1

r
∂r (rψ ) − 1

r
∂r (ψ∂r (w + wI ))

= −p − F

2π

δ(r)

r
, (B5)

1

Y
r∂r

[
1

r
∂r (rψ )

]
= r

R0
∂rw − 1

2
(∂rw)2 − (∂rw)(∂rwI ).

(B6)

These are Eqs. (87) and (88) in the main text, which gen-
eralize the nonlinear shell Eqs. (3) and (4) in the presence
of imperfections. As in Eq. (5), we can absorb the effect of
the pressure p in Eq. (B5) into a uniform precompression
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with w(r) = w0 < 0 and ψ (r) = ψ0(r) = −pR0r/2 (corre-
sponding to stresses σrr = σφφ = σ0 = −pR0/2) and consider
changes with respect to this prestress by substituting w(r) →
w0 + w(r) and ψ (r) → ψ0(r) + ψ (r). This gives

κ∇4w + 1

R0

1

r
∂r (rψ ) − σ0∇2(w + wI )

−1

r
∂r (ψ∂r (w + wI )) = − F

2π

δ(r)

r
(B7)

in the presence of imperfections. We note that, in the presence
of imperfections, a precompressed state with w(r) = w0 < 0
and ψ (r) = ψ0(r) = −pR0r/2 is no longer a stationary state
as it does not satisfy the force balance (B5). It is, however,
an admissible shell state which satisfies the compatibility
conditions (B6). Therefore, we can still consider all quantities
relative to this state as for an ideal shell.

Nondimensionalization proceeds as before using (6) and
we obtain

∇4
ρw̄ + 1

ρ
∂ρ (ρψ̄ ) + 2

p

pc
∇2

ρ (w̄ + w̄I )

− 1

ρ
∂ρ

(
ψ̄∂ρ (w̄ + w̄I )

) = − F̄

2π

δ(ρ)

ρ
, (B8)

ρ∂ρ

[
1

ρ
∂ρ (ρψ̄ )

]
= ρ∂ρw̄ − 1

2 (∂ρw̄)2 − (∂ρw̄)(∂ρw̄I ), (B9)

with ∇2
ρ... = 1

ρ
∂ρ (ρ∂ρ...). In this form, the shallow shell equa-

tions are solved numerically in the presence of imperfections
analogously to the ideal case.

We can also generalize the exact relations (10) and (11) for
the imperfect shell and find the relation (89) in the main text
and

− F̄

2π
=

∫ ∞

0
dρρw̄ +

∫ ∞

0
dρρ

[
1

4
(w̄′)2 + 1

2
w̄′w̄′

I

]
.

(B10)

2. Derivation of total energy difference

In the form (B8) and (B9), the shallow shell equations
are solved numerically analogously to the ideal case. One
numerical complication is the correct calculation of barrier
energies without the need to numerically integrate force-

indentation relations by a suitable generalization of the exact
result (A1) for the total energy difference between the barrier
state (F̄ = 0) and the precompressed unindented state (with
F̄ = 0 and w̄ = 0, but which is no longer a stationary state
in the presence of imperfections as discussed above) to the
imperfect situation:

Ētot,imp = −1

4

∫ ∞

0
dρψ̄ (w̄′)2 − p

pc

∫
dρρw̄′w̄′

I . (B11)

We note that the last term can be written as −[(p/pc)ĀI/4π ]z̄
with ĀI ≡ 4π

∫
dρρw̄′

I (w̄′/z̄), which is analogously defined
to the imperfection area occurring in the force-indentation
relation (92a). Then the imperfection force (p/pc)ĀI in
Eq. (B11) is analogous to the point force F̄ in the second term
in Eq. (A2), which also corroborates the use of an effective
preindenting force (94) in the presence of imperfections.

The derivation follows the same lines as in Appendix A
without the imperfection field. We consider the total energy
difference Etot = Es + Eb + pV and expressions (A4)
for the stretching energy Ēs, (A5) for the bending energy
Ēb, and (A6) for the mechanical work pV remain valid
also in the presence of imperfections (we consider the case
F̄ = 0 here).

Using partial integration and Eqs. (89) and (B10), we can
rewrite Ēb for F̄ = 0 as

Ēb = −pV + 1

2

∫
dρρψ̄w̄′

(
1 − w̄′

ρ

)

− p

pc

∫
dρρw̄′w̄′

I − 1

2

∫
dρψ̄w̄′w̄′

I .

Using (B9), this leads to the total energy difference (B11).

APPENDIX C: DIMENSIONLESS QUANTITIES

We provide a conversion table (Table I) for the different
dimensionless quantities used here [see Eq. (6)], by Gomez
et al. in Ref. [19], and by Hutchinson et al. in Refs. [4,7,10].

The shell thickness is called h. We define k ≡ [12(1 −
ν2)]1/4 and the Föppl–von Kármán number γ ≡ Y R2

0/κ =
(R0/h)2k4 [see Eq. (2)], and use the critical buckling pres-
sure pc = 4(Y κ )1/2/R2

0 = 4(Y h/R2
0)k−2 [see Eq. (1)]. Note

that in the shallow shell approximation the arc length s
used in Refs. [7,10] approaches the radial coordinate r. In
Refs. [7,10], C ≡ √

3/(1 − ν)
√

1 − ν2 is used.
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