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Shapes of sedimenting soft elastic capsules in a viscous fluid
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Soft elastic capsules which are driven through a viscous fluid undergo shape deformation coupled to their
motion. We introduce an iterative solution scheme which couples hydrodynamic boundary integral methods and
elastic shape equations to find the stationary axisymmetric shape and the velocity of an elastic capsule moving
in a viscous fluid at low Reynolds numbers. We use this approach to systematically study dynamical shape
transitions of capsules with Hookean stretching and bending energies and spherical rest shape sedimenting under
the influence of gravity or centrifugal forces. We find three types of possible axisymmetric stationary shapes
for sedimenting capsules with fixed volume: a pseudospherical state, a pear-shaped state, and buckled shapes.
Capsule shapes are controlled by two dimensionless parameters, the Föppl-von-Kármán number characterizing
the elastic properties and a Bond number characterizing the driving force. For increasing gravitational force the
spherical shape transforms into a pear shape. For very large bending rigidity (very small Föppl-von-Kármán
number) this transition is discontinuous with shape hysteresis. The corresponding transition line terminates,
however, in a critical point, such that the discontinuous transition is not present at typical Föppl-von-Kármán
numbers of synthetic capsules. In an additional bifurcation, buckled shapes occur upon increasing the gravitational
force. This type of instability should be observable for generic synthetic capsules. All shape bifurcations can be
resolved in the force-velocity relation of sedimenting capsules, where up to three capsule shapes with different
velocities can occur for the same driving force. All three types of possible axisymmetric stationary shapes are
stable with respect to rotation during sedimentation. Additionally, we study capsules pushed or pulled by a point
force, where we always find capsule shapes to transform smoothly without bifurcations.
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I. INTRODUCTION

On the microscale, the motion and deformation of closed
soft elastic objects through a viscous fluid at low Reynolds
numbers, either by a driving force or in a hydrodynamic flow,
represents an important problem with numerous applications,
for example, for elastic microcapsules [1], red blood cells [2,3],
or vesicles moving in capillaries, deforming in shear flow [4],
or sedimenting under gravity [5]. Another related system are
droplets moving in a viscous fluid [6,7].

The analytical description and the simulation of soft
elastic objects moving in a fluid are challenging problems
as the hydrodynamics of the fluid is coupled to the elastic
deformation of the capsule or vesicle [1,8,9]. It is important
to recognize that this coupling is mutual: On the one hand,
hydrodynamic forces deform a soft capsule, a vesicle, or a
droplet. On the other hand, the deformed capsule, vesicle,
or droplet changes the boundary conditions for the fluid
flow. As a result of this interplay, the soft object deforms
and takes on characteristic shapes; eventually there are
dynamical transitions between different shapes as a function
of the driving force or flow velocity. Such shape changes
have important consequences for applications or biological
function.

In the following, we investigate the stationary shapes of
sedimenting elastic capsules, which are moving in an otherwise
quiescent incompressible fluid because of a homogeneous
body force, which can be either the gravitational or centrifugal
force. We focus on capsules on the microscale with radii
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∼10 μm to 1 mm, a simple spherical rest shape, and sufficiently
slow sedimenting velocities, such that the Reynolds numbers
are small and we can use Stokes flow.

We use the problem of sedimenting capsules to introduce
a new iterative method to calculate efficiently axisymmetric
stationary capsule shapes, which iterates between a boundary
integral method to solve the Stokes flow problem for given
capsule shape [1,8,9] and capsule shape equations to calculate
the capsule shape in a given fluid velocity field. The method
does not capture the dynamic evolution of the capsule shape
but converges to its stationary shape. The method can be
easily generalized to other types of driving forces apart from
homogeneous body forces. We show results for a driving point
force but, in principle, the method can also be applied to
self-propelled capsules. The methods allows us to investigate
instabilities and bifurcations of the final stationary capsule
shape with high accuracy.

Elastic capsules have a closed elastic membrane, which
is a two-dimensional solid that can support in-plane shear
stresses and inhomogeneous stretching stresses with respect
to its rest shape and has a bending rigidity. The theoretical
concept of an elastic capsule is rather general such that
chemistry and nature provide many examples. Synthetic
capsules, for example, with polymer gel interfaces, can be
fabricated by various methods and with tunable mechanical
properties and have numerous applications in encapsulation
and delivery [10,11]. There are also important biological
examples of capsules, such as spherical (icosahedral) viruses,
red blood cells, or artificial cells consisting of a lipid bilayer
and a cortex from filamentous proteins such as actin [12–15],
spectrin [16], amyloid fibrils [17], or MreB filaments [18].
More generally, the cortex of all animal cells consisting of
the plasma membrane and the underlying actin (and spectrin)
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filament network can be regarded as an elastic capsule. These
types of capsules differ, however, in elastic properties.

Synthetic capsules from polymer gels typically have a
spherical rest shape and sizes in the micrometer to millimeter
range with a micrometer thick shell. Their shell materials
can be described by isotropic elasticity of thin shells [11,19].
Viruses are much smaller nanometer-sized objects but can also
be described by thin shell isotropic elasticity [20]. Red blood
cells acquire a nonspherical discoid rest shape under physio-
logical conditions. Their elasticity is no longer isotropic but the
bilayer membrane dominates the bending rigidity, whereas the
spectrin skeleton contributes a relatively small shear elasticity,
while the bilayer membrane remains practically unstretchable
[21,22]. For artificial or biological cells with an actin cortex
the elastic properties are governed by the filamentous network
and strongly vary with the mesh size: At large mesh size, the
bending modulus is relatively large, resembling red blood cell
elasticity, at small mesh size the bending modulus becomes
small compared to the stretching modulus resembling the
situation for a thin isotropic elastic shell.

Sedimentation has already been studied for vesicles, both
numerically [23–26] and experimentally [5]. As opposed to
elastic capsules, vesicles are bounded by a lipid bilayer,
which is a two-dimensional fluid surface. For sedimenting
vesicles, pearlike and egglike shapes have been observed
experimentally [5]. Numerically, depending on the initial
configuration, pear shapes, banana shapes, or parachute shapes
are found [23,24]. The banana shape exhibits circulating
surface flows [23,24]. At sufficiently high velocities, tethering
instabilities occur both in experiments [5] and simulations [25].

Sedimentation has also been studied for red blood cells,
which constitute a special type of soft elastic capsule, which
is unstretchable and has a nonspherical biconcave rest shape.
For sedimenting red blood cells shape transitions also have
been found. Early experiments on centrifuged red blood cells
[27,28] show shapes developing tails during centrifugation.
In Ref. [29], a sequence of shapes from the biconcave rest
shape to cup-shaped and bag-shaped cells has been observed
as a function of sedimenting time. Extensive multiparticle
collision dynamics (MPCD) simulations on sedimenting red
blood cell models [30] produced a dynamic shape diagram,
which exhibits teardrop shapes, parachute (or cup-shaped)
blood cells, and fin-tailed shapes.

Shape transitions of sedimenting spherical elastic capsules
have not yet been studied although the spherical rest shape
is prepared more easily in applications involving synthetic
microcapsules. Our iterative method allows us to completely
characterize capsule shapes as a function of their elastic
properties and the driving force. The shapes depend on two
dimensionless parameters: (i) the Föppl-von-Kármán number
describes the typical ratio of stretching to bending energy
and characterizes the elastic properties of the capsule and
(ii) the Bond number describes the strength of the driving
force relative to elastic deformation forces. We map out all
stationary sedimenting shapes in a shape dynamic diagram
parameter plane spanned by Föppl-von-Kármán and Bond
number. We can use this diagram to identify the accessible
sedimenting shapes for different types of capsule elasticity,
such as isotropic shells, red blood cell elasticity, or semiflexible
polymer network elasticity.

Another important property of soft objects driven through
a liquid is the relation between the driving force and the
resulting velocity of the elastic objects. For strictly spherical
sedimenting capsules this relation is the simple Stokes’ law.
Shape transformations of a deformable sedimenting object
should reflect in qualitative changes or even bifurcations in
the force-velocity curves. This important aspect has only been
poorly studied for droplets, vesicles, and red blood cells.
Some results have been obtained for quasispherical vesicles
in Ref. [24]. MPCD simulations for red blood cells showed
no specific signs of shape transitions in the force-velocity
relations [30], experimental measurements for vesicles [5] are
also not precise enough to find such features. We will calculate
the force-velocity relation for sedimenting elastic capsules
with high accuracy in this paper, such that we can address this
issue and identify shape bifurcations of sedimenting spherical
capsules by their force-velocity relation.

II. METHODS

There are many simulation methods which have been ap-
plied to the dynamics of vesicles or capsules in viscous fluids,
such as particle-based hydrodynamic simulation techniques
such as MPCD [31], dissipative particle dynamics [32], and
Lattice Boltzmann simulations [33] or boundary integral meth-
ods [1]. These techniques simulate the full time-dependent
dynamics using a triangulated representation of vesicles or
capsules; stationary states are obtained in the long-time limit.
Here we introduce an iterative boundary integral method
coupled to shape equations for axisymmetric shapes, which
directly converges to stationary shapes without simulation
of the real dynamics. Instead, we exploit axisymmetry to
avoid triangulated representations and get an efficient iterative
method based on boundary integrals for the fluid and shape
equations for the capsule.

We limit ourselves to axisymmetric capsule shapes resulting
also in axisymmetric viscous fluid flows. Then the elastic
surface of the sedimenting capsule has to be at rest in its
stationary shape without any surface flows. Therefore, also
the fluid inside the capsule will be at rest (in the frame
moving with the capsule). We will obtain the stationary
capsule shape by solving a shape equation in curvilinear
cylindrical coordinates and solve for the Stokes flow of the
surrounding fluid by applying a boundary integral method. In
an iterative procedure we converge to the stationary shape,
where the fluid forces onto the capsule and the boundary
conditions for the fluid flow posed by the capsule shape are
consistently incorporated. We perform this iterative procedure
for a given driving gravitational (or centrifugal) force and
obtain the corresponding capsule sedimenting velocity from
the condition of force balance with the total fluid force onto
the capsule surface.

A. Geometry

We work in cylindrical coordinates to directly exploit the
axisymmetry. The axis of symmetry is called z, the distance
to this axis r , and the polar angle ϕ, see Fig. 1. The shell is
given by the generatrix [r(s),z(s)] which is parametrized in
arc length s (starting at the lower apex with s = 0 and ending
at the upper apex with s = L). The unit tangent vector es
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FIG. 1. (Color online) Example of an axisymmetric shell with
coordinates z, r , and ϕ. The shell is generated by revolution of the
generatrix (orange thin line) that is calculated by the shape equations.

to the generatrix at [r(s),z(s)] defines an angle ψ via es =
(cos ψ, sin ψ), which can be used to quantify the orientation
of a patch of the capsule relative to the axis of symmetry.

B. Hydrodynamics

We want to calculate the flow field of a viscous incom-
pressible fluid around an axisymmetric capsule of given fixed
shape. For the calculation of the flow field the deformability
of the capsule is not relevant, and the capsule can be viewed as
a general immersed body of revolution B. For the calculation
of the capsule shape and the determination of its sedimenting
velocity, we only need to calculate the surface forces onto the
capsule which are generated by the fluid flow.

In the limit of small Reynolds numbers the stress tensor
σ in a stationary fluid on which no external body forces are
exerted is given by the stationary Stokes equation [34]

∇ · σ = 0. (1)

In Cartesian coordinates, the stress tensor is given by σij =
−pδij + 2μeij , where p is the hydrodynamic pressure, μ the
viscosity, and eij = (∂jui + ∂iuj )/2 is the rate of deformation
tensor for a fluid velocity field u. Additionally, for an
incompressible fluid, the continuity equation ∇ · u = 0 holds.
From the stress tensor one can infer the surface force density
f = σ · n onto the capsule by means of the local surface
normal n.

In the rest frame of the sedimenting axisymmetric capsule
and with a “no-slip” condition at the capsule surface ∂B, we
are looking for axisymmetric solutions that have a given flow
velocity u∞ at infinity and vanishing velocity on the capsule
boundary. In the laboratory frame, −u∞ is the sedimenting
velocity of the capsule in the stationary state. Therefore,
u∞ has to be determined by balancing the total gravitational
pulling force and the total hydrodynamic drag force on the
capsule.

In the laboratory frame we are looking for solutions
with vanishing pressure and velocity at infinity. The Green’s
function for these boundary conditions is the well-known
Stokeslet (also called Oseen-Burgers tensor), that is, the fluid
velocity u at y due to a point-force −Fp acting on the fluid at x,

u(y) = − 1

8πμ
G(y − x) · Fp, (2)

with the Stokeslet G whose elements are in Cartesian
coordinates (x ≡ |x|)

Gij (x) = δij

x
+ xixj

x3
. (3)

This is the basis of the boundary integral approach for a
solution of the Stokes equation, where we want to find the
correct distribution of point forces to match the “no-slip”
condition on the capsule surface.

Because of the axisymmetry we can integrate over the polar
angle and find the velocity due to a ring of point forces
with a local force density −f acting on the fluid, u(y) =
− 1

8πμ
M(y,x) · f, with a matrix M, which can be calculated

by integration of the Stokeslet G with respect to the polar
angle. Switching from forces −f acting on the fluid to forces
f acting on the capsule and integrating over all point forces on
the surface, we find the general solution of the Stokes equation
for an axisymmetric point force distribution on the surface of
the body of revolution B,

uα(y) = − 1

8πμ

∫
C

ds(x)Mαβ(y,x)fβ (x). (4)

Here Greek indices denote the component in cylindrical coor-
dinates, i.e., α,β = r,z (uϕ = fϕ = 0 for symmetry reasons).
For these coordinates, the elements of the matrix kernel M are
given in Appendix A according to Ref. [8]. The integration
in (4) runs along the path C given by the generatrix, i.e.,
the cross section of the boundary ∂B, with arc length s(x).
This representation of a Stokes flow in terms of a single-layer
potential (using only the Stokeslet and not the stresslet) is
possible as long as there is no net flow through the surface of
the capsule ∫

dA (u − u0) · n = 0. (5)

According to the “no-slip” condition we have (working in
the laboratory frame) u = −u∞ at every point y ∈ ∂B on the
surface. This results in the equation

u∞
α = 1

8πμ

∫
C

ds(x)Mαβ(y,x)fβ(x) (fory ∈ ∂B), (6)

which can be used to determine the surface force distribution.
To numerically solve the integral for the surface force

f (xi) at a given set of points {xi} (i = 1, . . . ,N) we employ
a simple collocation method, i.e., we choose a discretized
representation of the function fβ(x) and approximate the
integral in (6) by the rectangle method. This leads to a system
of linear equations

U = M̃F (7)

with the “supervectors”

U = [u∞(y1)r ,u
∞(y1)z, . . . ,u

∞(yN )r ,u
∞(yN )z]

= (0,u∞, . . . ,0,u∞), (8)

F = [f (x1)r ,f (x1)z, . . . ,f (xN )r ,f (xN )z], (9)
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FIG. 2. (Color online) Fluid velocity field around the four stationary capsule shapes under volume control, (a) pseudospherical, (b) pear
shape, (c) strongly buckled, and (d) weakly buckled, in the capsule resting frame (left halves) and in the laboratory frame (right halves). The
sedimenting force acts downwards, and arrows indicate the direction of flow. The arrows are equidistant in time, so a higher arrow density
along a line represents a lower velocity. Additionally, the absolute value of the velocity is color coded in the background and the hydrodynamic
surface forces are shown with arrows on the surface. The scale is identical in panels (a)–(d) and given by the scale bar of length R0 in (a).

and a matrix (using numbered indices r =̂ 0, z =̂ 1 for a more
compact notation)

M̃2i+α−1,2j+β−1 = 1

8πμ
[s(xj+1) − s(xj )]Mαβ(yi ,xj ). (10)

Due to singularities in the diagonal components of M, the
two sets of points {xi},{yi} must be distinct (or M otherwise
regularized), so 2N points on the surface are needed, and the
solution is the surface force at points {yi}. We validate our
regularization in Appendix B. For use in the shape equations,
we then decompose this surface force into one component
acting normal to the surface, the hydrodynamic pressure pn,
and another component acting tangential to the surface, the
shear pressure ps (see Fig. 3).

We note that we usually restrict our computations to the bare
minimum, i.e., the surface forces needed for the calculation of
the capsule shape but, thereby, have all necessary information
to reconstruct the whole velocity field in the surrounding liquid
as shown in Fig. 2.

Throughout this paper, we use a “no-slip” condition, that
is, the velocity directly at the surface of the immersed body
vanishes in its resting frame. It is possible, however, to extend
this boundary integral approach to incorporate a prescribed
velocity field on the surface in the resting frame of the capsule
[8]. This will allow us to generalize the approach to model
active swimmers [35,36] in future work.

C. Equilibrium shape of capsule

The sedimenting capsule is deformed by the hydrodynamic
stresses from the surrounding fluid. We calculate the equilib-
rium shape of the capsule by a set of shape equations, which
have been derived in Refs. [37,38]. We generalize these shape
equations to include the additional fluid stresses on the capsule,
which we obtain as the surface force density components
fr and fz from the hydrodynamic flow as described in
the previous section. In order to make our approach self-
consistent, the capsule shape B from which hydrodynamic
surface forces are calculated has to be identical to the capsule
shape that is obtained by integration of the shape equation

under the influence of these hydrodynamic surface forces. This
is achieved by an iterative procedure, which will be explained
in the following section.

The shape of a thin axisymmetric shell of thickness H

can be derived from nonlinear shell theory [39,40]. A known
reference shape [r0(s0),z0(s0)] (a subscript zero refers to a
quantity of the reference shape; s0 ∈ [0,L0] is the arc length of
the reference shape) is deformed by hydrodynamic forces ex-
erted by the viscous flow. Each point [r0(s0),z0(s0)] is mapped
onto a point [r(s0),z(s0)] in the deformed configuration, which
induces meridional and circumferential stretches, λs = ds/ds0

and λϕ = r/r0, respectively. The arc-length element ds of the
deformed configuration is ds2 = [r ′(s0)2 + z′(s0)2]ds2

0 .
The shape of the deformed axisymmetric shell is given by

the solution of a system of first-order differential equations,
henceforth referred to as the shape equations. Using the
notation of Refs. [37,38] these can be written as

r ′(s0) = λs cos ψ, z′(s0) = λs sin ψ, ψ ′(s0) = λsκs

τ ′
s(s0) = λs

(
τϕ − τs

r
cos ψ + κsq + ps

)
(11)

m′
s(s0) = λs

(
mϕ − ms

r
cos ψ − q + l

)

q ′(s0) = λs

(
−κsτs − κϕτϕ − q

r
cos ψ + p

)
.

The additional quantities appearing in these shape equations
are shown in Fig. 3 and defined as follows: The angle ψ is
the slope angle between the tangent plane to the deformed
shape and the r axis, κϕ is the circumferential curvature, κs

the meridional curvature. The meridional and circumferential
stresses are denoted by τs and τϕ , respectively; q is the
transverse shear stress, p the total normal pressure, ps the
shear pressure, and l the external stress couple.

The first three of the shape equations (11) follow from
geometry, the last three equations express force and moment
equilibrium. For a derivation of these equations we refer
to Refs. [37,39,40]. In order to close Eqs. (11), additional
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FIG. 3. (Color online) Left: Tensions and bending moments act-
ing on a shell segment (thickness H ). Right: Part of the generatrix
(green thick line) with the decomposition of external surface force
densities into the coordinate components (fr , fz) as well as into
normal and tangent components (pn, ps). Also shown are the two
principal curvature radii κ−1

s and κ−1
ϕ with corresponding osculating

circles.

geometrical relations

κϕ = sin ψ

r
, κs = dψ

ds
, λϕ = r

r0
(12)

and constitutive stress-strain relations that depend on the
elastic law governing the shell material are needed. The elastic
law will be discussed in the following paragraph.

The normal pressure

p = p0 + pn − g0
ρz (13)

(i.e., the pressure difference p ≡ pin − pout between inside and
outside pressure), the shear-pressure ps , and the stress couple
l = psH/2 (the fluid inside the capsule is at rest) are given
externally by hydrodynamic and external driving forces; g0 is
the gravitational acceleration and 
ρ = ρin − ρout the density
difference between the fluids inside and outside the capsule.
Note that we measure the gravitational hydrostatic pressure
−g0
ρz relative to the lower apex, for which we can always
choose z(0) = 0.

The pressures pn and ps are the normal and tangential
forces per area, which are generated by the surrounding
fluid. The surface force density vector f = fzez + frer , which
has been calculated in the previous section, can also be
expressed in terms of pn and ps , f = pnn − pses (n and
es are normal and tangent unit vectors to the generatrix).
Using the decompositions n = − cos ψez + sin ψer and es =
sin ψez + cos ψer with the slope angle ψ , we find:

pn = f · n = fr sin ψ − fz cos ψ, (14)

ps = −f · es = −fr cos ψ − fz sin ψ . (15)

This is also illustrated in Fig. 3.
All remaining quantities in the shape equations (11) follow

from constitutive (stress-strain) relations that depend on the
elastic law, which will be discussed in the following paragraph.
In addition to the elastic law, there might be global constraints.
We consider here only one geometric constraint to the shape,
namely a fixed volume V = V0 (due to an incompressible
fluid inside the closed capsule). We introduce the conjugated
Lagrange parameter p0, the static pressure difference between

the interior and exterior fluids, which also enters the pressure
p in Eq. (13). Additionally, the shape has to be in global
force equilibrium, to which the velocity of the capsule is the
conjugated parameter.

1. Elastic law and reference shapes

Within this work we use a Hookean energy density with
a spherical resting shape to model deformable capsules. As a
measure for the deformation of the capsule we introduce the
meridional and circumferential strains

es = λs − 1, eϕ = λϕ − 1, (16)

as well as the meridional and circumferential bending strains

Ks = λsκs − κs0, Kϕ = λϕκϕ − κϕ0. (17)

The elastic energy we use is Hookean, i.e., a quadratic form
in these strains. More precisely, the surface energy density w,
which measures the elastic energy of an infinitesimal patch of
the (deformed) surface divided by the area of this patch in the
undeformed state, is given by

ws = 1

2

Y2D

1 − ν2

(
e2
s + 2νeseϕ + e2

ϕ

)
+ 1

2
EB

(
K2

s + 2νKsKϕ + K2
ϕ

)
, (18)

with the two-dimensional Young modulus Y2D, which defines
the tension (energy per surface) scale, the bending modulus
EB and the (two-dimensional) Poisson ratio ν (assuming equal
Poisson ratios for bending and stretching). The fundamental
length scale is the radius R0 of the spherical rest shape (with
R0 = κs

−1
0 and L0 = πR0). Tensions and bending moments

derive from the surface energy (18) by τs = λ−1
ϕ ∂w/∂es

and Ks = λ−1
ϕ ∂w/∂Ks (and two more analogous relations

with indices s and ϕ interchanged), which gives the missing
constitutive stress-strain relations for the shape equations (11).
For Hookean elasticity and a spherical rest shape, the resulting
set of shape equations has been solved for a purely hydrostatic
pressure p = p0 and ps = 0 in Ref. [37].

The Hookean elastic model for a spherical rest shape
contains five parameters, Y2D, R0, EB , ν, and H , characterizing
capsule size and elastic properties. In Sec. III A below, we
will eliminate two parameters, Y2D and R0, by choosing our
scales of energy (or tension) and length appropriately. The
two-dimensional Poisson ratio is bounded by ν ∈ [−1; 1], and
we reduce our parameter space by always using ν = 1/2. This
way our Hookean energy density has the same behavior for
small stresses as the more complex Mooney-Rivlin functional
[39]. The thickness H enters the shape equations only via the
stress couple l and, thus, only weakly influences the resulting
shape. Assuming that the shell can be treated as a thin shell
made from an isotropic elastic material, the bending modulus
is directly related to the shell thickness H by

EB = Y2DH 2

12(1 − ν2)
= 1

9
Y2DH 2. (19)

Thus, we have one remaining free parameter to change the
elastic properties, the bending modulus EB .

The Hookean elastic energy law we use here is well suited to
describe the deformation behavior of soft elastic capsules. For
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other systems different energies might be more adequate (e.g.,
Helfrich bending energy and a locally inextensible surface for
vesicles). As pointed out above, a different choice of elastic
law enters the formalism through the constitutive relations and,
thus, does not require changes in our method on the conceptual
level.

2. Solution of the shape equations

The boundary conditions for a shape that is closed and has
no kinks at its poles are

r(0) = r(L0) = ψ(0) = π − ψ(L0) = 0, (20)

and we can always choose z(0) = 0. For the solution of the
shape equations it is important that there is no net force
on the capsule as the shape equations are derived from
force equilibrium. The condition that the total hydrodynamic
drag force equals the total gravitational force determines the
resulting sedimenting velocity. If hydrodynamic drag and
gravitational pull cancel each other in a stationary state, there
is no remaining point force at the poles needed to ensure
equilibrium and, thus,

q(0) = q(L0) = 0. (21)

The shape equations have (removable) singularities at both
poles; therefore, a numerical solution has to start at both poles
requiring 12 boundary conditions (r,z,ψ,τ,m,q at both poles),
from which we know 7 [by Eqs. (20) and (21) and z(0) = 0].
The 5 remaining parameters can be determined by a shooting
method using that the solution starting at s0 = 0 and the one
starting at s0 = L0 have to match continuously in the middle,
which gives 6 matching conditions (r,z,ψ,τ,m,q). This gives
an overdetermined nonlinear set of equations which we solve
iteratively using linearizations. However, as in the static case
[37], the existence of a solution to the resulting system of linear
equations (the matching conditions) is ensured by the existence
of a first integral (see Appendix C) of the shape equation.
In principle, this first integral could be used to cancel out
the matching condition for one parameter (e.g., q), and, thus,
we have 5 independent equations to determine 5 parameters,
and the system is not genuinely overdetermined. We found
the approach using an overdetermined system to be better
numerically tractable, where we ultimately used a multiple
shooting method including several matching points between
the poles. Throughout this work we used a fourth-order Runge-
Kutta scheme with step width 
s0 = 5 × 10−5R0.

Using these boundary conditions, it is straightforward to
see that the shape equations do not allow for a solution whose
shape is the reference shape, unless there are no external loads
(ps = p = l = 0). There will be solutions arbitrarily close to
a sphere, which we call pseudospherical.

D. Iterative solution of shape and flow and determination
of sedimenting velocity

We find a joint solution to the shape equations and the
Stokes equation by solving them separately and iteratively,
as illustrated in the scheme in Fig. 4, to converge to the
desired solution: We assume a fixed axisymmetric shape and
calculate the resulting hydrodynamic forces on the capsule for
this shape. Then we use the resulting hydrodynamic surface

FIG. 4. Iterative scheme for the solution to the problem of elastic
capsules in Stokes flow as explained in the text.

force density to calculate a new deformed shape. Using this
new shape we recalculate the hydrodynamic surface forces
and so on. We iterate until a fixed point is reached. At the
fixed point, our approach is self-consistent, i.e., the capsule
shape from which hydrodynamic surface forces are calculated
is identical to the capsule shape that is obtained by integration
of the shape equation under the influence of exactly these
hydrodynamic surface forces.

For each capsule shape during the iteration, we can
determine its sedimenting velocity u = |u∞| by requiring that
the total hydrodynamic drag force equals the total gravitational
force,

g0
ρV0 = −
∫

C

ds(x)2πr(x)fz(x). (22)

The integration runs along the path C given by the generatrix,
i.e., the cross section of the boundary ∂B, with arc length s(x).
By changing u = |u∞| we can adjust the hydrodynamic drag
forces on the right-hand side to achieve equality for a given
capsule shape during the iteration. During the iteration u will
converge to the proper sedimenting velocity for the stationary
state.

The Stokes equation is linear in the velocity, and we can just
scale the resulting surface forces accordingly, if we change the
velocity parameter u∞. In this way, the global force balance
can be treated the same way as other possible constraints like a
fixed volume. Numerically, it is impossible to ensure the exact
equality of the drag and the drive forces in Eq. (22). Demanding
a very small residual force difference makes it difficult to find
an adequate velocity, and a too-large force difference makes it
impossible to find a solution with small errors at the matching
points. Global force balance (22) is equivalent to the condition
that the total force in axial direction vanishes,

X(L) = −2π

∫ L

0
ds r(p cos ψ + ps sin ψ) = 0, (23)

see Eqs. (13) and (15) and Fig. 3. Interestingly, the total axial
force is directly related to the existence of a first integral of
the shape equations, which is discussed in the Appendix C,
see Eq. (C3). To monitor global force balance numerically, we
use a criterion |X(L)| < 10−5, which turns out to be a good
compromise for a numerical force balance criterion.

The iteration starts with a given (arbitrary) stress, e.g., one
corresponding to the flow around the reference shape. For the
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resulting initial capsule shape, the Stokes flow is computed and
the resulting stress is then used to start the iteration. If, during
the iteration, the new and old stress differ strongly it might be
difficult to find the new shooting parameters for the capsule
shape and the right sedimenting velocity starting at their old
values. To overcome this technical problem, we use a convex
combination σ = ασnew + (1 − α)σold of the two stresses and
slowly increase the fraction α of the new stress until it reaches
unity. The iteration continues until the change (monitored in
pressure and velocity) within one iteration cycle is sufficiently
small. In total, this allows for a joint solution of the shape
equations and the Stokes equation to find the stationary shape
and the sedimenting velocity at rather small numerical cost.

If there are multiple stationary solutions at a given grav-
itational strength (see discussion of the shape diagram 5 in
Sec. III B below), the iterative procedure obviously converges
to only one shape. Which stationary shape is selected depends
on the initial configuration. A stationary shape can be contin-
uated to different parameter values by slightly changing the
control parameters and using the former stationary shape as
new initial shape.

In order to find all branches of stationary shapes we first
generate capsule shapes for a fixed (artificial) flow field for the
whole range of gravitational fields at a fixed bending rigidity.
These serve as initial shapes from which we iterate until a
stationary shape with the correct flow field is reached. At low
bending rigidities, this procedure generates (all four) different
classes of stationary shapes depending on the gravitational
force. We then try to continuate all different classes of
stationary shapes to the whole range of gravitational forces
and, afterwards, to the whole range of bending rigidities. This
allows us to obtain a full set of solutions and identify all
different branches.

III. RESULTS

In this section we present the results for stationary ax-
isymmetric sedimenting shapes and stationary sedimenting
velocities as obtained by the fixed point iteration method. We
focus on the sedimentation of capsules under volume control
(V = V0 = const) in the main text and present additional
results for pressure control (p0 = const) in Appendix E.
Additionally, we show the results for a capsule that is driven (or
pulled) by a localized point force rather than a homogeneous
body force.

A. Control parameters and nondimensionalization

In order to identify the relevant control parameters and
reduce the parameter space, in the remainder of the paper we
introduce dimensionless quantities by measuring lengths in
units of the radius R0 of the spherical rest shape of the capsule,
energies in units of Y2DR2

0 (i.e., tensions in units of Y2D), and
times in units of R0μ/Y2D. This results in the following set of
control parameters for the capsule shape:

(1) Our elastic law is fully characterized by the dimension-
less bending modulus or its inverse, the Föppl-von-Kármán
number [39],

ẼB ≡ EB

Y2DR2
0

= 1

γFvK
. (24)

In general, elastic properties also depend on the Poisson ratio
ν but we limit ourselves to ν = 1/2 as explained above. Using
the thin-shell result (19) the dimensionless bending modulus
ẼB = (H/9R0)2 also determines the shell thickness H for an
isotropic shell material.

(2) The sedimentation motion of the capsule is determined
by the strength of the gravitational (or centrifugal) pull g0
ρ

(the gravitational force density), which we measure in units
of Y2D/R2

0 in the following. The dimensionless gravitational
force g then takes the form of a Bond number,

g = Bo ≡ g0
ρR2
0

Y2D
, (25)

where the characteristic elastic tension Y2D is used instead of
a liquid surface tension.

(3) The static pressure p0 within the capsule is measured
in units of Y2D/R0 in the following.

(4) The resulting sedimenting velocity u is measured in
units of Y2D/μ.

We conclude that the resulting stationary sedimenting
shapes of the capsule are fully determined by two dimen-
sionless control parameters if the capsule volume is fixed:
(i) dimensionless bending modulus ẼB or its inverse, the
Föppl-von-Kármán number γFvK = 1/ẼB , characterizes the
elastic properties of the capsule (by the typical ratio of bending
to stretching energy) and (ii) the Bond number describes the
strength of the driving force (relative to elastic deformation
forces). If the capsule pressure is controlled rather than its vol-
ume, the dimensionless pressure p0 provides a third parameter,
see Appendix E. Because stationary shapes are independent of
time, they do not depend on the solvent viscosity.

B. Shape diagram

The spherical rest shape has a dimensionless volume
V = 4π/3. For sedimentation under volume control, we use
this as the fixed volume V0 = 4π/3. In principle, it is also
possible to prescribe volumes that differ from the rest shape
volume. This can be done using pressure control, for which
we present results in Appendix E. For the static case, the
only stationary shape at fixed volume is the strictly spherical
shape, regardless of the bending modulus. This differs for a
sedimenting capsule, which displays various shape transitions
already at fixed volume.

We summarize our findings regarding the axisymmetric
sedimenting shapes in the shape diagram Fig. 5 in the (ẼB,g)
plane of the two control parameters. We investigated stationary
axisymmetric capsule shapes for gravity strengths (Bond
numbers) up to g = gmax = 2.5 (usually using steps of 
g =
0.005) and bending moduli ẼB = 10−3 to 10−1 corresponding
to Föppl-von-Kármán numbers γFvK = 10 to 1000. For high
Bond and Föppl-von-Kármán numbers, the iteration procedure
becomes numerically more demanding (higher forces ask for
finer discretization of the shape equations, smaller distances
between solutions in parameter space ask for a more thorough
fixed point search) but remains possible in principle. We will
discuss further below in detail which parameter regimes in the
(ẼB,g) plane are accessible for different types of capsules and
sedimenting driving forces.
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FIG. 5. (Color online) Left: Stationary axisymmetric shapes for a sedimenting Hookean capsule with spherical reference shape in the
parameter plane of the two control parameters, the dimensionless bending modulus ẼB (the inverse of the Föppl-von-Kármán number γFvK) and
the dimensionless gravity g (the Bond number Bo). We find pseudospherical (blue), pear-shaped (red), and a pair of strongly (light green) and
weakly (dark green) buckled shapes. The black line is a line of discontinuous shape transitions between pear and pseudospherical shape which
terminates in a critical point beyond which a sphere transforms smoothly into the pear shape. The blue and red lines are spinodals indicating
the limits of stability of the pseudospherical and pear-shaped shapes, respectively. Above the solid green line the pair of buckled shapes occur
in a bifurcation; the dotted continuation of the solid line signals numerical difficulties in following this bifurcation line. To which solution
the iteration procedure converges in regions with shape coexistence is controlled by the initial conditions. Right: Contours of all four types of
shapes for ẼB = 0.01, i.e., along the vertical black dotted line, in the range g = 0.7 to 1.7. The gravity strength g increases from left to right
in steps of 
g = 0.2.

Overall, we identify three classes of axisymmetric shapes,
which are shown in Fig. 2:

(1) Pseudospherical shapes, which remain convex and
close to the rest shape. For pseudospherical shapes the velocity
is still given by the result for a perfect sphere, which is
Stokes’ law u ≈ F/6π ≈ 2g/9 (in dimensionless form), to
a good approximation. Likewise, the pressure due to gravity is
p0 ≈ g〈z〉 ≈ g.

(2) Pear shapes, which have a convex upper apex but
develop an axisymmetric indentation at the side of the capsule.
For high gravitational driving force (high sedimentation
velocities) the pear shape resembles a tether with a high
curvature at the upper apex.

(3) Buckled shapes, which develop a concave axisymmet-
ric indentation at the upper apex of the capsule. For fixed
capsule volume, these buckled shapes always occur in pairs of
a weakly buckled shape with a shallow and narrow indentation
and a strongly buckled shape with a deep and wide indentation
at the upper apex.

Our solution method allows us to identify all bifurcations
or transitions between these classes of shapes as shown in
Fig. 5. Upon increasing the gravity g or decreasing the bending
rigidity ẼB , the stationary sedimenting pseudospherical shape
transforms into a pear shape. The black line in Fig. 5 is a line of
discontinuous shape transitions between pseudospherical and
pear shape, which terminates in a critical point at

gc 
 1.85 and ẼB,c 
 0.05. (26)

At the discontinuous shape transition we find hysteresis with
two spinodal lines (red and blue lines) indicating the limits
of stability of pseudospherical and pear-shape shapes. For
smaller bending rigidities ẼB < ẼB,c, the spherical shape
transforms smoothly into the pear shape upon increasing
gravity. We locate the transition lines between the sphere and
pear shape by the condition of equal sedimenting velocity

(for the discontinuous transition) or maximal sedimenting
velocity (for the smooth crossover) as explained in the next
section. Discontinuous buckling transitions are also known
from static spherical shells [41,42], for example, as a function
of the external static pressure or an osmotic pressure [43].
That a line of discontinuous buckling transitions terminates
in a critical point as a function of the elastic properties of
the capsules is, however, an unknown phenomenon for static
buckling transitions.

Within the smooth crossover regime between sphere and
pear shapes at small bending rigidities ẼB < ẼB,c, the pair
of stationary buckled shapes occurs in a bifurcation upon
increasing the gravity strengths g above a critical threshold
given by the solid green line in Fig. 5. Also the spherical
or pear shape remains a stable solution above the green
line, such that we have three possible stationary sedimenting
shapes in this parameter regime. Which of these shapes is
dynamically selected in an actual experiment depends on the
initial conditions. The dotted continuation of the solid green
line signals numerical difficulties in following this bifurcation
line.

The iterative method allows us to determine stationary
sedimenting shapes in the shape diagram Fig. 5 very efficiently.
In order to continuate the branch of pseudospherical and
pear-shaped solutions for a fixed bending rigidity ẼB = 0.01 in
Bond number steps of 
g = 0.005 in the range g = 0, . . . ,2,
we need a computing time of approximately 6 h on a four-core
Intel Xeon processor (3.7 GHz).

C. Force-velocity relation

All dynamic shape transitions reflect in bifurcations in the
force-velocity relations. In Fig. 6, we show the force-velocity
relations between sedimenting velocity u and gravity g for all
stationary axisymmetric shapes and for a color-coded range
of bending rigidities ẼB = 10−3 to 10−1. The total driving
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FIG. 6. (Color online) Force-velocity relations for sedimenting
capsules under volume control. The plot shows the velocity relative
to the (dimensionless) velocity u0 = 2g/9 of a perfect sphere with the
same volume (Stokes’ law) as a function of the (dimensionless) total
external force F = 4πg/3. The bending modulus ẼB is color coded.
Two distinct branches can be distinguished: The solution branches
corresponding to pseudospherical and pear shapes start at zero force.
A pair of solution branches for strongly or weakly buckled shapes
starts at a nonzero threshold force. The branches for ẼB = 0.01 are
marked in black as a typical example. The capsule shapes 1–6 in
Fig. 5 are realized at the points marked by circles. It is also apparent
that the transition from pseudospherical to pear shapes is continuous
for ẼB � 0.05 and becomes discontinuous for ẼB � 0.05.

force F can be computed using the total drag from the fluid
corresponding to the right-hand side of Eq. (22) or as the
product of the total mass difference and the sedimenting
acceleration F = g0
ρV0 or F = 4πg/3 (in dimensionless
form) corresponding to the left-hand side of Eq. (22). The
leading contribution of the force-velocity relation is given
by the force-velocity relation of a perfect sphere, which is
Stokes’ law u = u0 = F/6π = 2g/9 (in dimensionless form).
To eliminate this leading contribution, we show the relative
velocity u/u0 in Fig. 6. By definition, the relative velocity
is also proportional to the sedimentation coefficient, which is
defined as v/g0 and a standard quantity in centrifugation and
sedimentation experiments [44].

Figure 6 clearly shows two qualitatively different types of
force-velocity curves. The force-velocity curves correspond-
ing to pseudospherical or pear shapes with positive curvature
at both apexes start at zero force, whereas the solution curves
corresponding to the weakly and strongly buckled shapes
bifurcate at a nonzero threshold force with a vertical tangent
and have two branches: The weakly buckled shapes with a
narrow indentation have a higher sedimenting velocity and
correspond to the upper branch, and the strongly buckled
shapes have a lower sedimenting velocity and correspond to
the lower branch.

We note that, because of the g dependence of u0, the ab-
solute sedimenting velocities u are increasing with increasing
gravity for both buckled shapes, although u/u0 is decreasing
for the strongly buckled shapes. Above the threshold force for
the buckled shapes, three different axisymmetric sedimenting
capsule shapes can occur with different sedimenting velocities
for the same gravitational driving force. Which of these shapes
is dynamically selected in an actual experiment depends on the
initial conditions.

FIG. 7. (Color online) Reduced capsule area as a function of
the dimensionless gravity strength g for a high bending modulus
ẼB = 0.08. There is an interval where pseudospherical and pear-
shaped solutions with different area coexist with hysteretic switching
upon increasing and decreasing g. Inset: For ẼB = 0.01, the area
changes continuously from pseudospherical to pear shapes. For the
pair of weakly and strongly buckled solutions the area bifurcates at a
critical g.

The force-velocity curves for the pseudospherical or pear
shapes allow us to detect how the transition between spherical
and pear shapes evolves into a discontinuous transition:
Figure 6 shows that these force-velocity curves develop
a cusp close to the critical point for ẼB ≈ EB,c 
 0.05,
whereas they remain smooth for ẼB < EB,c. For ẼB > EB,c,
we find two overlapping and intersecting velocity branches,
which corresponds to the characteristic hysteretic velocity
switching in a discontinuous transition. In fact, we identify the
discontinuous transition line in Fig. 5 by these velocities: If
the two branches coexist, then we localize the transition at the
crossing of the two u(g) curves. For ẼB < EB,c, the velocity
curve still exhibits a maximum, which we can use to define the
crossover line between the pseudospherical and pear shape as it
is shown in the shape diagram Fig. 5. The discontinuous nature
of the sphere-pear transition is confirmed by monitoring other
quantities, such as the capsule area, as a function of the gravity
g. As illustrated in Fig. 7, the area clearly exhibits hysteretic
switching at the transition. The pair of weakly and strongly
buckled solutions appears in a bifurcation above a critical
driving force. Also this bifurcation reflects in a corresponding
bifurcation of the capsule area as shown in the inset of Fig. 7.

D. Transition mechanism

Qualitatively, the shape transformations from a spherical
shape into a pear shape or into buckled shapes are a result
of buckling instabilities of a hydrodynamically stretched
capsule at the upper part of the capsule. Upon increasing the
gravitational force g the capsule acquires a higher sedimenting
velocity and stretches along the z direction. This stretching is
essential as it provides the excess area necessary for a shape
transformation from a spherical rest shape, which has the
minimal area for the fixed volume.

The numerical results show that the fluid flow generates a
negative (compressive) contribution pn to the interior pressure
at the bottom part of the capsule and a positive (dilatational)
contribution at the upper part for all types of stationary shapes
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(see the orange arrows in Fig. 2). The gravitational hydrostatic
pressure contribution −g0
ρz, on the other hand, generates
a negative contribution on the upper part as compared to a
vanishing contribution on the lower apex (by choice of the z

coordinate). Together with the positive volume pressure p0,
this results in a compressive negative total normal pressure at
the upper part and dilatational positive total pressure at the
lower part. Both for pear and buckled shapes, the negative
total normal pressure at the upper part of the capsule, which
is mainly caused by the gravitational hydrostatic pressure
contribution, is the reason to develop indentations. In the
transition from pseudospherical to pear-shaped capsules an
axisymmetric indentation develops at the side of the capsule
(see the shapes in the middle row in Fig. 5), because for an
elongated stretched capsule, this part of the capsule has lower
curvature and, thus, less stability with respect to buckling.
At higher driving force g and sedimenting velocities, the
indentation can also form at the upper apex (see top and bottom
rows in Fig. 5), and the pair of buckled configurations become
stable solutions.

An approximative limit for the stability of the spherical
shape can be given in terms of the classical buckling pressure
[39,41,42] pc = −4

√
ẼB in dimensionless units. We first note

that the height of a sphere is zmax ≈ 2 and that the static
pressure contribution needed to maintain a constant volume
against the hydrostatic pressure is p0 ≈ gz, where z ≈ 1 is
the z component of the center of mass. This gives an effective
compressive pressure p0 − gzmax ≈ −g at the upper apex (the
compressive hydrodynamic contribution pn > 0 is smaller and
can be neglected compared to relative to hydrostatic and static
pressure). If this compressive pressure exceeds the classical
buckling pressure, i.e., g � |pc| = 4

√
ẼB , then the spherical

shape is unstable with respect to indentations at the upper side
of the capsule, which leads to the pear shape. A parameter
dependence

g ∝
√

ẼB (27)

describes well the boundary between spherical and pear shape
in the shape diagram Fig. 5.

The termination of the line of discontinuous transitions
between sphere and pear shapes terminating in a critical point
is a result of the deformation of the capsule by the fluid flow
prior to the shape transition: Increasing the gravity g gives
rise to a hydrodynamic stretching of the upper part of the
capsule. The smaller the dimensionless bending rigidity ẼB ,
the smaller is the meridional curvature κs in the upper part.
For soft capsules, the meridional curvature vanishes before
the effective compressive pressure becomes comparable to
the buckling pressure (see, for example, the second shape
in the middle row in Fig. 5 for ẼB = 0.01). For a flat shell
segment, however, buckling becomes continuous and does not
require a threshold normal pressure. Rigid capsules, on the
other hand, remain curved upon increasing the gravity g up to
the discontinuous buckling induced by the normal pressure in
the upper part of the capsule.

For the bifurcation line of the two buckled shapes in
the shape diagram Fig. 5, we find an approximately linear

FIG. 8. (Color online) Linear analysis concerning rotational sta-
bility for ẼB = 0.01. We show the (dimensionless) difference
z0 − zc.m. between the center of hydrodynamic stress z0 and the center
of gravity zc.m. as a function of the dimensionless gravity strength g for
all three solution branches [(blue) pseudospherical, (red) pear-shaped,
(green) buckled]. For z0 − zc.m. < 0, i.e., below the gray line, the
shape is linearly stable against out-of-axis rotations. Only solutions
with a very pronounced tether extrusion at high g are unstable.

dependence g ∝
√

ẼB

1.7
from fitting our numerical results.

Currently, we have no simple explanation for this result.

E. Rotational stability

We always assumed axisymmetric shapes that perform a
rotation-free sedimentation, i.e., stability with respect to rota-
tion or tilt of the shape. The question whether the sedimentation
motion of an axisymmetric rigid body is rotationally stable
can be reduced [34] to the question of whether the so-called
center of hydrodynamic stress lies above or below the center of
mass; both points have to be on the symmetry axis. In general,
sedimenting bodies will tilt in a way that aligns the connection
vector of the centers of mass and hydrodynamic stress with
the direction of gravity [45] or start to rotate. The center of
hydrodynamic stress is the point about which the translational
and rotational motions decouple.

In Appendix D, we present a stability argument that only
uses the information available to us. The result of this analysis
is exemplarily shown in Fig. 8 for ẼB = 0.01. We find that
the center of hydrodynamic stress z0 lies almost always
below the center of gravity zc.m. for all three classes of
shapes, pseudospherical, pear-shaped, and buckled such that
the shapes are linearly stable against out-of-axis rotations.
Only solutions in the pear-shape class for very high gravity
forces g � 2.2 are unstable. These shapes exhibit a very
pronounced tetherlike extrusion.

F. Accessible parameter space

With the shape diagram in Fig. 5 we have a complete
overview of theoretically possible shapes and transitions
between them in the plane of the two control parameters, the
dimensionless bending rigidity ẼB or its inverse, the Föppl-
von-Kármán number γFvK = 1/ẼB , and the Bond number
Bo = g. There are three limitations, however, to the accessible
parameter range.
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First, our analysis is limited to the regime of low Reynolds
numbers because we used the Stokes equation to describe the
fluid flow. The Reynolds number for the sedimenting capsule
is given by Re = vρR0/μ. To leading order the sediment-
ing velocity is given by Stokes’ law v = g0
ρV/6πμR0,
resulting in Re = 2g0
ρρR3

0/9μ2. A criterion Re < 1 limits
the accessible Bond numbers to g < gmax, Re ∼ 9μ2/2ρR0Y2D.
For water as solvent we have gmax, Re ∼ 5 × 10−9R−1

0 Y−1
2D N.

This can be easily increased by a factor of 100 in a more
viscous solvent. For a capsule of size R0 ∼ 10 μm in water,
the criterion g < gmax, Re corresponds to a condition that
the acceleration should remain smaller than 5000 times the
standard gravity.

Second, the sedimenting force is very small for gravi-
tation; it is much larger for a centrifuge but also modern
ultracentrifuges are limited to accelerations about 106 times
the standard gravity [44]. With a typical density difference
of 
ρ = 102 kg/m3 (10% of the density of water) we find
that the Bond number is limited in available centrifuges to
g < gmax, cf ∼ 109R2

0Y
−1
2D N/m3.

Both of these constraints give an upper bound for the acces-
sible Bond number range. The constraints are size dependent,
however: For small capsule sizes R0 � 1 μm, for example, for
viruses, the centrifuge constraint is more restrictive, whereas
for larger capsule sizes R0 � 1 μm, the low-Reynolds-number
constraint is more restrictive. The latter case is typical for all
synthetic capsules, red blood cells, or artificial cells consisting
of a lipid bilayer and a filamentous cortex, which all have
capsule sizes in the range R0 � 1 to 1000 μm.

Third, it is not possible to realize arbitrarily large dimen-
sionless bending rigidities ẼB = EB/Y2DR2

0 or small Föppl-
von-Kármán numbers in experimentally available capsules.
For isotropic elastic shell materials the relative shell thickness
determines this parameter, ẼB ∼ (H/R0)2, see Eq. (19),
and values ẼB � 0.01 are difficult to realize with synthetic
capsules. Viruses also follow this law (with a shell thickness
H ∼ 2 nm), resulting in Föppl-von-Kármán numbers γFvK �
60 or ẼB � 0.02 with ẼB decreasing with increasing virus
size [20]; small viruses with R0 ∼ 15 nm realize the largest
values of ẼB .

Red blood cells also have similar values of ẼB although they
are elastically strongly anisotropic because they consist of a
lipid bilayer and a spectrin cytoskeleton. The liquid lipid bi-
layer dominates the bending modulus EB ∼ 50 kBT , whereas
the shear modulus is determined by the filamentous spectrin
cortex or skeleton. Filamentous networks typically have low
shear moduli, for example, G2D ∼ 10−6 N/m for the spectrin
skeleton of a red blood cell [46]. Using Y2D ∼ 4G2D for the red
blood cell, because the lipid bilayer has a much higher area
expansion modules K2D ∼ 0.3 N/m, we obtain ẼB ∼ 0.005
for a size R0 ∼ 3 μm. Larger values of ẼB could be realized
in artificial cells consisting of a lipid bilayer and a cortex from
filamentous proteins for low filament densities in the cortex.
These estimates of ẼB for red blood cells or artificial cells
might, however, be misleading because the relevant elastic
modulus in the elastic energy (18) is actually Y2D/(1 − ν2)
rather than Y2D, which is used in the standard definition of
the Föppl-von-Kármán number and ẼB , see Eq. (24). Because
of their lipid bilayer, red blood cells or artificial cells are in
the unstretchable limit K2D � G2D, where ν approaches unity,

and we obtain Y2D/(1 − ν2) ≈ K2D. Using this modulus in a
definition of ẼB (i.e., in the nondimensionalization) leads to
much smaller values ẼB ∼ 10−9.

The discontinuous sphere-pear transition happens beyond
a critical point, ẼB > ẼB,c 
 0.05, see Fig. 5. Therefore, this
peculiar transition is not accessible for typical synthetic cap-
sules. To observe this transition an elastically very anisotropic
capsule shell material with high bending and low stretching
moduli would be needed. The transition into buckled shapes,
however, should be well accessible with generic soft synthetic
capsules.

The softness of the shell material is also important if
high Bond numbers Bo ∼ 1 are to be realized in the shape
diagram Fig. 5. In the presence of the above low-Reynolds-
number constraint, very soft shell materials with a small
two-dimensional Young modulus Y2D � 5 × 10−4 N/m for a
capsule of size R0 ∼ 10 μm are needed to reach such Bond
numbers in water. Typical soft synthetic capsules such as OTS
capsules have much larger moduli Y2D ∼ 0.1 N/m [38]. Red
blood cells or artificial cells with shear moduli governed by a
soft filamentous network have small moduli Y2D ∼ 10−6 N/m,
which will allow us to reach high Bond numbers. Again, these
estimates might be misleading because the relevant elastic
modulus in the elastic energy is actually Y2D/(1 − ν2) rather
than Y2D. If this modulus is used in the nondimensionalization
and the definition of the Bond number in Eq. (25), Bond
numbers become much smaller because red blood cells or
artificial cells are hardly stretchable.

IV. LOCALIZED DRIVING FORCES

There are other possible external driving forces and self-
propulsion mechanisms [36,47]. One extreme case is a very
localized external force. We study this case by employing a
driving pressure that acts on a small patch on one apex (we
used the criterion s0 � 0.1 or L − s0 � 0.1, respectively; even
more localized pressures would have to be higher and, thus,
require smaller integration steps). For a pushing force, i.e.,
a force that acts on the stern of the capsule, this gives rise
to strongly indented shapes. They have a higher drag than a
spherical shape such that the driving force has to be higher than
in Stokes’ law u ≈ F/6π (in dimensionless form) resulting in
Fdrive > 6πu, whereas for pulling forces (acting on the bow)
the drag is lower as compared to a sphere.

We show force-velocity relations with some exemplary
shapes for these two types of external driving forces in Fig. 9.
As can be seen clearly seen in the force-velocity relations,
there are no shape bifurcations for elastic capsules driven by
localized forces.

One way to apply a localized force experimentally is to
attach beads to the capsule that can be manipulated via optical
tweezers, as it has been done (for pulling and pushing types of
forces) with giant vesicles in Ref. [48].

V. DISCUSSION AND CONCLUSION

We introduced a new iterative solution scheme to find
stationary axisymmetric shapes and velocity of a deformable
elastic capsule driven through a viscous fluid by an external
force at low Reynolds numbers. We focused on homogeneous
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FIG. 9. (Color online) Force-velocity relations for a capsule with
fixed volume driven by (a) a localized pulling force and (b) a
localized pushing force. The plots show the velocity relative to the
(dimensionless) velocity u0 = F/6π of a hard sphere with same
volume as a function of the (dimensionless) total external force. The
insets show exemplary capsule shapes for EB = 0.01.

body forces, i.e., sedimenting capsules in gravitation or in a
centrifuge, but also demonstrated that other force distributions,
such as localized forces, can be studied.

The iterative method is sufficiently accurate and fast
to identify all branches of different shapes and to resolve
dynamic shape transitions. We find a rich dynamic bifurcation
behavior for sedimenting elastic capsules, even at fixed
volume, see Fig. 5 with three types of possible axisymmetric
stationary shapes: a pseudospherical state, a pear-shaped
state, and buckled shapes. The capsule can undergo shape
transformations as a function of two dimensionless parameters.
The elastic properties are characterized by a dimensionless
bending rigidity ẼB [the inverse Föppl-von-Kármán number,
see Eq. (24)], and the driving force is characterized by the
dimensionless Bond number [see Eq. (25)].

The transition between pseudospherical and pear shape
is a discontinuous transition with shape coexistence and
hysteresis for large bending rigidity or large Bond number. The
corresponding transition line terminates, however, in a critical
point if the bending rigidity is lowered, a phenomenon which
is unknown from discontinuous static buckling transitions.
Parameter estimates show that this transition cannot be
observed with standard synthetic capsules because it requires
a rather large bending rigidity or low Föppl-von-Kármán
number, which cannot be realized for thin (H/R0 < 0.1)
shells of an isotropic elastic material. Observation of this
discontinuous transition requires a material which combines
high bending rigidity while it remains highly stretchable.

We find an additional bifurcation into a pair of buckled
shapes at small bending rigidities upon increasing the gravita-

tional force. This bifurcation should be experimentally acces-
sible with synthetic capsules in a centrifuge. The bifurcations
are caused by hydrodynamic stretching, which increases a
compressive hydrostatic pressure at the upper apex and leads
to bucklinglike transitions.

All shape bifurcations can be resolved in the force-velocity
relation of sedimenting capsules, where up to three capsule
shapes with different velocities can occur for the same
gravitational driving force, see Fig. 6. In an experiment,
these shapes are selected depending on the initial conditions.
We also confirmed the stability of all axisymmetric shapes
with respect to rotation around an axis perpendicular to the
axis of symmetry, see Fig. 8. We find more stationary buckled
shapes if we consider sedimenting capsules where we vary
the volume by changing the pressure as it is explained in more
detail in Appendix E. These additional shapes are higher-order
buckled shapes with more indentations.

It is instructive to discuss our results in comparison with
sedimenting vesicles [23–25] and sedimenting red blood cells
[30]. Vesicles are bounded by a two-dimensional fluid lipid
bilayer rather than a two-dimensional solid membrane or shell
and are virtually unstretchable, i.e., they have a fixed area.
Therefore, shape transitions from a spherical shape with the
minimal area for given volume require excess area. For the
sedimenting capsules this additional area is generated by
hydrodynamic stretching. For vesicles, excess area can be
“hidden” in thermal fluctuations. A spherical vesicle without
such excess area cannot undergo any shape transitions during
sedimentation. The pear shape for elastic capsules at high Bond
numbers is similar to the “tether” formation by sedimenting
vesicles [25]. However, there are two important differences.
First, the stretching energy of capsules penalizes deformations
from the resting shape (whereas vesicles have a liquid surface
that allows any shape with the correct area), which leads to
less extreme and pronounced tethers. Moreover, cylindrical
tethers are an actual equilibrium shape of a membrane under
tension, which can coexist with a spherical vesicle [49]. This
is not the case for an elastic capsule. Second, we do not find a
bulge or “droplet” forming at the upper end, by which we mean
an increase in the width of the extrusion near the end of the
tether. This is rooted in the different bending energies: Using a
Helfrich bending energy that is quadratic in the mean curvature
wB ∼ (κs + κϕ)2, the negative meridional curvature (κs < 0)
needed to form a drop at the end of the tether is energetically
favorable, whereas it is not with the Hookean bending energy
(18) we employ. Moreover, elastic capsules cannot develop
shapes with circulating surface flows because of their solid
membrane. Therefore, there is no analog of the banana shape
with surface flows that has been found in Refs. [23,24] for
vesicles.

Also sedimenting red blood cells exhibits different shapes;
in MPCD simulations transitions between teardrop shapes,
parachute (or cup-shaped) blood cells, and fin-tailed shapes
[30] have been found. Red blood cells have a nonspherical
discocyte rest shape, which already provides some excess
area as compared to the minimal area of a sphere. Therefore,
stretching is not essential for dynamic shape transitions. The
initial discocyte shape of red blood cells also gives rise to
a strong tendency to tilt, which is absent for our initially
spherical capsules. The parachute shape also tilts by almost
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90◦ during transformation into a teardrop [30]. Interestingly,
all transitions observed in Ref. [30] did not show any signatures
in the force-velocity relation or the bending or shear energies.
For spherical capsules we find clear signatures of all transitions
in the force-velocity relation in Fig. 6. It remains to be clarified
in future work whether the MPCD technique is not accurate
enough or exhibits too many fluctuations to resolve these
signatures or whether the dynamic transitions of sedimenting
red blood cells qualitatively differ, for example, because tilt
plays such a prominent role.

Finally, we studied capsules driven by localized forces,
such as a pushing or pulling pointlike force. For such localized
driving forces, we always find shapes to transform smoothly
without any shape bifurcations, see Fig. 9.

We plan to extend our iterative method to actively swim-
ming capsules in future work [36]. One possible swimming
mechanism, for example, in squirmer type swimmer models
[50], is a finite velocity field at the capsule surface in its resting
frame. Our solution technique using single-layer potentials
remains still applicable as long as there is no net velocity
normal to the surface (which indicates a fluid source or sink
within the capsule and is, thus, not relevant).

ACKNOWLEDGMENTS

We acknowledge financial support by the Deutsche
Forschungsgemeinschaft via SPP 1726 “Microswimmers”
(KI 662/7-1).

APPENDIX A: SINGLE-LAYER POTENTIAL
SOLUTION OF THE STOKES EQUATION IN

AN AXISYMMETRIC DOMAIN

To make the paper self-contained, we give the analytical
expressions for the elements of the matrix kernel M that relates
the forces and the velocities on the surface of the capsule via

u∞
α = − 1

8πμ

∫
C

ds(x)Mαβ(y,x)fβ (x) (for y ∈ ∂B), (A1)

see Eq. (6). The derivation of this matrix kernel is briefly
outlined in the main text and can also be found in Ref. [8].

As we are working in cylindrical coordinates (r,z,ϕ) and
the problem is axisymmetric, the matrix has four elements
(α,β = r,z) which can be explicitly written as

Mzz(y,x) = 2k

√
rx

ry

(F + ẑ2E), (A2)

Mzr (y,x) = kẑ√
rxry

[
F − (

r2
y − r2

x + ẑ2)E]
, (A3)

Mrz(y,x) = −k
ẑ

ry

√
rx

ry

[
F + (

r2
y − r2

x − ẑ2
)
E

]
, (A4)

Mrr (y,x) = k

rxry

√
rx

ry

[(
r2
y + r2

x + 2ẑ2
)
F

− (
2ẑ4 + 3ẑ2

(
r2
y + r2

y

) + (
r2
y − r2

x

)2)
E

]
, (A5)

using the abbreviations

ẑ ≡ zx − zy, (A6)

k2 ≡ 4rxry

ẑ2 + (rx + ry)2
, (A7)

E ≡ E(k)

ẑ2 + (rx − ry)2
, (A8)

F ≡ K(k), (A9)

and the complete elliptic integrals of the first and second kinds
[51],

K(k) =
∫ π/2

0

dx√
1 − k2 cos2 x

, (A10)

E(k) =
∫ π/2

0
dx

√
1 − k2 cos2 x. (A11)

For the numerical computation of M elliptic integrals of the
first and second kinds we use polynomial approximants as
given in Ref. [51].

APPENDIX B: VALIDATION OF NUMERICAL METHOD

We validate our algorithm and, in particular, our numerical
treatment of singularities occurring in the boundary integral
approach in Eq. (6) by comparison with exact analytical results
for the Perrin factors for the total drag of a spheroid with
semiaxes a in radial and b in axial direction [34,52]. A
spheroid is an ellipsoid with two degenerate semiaxes a in
radial direction, i.e., it can be parametrized by

r =

⎛
⎜⎝

a cos θ sin ϕ

a sin θ sin ϕ

b cos θ

⎞
⎟⎠ (B1)

with the polar angle 0 � ϕ � 2π and the parametric latitude
0 � θ � π .

The Perrin factor � is the ratio of the total drag force onto a
spheroid with semiaxes ratio ξ = b/a (for translation along the
axial a direction) and the drag of a sphere of the same volume
moving with the same velocity. � is known analytically (from
calculating the stream function in ellipsoidal coordinates) [52],

� =

⎧⎪⎨
⎪⎩

ξ
− 1

3

3
4

√
ξ 2
p−1[−ξp+(ξ 2

p+1) artanh(ξ−1
p )]

for ξ � 1

ξ
− 1

3

3
4

√
ξ 2
o +1[ξo−(ξ 2

o −1) atan(ξ−1
o )]

for ξ < 1
, (B2)

with

ξp ≡
√

1 − ξ−2
−1

, (B3)

ξo ≡
√

ξ−2 − 1
−1

, (B4)

for both prolate (ξ � 1) and oblate (ξ � 1) spheroids. We
compare our numerical results to this analytical expression in
Fig. 10 and find excellent agreement.
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FIG. 10. (Color online) Perrin factor �, i.e., drag force onto a
spheroid in a viscous fluid relative to that onto a sphere of same
volume moving with the same velocity as a function of the ratio of
the spheroid semiaxes ξ = b/a. The theoretical result (B2) due to
Perrin is shown as a solid (black) line and our numerical data as
(green) crosses. The relative difference is less than 1/1000 for all
values, which validates our numerical approach.

APPENDIX C: FIRST INTEGRAL OF THE SHAPE
EQUATIONS

Inspired from the known first integral in the static problem
(cf. Eqs. (17) and (22) in Ref. [37]) we make the following
ansatz for a first integral of the shape equations:

U (s) = 2πr(q cos ψ + τs sin ψ) + X = const. (C1)

We are also assuming that the pressure p and the shear
pressure ps can be written as functions solely dependent on
the arc length s. The calculation is rather straightforward: We
differentiate using the shape equations (11) and the geometric
relations (12) and get

0 = U ′(s)

= 2πq cos2 ψ − 2πrκsq sin ψ

+ 2πr cos ψ
(
−κsτs − κϕτϕ − cos ψ

q

r
+ p

)
+ 2πτs cos ψ sin ψ + 2πrκsτs cos ψ

+ 2πr sin ψ

(
cos ψ

τϕ − τs

r
+ κsq + ps

)
+ X′

= 2πrp cos ψ + 2πrps sin ψ + X′ = 0. (C2)

In the second-to-last step most terms cancel each other out.
Thus, we find an ordinary differential equation for X, which
we can integrate directly:

X′ = −2πr(p cos ψ + ps sin ψ)
(C3)

X = −2π

∫ s

0
dx r(p cos ψ + ps sin ψ).

Inspecting the behavior at s = 0 we then deduce U (s) =
U (0) = 0 or

0 = 2πrq cos ψ + 2πrτs sin ψ + X. (C4)

The first integral U (s) = 0 is indeed a generalization of the
static quantity, as we see by setting ps = 0, p = const, which

gives

X = −2πp

∫ s

0
dx r cos ψ = −πpr2, (C5)

and, thus, Eq. (C4) becomes equivalent to Eq. (17) in Ref. [37].
The first integral is related to the global axial force balance

of the capsule, which can be seen by considering s = L,
where the U (s) = U (L) = 0 gives X(L) = 0. The quantity
X contains the contribution to the net force in the z direction
and thus a shape with the desired features (namely q = 0 at
the apexes) must have X(L) = 0 and, thus, be in global force
balance in axial direction.

APPENDIX D: ROTATIONAL STABILITY

We want to study the change in the torque due to an
infinitesimally small rotation R of the velocity and the
gravitational force vector. Geometrically, this is equivalent
to rotating the capsule. A change of the velocity boundary
condition u0 → u′

0 = Ru0 leads to new hydrodynamic surface
forces f → f′. As we did not change the capsule we can employ
the reciprocal theorem∫

dA u · f′ =
∫

dA u′
0 · f (D1)

and find f′ = (RT )−1f = Rf. The new hydrodynamic torque
is, thus,

Tu
′ =

∫
dA [r × (Rf)] = R

∫
dA [(R−1r) × f]. (D2)

We limit ourselves to a linear analysis, that is, we perform an
infinitesimal rotation around the y axis by an angle dα, i.e.,
R±1 = I ± dαJy . Here I is the unit matrix (Iij = δij ) and Jy

generates a rotation around the y axis with (Jy)
ij

= δi3δj1 −
δi1δj3. Then, to linear order in dα,

ey · Tu
′ = −2πdα

∫
ds r

[
1

2
rfr + (z − z0)fz

]
. (D3)

Here z0 gives the pivot point of the rotation. Since we know
that the centers of mass and hydrodynamic stress have to
lie on the symmetry axis, studying rotations about points on
this axis suffices. Likewise, we can calculate the gravitational
contribution to the new torque, which is (again to linear order
in dα)

ey · Tg
′ = πdαg

∫
ds r2(z − z0). (D4)

Equating these two gives the pivot point of the marginally
stable infinitesimal rotation, i.e., the center of hydrodynamic
stress.

This argument does not account for a change of the capsule
shape due to the altered stresses upon rotation, which means
that a seemingly unstable capsule might be stabilized axially by
a “wobbling” deformation leading to different hydrodynamic
torques. In principle, this might also work the other way round
(as for semiflexible cylindrical rods [53]), but we think it is less
relevant here, because of the typically large radius of curvature
at the lower apex.
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APPENDIX E: PRESSURE CONTROL

For volume control, we fixed V0 = 4π/3 to the volume of
the spherical rest shape and only explored the two parameters
ẼB and g. The pressure p0 served as Lagrange parameter to
achieve the fixed volume V0. To get a better understanding of
the variety of shapes that are in principle possible, we study
capsules with volumes other than that of the reference shape by
controlling and changing the Lagrange parameter p0. Thus, the
explorable parameter space now consists of three parameters
ẼB , g, and p0. As for volume control, the sedimenting velocity
u is not a control parameter but determined from demanding
a force-free capsule.

With the additional pressure parameter p0, we find more
sedimenting shapes to be stable (with different volumes), in
particular, more classes of buckled shapes. We tried to find
solutions at ẼB = 0.01 for pressures p0 ∈ [−0.95,0.95] and
g ∈ [0,1]. As a consequence of the quadratic nature of the
elastic law, see Eq. (18), there is no solution for a resting
capsule (g = 0) with p0 > 1 [37]. For a cleaner comparison
of different parameter sets (in particular for comparison of
differently elongated shapes) it is helpful to not use p0 but the
pressure at the center of mass, peff = p0 − 〈z〉g, as an actual
control parameter because we use a coordinate system that
fixes z = 0 at the lower apex of the capsule.

The possibility to explore a range of volumes allows for a
greater variety of shapes. In Fig. 11, we show the pressure-
volume relation for stationary axisymmetric shapes with a
velocity close to u = 0.07 (which determines for each shape
a certain gravity g). Solutions at lower velocities are typically
easier to find, but very low velocities are rather atypical
because one ultimately sees the variety of static solutions [37].
Each type of stable shape gives one pressure-volume branch in
Fig. 11. Apart from pseudospherical, pear-shaped and the pair
of weakly and strongly buckled solutions, we find additional
branches, which correspond to higher-order buckled shapes
with three, four, or five indentations.

As for fixed volume, the main contribution to the shape is
due to static pressure (differences). For the pseudospherical
branch this can be seen by comparing the volume (in reduced

FIG. 11. (Color online) Volume V of the sedimenting elastic
capsule as a function of the controlled pressure peff at the center
of mass at fixed bending rigidity ẼB = 0.01 and for shapes moving
at a velocity u ≈ 0.07. Each type of stable shape gives one pressure-
volume branch. We identified the branches by the shape of the
generatrices. We show one representative generatrix for each branch
in the color of the branch. Please note that the generatrices are not
drawn to scale. The pseudospherical branch is in good quantitative
agreement with the static pressure-volume relation of Eq. (E1).

units) with the known pressure-volume relation for a spherical
capsule in the static (g = 0) case

Vsphere(p) = 4π

3

[
2

p
(1 −

√
1 − p)

]3

, (E1)

which fits our data rather well.
The higher-order buckled shapes occur at small volumes or

small effective pressure peff. We expect to find corresponding
higher-order buckled shapes also under volume control if we
prescribe a corresponding small volume V0 ∼ 1–2. But also for
higher prescribed volumes such as V0 = 4π/3 
 4.19, these
shapes could become stable at very high g: Higher volumes
require a larger pressure peff and, thus, also higher deformation
forces to induce buckling. Such higher deformation forces can
be achieved at high g.
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