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Abstract. We introduce an iterative solution scheme in order to calcu-
late stationary shapes of deformable elastic capsules which are steadily
moving through a viscous fluid at low Reynolds numbers. The itera-
tive solution scheme couples hydrodynamic boundary integral methods
and elastic shape equations to find the stationary axisymmetric shape
and the velocity of an elastic capsule moving in a viscous fluid gov-
erned by the Stokes equation. We use this approach to systematically
study dynamical shape transitions of capsules with Hookean stretch-
ing and bending energies and spherical resting shape sedimenting
under the influence of gravity or centrifugal forces. We find three types
of possible axisymmetric stationary shapes for sedimenting capsules
with fixed volume: a pseudospherical state, a pear-shaped state, and
buckled shapes. Capsule shapes are controlled by two dimensionless
parameters, the Föppl-von-Kármán number characterizing the elastic
properties and a Bond number characterizing the driving force. For
increasing gravitational force the spherical shape transforms into a
pear shape. For very large bending rigidity (very small Föppl-von-
Kármán number) this transition is discontinuous with shape hystere-
sis. The corresponding transition line terminates, however, in a critical
point, such that the discontinuous transition is not present at typical
Föppl-von-Kármán numbers of synthetic capsules. In an additional bi-
furcation, buckled shapes occur upon increasing the gravitational force.

1 Introduction

The motion of elastically deformable micron-sized objects though a viscous fluid
represents an important problem with various applications, for example, for elastic
microcapsules [1], red blood cells [2,3] or vesicles moving in capillaries, deforming in
shear flow, or sedimenting under gravity [4,5]. Another related system are droplets
moving in a viscous fluid [6,7]. Motion of these deformable objects can be caused by
external body forces, as in sedimentation under gravity or in a centrifuge, dragging
the object through a quiescent fluid, or, in the absence of driving forces, by placing the
object into a hydrodynamic flow. In the context of microswimmers, another possibil-
ity is self-propulsion of a soft microswimmer, for example, by fluid flows generated at
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its surface. On the micrometer scale, the hydrodynamic flows involved in the motion
of these objects feature low Reynolds numbers unless the particle velocities become
very high. Many elastic micron-sized objects, such as capsules, vesicles or red blood
cells, are easily deformable because elasticity only stems from a thin elastic shell (a
quasi-liquid lipid bilayer membrane that is supported by a weak spectrin cortex giv-
ing rise to a rather small elastic modulus in the order of tens of kBT ) surrounding a
liquid core.
The analytical description and the simulation are challenging problems as the

hydrodynamics of the fluid is coupled to the elastic deformation of the capsule or
vesicle. It is important to recognize that this coupling is mutual: On the one hand,
hydrodynamic forces deform a soft capsule, a vesicle, or a droplet. On the other hand,
the deformed capsule, vesicle or droplet changes the boundary conditions for the fluid
flow by changing the shape of the surface along which the fluid is subject to, for
example, a no-slip boundary condition. As a result of this interplay, the soft object
deforms and takes on characteristic shapes; eventually there are transitions between
different shapes, which could be triggered, for example, by changing the driving force
or the flow velocity. Such shape changes might have important consequences for ap-
plications or biological function, for example, if we consider red blood cells [2,3],
vesicles [8] or microcapsules moving in narrow capillaries [1,9]. Measurements of the
deformation of cells in shear flow in a capillary can also be employed to determine the
elastic properties of live cells in cytometry [10]. Vesicles and capsules can also exhibit
additional dynamic features such as tank-treading or tumbling, as it has been shown
experimentally and theoretically for vesicles or elastic capsules in shear flows [1,4,8].
Moreover, external forces also deform the swimming strokes of active microswimmers,
such as Chlamydomonas [11].
In the following, we investigate stationary shapes of elastic capsules sedimenting

in an otherwise quiescent incompressible fluid, either by gravity or by centrifugal1

force [12,13]. Possible shapes and the classification of the dynamic transitions be-
tween them are only poorly understood for sedimenting capsules. An elastic capsule
is a closed elastic shell, i.e., a two-dimensional solid, which can support in-plane shear
stresses and inhomogeneous stretching stresses with respect to their equilibrium con-
figuration. This is different from a fluid vesicle, which is governed by bending elasticity
only and is bounded by a two-dimensional fluid surface (lipid membrane) with vanish-
ing shear modulus [14]. Whereas the resting shape of vesicles is determined by a few
global parameters such as fixed area and spontaneous curvature [14], elastic capsules
can be produced with arbitrary resting shapes, in principle. Sedimentation of vesicles
has already been studied for vesicles, both numerically [15–17] and experimentally [5].
Red blood cells constitute a special type of soft elastic capsule, which is unstretchable
and has a non-spherical biconcave resting shape. Sedimentation has also been studied
for red blood cells both experimentally [18,19] and by MPCD simulations [20].
We focus on elastic microcapsules with a spherical resting shape. We introduce

a method to efficiently calculate axisymmetric stationary capsules shapes, which
iterates between a boundary integral method to solve the viscous flow problem for
given capsule shape and capsule shape equations to calculate the capsule shape in a
given fluid velocity field. The method does not capture the dynamic evolution of the
capsule shape but converges yielding a stationary shape. As an application of this
method, we study elastic microcapsules with spherical resting shape sedimenting in
a low Reynolds number fluid.

1 As this term could be misleading, we clarify that any discussion of centrifugal effects
within this paper does not refer to a spinning capsule but to a capsule translating within a
spinning centrifuge.
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2 Prologue – Cauchy momentum equation

The unifying concept of both the deformation of an elastic capsule and the motion of
a viscous fluid is continuum mechanics. Therefore, we briefly derive the equation of
motion in continua.
The fundamental equation in point mechanics is Newton’s second law

dP

dt
= F ,

that is the change of the momentum P is given by the net force F acting on a
mass point. In order to formulate the equivalent equation for a continuous medium,
we consider a material element of volume dV with mass ρdV moving with velocity
u(r, t). We stress the fact that u is a field variable: there is a velocity for every point
r in the total volume, Ω, and every time t considered. For the change of momentum
of a specific volume element that moves in time, we have to track its motion and
compute the total time derivative of u(r(t), t) along the path of its motion [21], that
is with ∂tr(t) = u, which is called the material derivative

D(ρu)

Dt
≡ ∂(ρu)

∂t
+ u ·∇(ρu).

In general, there can be two types of force2 acting on the volume element, forces f i
acting via the surface of the element due to the interaction with neighbouring material
elements and body forces b acting on the volume, and we can adapt Newton’s law to

∫
Ω

dV
D(ρu)

Dt
=

∫
∂Ω

dAf i +

∫
Ω

dV b =

∫
Ω

dV [∇ · σ + b] .

We wrote f i = σ ·n with the surface normal n, where we call σ the stress tensor, and
applied Stokes’ theorem in the last equality. Because the equality holds for arbitrary
Ω, the integrands are equal, which yields the Cauchy momentum equation

D(ρu)

Dt
=∇ · σ + b. (1)

In the following, we consider this equation both for volume elements of fluid and
for volume elements of the capsule membrane. For the fluid and for the capsule
material there are different constitutive relations, which describe the relation between
the stresses σ in the medium and the deformation state or velocity field3 (stress-strain-
relation). The left-hand side of this equation will be treated as zero both for capsule
and fluid, as we consider a stationary capsule shape (u = 0) and a stationary (or
solenoid) flow of an incompressible fluid at low Reynolds number. In this stationary
case, we obtain stress-balance equations for the fluid and the capsule shape. Both
equations are coupled: The fluid stresses enter the stress-balance for the capsule.
Moreover, the fluid velocity field is required to be continuous at the boundary between
capsule and fluid resulting in a no-slip boundary condition at the capsule surface.

2 In the following, we use the more compact term force instead of force density or stress
(force per area).
3 More generally, this relation also depends on the (material) time derivatives of the
stresses and strains. We search steadily translating solutions, so that these contributions
vanish.
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3 Equilibrium shape of a thin shell

For the parametrisation of the capsule shape, we directly exploit the axisymmetry
by working in cylindrical coordinates. The coordinate along the axis of symmetry is
called z, the distance to this axis r and the polar angle φ. The shell is a surface of
revolution whose contour is given by the generatrix (r(s), z(s)) which is parametrised
in arc-length s (starting at the lower apex with s = 0 and ending at the upper apex
with s = L). The unit tangent vector es to the generatrix at (r(s), z(s)) defines an
angle ψ via es = (cosψ, sinψ), es = sinψez +cosψer, which can be used to quantify
the orientation of a patch of the capsule relative to the axis of symmetry.
The shape of a thin axisymmetric shell of thickness H is the solution of shape

equations that can be derived from non-linear shell theory [22,23]. A known reference
shape (r0(s0), z0(s0)) (a subscript zero refers to a quantity of the reference shape;
s0 ∈ [0, L0] is the arc length of the reference shape) is deformed by hydrodynamic
forces exerted by the viscous flow. Each point (r0(s0), z0(s0)) is mapped onto a point
(r(s0), z(s0)) in the deformed configuration, which induces meridional and circumfer-
ential stretches, λs = ds/ds0 and λφ = r/r0, respectively. The arc length element ds
of the deformed configuration is ds2 = (r′(s0)2 + z′(s0)2)ds20.
The shape of the deformed axisymmetric shell is given by the solution of a system

of first-order differential equations, henceforth referred to as the shape equations [24].
These describe stress-balance, i.e., the balance forces and torques or tensions and
bending moments acting on a patch of the shell, as shown in Fig. 1. We postpone
the derivation of the shape equation from the Cauchy momentum equation to the
following Sect. 3.1 in order to introduce the geometry and relevant quantities of the
problem. Using the notation of Refs. [24,25] the shape equations can be written as

s′(s0) = λs (2a)

r′(s0) = λs cosψ (2b)

z′(s0) = λs sinψ (2c)

ψ′(s0) = λsκs (2d)

τ ′s(s0) = λs
(
τφ − τs
r

cosψ + κsq + ps

)
(2e)

m′s(s0) = λs
(
mφ −ms

r
cosψ − q + l

)
(2f)

q′(s0) = λs
(
−κsτs − κφτφ − q

r
cosψ + p

)
. (2g)

The additional quantities appearing in these shape equations are defined as fol-
lows: The angle ψ is the slope angle between the tangent plane to the deformed shape
and the r-axis, κφ is the circumferential curvature, κs the meridional curvature; τs
and τφ are the meridional and circumferential stresses, respectively; ms and mφ are
bending moments; q is the transverse shear stress, p the total normal pressure, ps the
shear pressure, and l the external stress couple. The first equation defines λs, the next
three equations follow from geometry, and the last three ones express (tangential and
normal) force and torque equilibrium. All quantities appearing on the right hand side
of the shape equations have to be expressed in terms of the 7 quantities on the left
hand side in order to close the equations.
The curvatures and circumferential strains are known from geometrical relations

κφ =
sinψ
r
, κs =

dψ
ds and λφ =

r
r0
. The elastic tensions τs and τφ and bending moments

ms and mφ, which define the elastic stresses in the shell material, are related to the
strains and curvatures by the material-specific constitutive relations, which relate
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Fig. 1. Left: Tensions and moments acting on a shell element and the local tripod used in
the derivation of the shape equations below. Right: The overall geometry including the two
fundamental curvatures and the tractions.

the stress tensor in a material to the strain tensor and involve the elastic constants of
the material. Such constitutive relations often derive from an elastic energy functional
(hyperelasticity), such that the stress tensor components are the first variation of the
energy functional with respect to the corresponding strain tensor components [26].
We will derive the general relation between stress tensor and elastic tensions and
bending moments of the shell in the following section.
Below, we will focus on Hookean capsules, where the constitutive relations derive

from an elastic energy which is quadratic in stretching strains and bending strains.
This leads to [22,24]

τs =
Y2D

1− ν22D
1

λφ
[(λs − 1) + ν2D(λφ − 1)]

ms = EB
1

λφ
[(λsκs − κs0) + ν2D(λφκφ − κφ0)]

where Y2D is the surface Young modulus (which, for isotropic shells, is related to the
bulk Young modulus by Y2D = Y3DH), ν2D is the surface Poisson ratio, and EB is
the bending modulus of the shell (EB ∝ Y2DH2 for isotropic shells); κs0 and κφ0 are
the curvatures of the reference shape. The constitutive relations for τφ and mφ are
obtained by interchanging all indices s and φ.
The normal pressure

p = p0 + pn + pext, (3)

the shear pressure ps, and the stress couple
4 l = psH/2 are given externally by

hydrodynamic and external forces5. The static pressure p0 is the pressure difference
between the interior and exterior liquids. For the case of a capsule that is filled with
an incompressible fluid its value is fixed by demanding a fixed enclosed volume.
The pressures pn and ps are the normal and tangential forces per area which are

generated by the surrounding fluid. For the latter it would usually be more natural to
express stresses in terms of their radial and axial contributions. The hydrodynamic

4 The fluid inside the capsule is assumed to be at rest.
5 Here, we limit ourselves to normally acting external forces, such as the case of gravity
discussed below.
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surface traction vector6

pH = pnn− pses,
where n and es are the normal and tangent unit vectors to the generatrix, n =
− cosψez + sinψer (pointing out of the capsule) and es = sinψez + cosψer, equals
the hydrodynamic surface force density vector

f = fzez + frer,

which will be calculated below. Re-decomposing f into its normal and tangential
components pn and ps we find

pn = fr sinψ − fz cosψ and ps = −fr cosψ − fz sinψ.

3.1 Derivation of the shape equations

In the following, we present a compact derivation of the shape Eqs. (2e), (2f) and (2g)
describing force and torque balance. We refer the reader to the literature [22,23,25]
for more elaborate derivations. From the Cauchy momentum equation we gather that
the equilibrium is given by7 ∇·σ = 0. We will not use Cartesian coordinates here, but
curvilinear coordinates that are better suited to the capsule geometry. In the vicinity
of the capsule we can parametrise space by the set of coordinates n, s, φ and

r(n, s, φ) =

⎛
⎝ r(s) cosφr(s) sinφ

z(s)

⎞
⎠+ n

⎛
⎝ sinψ cosφsinψ sinφ
− cosψ

⎞
⎠ ,

which corresponds to a local tripod of orthogonal vectors8

ñ =

⎛
⎝sinψ cosφsinψ sinφ
− cosψ

⎞
⎠, s̃ = (1 + nψ′)

⎛
⎝cosψ cosφcosψ sinφ

sinψ

⎞
⎠ and φ̃ = (r + n sinψ)

⎛
⎝ sinφ− cosφ

0

⎞
⎠,

see Fig. 1. Using index notation with i, j, k ∈ {n, s, φ}, the tripod vectors can be
written as ĩ = ∂ir. We want to derive equations for the elasticity of a thin shell,
which we treat as an effectively two-dimensional surface. This is done by restricting
stresses to in-plane stresses and integrating over the normal direction (the n-direction,
n ∈ [−H/2,H/2] with H being the thickness). Thus, it is advantageous to define a
projector P = 1 − ññ that projects the stress onto the subspace of in-plane stresses.
We then have to compute the tensor derivative occurring in the in-plane stress-balance
equation ∇ · Pσ = 0 in these curvilinear coordinates. We can use the general result
(to be read with Einstein summation convention)

(∇ · A)k = ∂Aik
∂i
− AjkΓ jii − AijΓ jik

6 The subscript H indicates that this only incorporates the hydrodynamic contributions.
We do not consider cases with a static shear pressure but, as is apparent from Eq. (3), there
are static contributions to the normal pressure.
7 External forces are easily added and actually necessary for the existence of non-trivial
solutions.
8 ñ is a three-dimensional normal vector of the axisymmetric surface, whereas n is a
two-dimensional normal vector to the generatrix (r(s), z(s)).
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with i, j, k ∈ {n, s, φ} and the Christoffel symbols of the second kind defined by
∂ĩ
∂j
= Γ kij k̃. The Christoffel symbols of the second kind are symmetric in the lower

indices. For the non-vanishing symbols (at n = 0, i.e. on the surface, where we want
to evaluate the stress) we find

Γ sns = κs,Γ
φ
nφ = κφ,Γ

n
ss = −κs,Γφsφ =

cosψ

r
,Γnφφ = −r sinψ and Γ sφφ = −r cosψ.

Here, we made use of the geometrical relations ψ′ = κs and sinψ = rκφ. From the
given axisymmetry, we infer the following form of the projected stress tensor

Pσ =

⎛
⎝ 0 0 0
σsn σss 0
0 0 σφφ

⎞
⎠

and computing the divergence (at n = 0) finally yields (remember ∂sr = cosψ)

∇ · Pσ =
(
1

r

∂(rσsn)

∂s
− κsσss − σφφκφ

)
ñ+

(
1

r

∂(rσss)

∂s
+ κsσsn − σφφ cosψ

r

)
s̃.

If we integrate over the small thickness (
∫H/2
−H/2dn . . .) and introduce (the sign of q

might appear random and is such that the definition of q agrees with the literature)

∫ H/2

−H/2
dnσss = τs,

∫ H/2

−H/2
dnσφφ = τφ and

∫ H/2

−H/2
dnσsn = −q.

The in-plane stress-balance ∇ ·Pσ = 0 then establishes the shape Eqs. (2e) and (2g).
The third Eq. (2f) is obtained from considering the acting torque. A shell of finite

thickness is able to sustain finite interfacial bending moments m, which, in terms of
basic physics, means that there is an additional contribution to the torque balance.
Arguing along the same lines as we did for the Cauchy momentum equation but
starting from Newton’s second law for rotational motion stating that the application
of a torque M changes the angular momentum L,

dL

dt
=M ,

yields (in equilibrium)

0 =

∫
Ω

dV (r′ × b) +
∫
∂Ω

dA(r′ × σnA +m)

where r′ is the difference vector to the centre of mass of the patch. Now we introduce
the bending moment tensor (also couple stress tensor) M by m = MnA (nA is the
three-dimensional normal to the surface A) and the auxiliary tensor D by D · nA =
r′ × σ · nA; after once again applying the divergence theorem we find, in absence of
body forces, ∇ · (D+M) = 0. We are interested in the axisymmetric case nA = ñ
and (after projection to in-plane stresses) see that σñ = σsns̃. We consider a small

patch such that we can write r′ = ss̃ + nñ + φφ̃ and find after projection to in-
plane-torques and using that the internal bending moments act along the directions
of principal curvature, i.e.,

PM =

⎛
⎝0 0 0
0 Mss 0
0 0 Mφφ

⎞
⎠ ,
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for n = 0

0 =
1

r

∂rMss

∂s
+ σsn − cosψ

r
Mφφ

which gives Eq. (2f) after renaming

∫ H/2

−H/2
dnMss = ms and

∫ H/2

−H/2
dnMφφ = mφ.

3.2 Solution of the shape equations.

The boundary conditions for a shape that is closed and has no kinks at its poles are

r(0) = r(L0) = 0 (4a)

ψ(0) = π − ψ(L0) = 0, (4b)

and we can always choose9 z(0) = 0. If hydrodynamic drag and gravitational pull
cancel each other in a stationary state, there is no remaining point force at the poles
needed to ensure equilibrium and, thus,

q(0) = q(L0) = 0. (5)

The shape equations have (removable) singularities at both poles (due to terms of
r−1); therefore, a numerical solution has to start at both poles requiring 12 boundary
conditions (r, z, ψ, τ,m, q at both poles) out of which we know 7 (by Eqs. (4b) and
(5) and z(0) = 0). The 5 remaining parameters can be determined by a shooting
method requiring that the solutions starting at s0 = 0 and s0 = L0 have to match
continuously in the middle, which gives 6 matching conditions (r, z, ψ, τ,m, q). This
gives an over-determined non-linear set of equations which we solve iteratively using
linear approximations to the Jacobian of the sum of squared residuals. However, as
in the static case [25], the existence of a solution to the resulting system of linear
equations (the matching conditions) is ensured by the existence of a first integral (see
below) of the shape equation. In principle, this first integral could be used to cancel
out the matching condition for one parameter (e.g. q), such that the system is not
genuinely over-determined. We found the approach using an over-determined system
to be better numerically tractable, where we ultimately used a multiple shooting
method including several matching points between the poles.
Using these boundary conditions, it is straightforward to see that the shape equa-

tions do not allow for a solution whose shape is the reference shape, unless there are
no external loads (ps = p = l = 0).

3.3 First integral of the shape equations

We make the following Ansatz (cf. Eqs. (17), (22) in Ref. [25]) for a first integral of
the shape equations

U(s) = 2πr cosψq + 2πr sinψτs +X = const.

9 In the presence of gravity there is no translational symmetry along the axial direction,
but shifting the capsule as a whole just adds a constant to the hydrostatic pressure −gΔρz →
−gΔρ(z + z0) which is absorbed into the static pressure p0.
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We are also assuming that the pressure p and the shear pressure ps can be written
as functions of the arc length s only. The calculation is rather straightforward, we
differentiate and obtain

0 = U ′(s)

= 2π cos2 ψq − 2πr sinψκsq + 2πr cosψ(−κsτs − κφτφ − cosψq
r
+ p)

+2π cosψ sinψτs + 2πr cosψκsτs + 2πr sinψ(cosψ
τφ − τs
r

+ κsq + ps) +X
′

= 2πrp cosψ + 2πrps sinψ +X
′ = 0.

In the second to last step most terms cancel each other out. Thus, we arrive at an
ordinary differential equation for X, which we can integrate to find

X(s) = −2π
∫ s

0

ds̃ r(p cosψ + ps sinψ). (6)

Inspecting the behaviour at s = 0 we deduce U(0) = 0, which implies U(L) = 0 and,
according to (3.3), X(L) = 0. The physical interpretation of X(L) = 0 in (6) is that
the capsule has to be in global force balance. By symmetry there can be no net force
in radial direction, but the external forces can lead to net force in axial direction.
The quantity X contains the contribution to the net force in z-direction and thus a
shape with the desired features (namely q = 0 at the apexes) must have X(L) = 0
and, thus, be in global force balance.

4 Low Reynolds number hydrodynamics

We want to calculate the flow field of a viscous incompressible fluid around an
axisymmetric capsule of given fixed shape moving at a fixed velocity at low Reynolds
numbers. Calculation of this flow field is a prerequisite before we can address the joint
problem with a deformable capsule shape by an iterative scheme in the following sec-
tion. Therefore, in this section, the capsule can be viewed as a generic immersed body
of revolution B of fixed shape. For the calculation of the actual capsule shape and
for the determination of its sedimenting velocity in the following section, we will need
to calculate only the surface forces onto the capsule which are generated by the fluid
flow.

4.1 Stokes equation

We start with the fundamental notion that the mass of the fluid should be conserved
under its flow u giving rise to the continuity equation

∂ρ

∂t
= −∇ · (ρu)

with ρ being the local mass density. Furthermore, we only consider incompressible
fluids, thus, the density of a fluid volume element cannot change under its motion
due to the flow or

0 =
Dρ

Dt
=
∂ρ

∂t
+ u ·∇ρ.
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We combine these two equations and find with some help from vector calculus

∇ · u = 0,
which is commonly referred to as the continuity equation for an incompressible flow.
Using this equation in the Cauchy momentum equation, Eq. (1), for a stationary flow
with ∂tu = 0 gives

10

ρu ·∇u =∇ · σ. (7)

For further progress, we need the constitutive relation for the liquid. Demanding
Galilean invariance of σ, we see that σ can only depend on spatial derivatives of the
velocity and from conservation of angular momentum we know that σ is symmetric11.
We assume that there are no shear stresses in a quiescent fluid, that σ is isotropic,
and that stresses grow linear with the velocity, which allows us to write

σ = −p1 + μ (∇u+ (∇u)T ) (8)

or, in Cartesian coordinates, σij = −pδij +2μeij , with the pressure p, the viscosity μ
and the rate of deformation (or rate of strain) tensor for the flow velocity u

eij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
.

A liquid for which our assumptions hold is called a Newtonian fluid. The constitu-
tive relation together with Eq. (7) (stationary Cauchy momentum equation for an
incompressible fluid) give rise to the (stationary) Navier-Stokes equation. Rescaling
velocities, lengths and stresses by their respective typical scales u, L, μv/L (as inferred
from the constitutive relation) in Eq. (7) we obtain

Re ū · ∇̄ū = ∇̄ · σ̄
for the corresponding dimensionless quantities ū and σ̄ with the Reynolds number

Re =
ρuL

μ
.

We can neglect the so-called advective term on the left hand-side of our equation of
motion (the Cauchy momentum equation), if the Reynolds number is sufficiently low,
that is for small, slowly moving particles in a medium of high viscosity. All in all, in
the limit of small Reynolds numbers in a stationary fluid in the absence of external
body forces, the stress tensor σ is given by the stationary Stokes equation [27]

∇ · σ = 0. (9)

4.2 Lorentz’ reciprocal theorem

As a preliminary for the following, we derive a relation between two solutions of the
Stokes equation, commonly known as Lorentz’ reciprocal theorem12. Suppose we have
two velocity fields ũ, û with corresponding stress tensors σ̃, σ̂ both of which solve the

10 We omit external forces as they do not change any of the following in a non-trivial
manner.
11 This is sometimes referred to as Cauchy’s second law of motion (the first one being the
momentum equation).
12 This is an application of Green’s second identity of vector calculus.
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Stokes Eq. (9) with the constitutive relation (8). Now, for reasons that will become
apparent instantly, we look at the following expression

ũ · (∇ · σ̂) =∇ · (ũσ̂)− (σ̂∇) ũ = ∂

∂xj
(ũiσ̂ij)− μ

(
∂ûi

∂xj
+
∂ûj

∂xi

)
∂ũi

∂xj
(10)

where we inserted (8) and exploited that the pressure term vanishes due to the con-
tinuity equation. Subtracting (10) from its counterpart with tildes and hats inter-
changed we find that the terms involving the viscosity cancel out yielding

û · (∇ · σ̃)− ũ · (∇ · σ̂) =∇ · (ûσ̃)−∇ · (ũσ̂) .
Given that we assumed σ̃,σ̂ being solutions of Eq. (9) we know that the left-hand side
of the last equation is zero and we find the reciprocal identity

0 =∇ · (ûσ̃ − ũσ̂) . (11)

4.3 Solution of the Stokes equation (in an axisymmetric domain)

In the rest frame of the sedimenting axisymmetric capsule and with a no-slip condition
at the capsule surface ∂B, we are looking for axisymmetric solutions that have a given
flow velocity u∞ at infinity and vanishing velocity on the capsule boundary. In the
lab frame, −u∞ is the sedimenting velocity of the capsule in the stationary state.
Therefore, u∞ has to be determined by balancing the total gravitational pulling
force and the total hydrodynamic drag force on the capsule. For the calculation of
the flow field the deformability of the capsule is not relevant and the capsule can
be viewed as a general immersed body of revolution B. For the calculation of the
total hydrodynamic drag force and for the calculation of the capsule shape we need
the surface force field f = σ · n generated by the flow, where n is the local surface
normal (pointing out of the capsule). This is the only property of the fluid flow
entering the shape equations for the capsule and the equation for the sedimenting
velocity |u∞|. In the lab frame we are looking for solutions with vanishing pressure
and velocity at infinity. The Green’s function for these boundary condition is the
well-known Stokeslet13 (also called Oseen-Burgers tensor), that is the fluid velocity u
at y due to a point-force −F p at x

u(y) = − 1

8πμ
G(y − x) · F p

with the Stokeslet G whose elements are in Cartesian coordinates (x = |x|)

Gij(x) =
δij

x
+
xixj

x3
.

13 We are looking for solutions of the Stokes equation with an external point force,

0 =∇ · σ + F pδ(x) =∇p− μΔu+ F pδ(x).
Taking the divergence and using ∇ · u = 0 we obtain Δp = −F p ·∇δ(x). This equation is
solved (analogously to electrostatics) by

p = F p ·∇ 1

4πx
= −F p · x

4πx3
.

Using this in the Stokes equation with point force, one obtains μu = −F p(∇∇ − Δ1)h,
where h = −x/(8π) is the solution of ΔΔh = δ(x), i.e., Δh = −1/(4πx). This leads to the
Stokeslet (velocity-field due to a point force) and Stresslet (pressure due to a point-force).
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The corresponding stress tensor is given by

σij(y) =
1

8π
T(y − x) · F p

with the Stresslet T whose Cartesian elements are

Tijk(x) = −6xixjxk
x5

.

From the reciprocal theorem (11) we deduce (as F p is a constant) that any solution
of the Stokes equation has to satisfy

0 =
∂

∂yk
(Gij(y − x)σik(y)− μui(y)Tijk(y − x))

or, after integrating over a volume with surface ∂V by virtue of Stokes theorem,

∫∫
∂V

dA (Gij(y − x)σik(y)− μui(y)Tijk(y − x)) = 0.

For this equation to be valid the volume V must not contain the singularity at x.
A straightforward way to ensure this is to consider the volume enclosed by ∂B and
∂Bε(x), where the latter is the ball of infinitesimal size ε around x. Separating the
surface integral this leads to

∫∫
∂B

dA (Gij(y − x)σik(y)− μui(y)Tijk(y − x))

= −
∫∫

∂Bε(x)

dA (Gij(y − x)σik(y)− μui(y)Tijk(y − x)) .

In the limit ε → 0 we can simplify the right-hand side with z = y − x and dA =
ndA = ε−1zε2dΩ (Ω being the solid angle)
∫∫

∂Bε(y)

dA (Gij(y − x)σik(x)− μui(y)Tijk(y − x)) +O(ε)

=

∫∫
∂Bε(y)

dΩ zk

([
δij +

zizj

ε2

]
σik(x) + μui(x)

[
6
zizjzk

ε4

])
=

∫∫
∂Bε(y)

dΩ zk

(
6μui(x)

zizjzk

ε4

)

=
6μui(x)

ε2

∫∫
∂Bε(y)

dΩ (zizj) =
6μui(x)

ε2
2πε2δij

∫ 1
−1
d(cos θ) cos2 θ = 8πμuj(x)

and thus gather the boundary integral formula, which we express as a function of the
acting surface forces f = σ ·n including a constant velocity accounting for the centre
of mass motion of the capsule

uj(x)− u∞j (x) = −
1

8πμ

∫∫
∂B

dAGij(y − x)fi(y) +
∫∫

∂B

dA
1

8π
ui(y)Tijk(y − x).

The physical interpretation of this equation is that the flow field is, on the one hand,
due to point forces (first term, also called the single layer potential) and, on the
other hand, due to point sources and force dipoles (second term, also called the
double layer potential). The representation of a Stokes flow in terms of a single-layer
potential is possible, if there is no net flow through the surface of the capsule [28],
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∫
dA (u − u∞) · n = 0, which is the case for the no-slip boundary condition we are
interested in.
In the case of axisymmetry we can integrate over the polar angle and find the

general solution14 of the Stokes equation for an axisymmetric point force distribution,

uα(x)− u∞α (x) = −
1

8πμ

∫
C

ds(y)Mαβ(y,x)fβ(y). (12)

Here, Greek indices denote the components in cylindrical coordinates, i.e., α, β = r, z
(uφ = fφ = 0 for symmetry reasons). The integration in (12) runs along the path C
given by the generatrix, i.e., the cross section of the boundary ∂B, with arc length
s(x).
According to the no-slip condition this results in the equation

u∞α =
1

8πμ

∫
C

ds(y)Mαβ(y,x)fβ(y) (for x ∈ ∂B). (13)

To numerically solve the integral equation for the surface force f(xi) at a given
set of points {xi} (i = 1, . . . , N) one can employ a collocation method, the most
simple case of which is to choose a discretized representation of the function fβ(x)
and approximate the integral in (13) by the rectangle method (Riemann sum) lead-
ing to a system of linear equations. We note that there are (integrable) logarithmic
singularities in the diagonal components of M which are taken care of by choosing
the grid point of the Riemann sum different from the points {xi}.
We can restrict our computations to the bare minimum, i.e., the surface forces

needed for the calculation of the capsule shape but, thereby, have all necessary infor-
mation to reconstruct the whole velocity field in the surrounding liquid. The possi-
bility to limit the computation to the needed surface forces is one advantage of this
approach to the solution of the Stokes equation in comparison to other approaches
that rely on the velocities or the stream function in the whole domain [27,29].
We assumed a no-slip-condition, that is the velocity directly at the surface of the

immersed body vanishes in its resting frame. This is easily extended to the case of a
non-vanishing tangential slip velocity15 is possible, however, to extend this boundary
integral approach to incorporate a prescribed velocity field on the surface in the
resting frame of the capsule [28]. This will allow us to generalize the approach to
model active swimmers [30,31] whose active locomotion can be captured by means of
an effective flow field which is called the squirmer model [32,33].

5 Iterative solution of shape, flow and sedimenting velocity

We find a joint solution to the shape equations and the Stokes equation by solving
them separately and iteratively, as illustrated in the scheme in Fig. 2, to converge
to the desired solution: We assume a fixed axisymmetric shape and calculate the
resulting hydrodynamic forces on the capsule for this shape. Then, we use the resulting
hydrodynamic surface force density to calculate a new deformed shape. Using this new
shape we re-calculate the hydrodynamic surface forces and so on. We iterate until a
fixed point is reached. At the fixed point, our approach is self-consistent, i.e., the

14 The elements of the matrix kernel M can be expressed in terms of elliptic integrals, see
for example Ref. [28].
15 A normal velocity on the surface in the capsule’s resting frame would conflict with its
impenetrability and could also lead to a net flux of fluid through the capsule, which we
cannot incorporate using only the single-layer potential.
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Fig. 2. Iterative scheme for the solution to the problem of elastic capsules in Stokes flow
allowing for the separation of the joint problem into two simpler static problems. Details of
the iterative scheme are given the main text.

capsule shape from which hydrodynamic surface forces are calculated is identical to
the capsule shape that is obtained by integration of the shape equation under the
influence of exactly these hydrodynamic surface forces.
For each capsule shape during the iteration, we can determine its sedimenting

velocity u = |u∞| by requiring that the total hydrodynamic drag force equals the
total driving force. Because the Stokes equation is linear in the velocity, the force
equality is achieved by just rescaling the resulting surface drag forces accordingly
via changing the velocity parameter u. The velocity therefore plays a similar role as
a Lagrange multiplier for global force balance. In this way, the global force balance
can be treated the same way as other possible constraints like a fixed volume, e.g.
including it in a residual minimization scheme. Numerically, it is impossible to ensure
the exact equality of the drag and the drive forces, that is X(L) ≡ 0 (see Eq. (6)).
Demanding a very small residual force difference makes it difficult to find an adequate
velocity, a too large force difference makes it impossible to find a solution with small
errors at the matching points.
The iteration starts with a given (arbitrary) stress, e.g., one corresponding to the

flow around the reference shape. For the resulting initial capsule shape, the Stokes
flow is computed and the resulting stress is then used to start the iteration. If, during
the iteration, the new and old stress differ strongly it might be difficult to find the
new shooting parameters for the capsule shape and the right sedimenting velocity
starting at their old values. To overcome this technical problem, one can use a convex
combination σ = ασnew + (1 − α)σold of the two stresses and slowly increase the
contribution α of the new stress until it reaches unity. The resulting capsule shape for
α = 1 is used to continue the iteration. The iteration continues until the change within
one iteration cycle is sufficiently small. If there are multiple stationary solutions at
a given gravitational strength the iterative procedure will obviously only find one.
Therefore one has to use continuation of solutions to other parameters (different
driving strength or bending modulus) and possibly multiple initial flows to approach
to the full set of solutions.
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Fig. 3. Schematic shape diagram of a sedimenting elastic capsule. The free parameters of the
system are dimensionless bending rigidity and gravitational pull. We find four stable shapes,
which are shown on the left together with the corresponding fluid streamlines (left: capsule
frame, right: lab frame) and surface forces. The shaded area in the shape diagram in the
middle indicates the area of coexistence (iteration converges to two branches of solutions) of
the pseudospherical and pear-shaped solution branches, the blue dotted line is a crossover
line. Along the green dashed line the two buckled shapes occur in a bifurcation. On the right
we show schematics of typical force-velocity relations (depicting the ratio of the velocity of
the capsule and the velocity of a rigid sphere of same volume as a function of the pull) for
the two cases of low bending rigidities (no shape hysteresis with the additional branch of
buckled solutions) and high bending rigidities (with shape hysteresis).

6 Application: Sedimenting Hookean capsules

As an application of the outlined method that illustrates the interplay of elasticity
and low Reynolds number hydrodynamics we consider the sedimentation of Hookean
capsules. Sedimentation refers to the motion under the influence of gravity. However,
an effective (and several orders of magnitude stronger) homogeneous body force can
be created within a centrifuge. Thus, on a more general level we consider an external
stress field of the form pext = −g0Δρz. Here, g0 is the gravitational acceleration
and Δρ = ρin − ρout the density difference between the fluids inside and outside the
capsule. Note that we measure the gravitational hydrostatic pressure −g0Δρz relative
to the lower apex, for which we choose z(0) = 0. We consider a capsule filled with
an incompressible liquid and we therefore determine the static pressure imposing a
volume constraint.
Non-dimensionalizing this system using the capsule’s equilibrium radius R0 and its

elastic modulus Y2D, the remaining free parameter are the strength of the gravitational
pull, the Bond number

Bo ≡ g0ΔρR20/Y2D,
and the bending energy relative to the stretching energy, the inverse Föppl-von-
Kármán number

1/γFvK ≡ EB/Y2DR20.
A schematic diagram of the stationary shapes that are found in this two-

dimensional control parameter space is shown in Fig. 3 (more details can be found
in Ref. [12]). We find three types of stationary sedimenting shapes, see Fig. 3 (left):
pseudospheres, pear shapes and buckled shapes. From Stokes’ solution for the flow
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around a sphere we see that the acting surface forces are σ · n = 3/2Rμuez. Thus,
the viscous drag tends to stretch the capsule. Additionally the hydrostatic (gravi-
tational) pressure effectively acts to extend the lower apex and compress the upper
apex. This leads to a deformation towards pear shapes. For high bending rigidities
(small Föppl-von-Kármán number) the indentation of the flanks of the conical exten-
sion is suppressed by bending moments, leading to a discontinuous shape transition
including shape hysteresis and a coexistence region of pseudospherical and pear
shapes (with two saddle-node bifurcations at spinodal lines). This coexistence region
terminates at a critical point (or cusp point), such that for low bending rigidities
(large Föppl-von-Kármán number) there is a smooth crossover from spherical to pear
shapes upon increasing the gravitational force.
As in the static problem, the capsule can also release stretching stress through

buckling at sufficiently high external stress. This gives rise to two additional buckled
shapes, which occur in an additional bifurcation. In this dynamic problem these buck-
led solutions coexist with the pseudospherical/pear-shaped solutions. Which solution
(pseudospherical/pear-shaped or buckled) is selected by the system depends on initial
conditions.

7 Conclusion and outlook

We showed that the joint problem of an elastic capsule’s motion in a viscous liquid at
low Reynolds numbers can be reduced to iteratively solving two essentially static sub-
problems, the elastic shape problem for fixed hydrodynamic forces and the stationary
hydrodynamic Stokes flow problem for fixed boundary conditions from the capsule
shape, if one is only interested in the stationary solution. We derived the relevant
equations of motion and showed how to determine the shape of an elastic capsule
under a static external hydrodynamic stress and the flow field of a viscous liquid at
low Reynolds number around a rigid (axisymmetric) body. We then combined these
two sub-problem solutions and closed the problem by demanding stationarity under
iteration.
Using this iterative method, we are able to resolve coexisting branches of sta-

tionary solutions in the problem of “passively” sedimenting elastic capsules. The
method can be applied to other fluid flow patterns, which are defined without addi-
tional boundaries, for example parabolic flow profiles as in channel flow using similar
approximations as in [8]. The method can also be adapted to “actively” swimming
deformable objects. The most direct adaptation is possible for a deformable squirmer,
where an elastic capsule with spherical resting shape generates a finite tangent slip
velocity. This will change the boundary conditions of the viscous flow at the capsule
surface from a no-slip boundary to a given tangential slip velocity (in the capsule
frame). It is also conceivable to treat even more complex problems, such as a diffu-
siophoretic deformable swimmer, where one eventually has to include the solution of
an appropriate diffusion equation as a third coupled sub-problem into the iterative
procedure.

Support of this work by the DFG priority program SPP 1726 “Microswimmers – From Single
Particle Motion to Collective Behaviour” is gratefully acknowledged.
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