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Abstract We present a realization of a fast interfacial Marangoni microswimmer by a half-spherical algi-
nate capsule at the air–water interface, which diffusively releases water-soluble spreading molecules (weak
surfactants such as polyethylene glycol (PEG)), which act as “fuel” by modulating the air–water interfacial
tension. For a number of different fuels, we can observe symmetry breaking and spontaneous propulsion
although the alginate particle and emission are isotropic. The propulsion mechanism is similar to soap or
camphor boats, which are, however, typically asymmetric in shape or emission to select a swimming direc-
tion. We develop a theory of Marangoni boat propulsion starting from low Reynolds numbers by analyzing
the coupled problems of surfactant diffusion and advection and fluid flow, which includes surfactant-induced
fluid Marangoni flow, and surfactant adsorption at the air–water interface; we also include a possible evapo-
ration of surfactant. The swimming velocity is determined by the balance of drag and Marangoni forces. We
show that spontaneous symmetry breaking resulting in propulsion is possible above a critical dimensionless
surfactant emission rate (Peclet number). We derive the relation between Peclet number and swimming
speed and generalize to higher Reynolds numbers utilizing the concept of the Nusselt number. The the-
ory explains the observed swimming speeds for PEG–alginate capsules, and we unravel the differences to
other Marangoni boat systems based on camphor, which are mainly caused by surfactant evaporation from
the liquid–air interface. The capsule Marangoni microswimmers also exhibit surfactant-mediated repulsive
interactions with walls, which can be qualitatively explained by surfactant accumulation at the wall.

1 Introduction

Designing and understanding self-propelling biological
or artificial microswimmers is the basis for the physics
of active systems. Swimming on the microscale is gov-
erned by low Reynolds numbers and requires special
propulsion mechanisms which are effective in the pres-
ence of dominating viscous forces. The first propul-
sion principle that comes to mind is shape-changing
swimmers, which deform their body in a cyclic way in
order to propel. At low Reynolds numbers, the cyclic
deformation pattern of a swimmer must not be invari-
ant under time-reversal according to the scallop theo-
rem [1]. In nature, many different examples of defor-
mation swimmers can be found such as bacteria, algae
and spermatozoa [2]. Realizing this concept in synthetic
microswimmers is often difficult as the scallop theorem
requires control of at least two parameters.

Shape-changing swimmers force the surrounding fluid
via no-slip boundary conditions on the surface of their
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moving parts. Another successful class of synthetic
microswimmers is phoretic swimmers, which actively
create slip velocities at their surface. Self-propelling
phoretic swimmers autonomously create gradients in
external fields such as concentration of a “fuel” or tem-
perature, which in turn give rise to symmetry-breaking
interfacial fluid flow in a thin interaction layer [3]. This
fluid flow constitutes an effective slip velocity leading to
propulsion [4,5]. Examples of such autophoretic swim-
mers are thermophoretic or diffusiophoretic swimmers,
which generate gradients in temperature or concen-
tration of interacting particles along their body. Self-
diffusiophoretic swimmers generate a non-vanishing
interfacial slip velocity on the particle surface via asym-
metries in the solute concentration field and a short-
range interaction between solute and swimmer [3]. Dif-
fusiophoretic models typically neglect advection of the
fuel concentration [6–8], but this has been included
in Refs. [9,10]. A lot of different aspects of swim-
mer behavior have been studied for self-diffusiophoretic
swimmers such as efficiency [11], confinement effects
[6,8] cargo transport [7,12] or the rich behavior dur-
ing collisions with walls [13,14].
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While diffusiophoresis creates concentration gradi-
ents within the liquid surrounding the swimmer, con-
centration gradients or surface active molecules (surfac-
tants) within the interface of liquid swimmers can also
generate symmetry-breaking interfacial forces based on
the Marangoni effect [15]. These propulsion mecha-
nism based on the Marangoni effects are utilized in
different liquid Marangoni swimmers, such as active
liquid droplets or active emulsions [16]. Examples are
pure water in an oil–surfactant medium (squalane and
monoolein) [17] or liquid crystal droplets in surfactant
solutions [16] but many other systems can be gener-
ated making this a versatile route to microswimmer
production. This type of Marangoni swimmer is a liq-
uid drop fully immersed in a liquid carrying surfac-
tant, and propulsion is generated by the Marangoni
effect along the liquid–liquid interface between swim-
mer and surrounding liquid, where a surfactant con-
centration gradient is maintained. In Ref. [17], an
auto-diffusiophoretic mechanism [9,18] has been pro-
posed to maintain the surfactant concentration gra-
dient. Another mechanism that has been proposed is
increased adsorption of surfactant at the front (in swim-
ming direction) of the swimmer, which depresses the
interfacial tension in the front [16,19,20]. This gives rise
to a Marangoni stress toward the back (where the inter-
facial tension is higher). The Marangoni stress forces
the surrounding fluid toward the back of the swim-
mer resulting in a swimmer motion toward the front of
the swimmer. For all proposed mechanisms, the liquid
swimmer autonomously maintains an increased surfac-
tant concentration in the front of its interface with the
surrounding liquid, and it propels in the direction of
higher surfactant concentration at its own interface.

The self-phoretic and Marangoni swimming mecha-
nisms discussed so far do not generate net forces on
the swimmer but non-vanishing slip velocities on the
particle surface via asymmetries in a temperature or
solute concentration field. There is another class of self-
propelling swimmers partly based on the Marangoni
effect and with a long history [21], which are so-called
soap or camphor boats (or surfers), which we call
Marangoni boats in the following. Marangoni boats are
moving at the liquid–air interface [22]; typically, they
are solid swimmers and operate at the centimeter scale.
They are often used as a popular demonstration exper-
iment for the Marangoni effect [23]. As “fuel” serve sur-
face active molecules, which are deposited on the float-
ing swimmer [23] or in which the swimmer is soaked [24–
29], or the swimmer body itself is made from dissolv-
ing surfactant [30]. There are many examples based on
DMF (dimethylformamide) [31], alcohol [23,29], soap
[29], camphor [24–28,32] or camphene [30] that have
also been characterized quantitatively. The surfactant
molecules are emitted or dissolved from the swimmer
and a radial concentration gradient is established at
the air–water interface by diffusion, eventually aided
by evaporation for volatile surfactants. The radial con-
centration gradient creates (i) surface tension gradients
and (ii) Marangoni stresses on the fluid. This leads,
however, not necessarily to swimming as long as the

surface tension is symmetric and uniform around the
swimmer. The surface tension is pulling in normal direc-
tion on the closed air–water–swimmer contact line. A
uniform surface tension cancels along any arbitrarily
shaped closed three-phase contact line, but a gradient in
surfactant concentration along the contact line can gen-
erate a net propulsion force. We call this net force gener-
ated by surface tension gradients direct Marangoni force
in the following. Also symmetry-broken Marangoni
flows created by the Marangoni effect can contribute to
(or impede) the propulsion via hydrodynamic drag onto
the swimmer surface. We denote the resulting forces
that Marangoni flows exert by Marangoni flow forces in
the following. The Marangoni boat mechanism is rely-
ing on both types of forces. If surfactant emission is
anisotropic the boat is, in general, propelled into the
direction of higher surface tension, i.e., lower surfac-
tant concentration along the air–water–swimmer con-
tact line. We note that this is opposite to the propul-
sion in the direction of higher surfactant concentration
for the active liquid swimmers discussed before. The
Marangoni boat mechanism is also employed by some
insects (rove beetle and Velia) [33] to propel on the
water surface. There are also recent experiments [34]
and theoretical work [35] on a closely related system of
thermally driven Marangoni boats or surfers.

A full quantitative theory of Marangoni boats includ-
ing hydrodynamics, surfactant advection, direct
Marangoni forces and Marangoni flows is still elusive
despite previous progress [22,26,36,37]. Some theoreti-
cal approaches ignore the advection [35,38,39], several
ignore the hydrodynamic flow fields [24,25,32,40–42]
or approximate it by uniform flow [28], which clearly
oversimplifies the description of surfactant transport.
In particular, on the numerical side, a recent paper of
Kang et al. [37] provides progress by including advec-
tion fully into the numerical solution for an anisotropic
Marangoni boat. A theoretical description is compli-
cated by the fact that most of the Marangoni boats
operate at higher Reynolds numbers, and fluid flow gen-
erated during Marangoni propulsion is typically featur-
ing vortices [29,37]. Miniaturization to the microscale
leads to low Reynolds numbers. Therefore, miniatur-
ization is not only attractive for possible applications
but also provides a starting point for the development
of hydrodynamic theories, as the simpler linear Stokes
equation holds for fluid flow at low Reynolds numbers.
This has been initiated in Refs. [35,36,38,39].

Another question is regarding the role of intrinsic
anisotropy, namely, whether isotropic swimmers with
no intrinsically defined motion direction are also capa-
ble of a spontaneous motion which then spontaneously
breaks the symmetry of the system. This question has
been answered positively for autophoretic swimmers
[9,18], where it has been shown that advection by the
surrounding fluid can maintain the necessary gradi-
ents in fields and/or concentrations above a critical
strength of the advection (characterized by a dimen-
sionless Peclet number). Liquid Marangoni swimmers
are always symmetric by construction and have to
maintain an increased surfactant concentration in the

123



Eur. Phys. J. E           (2021) 44:21 Page 3 of 22    21 

Fig. 1 Schematic of the PEG–alginate capsule. The water-
soluble “fuel” or spreading molecule PEG is incorporated
during alginate capsule synthesis in the core and diffusively
emitted during swimming

front of their interface by adsorption of surfactant (or
micelles) or by autophoretic effects [17,19,20]. For the
Marangoni boats the question regarding spontaneous
symmetry breaking has been addressed experimentally
in Ref. [28], where symmetric camphor disks have been
shown to propel and swimming velocities have been
shown to be largely independent of intrinsic swimmer
anisotropy. So far, a theoretical answer is missing for
Marangoni boats.

Here, we present a combined experimental and the-
oretical approach. We try to further approach the
microscale by synthesizing alginate capsules as swim-
mer bodies, which provide a porous matrix that can
accept surface active molecules. Several weakly sur-
face active fuels are tested, among which polyethy-
lene glycol (PEG) turns out to be the most effec-
tive. The PEG–alginate swimmers exhibit fast and pro-
longed propulsion. In general, we find prolonged propul-
sion only if spreading molecules are water-soluble as
for PEG; then the air–water interface can regenerate
by the fuel being dissolved in water. The PEG swim-
mers are approximately half-spherical, i.e., symmet-
ric; therefore, we can address the question of sponta-
neous motion for a symmetric swimmer design. More-
over, a half-spherical shape turns out to be very con-
venient for theoretical modeling, and has also been
employed in Ref. [37]. For small Reynolds numbers,
this geometry allows for a complete theoretical descrip-
tion of Marangoni boat propulsion by analyzing the
coupled problems of surfactant diffusion and advec-
tion, fluid flow, which includes surfactant-induced fluid
Marangoni flow, and surfactant adsorption at the air–
water interface; we also include a possible evaporation
of surfactant. The swimming speed is determined from
the balance of Marangoni forces (both direct forces
from surface tension gradients and from Marangoni flow
forces) and drag forces. We can address the problem of
spontaneous symmetry breaking and predict the swim-
mer’s speed in a stationary state. This solution gives
also hints how to generalize to higher Reynolds num-
bers using the concept of the Nusselt number, for which
many results are known phenomenologically.

On the experimental side, we find further effects, such
as the repulsive interaction of PEG–alginate swimmers
with walls and the tendency to move in curved trajec-
tories, which can be explained in the framework of the
Marangoni boat mechanism.

Fig. 2 Synthesis of PEG–alginate swimmers by pipetting
microliter amounts of PEG–alginate solution into cross-
linker solution. Side view of a PEG–alginate swimmer show-
ing its half-spherical shape

2 Alginate-based capsule swimmers

2.1 Swimmer synthesis and characterization

The synthesized capsules show typical propelling mech-
anisms similar to phenomena observed for the insect
class of Microvelia. Our artificial microswimmers con-
sist of PEG droplets, which were surrounded by thin
alginate shells (Fig. 1). For the preparation of these
particles, we first form an aqueous PEG–alginate com-
posite solution (standard: wPEG300 = 0.5%, walginate =
0.5%). A droplet of this mixture is then deposed on
the surface of an aqueous CaCl2 solution (standard:
wCaCl2·2H2O = 0.5%). The Ca2+ ions serve as cross-
linker and induce, within several microseconds, the
gelation of the alginate membranes according to the
box-egg model [43–46]. Immediately after the forma-
tion of these particles, the capsules start to swim along
the water surface.

Dripping microliter amounts of alginate into a cross-
linker salt solution containing counterions starts an
ionotropic gelation and produces approximately half-
spherical alginate gel capsules of millimeter radius (see
Fig. 2) [43]. We report results for a ∼ 1500µm; radii
a ∼ 150µm can be reached. For alginate gelation, dif-
ferent salt solutions can be used containing divalent
cations such as CaCl2, CuCl2, or BaCl2 solutions.

Adding surfactant to the alginate solution before
dripping automatically loads the porous gel capsule
with surfactant molecules. For suitable surfactants, cap-
sules start to propel spontaneously on the air–water
interface directly after dripping. The simple dripping
technique allowed us to test many different “fuels”:
successfully propelling fuels are polyethylene glycols
(PEGs) with molar weights 200–35000 g/mol, alcohols,
acetic acid (stronger acids lead to protonization of algi-
nate and subsequent coagulation), and organic solvents.
A complete list of successfully tested fuels substances
is given in Table 1. Swimmers fueled by PEG (or
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Table 1 Fuel substances leading to successful alginate capsule propulsion

Polymers Alcohols Acids Organic solvents

PEG 200 Ethylene glycol Acetic acid Acetone
PEG 300 Propylene glycol Dimethyl sulfoxide
PEG 400 Diethylene glycol Tetrahydrofuran
PEG 600 Ethanol
PEG 1000 Isopropanol
PEG 6000 1-pentanol
PEG 20000 Benzyl alcohol
PEG 35000 1-hexanol
PPG 400 2-butanol, Tert-butanol

Dodecanol

polypropylene glycol (PPG)), in particular PEG 300,
exhibit the best results regarding propulsion speed and
propulsion duration; the reason is a suitable combina-
tion of diffusion constant, solubility, but also gelation
properties of the alginate–PEG mixture. Correspond-
ing monomers and dimers (ethylene glycol, propylene
glycol, diethylene glycol) also exhibit good swimming
properties but with lower speed and duration. It is
particularly important for a prolonged propulsion that
the fuel substance lowers the air–water surface ten-
sion but is also water-soluble such that it dissolves in
the water reservoir after spreading in order to regener-
ate the air–water interface. Evaporation from the air–
water interface is another mechanism to achieve such
a regeneration, which is at work in camphor boats
[26–28,32]. Strong surfactants and detergents, such as
sodium dodecyl sulfate, generate spreading pressures
that can rupture the alginate capsule. Moreover, they
quickly saturate the air–water interface such that con-
centration gradients and, thus, swimming cannot be
established. In the following, we report results for solu-
tions of alginate and PEG 300 (walginate = 0.5% and
wPEG300 = 0.5%) dripped into a CaCl2 cross-linker
solution (wCaCl2·2H2O = 0.5%).

Alginate gels have a porous structure [43–45]. Scan-
ning electron microscopy (SEM) of the alginate capsules
reveals their porosity and also a certain roughness on
the microscale with asperities on the capsule surface
(see Fig. 3). The pores are essential for the slow dif-
fusive emission of surfactant from the capsule [44,45].
PEG diffusion through the porous alginate matrix is
much slower than PEG diffusion in water; therefore,
PEG should be released with a slowly varying controlled
diffusive current that is limited by its slow diffusion in
the alginate. The shape of the capsule and the spatial
distribution of pores on the surface can break the overall
spherical symmetry and give rise to small anisotropies
in the emission, in principle.

2.2 Swimming motion

The alginate–PEG swimmers exhibit a fast and sus-
tained motion. The swimming motion was observed in a
cylindrical dish (diameter 24 cm) for up to 20min. The
swimmers exhibit typical speeds Uswim ∼ 2 − 3 cm/s

Fig. 3 Scanning electron microscopy images of the porous
structure of unloaded alginate capsules (1a,1b) and PEG-
loaded alginate capsules (2a,2b) in 5000-fold (1a,2a) and
15000-fold (1b,2b) magnification

Fig. 4 Typical swimming trajectory of a PEG–alginate
swimmer in the cross-linker solution. Color-coded is the
swimming velocity Uswim, the trajectory shows the first 84 s
of swimming

corresponding to 10–20 swimmer sizes per second (see
Fig. 4); after 20min, velocities Uswim ∼ 1 cm/s can still
be measured. This swimming performance is compara-
ble to camphor boats [27,28] and active liquid droplets
[16,17].
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Fig. 5 Swimming trajectory of two PEG–alginate swim-
mers in a cylindrical container. Color-coded is the sign of the
curvature, blue/red trajectories curve clockwise/counter-
clockwise. Swimmers prepared according to same protocol
exhibit individually different curving behaviors (left: mostly
counter-clockwise, right: mostly clockwise). Reflections at
walls are of different duration

A typical swimming trajectory (lasting 84 s) far from
a wall is shown in Fig. 4. We obtained this trajectory
from a single-particle tracking analysis (using ImageJ);
typical swimming velocities are Uswim ∼ 2 − 3 cm/s
corresponding to 10 − 20 swimmer sizes per second.
This corresponds to moderate Reynolds numbers Re =
ρUswim2a/μ ∼ 60 (with the swimmer diameter 2a �
3000µm as length scale and the viscosity and density
of water, μ � 10−3 Pas and ρ = 103 kg/m3).

Swimming trajectories such as in Fig. 4 and in con-
finement in Fig. 5 exhibit phases with a characteristic
curvature. Marking the swimmer with elongated plas-
tic fragments shows that the elongated fragment is not
turning with respect to the direction of motion, i.e.,
the curving of the trajectory is correlated with a reori-
entation of the swimmer. This is a hint that during
curved swimming the swimming direction is linked to
the orientation of the particle and, therefore, that the
spherical symmetry is slightly broken by irregularities
in the porous structure of the alginate particle (see SEM
pictures in Fig. 3). The swimming direction is selected
by dominating pores which determine a preferred direc-
tion of emission and, thus, propulsion by the resulting
surfactant gradients. Curving itself can be caused by
additional torques from asperities of the alginate cap-
sule where surfactant is emitted preferentially in the
tangential direction. A similar mechanism is at work
at camphor-driven rotors [42,47]. This is supported by
the finding that the curving behavior of swimmers pre-
pared by the same protocol (such as the swimmers in
Fig. 5) is individually different and seems to depend on
small differences between irregularities acquired in the
preparation process. Recently, also vortex shedding at
Reynolds numbers Re ∼ 100–200 have been proposed
to cause curving of trajectories [29].

Swimmers are also repelled by walls and reverse their
direction of motion normal to the wall. In a course of a
collision in normal direction, the swimmer keeps, how-
ever, its orientation while the direction of motion is
reversed, i.e., during normal wall collisions the swim-
ming direction also reverses with respect to the particle
orientation. Swimming direction reversal has also been

observed for camphor boats [22,24,25]. Swimming tra-
jectories in Fig. 5 also show collisions with walls that
last longer; these collisions can also feature a reorien-
tation of swimmer, similar to what has been predicted
for self-diffusiophoretic swimmers [13].

2.3 Swimming mechanism

The order of magnitude of swimming speeds can only be
explained as a result of a modulation of the large liquid–
air surface tension. Marangoni mechanisms based on
surface tension variations within the gel–liquid inter-
face between alginate capsule and surrounding water
are unlikely because the interfacial tensions and, thus,
also Marangoni stresses, are too small for solid–liquid
or gel–liquid interfaces. This hints at a Marangoni boat
propulsion mechanism for the alginate–PEG swimmers.

There is further experimental evidence supporting
the Marangoni boat mechanism: (a) Sinking capsules
stop swimming which excludes a phoretic or Marangoni
mechanism based only on the swimmer–liquid interface
such as the active liquid droplet mechanisms [16,17].
(b) Only water-soluble spreading molecules lead to pro-
longed propulsion because they allow regeneration of
the air–water interface by re-dissolving after spreading,
which is crucial to establish concentration gradients at
the air–water interface. (c) Local Wilhelmy plate sur-
face tension measurements demonstrate surface tension
modulations depending on the distance to a swimmer;
this demonstrates that additional surfactant is emitted
close to the swimmer. (d) Particle image velocimetry
(PIV) measurements and selective staining with aniline
show fluid motion consistent with surfactant spread-
ing by surface tension reduction. (e) Swimming speed
depends on the diffusive mass outflux. We will develop
a theory for this dependence in the theoretical part of
the paper, which describes the data (without free fit-
ting parameters). (f) Repulsion and direction reversal
without reorientation of the swimmer can be explained
by an accumulation of surfactant emitted by the swim-
mer in front of the wall. This points to a motion oppo-
site to the surfactant concentration gradient, while the
direction of motion is not completely fixed relative to
swimmer orientation.

More details regarding points (d) and (e) are given
below. All these results suggest that the swimmer dif-
fusively emits surfactant which reduces the surface ten-
sion. The swimmers are spherically symmetric to a good
approximation and this symmetry is strongly broken
by the concentration profile in the fast moving state.
The only available mechanism for symmetry breaking
in the moving state is by advection to the surround-
ing moving liquid, which selects a swimming direction
spontaneously.

The results regarding curved trajectories and wall
collision suggest that spherical symmetry is not per-
fect and large pores in the capsule shell can select a
weakly preferred propulsion direction and link capsule
orientation to swimming direction. This weak link can
be deleted during a normal collision with a wall, when
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Fig. 6 PIV measurements of a PEG–alginate swimmer a
after dripping and b in motion. The velocity scale bar refers
to the fluid velocities, which are also color-coded for veloc-
ity. The white dashed arrows indicate the direction of the
particle motion. On the right, we indicate the fluid motion

in b featuring radial Marangoni flow (blue), combined with
flows corresponding to two counter-rotating vortices created
by particle motion (green), and downstream Karman-like
vortices (red)

the swimmer reverses direction without changing orien-
tation.

2.3.1 PIV measurements

PIV measurements were performed with polymethyl
methacrylate (PMMA) tracer particles with sizes
between 30 and 50 nm and visualize the fluid flow close
to the air–water interface. Figure 6 shows the results
directly after swimmer synthesis by dripping (A), i.e.,
in the initial starting phase of the swimmer and (B)
shortly after the swimming started.

In Fig. 6a, we observe strong radial spreading of sur-
factant by initial Marangoni flows. Then, the symme-
try is spontaneously broken when swimming is initi-
ated and Fig. 6b shows the fluid surface flow in the ini-
tial swimming stage. During swimming, we still observe
radial Marangoni flows (blue) but the fluid flow around
the swimming object creates a tangential backward
component (green) because two counter-rotating vor-
tices form; moreover, Karman-like vortices appear on
the rear side (red). Vortex formation demonstrates that
the fluid motion happens at moderate Reynolds num-
bers Re ∼ 60. Similar vortex structures have also been
observed in Ref. [29] for disks propelled by alcohol. Nev-
ertheless, Reynolds numbers are moderate (Re � 200)
such that we can expect a steady fluid flow (eventu-
ally with boundary layer separation from the sphere
and stationary Marangoni vortices). Only at higher
Reynolds numbers Re > 200, we expect unsteady or
even turbulent flow around a sphere [48].

2.3.2 Mass outflux and velocity measurements

We propose that the swimming motion is caused by sur-
factant that is diffusively emitted by the PEG–alginate
capsule. Therefore, a relative slow reduction of the total
mass of the PEG–alginate capsules should be measured,
which also correlates with the swimming speed. Over-
all spherical symmetry of the capsule implies that the
emission current density α is uniform on the capsule
surface.

Quantitative measurements of the mass outflux are
difficult. In Ref. [28] this has been achieved only indi-
rectly by measuring the increase in surfactant in the
surrounding solution. Here, we measure the mass out-
flux directly by removing swimmers (prepared accord-
ing to the same protocol) after times t = 1, 2, 3, ...min
from the swimming solution, dry freezing the swimmers
to completely remove water from the alginate hydrogel,
and determine their weight, which gives the mass m(t)
of the swimmer at times t = 1, 2, 3, ...min. Figure 7(left)
shows the results for the mass averaged over 10 swim-
mers, error bars are the standard deviation.

Diffusive outflux through a porous shell of thickness
h (h < a) approximately follows an exponential decay.
The emission current density is α ≈ −Ds(ci − c0)/h,
where Ds is the diffusion constant in the gel, ci the
interior PEG concentration and c0 the exterior PEG
concentration in solution. We assume that PEG has
to diffuse over a fixed distance h for release; more
refined release models use a time-dependent diffusion
distance [28,49,50]. For a half-sphere, this results in
ċi = 3α/a = −3Ds(ci − c0)/ha and an exponential
decay of ci(t) and, thus, m(t). This motivates an error-
weighted least-square fit with an exponential

m(t) = m∞ + m0 exp(−t/τm), (1)

which describes the data well with an “empty” mass
m∞ ≈ 180µg, a mass loss m0 ≈ 182mug, and a time
constant τm ≈ 9.95min [see Fig. 7(left)]. This confirms
a slow diffusional surfactant release, i.e., α is changing
on a large time scale τm; this time scale is large com-
pared to any microscopic time scale of the fluid flow
and the surfactant diffusion. Therefore, we expect that
fluid flow and surfactant concentration are always in a
quasi-stationary state during swimming, i.e., adiabati-
cally following a slowly changing α. Differentiating with
respect to time gives the mass outflux ṁ as a function
of time [see Fig. 7(middle)].

The corresponding swimming velocity Uswim of the
PEG–alginate swimmers is measured via the single-
particle tracking analysis. Figure 7(right) shows the
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Fig. 7 Left: Mass of the PEG–alginate swimmers as a
function of time with an exponential fit m(t) = m∞ +
m0 exp(−t/τm) (see text); error bars (light blue) denote
the standard deviation. Middle: Resulting mass loss −ṁ
as a function of time. Right: Corresponding velocity of

the swimmer averaged over 10 swimmers; error bars (light
blue) denote the standard deviation. The orange line is a
fit Uswim(t) = u0 exp(−t/τu,0) + u1 exp(−t/τu,1) (see text)
motivated by the existence of two swimming phases

results for the velocity averaged over 10 swimmers pre-
pared according to the same protocol as for the mass
measurements, error bars are the standard deviation.
The data clearly shows a fast initial drop of the veloc-
ity in a first phase, followed by a slower decay in a sec-
ond phase. During the first phase, slow diffusion of sur-
factant through the porous alginate matrix might not
be necessary yet and gelation of the capsule alginate
shell might also be incomplete. The existence of several
swimming phases has also been observed for camphor
disks in Ref. [27]. The second phase should be char-
acteristic for propulsion triggered by slow diffusional
release as described above. This motivates a fit

Uswim(t) = u0 exp(−t/τu,0) + u1 exp(−t/τu,1) (2)

with two exponentials. The resulting error-weighted
least-square fit describes the data well as shown in Fig.
7(right). The first phase has a time constant τu,0 �
0.37min (and u0 � 0.74 cm/s), whereas the second
phase has τu,1 � 15.89min (and u1 � 2.27 cm/s), which
is comparable with τm. This further supports that dif-
fusive release of surfactant causes the propulsion during
the second phase.

3 Theoretical results

3.1 Model

In the theoretical part of the paper, we focus on the
dependence of swimming speed on diffusive surfactant
release. So far, this important question has not received
attention in the literature. The strategy to calculate
the swimming speed is as follows. We first prescribe
a stationary velocity U = Uez of the swimmer and
analyze the following three coupled problems for their
stationary state:

(i) Surface tension reduction by surfactant adsorp-
tion at the air–water interface; depending on the
volatility of the surfactant we also need to include
a possible evaporation of surfactant. PEG is not

volatile but the theory will apply to the physics
of the Marangoni boat mechanism in general and
should also explain quantitative results on cam-
phor boats from Ref. [28]. As opposed to PEG,
camphor is a volatile surfactant which quickly
evaporates from the air–water interface.

(ii) Fluid flow, which includes both the fluid flow
induced by motion of the half-spherical capsule
and additional surfactant-induced Marangoni flow
inside the fluid.

(iii) Diffusive surfactant release from the swimmer
and subsequent diffusion and advection.

Solving these three coupled problems we can obtain the
Marangoni forces as a function of the prescribed veloc-
ity U from the surfactant concentration profile. Finally,
the actual swimming velocity U = Uswim is determined
by the force equilibrium between drag force, direct pro-
pelling Marangoni forces from the surface tension gra-
dient along the air–water–swimmer contact line, and
Marangoni flow forces, which can increase either the
drag or the direct Marangoni propulsion force.

The fluid flow part (ii), the drag force, and also the
Marangoni forces in the force balance strongly depend
on the Reynolds number. Although the Reynolds num-
ber for the PEG–alginate swimmers is moderate (Re ∼
60), we will first develop a low Reynolds number theory,
and try to address higher Reynolds numbers afterward
using phenomenological results for the Nusselt number.

We introduce coordinates such that the origin r = 0
is at the center of the circular planar solid surface of
the half-sphere, and the liquid–air interface is at y = 0
(with y < 0 being the liquid phase) and ez will coin-
cide with the spontaneously selected swimming direc-
tion. We also use spherical coordinates such that θ = 0
is the swimming direction and the interfacial plane is
located at φ = 0, π (y = 0). The half-sphere has radius
a such that the contact line is at r = a and φ = 0, π
(and parametrized by θ). We denote the half-spherical
surface of the swimmer by S, the circular air–water–
swimmer contact line by L, and the liquid–air interface
outside the swimmer as SInt, see Fig. 8.
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Fig. 8 Side view (top) and top view (bottom) of the half-
spherical Marangoni swimmer geometry with surfactant
concentration field c(r) and coordinates

3.1.1 Surface tension reduction by surfactant adsorption
and evaporation

We start with problem (i), which is independent of the
Reynolds number. In equilibrium, the surfactant con-
centration Γ (r) at the interface y = 0 for a given
bulk subsurface concentration c(r) is given by Lang-
muir adsorption

Γ (c) = ΓmaxKLc/(1 + KLc) (3)

(with the adsorption equilibrium constant KL and the
maximal surfactant surface concentration Γmax). In
Langmuir adsorption, we assume ideal behavior of the
surfactant molecules. According to the Gibbs adsorp-
tion isotherm, the interfacial surface tension γ is related
by dγ = −RTΓd ln c to surface concentration and bulk
concentration [51]. Together with the Langmuir equa-
tion, this leads to the Szyszkowski equation

Δγ = −RTΓ (c0)
1
c0

Δc = −RTΓmax
KL

1 + KLc0
Δc

(4)

(with the gas constant R = NAkB and Γmax in mol
per area), formulated for small local variations around
a background, c(r) = c0 +Δc(r). Small surfactant con-
centration variations thus linearly reduce the surface
tension,

Δγ(r) = −κΔc(r) with κ = RTΓmax
KL

1 + KLc0
,

(5)

where r is an interfacial vector with y = 0. We choose
the background c0 as the bulk value c0 = c(∞) for
|r| → ∞.

In formulating Eq. (5) locally, we already assumed
that the on and off kinetics of surfactant to the inter-
face is fast such that equilibrium can be assumed to
be established instantaneously at every point r on the
interface. Then, also the surface concentration Γ (r) is
slaved to the bulk and only a passive “reporter” of the
bulk subsurface concentration c(r)|y=0, and we do not

have to solve a separate dynamics for Γ (r) in the inter-
face. This assumption is typically valid for small sur-
factant molecules [52], in particular for water-soluble
spreading molecules such as PEG. The assumption also
implies that there is no flux imbalance within the inter-
face, and also the bulk diffusive flux to the interface
SInt has to vanish,

jInt = − D∇c(r) · nout
∣
∣
y=0

= −D ∂yc(r)|y=0 = 0,

(6)
which provides the corresponding boundary condition
to the diffusion–advection problem (iv) in the bulk.
Here, D is the surfactant diffusion constant in the
bulk liquid. The surface concentration Γ (r) should also
be small enough to avoid saturation of the air–water
interface, which also requires water-soluble spreading
molecules such as PEG.

So far, we did not consider the possibility of surfac-
tant evaporation from the interface. This enters the bal-
ance of fluxes to and from the interface (see Fig. 8), and
we have to replace Eq. (6) by

jInt = − D∇c(r) · nout
∣
∣
y=0

= −jev = k c(r)|y=0 , (7)

where k is the rate constant for evaporation.

3.1.2 Fluid flow at low Reynolds numbers

We consider the rest frame of the swimmer and lin-
early decompose the total fluid flow field into a field
v(r), which is the flow field of a half-sphere pulled
with velocity Uez through the liquid and a correction
vM(r) from Marangoni flows, vtot(r) = v(r) + vM(r).
For low Reynolds numbers, both v(r) and vM(r) (and
the associated pressure fields) fulfill the incompressibil-
ity condition ∇ · v = 0 and the linear Stokes equation
μ∇2v = ∇p, where μ is the fluid viscosity. The Stokes
equations for v(r) and vM(r) are decoupled because of
linearity; this will be different at high Reynolds num-
bers.

The flow field v(r) of an externally pulled half-sphere
has no-slip boundary conditions on the surface of the
sphere, stress-free boundary conditions at the liquid–
air interface, and v(∞) = −Uez at infinity. The total
flow field vtot(r) also has no-slip boundary conditions
on the surface of the sphere, assumes vtot(∞) = −Uez

at infinity, but is subject to Marangoni stresses at
the liquid–air interface. Consequently, the difference
vM(r) = vtot(r) − v(r) from Marangoni flows has no-
slip boundary conditions on the surface of the sphere,
has vanishing velocity vM(∞) = 0 at infinity, and is
subject to Marangoni stresses at the liquid–air inter-
face. Moreover, for all three flow fields, there is no nor-
mal flow across the liquid–air interface vtot,y(r)|y=0 =
vy(r)|y=0 = vM,y(r)|y=0 = 0. We will assume that
the liquid–air interface remains flat, even if the sphere
moves. This requires that typical viscous forces remain
small compared to interfacial stress, μU � γ, which
is fulfilled with μU ∼ 10−5 N/m for U ∼ 1 cm/s and
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γ ∼ 0.07N/m for the air–water interface. We also
neglect a possible curvature of the interface from wet-
ting effects.

The Marangoni flow is caused by tangential
Marangoni stresses at the liquid–air interface y = 0,

μnout · ∇ vM(r)|y=0 = μ∂y vM(r)|y=0 = ∇SΔγ(r),
(8)

which act both on vM and vtot.
At low Reynolds numbers, the flow field v(r) is

given by “half” (y < 0) the Stokes flow field around a
sphere, which automatically fulfills the boundary con-
dition vy(r)|y=0 = 0 for symmetry reasons. In spherical
coordinates, the axisymmetric Stokes flow field is

v(r) = U cos θu(r/a)er + U sin θv(r/a)eθ with

u(r/a) =
[

−1
2

(a

r

)3

+
3
2

a

r
− 1

]

(9a)

v(r/a) =
[

−1
4

(a

r

)3

− 3
4

a

r
+ 1

]

. (9b)

3.1.3 Surfactant diffusion and advection

Surfactant molecules are emitted from the half-spherical
surface S and diffuse into the liquid phase. At the same
time, they are advected by the total fluid flow. In the
stationary limit, the bulk concentration field is gov-
erned by the diffusion–advection equation

0 = ∂tc = D∇2c − (v(r) + vM(r)) · ∇c. (10)

Because of the slow diffusional surfactant release the
appropriate boundary condition on S is a constant flux
boundary condition,

j · n|S = −D ∇c · n|S = α, (11)

together with c(∞) = 0 and the no-flux boundary con-
dition (6) at the interface SInt. The flux α is only slowly
changing (on the time scale τm) and approximated as
a constant for the calculation of quasi-stationary fluid
flow and concentration fields.

3.1.4 Drag and Marangoni forces at low Reynolds
numbers

The half-spherical swimmer moving at velocity U is
subject to three forces. First, there is the drag force,
which is, at low Reynolds numbers, given by the Stokes
drag for a half-sphere,

FD = FDez = −3πμaUez. (12)

Second, there is the direct Marangoni propulsion force
FM = FMez from integrating the surface stress
Δγ(r) = −κc(r) along the air–water–swimmer contact
line,

FM ≡ −κ

∮

L

ds(en · ez)c(r)

= −2κa

∫ π

0

dθ cos θc(a, θ)|y=0. (13)

Third, there is the Marangoni flow force FM,fl =
FM,flez, which is by definition the force transmitted by
fluid stresses of the Marangoni flow onto the sphere,

FM,fl ≡ −
∫

S

daiσM,iz. (14)

For low Reynolds numbers, we can apply the reciprocal
theorem to the flow fields v and vM and their asso-
ciated stress tensors to calculate the Marangoni flow
force without explicitly calculating the Marangoni flow
vM, as has been shown in detail in Ref. [53]. This gives
the identity 0 =

∫

S+SInt
daivjσM,ij, which leads to a

Marangoni flow force

FM,fl = −κ

∫

SInt

dS
v(r) + Uez

U
· ∇Sc(r). (15)

The total Marangoni force

FM,tot ≡ FM + FM,fl, (16)

is obtained by using (13) and the Gauss theorem,

FM,tot = κ

∫
SInt

dS

(
∇S · v(r)

U

)
c(r)

= −3κa

2

∫ ∞

1

dρ

∫ π

0

dθ cos θ

(
1

ρ
− 1

ρ3

)
c(ρa, θ)|y=0.

(17)

Because ρ−1 − ρ−3 > 0 for ρ > 1, the total Marangoni
force is always positive for concentration profiles, which
are increasing toward the rear side. This implies that
the total Marangoni force is always propulsive, i.e.,
points in the same direction as the imposed velocity U
regardless of its absolute value. This is a necessary con-
dition for self-propulsion. When the particle is pulled
by an external force, this also implies that the total
Marangoni force will always support the pulling force
instead of increasing the drag. The Marangoni flow
contribution FM,fl, however, can have both signs. For
FM,fl > 0, the flow force increases the direct Marangoni
force resulting in FM,tot > FM; for FM,fl < 0, the flow
force is directed backward and increases the drag force
resulting in FM,tot < FM. As opposed to Ref. [38], we
will find that both cases are possible.

In the stationary swimming state, drag and total
Marangoni force have to be balanced,

0 = FD + FM,tot = FD + FM + FM,fl, (18)

such that the swimmer is force-free. This is the swim-
ming condition that finally determines the actual swim-
mer velocity U = Uswim.
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3.2 Non-dimensionalization

To proceed, we make the system of coupled equations
governing our sub-problems (i)–(iii) and the Marangoni
forces dimensionless by measuring lengths in units of a,
velocities in units of D/a, concentrations in units of
αa/D, and forces in units of Dμ. We introduce

ρ ≡ r/a, ∇̄ ≡ a∇ = ∇ρ, v̄ ≡ v
a

D
, Ū ≡ U

a

D
,

c̄ ≡ c
D

αa
, j̄ ≡ j

1
α

,

F̄ ≡ F
1

Dμ
, p̄ ≡ p

a2

Dμ
. (19)

The prescribed dimensionless velocity Ū of the swim-
mer is the first control parameter of the problem,1
which is related to the Reynolds number, Re = 2Ū/Sc,
via the Schmidt number Sc ≡ μ/ρD.

Our dimensionless set of equations for problems (i)–
(iii) becomes

(i) − ∇̄c̄(ρ) · nout
∣
∣
ȳ=0

≈ 0

without evaporation, (20a)

− ∇̄c̄(ρ) · nout
∣
∣
ȳ=0

≈ k̄ c̄(ρ)|ȳ=0

with evaporation, (20b)
(ii) v̄tot(ρ) = v̄(ρ) + v̄M(ρ),

(iia) v̄(ρ, θ) = Ū cos θu(ρ)er + Ū sin θv(ρ)eθ

Stokes flow field, (20c)

(iib) ∇̄ · v̄M = 0
Marangoni flow field,

∇̄2
v̄M = ∇̄p̄M,

v̄M(∞) = 0,

v̄M(ρ)|ρ=1 = 0,

v̄M,y(ρ)|ȳ=0 = 0,

∂ȳv̄M(ρ)|ȳ=0 = −Pe ∇̄S c̄(ρ)
∣
∣
ȳ=0

, (20d)

(iii) 0 = ∇̄2
c̄ − (v̄(ρ) + v̄M(ρ)) · ∇̄c̄,

c̄(∞) = 0,

j̄ · n
∣
∣
S

= − ∇̄c̄ · n
∣
∣
S

= 1, (20e)

with the dimensionless Peclet number

Pe ≡ καa2

D2μ
=

κṁ

2πD2μ
, (21)

1 In many publications on the diffusion–advection prob-
lem, such as Refs. [54–56] but also in Refs. [10,28,37–39],
Ū is called the Peclet number. Here, we define the Peclet
number as Pe ≡ Ūα, i.e., by the characteristic velocity
Ūα = καa/Dμ, where a typical direct Marangoni force
FM ∼ κa2∂rc(r = a) ∼ κa2α/D is balanced by the typi-
cal Stokes drag force FD ∼ μaU . The Peclet number is a
dimensionless measure of propulsion strength with this def-
inition.

where ṁ = 2πa2α is the mass loss per time of the swim-
mer (see Fig. 7). The Peclet number is a dimensionless
measure of propulsion strength.

Typical values for the PEG–alginate swimmer are
very high, Pe ∼ 107 (see Table 2). We also introduced
the dimensionless Biot number

k̄ ≡ ak

D
(22)

governing possible evaporation, which is practically
absent for PEG. From Eq. (20d), we see that the
Peclet number Pe determines the velocity scale of the
Marangoni flow field. Therefore, we can also assign a
Reynolds number ReM = 2Pe/Sc = RePe/Ū to the
Marangoni flow. Typical values for the PEG–alginate
swimmer are ReM ∼ 104 (see Table 2), which agrees
with the experimentally observed turbulent features of
Marangoni flows (see Fig. 6). Via the advection with
v̄(ρ) + v̄M(ρ), the concentration field c(ρ) depends
both on the dimensionless velocity scale Ū of the
Stokes field and the dimensionless velocity scale Pe of
the Marangoni flow field, in general. All dimensionless
parameters are summarized in Table 2, along with typ-
ical values for the PEG–alginate swimmers and in com-
parison with camphor boats according to Ref. [28].

In the following, we will solve the problems (i)–(iii),
in order to obtain the dimensionless direct and total
Marangoni forces [see Eqs. (13) and (17)] from the con-
centration profiles by

F̄M = −2Pe

∫ π

0

dθ cos θc̄(1, θ)|ȳ=0, (23)

F̄M,tot = −3Pe

2

∫ ∞

1

dρ

∫ π

0

dθ cos θ

(
1

ρ
− 1

ρ3

)
c̄(ρ, θ)|ȳ=0.

(24)

for a prescribed swimmer velocity Ū . Finally, force bal-
ance gives the dimensionless version of the swimming
condition (18),

− F̄D = 3πŪswim = F̄M(Pe, Ūswim) + F̄M,fl(Pe, Ūswim),
(25)

which then selects the actual swimmer velocity Ū =
Ūswim as a function of the remaining control parameters
Pe (“fuel” emission) and eventually k̄ (evaporation).

The non-dimensionalization reveals that the coupled
problems (i)–(iii) and the Marangoni forces depend on
three dimensionless control parameters (see also Table
2): First, the prescribed dimensionless velocity of the
swimmer Ū ; second, the Peclet number Pe character-
izing the strength α of the surfactant emission, and
third, the Biot number k̄ characterizing the evapora-
tion. We also see that the Peclet number both controls
the strength of the Marangoni flow via Eq. (20d) and
the strength of all Marangoni forces. We note, however,
that F̄M/Pe and F̄M,tot/Pe still depend on Ū and Pe
via the dependence of c̄(ρ) on these parameters.

Another important finding from non-
dimensionalization is that the diffusion–advection prob-
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Table 2 Dimensionless parameters. Re or Ū , Sc, Pe and k̄ are control parameters of the problem. ReM and Nu cannot be
independently controlled but characterize the resulting solutions; the swimming velocity Ūswim is determined by the force
balance swimming condition

Parameter Formula Eq PEG–alginate swimmer Camphor boat[28]

Reynolds number Re = 2ρUa/μ = 2Ū/Sc 30 − 80 60 − 3000
dimensionless velocity Ū = Ua/D (19) 4 × 104 − 1.2 × 105 4 × 104 − 1.2 × 106

Schmidt number Sc = μ/ρD 2860 1390
Peclet number Pe = καa2/D2μ (21) 3.5 × 106 − 8.8 × 107 (9.3 × 109)(a/4mm)2

Biot number k̄ = ak/D (22) ≈ 0 ≈ 550
swimming velocity Ūswim = Uswima/D (25) 4 × 104 − 1.2 × 105 4 × 104 − 1.2 × 106

Marangoni Reynolds number ReM = 2Pe/Sc = RePe/Ū 2.4 × 103 − 6.2 × 104 (1.4 × 107)(a/4mm)2

Nusselt (Sherwood) number Nu (Sh) = −∂ρc̄0(1)/c̄0(1) (26) (27)

lem decouples from the Marangoni flow problem for
Pe � Ū , where we can neglect vM in the advection
term. Then, the concentration profile is only deter-
mined by Stokes flow, becomes axisymmetric, and only
depends on Ū . In this limit, the Marangoni flow field
need not to be calculated in order to calculate the total
Marangoni force via Eq. (24).

3.3 Numerical methods

Numerically, we only address the low Reynolds num-
ber regime. In general, we consider the problems (i)–
(iii), i.e., solve the coupled diffusion–advection prob-
lem and the Marangoni flow problem for a prescribed
swimmer velocity Ū . From the solution for the concen-
tration field, we then calculate the Marangoni forces as
a function of Ū and Pe in order to finally solve the force
balance swimming condition. We use an iterative finite
element scheme to solve the full coupled problem; this
approach is explained in detail in Appendix A.

3.4 Low Reynolds number results

Low Reynolds numbers Re � 1 are realized for Ū �
Sc/2, which can still be much larger than unity as typ-
ical Schmidt numbers for surfactants in aqueous solu-
tions are of the order of 1000 (see Table 2). Therefore,
we have to discuss both the diffusive limit Ū � 1 and
the advective limit Ū 	 1.

3.4.1 Decoupled limit Pe � Ū

First, we will consider the limit Pe � Ū , where the
diffusion–advection problem for a half-sphere with pre-
scribed velocity U decouples from the Marangoni flow
problem. We also focus on the case in the absence of
evaporation first, as it is appropriate for the PEG–
alginate swimmer.

Diffusive release from a moving emitter or from a
resting emitter in a fluid flow can be characterized by
the average Nusselt number (or Sherwood number Sh),

Nu ≡
∫

S
j(r) · n dA

(D/a)
∫

S
c(r) dA

, (26)

which is the dimensionless ratio of the total emitted flux
and the typical diffusive flux [57]. A Nusselt number
of one is realized for purely diffusive transport, Nusselt
numbers much larger than one indicate strong advective
transport.

In the decoupled limit Pe � Ū , we find for the Nus-
selt number

Nu =
1

c̄0(ρ = 1)
=

{
1 + 1

2 Ũ for Ū � 1

0.65 Ū1/3 for Ū 	 1
, (27)

where c0(ρ) ≡ 1
2

∫ π

0
dθ sin θc̄(ρ, θ) is the zeroth Legendre

coefficient. There are two regimes, a diffusive regime for
Ū � 1 characterized by a Nusselt number close to one
and an advective regime for Ū 	 1 where the Nusselt
number becomes large, which is also clearly supported
by the numerical results in Fig. 9. The result (27) can
be derived analytically [58], apart from the value of the
prefactor 0.65, which we determined numerically from
the data in Fig. 9. A short derivation based on scaling
arguments for the advective regime is presented below.
The numerical results in Fig. 9 show perfect agreement
and clearly confirm the existence of just two regimes.

The Nusselt number has been originally defined for
constant concentration boundary conditions c̄(1, θ) =
1, For constant concentration boundary conditions, the
result is well-known [54–57] and very similar (see Fig.
9),

Nu = −∂ρc̄0(ρ = 1) =

{
1 + 1

2 Ũ + ... for Ū � 1

0.6245 Ū1/3 for Ū 	 1
(28)

with a prefactor that can be calculated analytically.
This indicates that literature results for the Nusselt
number for constant concentration boundary conditions
also apply to our situation of constant flux boundary
conditions, which is an important insight that we will
assume to also hold for higher Reynolds numbers below.
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Fig. 9 Average Nusselt number as a function of Ū for con-
stant flux and constant concentration boundary conditions
in the decoupled limit Pe � Ū . All results are from numer-
ical FEM solutions of the axisymmetric diffusion–advection
equation in two-dimensional angular representation with
ρ < R̄ = 30

In the decoupled limit Pe � Ū , we also find a diffu-
sive and an advective regime for the Marangoni forces

F̄M

πPe
=

{
3
16 Ū for Ū � 1

dMŪ−1/3 with dM � 0.8 for Ū 	 1
, (29)

F̄M,tot

πPe
=

{− 1081
1280 Ū + 3

8 Ū ln R̄ for Ū � 1

dM,totŪ
−2/3 with dM,tot � 1.4 for Ū 	 1

,

(30)

where numerical constants dM and dM,tot are obtained
from the numerical results, see Fig. 10, and R̄ is the
radial system size. Again, the numerical results (Fig.
10) show perfect agreement and clearly confirm the
existence of just two regimes, a diffusive and an advec-
tive regime. Direct and total Marangoni force reach
maximal values F̄M, F̄M,tot ∼ 0.15πPe in the crossover
region Ū ∼ 1 between diffusive and advective transport.

Also, the results (29) and (30) can be derived analyt-
ically from a calculation of the concentration field [58],
apart from the value of the numerical constants. Here
we present a short derivation based on scaling argu-
ments. In the diffusive limit Ū � 1, there is a linear
response of the concentration field, which leads to a
linear response of the Nusselt number and Marangoni
forces. The coefficients can be calculated by perturba-
tion theory about the concentration field c(0)(ρ) = 1/ρ
at Ū = 0 in powers of Ū . A remarkable result of
this calculation is that the linear term for the total
Marangoni force diverges logarithmically with the sys-
tem size R, see Eq. (30), while the linear term for the
direct Marangoni force stays finite. This means that the
Marangoni flow forces strongly increase the direct force
for Ū � 1; such a behavior could not be found in Ref.
[38]. For very large system sizes R̄ 	 1/Ū , the large
scale cutoff R̄ in (30) will be replaced by 1/Ū because
the convection term can no longer be treated pertur-

Fig. 10 Marangoni forces F̄M/πPe and F̄M,tot/πPe as a
function of imposed velocity Ū together with corresponding
concentration profiles (in the z̄x̄-plane and in three dimen-
sions) in the decoupled limit Pe � Ū . All results are from
numerical FEM solutions of the axisymmetric diffusion–
advection equation in two-dimensional angular representa-
tion with ρ < R̄ = 30. In the advective regime Ū � 1 a
concentration boundary layer develops [see Eq. (31)]

batively in the region ρ 	 1/Ū , regardless how small
Ū is [55]. We also note that the result Nu ≈ 1 + 1

2 Ũ
from Eqs. (27) and (28) for the Nusselt number in
the diffusive regime Ū � 1 is derived from the non-
perturbative matching procedure for very large system
sizes R̄ 	 1/Ū [55], while a perturbative calculation
gives Nu ≈ 1 + 1//̄R + O(Ū2) with the radial system
size R̄. This perturbative result describes our numerical
data for a finite system actually better, see Fig. 9.

In the limit of strong advection Ū 	 1, a concentra-
tion boundary layer develops around the half-sphere,
as can be clearly seen in the concentration profiles in
Fig. 10). Its width Δr is determined by the distance
that a surfactant molecule can diffuse during the time
Δt ∼ a/v(Δr/a) [see Eq. (9b)] it takes to be trans-
ported along the sphere by advection: Δr2 ∼ DΔt.
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Because v(Δr/a) ∼ UΔr/a [see Eq. (9b)], we find

Δρ = Δr/a ∼ Ū−1/3. (31)

This is a classic result for the diffusion–advection prob-
lem for constant concentration boundary conditions
[54,57], but also holds for constant flux boundary con-
ditions. Because the concentration will drop in radial
direction from its value at the surface S of the half-
sphere to zero within the concentration boundary layer
of width Δρ, we also have 1 = −∂ρc̄(ρ = 1, θ) ∼ c̄(ρ =
1)/Δρ, which leads to a scaling

c̄(ρ = 1, θ) ∼ Δρ ∼ Ū−1/3 (32)

of the symmetry-breaking concentration level at the
surface S of the half-sphere for constant flux boundary
conditions. For strong advection, the Marangoni forces
decrease as a function of Ū because the concentration
boundary layer width Δρ, in which forces are gener-
ated, and the concentration level around the sphere, to
which forces are proportional, both decay with velocity
as Ū−1/3.

The scaling property (32) for c̄(ρ = 1, θ) directly
explains the results (27), Nu ∼ 1/c̄(ρ = 1, θ) ∼ Ū1/3,
for the Nusselt number and (29), F̄M/Pe ∼ c̄(ρ =
1, θ) ∼ Ū−1/3, for the direct Marangoni force in the
advective limit Ū 	 1. They are clearly confirmed
by all numerical results in Figs. 9 and 10. The result
for the total Marangoni force (30) seems to deviate
from this advective scaling Here, the expected scal-
ing from the radial concentration boundary layer of
width Δρ is F̄M,tot/Pe ∼ Δρ2c̄(ρ = 1, θ) ∼ Ū−1 (see
Eq. (24)), which is clearly not found in the numerics
(yellow line in Fig. 10). The reason is that this con-
tribution is actually only sub-dominant. The leading
contribution comes from the advective tail of angu-
lar width Δθ ∼ Ū−1/3; the width of the tail follows
from the scaling of the stream function ψ ∝ r2Δθ2

in the tail and ψ ∝ 3Δr2 sin2 θ/2 in the boundary
layer and the fact that a fluid particle should follow a
Stokes flow stream line ψ = const in the advective limit.
Therefore, the dominant contributions in Eq. (24) are
F̄M,tot ∼ PeΔθc̄(ρ = 1, θ) ∼ Ū−2/3 in agreement with
the numerical results in Fig. 10.

Comparing the curves for direct and total Marangoni
force in Fig. 10, we observe a crossing such that F̄M <
F̄M,tot in the diffusive regime Ū � 1, while F̄M > F̄M,tot

in the advective regime Ū 	 1. This means that the
Marangoni flow force F̄M,fl = F̄M,tot − F̄M increases
the propulsion force in the diffusive regime Ū � 1 but
decreases the propulsion force (or increases the drag)
for Ū 	 1. This subtle result is related to the structure
of the Marangoni flows, which are generated by the sur-
factant concentration gradients ∇̄S c̄(ρ)

∣
∣
ȳ=0

within the
liquid–air interface (see Eq. (20d)) and can be quali-
tatively rationalized with the help of Eq. (15) for the
Marangoni flow force.

Fig. 11 Schematic of concentration field (as concentration
contour lines) and Marangoni flow field (arrows) and result-
ing direct force FM and Marangoni flow force FM,fl in the
diffusive (Ū � 1) and advective (Ū � 1) regime. The dom-
inant Marangoni flow contributions are marked in blue. In
the diffusive regime, Marangoni flows increase the direct
force, in the advective regime they decrease the direct force.
It is important to note that concentration contour lines are
not approaching a spherical shape close to the swimmer in
the advective regime because we have constant flux bound-
ary conditions such that the swimmer surface is a contour
of constant radial gradient by construction. The elongated
tail gives rise to a slower decay of the gradient itself and,
thus, larger radial gradients in the tail, which is reflected by
additional contour lines emerging on the rear side

We can decompose the surfactant concentration gra-
dient into tangential and radial components

∇̄S c̄(ρ)
∣
∣
ȳ=0

=
1
ρ
∂θ c̄ eθ + ∂ρc̄er. (33)

Because of advection the tangential component points
from the front to the rear corresponding to an increas-
ing surfactant concentration toward the rear (∂θ c̄ > 0).
It gives rise to a forward Marangoni flow and FM,fl > 0
in Eq. (15) because −ez · ρ−1∂θ c̄eθ ∝ sin θ > 0. This is
the dominating effect in the diffusive regime Ū � 1,
where the perturbation theory gives to leading lin-
ear order in Ū a contribution of the form Ū c̄(1) ∝
−Ū c̄1(ρ) cos θ resulting in ρ−1∂θ c̄ = Ūρ−1c̄1(ρ) sin θ >
0. The front-directed tangential Marangoni flow com-
ponents give rise to the blue flow directions in the
schematic in Fig. 11 (top).

The radial component points inward (∂ρc̄ < 0)
because of the radially decaying surfactant concentra-
tion. This gives rise to radially outward Marangoni
flows. Because −ez · ∂ρc̄er ∝ cos θ in Eq. (15), this
increases the direct force in the front (around θ = 0)
but decreases it in the back (around θ = π). Advection
leads to bigger surfactant concentrations in the rear,
which also result in bigger radial concentration gradi-
ents on the rear side and lead to an overall decrease
in the direct force F̄M,fl < 0 and, thus, an increased
drag. This is the dominating effect in the advective
regime Ū 	 1, where a concentration boundary layer
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of width Δρ ∼ Ū−1/3 forms around the half-sphere,
which results in steep radial concentration gradients
that are stronger on the rear side. The stronger radial
Marangoni flow components in the rear are indicated by
the blue arrows in Fig. 11 (bottom); this phenomenon
is also visible in the experimental PIV measurements
in Fig. 6b during motion. There are also slightly bigger
radial concentration gradients in the diffusive regime
Ū � 1, but they are sub-dominant for the slow radial
decay of the function c̄1(ρ) in the absence of a radial
concentration boundary layer.

3.4.2 Strong Marangoni flow Pe 	 Ū

For weak Marangoni flow, Pe � Ū , we could decou-
ple the diffusion–advection problem and obtained to
regimes, a diffusive or linear response regime for Ū � 1
and an advective regime for Ū 	 1. Now we increase the
Peclet number Pe and, thus, the Marangoni flow. For
a strong Marangoni flow, Pe 	 Ū , the linear response
regime Ū � 1 becomes modified. We first have to con-
sider the dominant Marangoni flow problem (iib), which
determines the main component of the fluid flow in the
diffusion–advection problem (iii). The Marangoni flow
pattern is a stationary Marangoni vortex ring around
the spherical swimmer below and parallel to the fluid
interface SInt. Because this solution lacks axisymmetry
an analytical solution is no longer possible. Neverthe-
less, we can obtain novel scaling results for concentra-
tion profile and Marangoni flow field in a concentration
boundary layer of width lc below the fluid interface SInt

along similar lines as Refs. [59,60].
The surfactant is emitted from the sphere with

the fixed current density j̄|S = 1. Advection by the
Marangoni flow v̄M concentrates the surfactant in the
boundary layer of width l̄c below SInt. It takes a time
t ∼ r/vM to reach a radial distance r. During this time,
the surfactant diffuses over a distance lc ∼ (Dt)1/2 ∼
(Dr/vM)1/2 or l̄c ∼ (ρ/v̄M)1/2 in vertical y-direction,
which sets the boundary layer width l̄c. Because we are
at low Reynolds numbers, the laminar boundary layer
below the fluid interface SInt is of the size δ ∼ a (δ̄ ∼ 1)
set by the sphere. The laminar boundary layer governs
the decay of the Marangoni flow field vM in y-direction.

Moreover, we have mass conservation of the emit-
ted surfactant. The total advective flow J̄ ∼ 2πc̄v̄Mρl̄c
below the interface at distance ρ will always equal the
original flow J̄ = 2π that is emitted at the half-sphere,

1 = J̄/2π ∼ c̄v̄Mρl̄c ∼ c̄v̄
1/2
M ρ3/2. (34)

In addition, the Marangoni boundary condition (see Eq.
(20d) gives a second equation

− Pe∂ρc̄ = ∂ȳ v̄M ∼ v̄M
δ̄

∼ v̄M (35)

for concentration and velocity, which follows from the
definition of the laminar boundary layer width δ̄. Com-
bining both Eqs. (34) and (35), we find a differential

equation for c̄(ρ), which we solve with the boundary
condition c̄(∞) = 0 resulting in

c̄(ρ) = c̄(1)ρ−2/3 with c̄(1) ∼ Pe−1/3, (36)

v̄M ∼ c̄−2ρ−3 ∼ c̄−2(1)ρ−5/3 ∼ Pe2/3ρ−5/3. (37)

We see that the advective current j̄M ∼ c̄v̄M ∼
Pe1/3ρ−7/3 becomes smaller than the corresponding
diffusive current j̄D ∼ −∂ρc̄ ∼ Pe−1/3ρ−5/3 for
ρ > Pe. Then, our assumption of advective trans-
port breaks down, and this should mark the boundary
of the Marangoni advection dominated region. There-
fore, ρM ∼ Pe should be the scaling of the size of the
Marangoni vortex around the sphere for low Reynolds
numbers. At larger distances, a crossover to diffusive
transport with c̄ ∝ ρ−1 sets in.

So far, we considered the leading order of our problem
by setting Ū ≈ 0; going one order further, we get the
linear response for small Ū with the ansatz c̄ = c̄(0) +
Ū c̄(1) with c̄(0)(ρ) given by (36). In the total flow v+vM,
the Marangoni flow (37) is the zeroth order result, vM =
v
(0)
M , while the Stokes swimming flow v = v(1) is linear

in Ū . In an advection dominated situation, the constant
flux relation (34) still holds in the presence of Stokes
flow,

1 ∼ (c̄(0) + Ū c̄(1))(Ū ū cos θ + v̄M)1/2ρ3/2, (38)

where ū(ρ) is the radial component of the Stokes flow.
Expanding up to first order in Ū and using (34) for the
leading order, we find

c̄(1)(ρ) ∼ 1

v̄
1/2
M (ρ)

c̄(0)(ρ)ū(ρ) ∼ Pe−2/3ρ1/6ū(ρ). (39)

This contribution is symmetry breaking; inserting this
scaling of the concentrations into the relations (23) and
(24 for the Marangoni forces, we obtain

F̄M

πPe
∼ ŪPe−2/3,

F̄M,tot

πPe
∼ ŪPe−2/3. (40)

We checked these predictions numerically in Fig. 12 by
using our iterative FEM approach (see Appendix A),
which is possible up to Pe ∼ 50 and find good agree-
ment, in particular, for the predictions F̄M/Pe ∝ Pe−2/3

and F̄M,tot/Pe ∝ Pe−2/3, which will be most important
for the swimming speed relation (see insets in Fig. 12).
Moreover, these numerical FEM results show that both
prefactors in Eq. (40) are of order unity but hard to
quantify because of finite size effects.

This shows that Marangoni flows depress the total
driving force in the linear response regime by a fac-
tor Pe−2/3 reflecting the fact that it is harder to break
the symmetry in the presence of the strong Marangoni
flow advection. Numerical results in Fig. 12 also show
that the total Marangoni force is somewhat larger
than the direct Marangoni force, F̄M,tot > F̄M. In this
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Fig. 12 Iterative three-dimensional FEM results for
F̄M/πPe (top) and F̄M,tot/πPe (bottom) as a function of
Ū for Pe = 0 − 50 for a cubic system with −7 < ȳ < 0,
0 < x̄ < 7, −7 < z̄ < 7. Insets show the slopes F̄M/ŪπPe
and F̄M,tot/ŪπPe as a function of Pe calculated from the
results for Ū = 0.1. Artificial symmetry breaking from lat-
tice irregularities/defects is prevented by averaging all mea-
sured quantities over two simulations with U and −U . Blue
open circles are results for Pe = 0 from FEM solutions
to the axisymmetric diffusion–advection equation in two-
dimensional angular representation with R̄ = 30. The slope
in the linear response regime for Ū � 1 is reduced according
to Eq. (40). Results for Ū � 1 are essentially not affected
by strong Marangoni flows Pe � Ū

respect, our previous results for linear response regime
for Pe � Ū remain unchanged: the Marangoni flow
force increases the direct force.

In the advection-dominated regime Ū 	 1, on
the other hand, results are essentially not affected by
increasing the Peclet number Pe into the regime of
strong Marangoni flows Pe 	 Ū , as the numerical
results in Fig. 12 show: all curves for the Marangoni
forces converge to the previous diffusion–advection
results for Ū 	 1. The reason for this behavior is that
the flow field v will still give rise to a concentration
boundary layer of thickness Δρ ∼ Ū−1/3 around the
sphere, which determines the concentration field and,
thus, the Marangoni forces. On the scale of the bound-
ary layer, the Marangoni flows vM are not yet devel-
oped; they develop only further away at 1 � ρ <
ρM ∼ Pe because of the no-slip boundary condition
for the Marangoni flow in (iib). Therefore, the results

for Ū 	 1 remain essentially unaffected by a strong
Marangoni flow for Pe 	 Ū .

3.4.3 Evaporation

In the presence of evaporation, the boundary condi-
tion for the diffusion–advection problem changes at the
air–water interface SInt. We then have the convective
(Robin) boundary condition (20b), which is governed
by the dimensionless Biot number (22), instead of the
Neumann condition (20a), which is recovered for van-
ishing Biot number k̄ = 0. In general, evaporation of
surfactant depletes the interface of surfactant and, thus,
decreases the Marangoni driving forces (both direct and
flow force).

For volatile camphor, k ≈∼ 10−4 m/s has been sug-
gested [26], which corresponds to a high Biot number
k̄ = ak/D ≈ 550 for the camphor disks from [28].
PEG, on the contrary, has a negligible Biot number as
it is not volatile. As a consequence of the new convec-
tive boundary condition, the concentration profile will
fall off exponentially perpendicular to the interface in
the outward direction on a dimensionless extrapolation
length scale Δȳ ∼ 1/k̄ given by the inverse of the Biot
number.

In the presence of evaporation, we can develop a qual-
itative scaling theory based on the assumption that the
total evaporation flux balances the total emission flux
of surfactant in a stationary state, which gives

−
∫

SInt

∂ȳ c̄(ρ)|ȳ=0 = 2π (41)

in dimensionless quantities and determines the deriva-
tives ∂ȳ c̄(ρ)|ȳ=0 at the scaling level. Via the convec-
tive boundary condition (20b), this also determines the
surface concentration c̄(ρ)|ȳ=0. Moreover, the convec-
tive boundary condition should reduce to our previous
results for the Neumann condition for small Biot num-
bers k̄, where the evaporation flux j̄ev = k̄ c̄(ρ)|ȳ=0 is
smaller than the dominating transport flux, which is
the diffusive or Marangoni flux for Ū � 1 and the con-
vective flux for Ū 	 1.

For the diffusion or Marangoni dominated situation
for Ū � 1, the concentration and, thus, evaporation is
distributed over the whole interface SInt, i.e., there is no
concentration boundary layer around the half-sphere.
Therefore, flux balance (41) leads to ∂ȳ c̄(ρ)|ȳ=0 ∼ O(1)
resulting in c̄(ρ)|ȳ=0 ∼ 1/k̄ because of the convective
boundary condition (20b). Then, also F̄M ∼ 1/k̄ and
F̄M,tot ∼ 1/k̄. Moreover, the evaporation flux domi-
nates over the diffusive or Marangoni fluxes (which are
O(1)) only for k̄ > k̄0 with a crossover value k̄0 = O(1),
which determines the crossover to the non-evaporative
case. Our numerical results in Fig. 13 suggest k̄0 � 1.
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Fig. 13 Iterative three-dimensional FEM results for
F̄M/πPe (top) and F̄M,tot/πPe (middle) as a function of
Ū for Pe = 0 and Biot numbers k̄ = 0 − 400 for a half-
cylindrical system with ρ < 15, x̄ > 0, −4 < ȳ < 0,
Blue dashed lines are results for k̄ = 0 from FEM solutions
to the axisymmetric diffusion–advection equation in two-
dimensional angular representation with R̄ = 30. Forces in
the diffusive regime Ū � 1 are reduced according to Eq.
(42). Forces in the advective regime Ū � 1 are reduced
according to Eq. (43). Bottom row: FEM results for F̄M/πPe
and F̄M,tot/πPe as a function of Biot number k̄ for Ū =
10−4, 100 in comparison with scaling results in Eqs. (42)
and (43)

Therefore, we expect

F̄M ∼ F̄M

∣
∣
k̄=0

1
k̄ + k̄0

, F̄M,tot ∼ F̄M,tot

∣
∣
k̄=0

1
k̄ + k̄0

.

(42)

We checked these predictions numerically in Fig. 13 by
using our iterative FEM approach (see Appendix A)
and find good agreement. The plots in the bottom row
(yellow symbols) show that the dependence on k̄ for
Ū � 1 is described very well by F̄M = F̄M

∣
∣
k̄=1

/k̄ and
F̄M,tot = F̄M,tot

∣
∣
k̄=1

/k̄ suggesting k̄0 � 1.
For the advection-dominated situation for Ū 	 1

the concentration and, thus, evaporation is present
only in the concentration boundary layer of radial
width Δρ ∼ Ū−1/3 around the half-sphere and in
the advection tail. Therefore, the flux balance (41)

leads to ∂ȳ c̄(ρ)|ȳ=0 ∼ Ū1/3 and c̄(ρ)|ȳ=0 ∼ Ū1/3/k̄

because of the convective boundary condition (20b).
Then, also F̄M ∼ Ū1/3/k̄ and F̄M,tot ∼ Ū1/3/k̄ if
the evaporation flux dominates over the convective
fluxes. The convective flux at the interface and at the
boundary layer (ρ ≈ 1 + Δρ) is in radial direction
j̄u = Ū ū(ρ) cos θc̄(ρ) ∼ ŪΔρ2c̄(ρ) ∼ Ū1/3c̄(ρ) and
j̄v = Ū v̄(ρ) sin θc̄(ρ) ∼ ŪΔρ sin θc̄(ρ) ∼ Ū2/3 sin θc̄(ρ)
in θ-direction. In the advection tail (of angular width
Δθ ∼ Ū−1/3), this also leads to j̄v ∼ Ū1/3c̄(ρ). There-
fore, the evaporation flux starts to dominate over the
convective radial flux and the flux in θ-direction in the
advection tail for k̄ > Ū1/3; only then we see the effects
of evaporation. Therefore, we expect

F̄M ∼ F̄M

∣∣
k̄=0

Ū1/3

k̄ + Ū1/3
, F̄M,tot ∼ F̄M,tot

∣∣
k̄=0

Ū1/3

k̄ + Ū1/3

(43)

for Ū 	 1. We checked these predictions numerically
in Fig. 13 and find good agreement. The plots in the
bottom row (blue symbols) show that the dependence
on k̄ for Ū 	 1 agrees very well with Eq. (43).

In summary, we see a reduction of all Marangoni
forces by evaporation both in the linear response regime
Ū � 1 but also in the regime Ū 	 1 of strong advec-
tion. In both regimes, evaporation reduces the sur-
factant concentration, which decreases the Marangoni
forces.

3.4.4 Force balance and swimming condition

Now we have a rather complete picture of the solution
of problems (i)–(iii), i.e., diffusion–advection coupled
to hydrodynamics for a prescribed swimmer velocity
Ū at low Reynolds numbers. The main result is the
Marangoni forces as a function of the prescribed veloc-
ity Ū . The swimming condition (18) or (25) gives an
additional force balance relation between Marangoni
forces and Ū , which has to be satisfied in the swimming
state and determines the swimming speed Ū = Ūswim as
a function of Peclet number Pe and Biot number k̄. In
general, the swimming velocity increases with Pe and
decreases with k̄.

First, we consider small Pe, i.e., small surfactant
emission rates and see whether a swimming state with
spontaneously broken symmetry can exist. For k̄ ≈ 0,
as appropriate for the PEG–alginate swimmer, we find
from Eq. (30) that a solution for the swimming condi-
tion exists above a critical Peclet number Pe > Pec ∼
8/ ln R̄ → 0, which approaches zero for large system
sizes. Therefore, the symmetry is essentially always
spontaneously broken in a large swimming vessel. Spon-
taneous symmetry breaking resulting in propulsion is
possible by establishing an asymmetric surfactant con-
centration profile that is maintained by advection and
can produce the necessary Marangoni forces. Equation
(30) is valid only in the decoupled limit Pe � Ū . At
the swimming bifurcation, we have Pe = Pec 	 Ū ≈ 0,
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however, such that the feedback of Marangoni flows
onto the diffusion–advection problem has to be taken
into account, and the decoupling approximation cannot
be used. Then, Eq. (40) describes the Marangoni forces
in the linear response regime, which further reduces the
critical Peclet number to Pec ∼ 1/(ln R̄)3 → 0. In the
presence of relevant evaporation k̄ 	 1, as appropri-
ate for camphor, the total Marangoni force is depressed
according to Eq. (42) resulting in an increased Pec ∼
k̄3/(ln R̄)3 → 0, which is, however, still approach-
ing zero for large swimming vessel sizes R̄. Immediate
propulsion in all experiments is in accordance with a
bifurcation with a small Pec. Moreover, we observe an
intermittent stopping of the swimming motion only in
the very end (after 20min or more) before the swim-
ming motion stops completely (because the fuel has
been consumed). This confirms a small critical value
Pec below which Pe drops only for very small emis-
sion current densities α. Small irregularities can already
break the symmetry and give rise to an avoided bifur-
cation and select a fixed swimming axis with respect to
the particle orientation, which is also observed in the
experiments.

For Pe > Pec, a spontaneously symmetry-broken
swimming state with Ūswim > 0 exists. Because the
Marangoni force Eq. (30) remains approximately lin-
ear up to Ū ∼ O(1), as can also be seen in Fig.
10, the swimming velocity rises steeply for Pe � Pec

and quickly enters the asymptotics for the advection-
dominated regime Ūswim 	 1. Here, we find the swim-
ming relations

Ūswim ∼ Pe3/5 for k̄ � Pe1/5, (44)

Ūswim ∼ k̄−3/4Pe3/4 for k̄ 	 Pe1/5. (45)

Also in this regime, we have Pe 	 Ūswim such that
Marangoni flows are strong, but this has little influ-
ence on the swimming speed because of the concentra-
tion boundary layer that forms in the advective regime.
Evaporation is significant for k̄ 	 Pe1/5 and reduces
the swimming speed because it reduces the driving
Marangoni forces. The swimming relations (44) and
(45) are shown in Fig. 14 as dotted yellow and dotted
blue lines, respectively, together with the experimental
results for our PEG–alginate swimmers and camphor
boats from Boniface et al. [28]. We see clearly, that
the experimentally observed swimming speed differs,
because these swimmers operate at higher Reynolds
numbers.

3.5 High Reynolds numbers

We have developed a complete picture of the solution
of problems (i)–(iii), i.e., diffusion–advection coupled
to hydrodynamics for a prescribed swimmer velocity Ū
at low Reynolds numbers, including evaporation. Low
Reynolds numbers Re = 2Ū/Sc � 1 are realized for
Ū � Sc/2, which can still be much larger than unity
for typical Schmidt numbers for surfactants in aque-

ous solutions (see Table 2). For the relevant Marangoni
propulsion forces, the following picture has emerged
from our analysis at low Reynolds numbers. There is
a diffusive regime for Ū � 1, which becomes mod-
ified by strong Marangoni flows for Peclet numbers
Pe 	 Ū , and there is an advective regime for Ū 	 1,
which is essentially unchanged in the presence of strong
Marangoni flows for Pe 	 Ū (see Fig. 12). Both regimes
are modified in the presence of evaporation if the Biot
number is k̄ ≥ 1 in the diffusive regime and of k̄ 	 Ū1/3

in the advective regime (see Fig. 13).
High Reynolds numbers occur for large velocities

Ū 	 Sc/2 and, therefore, always deep in the advec-
tive regime Ū 	 1. At low Reynolds numbers, the
concentration boundary layer of dimensionless width
Δρ ∼ Ū−1/3 (see Eq. (31)) determines the results for
the Marangoni forces in this advective limit [see Eqs.
(27), (28), (29), (30), (40) and (43)].

In order to generalize to higher Reynolds numbers,
we realize that the concentration boundary layer width
is closely related to the Nusselt number. By definition
(26), Nu = −∂ρc̄0(1)/c̄0(1), the Nusselt number is an
inverse extrapolation length, which we expect to be the
inverse concentration boundary layer width,

Nu ∼ 1
Δρ

. (46)

The result Nu ∼ Ū1/3 from Eqs. (27) and (28) confirms
this result both for constant flux and constant concen-
tration boundary conditions at low Reynolds numbers,
and we conjecture it to hold also at higher Reynolds
numbers. Phenomenologically, the Nusselt number is
well-studied also for high Reynolds number [61], both
for heat (NuT in the following) and for mass trans-
fer (Nu in the following, also Sherwood number Sh in
the literature), and we can draw on these results in
order to develop a theory for the concentration bound-
ary layer and the Marangoni forces. Up to moderate
Reynolds numbers Re � 200, the physics is governed
by additional laminar (viscous) boundary layers that
appear around a sphere in fluid flow, which typically
have a width δ̄ ∝ Re−1/2 [62,63]. The viscous bound-
ary layer scaling can be rationalized by generalizing our
above scaling argument for the concentration boundary
layer leading to Eq. (31). The important difference is
that the velocity field close to the sphere changes from
v(Δr) ∼ UΔr/a for Stokes flow to v(Δr) ∼ UΔr/δ for
laminar boundary layer flow with a no-slip boundary
condition. This leads to

Δρ = Δr/a ∼ δ̄1/3Ū−1/3 ∼ Ū−1/2Sc1/6. (47)

This scaling result is in accordance with phenomenolog-
ical results for the Nusselt number by Ranz and Mar-
shall [64] (Re = 2Ū/Sc)

NuT = 1.0 + 0.3Re1/2Pr1/3 = 1.0 + 0.3
√

2Ū1/2Sc−1/2Pr1/3,
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Nu = 1.0 + 0.3Re1/2Sc1/3 = 1.0 + 0.3
√

2Ū1/2Sc−1/6 (48)

(Re = 2Ū/Sc and with Sc replacing the Prandtl number
Pr for the mass transfer Nusselt number).

Because the concentration will drop in radial direc-
tion from its value at the surface S of the half-sphere to
zero within the concentration boundary layer of width
Δρ, and, thus, 1 = −∂ρc(ρ = 1) ∼ c(ρ = 1)/Δρ for
constant flux boundary conditions, the scaling of the
concentration boundary layer width (46) also gives rise
to

c̄(ρ=1, θ) ∼ Δρ ∼ Nu−1, (49)

i.e., the symmetry-breaking concentration level at the
sphere is inversely proportional to the Nusselt number
[generalizing Eq. (32)]. Therefore, the direct Marangoni
force (23) should follow

F̄M

Pe
∼

∫ π

0

dθ cos θc̄(1, θ) ∼ Nu−1 ∼ Ū−1/2Sc1/6 (50)

at higher Reynolds numbers. The total Marangoni force
does no longer follow from a reciprocal theorem. In
terms of an energy balance, the reciprocal theorem
can be interpreted as the absence of mutual dissi-
pation between swimming flow and Marangoni flow
[58]. Therefore, the power input by surface Marangoni
stresses into the swimming flow is, transmitted with-
out loss as power input by the Marangoni flow force
onto the swimmer. For higher Reynolds numbers, the
mutual dissipation is no longer zero but there are addi-
tional viscous terms appearing, which are connected
to the vorticity of the flow. This suggests that the
Marangoni stresses at the interface become less effec-
tive in generating a Marangoni flow force because of this
additional dissipation. Therefore, we simply neglect the
Marangoni flow force (or assume that the Marangoni
flow force is sub-dominant) and only consider the direct
Marangoni force (50) at high Reynolds numbers, in the
following.

Likewise, the existence of viscous boundary layers
around the half-sphere modifies the drag force. On
phenomenological grounds, it has been suggested that
FD = Dc

π
2μaU with Dc � 6NuT [65], where NuT is the

Nusselt number for heat transport, resulting in

F̄D = −3πŪNuT . (51)

Using the Ranz and Marshall correlation (48), we find
from the force balance F̄D + F̄M = 0

Pe ≈ 3NuNuT Ūswim,

Ūswim ∼ Sc1/3Pr−1/6Pe1/2 (52)

in the absence of evaporation. In the presence of evapo-
ration, we use F̄M ∼ F̄M

∣
∣
k̄=0

Nu/(k̄ + Nu) [cf. Eq. (43)]
to find

Pe ≈ 3(k̄ + Nu)NuT Ūswim,

Fig. 14 Different theory results for Pe-Ūswim swimming
relations in a double-logarithmic plot in comparison with
experimental results on PEG–alginate swimmers (red lines,
obtained from the data in Fig. 7) and camphor boats from
Ref. [28] (black lines and dots; black line is time-dependent
data, black dots are data at fixed times but for different radii
a). PEG–alginate swimmers are described well by the high
Reynolds number theory without evaporation (Biot num-
ber k̄ = 0); camphor boats are best described by a high
Reynolds number theory with Biot number k̄ ≈ 550. The
corresponding low Reynolds number theories give signifi-
cantly lower swimming speeds

Ūswim ∼ k̄−2/3Sc1/3Pr−1/2Pe2/3. (53)

Both results (52) and (53) are also shown in Fig. 14
together with the experimental data on PEG–alginate
and camphor Marangoni boats.

4 Comparison with experiment

Force balance for low and high Reynolds numbers
results in a characteristic Pe-Ūswim-relation for the
swimmer with characteristic power laws. For low
Reynolds numbers, these are relations (44), Ūswim ∝
Pe3/5, without evaporation and (45), Ūswim ∝ Pe3/4, in
the presence of strong evaporation. For higher Reynolds
numbers, we find relations (52), Ūswim ∝ Pe1/2 with-
out evaporation and (53), Ūswim ∝ Pe2/3 for strong
evaporation. Also, the experiment on PEG–alginate
swimmers and the camphor boats from Boniface et al.
[28] take place at higher Reynolds numbers; parameter
value estimates for these experiments are summarized
in Table 3, the resulting dimensionless parameters in
Table 2. Our experimental results for the mass release
mass ṁ(t) as a function of time (see Fig. 7(middle))
and the corresponding swimming velocity Uswim(t) (see
Fig. 7(right)) of the PEG–alginate swimmers give the
red line in Fig. 14 in the Pe-Ūswim parameter plane. We
also show experimental results for camphor boats from
Boniface et al. [28] (black data points from experiments
varying the radius and black line from time-dependent
swimming data). Figure 14 compares these experimen-
tal results with our theoretical results for the appropri-
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Table 3 Estimates of experimental parameters

Parameter PEG–alginate swimmer Camphor boat[28]

Radius a 1500µm 1000 − 15000µm
Diffusion constant D 350µm2/s 720µm2/s
Surface tension reduction κ = −Δγ/Δc 2.7 × 10−4 m3/s2 2 × 10−2 m3/s2

Mass loss per time ṁ = cπa2α chalf−sph = 2 cdisk = 1

0.01 − 0.25 × 10−6 g/s (0.76 × 10−6 g/s) (a/4mm)2

ate parameter values for the PEG–alginate swimmers
and the camphor boats from Tables 2 and 3.

The swimming relations in Fig. 14 are the main
result of the paper. For the PEG–alginate swimmer
(red line) we see good agreement between the high
Reynolds number theory in the absence of evaporation,
i.e., with Biot number of k̄ = 0 (yellow line). The cor-
responding low Reynolds number theory (dotted yellow
line) gives significantly lower swimming velocities at the
same Peclet number. This outcome is what we expected
based on the above estimate of moderate Reynolds
numbers Re ∼ 60 for the PEG–alginate swimmers and
based on the non-volatility of PEG. We also see that
the slower second phase of the swimming motion of the
PEG–alginate swimmers is described slightly better by
our theory (left part of the red line in Fig. 14), which
is in accordance with our initial observation that the
time constants for mass release and swimming velocity
agree only in the second phase. In the first phase, the
Peclet number Pe necessary to achieve the measured
swimming velocity is slightly lower than predicted by
our theory, i.e., a more efficient propulsion. This is a
hint that some of our theoretical assumptions could
be violated during the first phase, for example, regard-
ing the adsorption equilibrium, which might not yet be
established starting from an initially “empty” air–water
interface, which could give rise to steeper concentration
gradients and more efficient propulsion.

For volatile camphor, a Biot number of k̄ ≈ 550 has
been suggested in Ref. [26], which we use in Fig. 14
to compare with the experimental data of Boniface et
al. on camphor disks [28] (black data points and black
line). Again, we obtain good agreement with the high
Reynolds number theory (blue line). The disk geometry
differs from the half-spherical geometry we discussed in
detail, but we expect that the swimming relation will
only differ by numerical factors of order unity. The cor-
responding low Reynolds number theory (dotted blue
line) significantly underestimates swimming velocities,
and a theory without evaporation (dashed blue line)
overestimates swimming velocities.

5 Discussion and conclusion

We presented an experimental realization of alginate
capsule self-propulsion at the air–water interface by
loading the alginate capsule with surfactant molecules
during synthesis. Self-propulsion of these capsule swim-

mers is based on a Marangoni boat mechanism. Algi-
nate is bio-compatible and widely used for capsule pro-
duction, which are interesting aspects for further appli-
cations. The versatile and simple synthesis strategy
allowed us to identify various substances that can pro-
pel alginate capsules, see Table 1. PEG surfactants
exhibit the best propulsion properties: for PEG-300,
we find a fast and sustained motion with swimming
speeds Uswim ∼ 2 − 3 cm/s over 20min and more.
The swimming speed corresponds to several swimmer
diameters per second and is comparable or superior to
other self-phoretic or microswimmers [4] or active liq-
uid droplets [16]. In general, we find prolonged propul-
sion only if spreading molecules are water-soluble as the
PEG molecules are; then the air–water interface can
regenerate by the fuel being dissolved in water. Evap-
oration from the air–water interface is another mecha-
nism to achieve regeneration, which is utilized in cam-
phor boats [26–28,32]. We conclude that a mechanism
that regenerates the air–water interface, such as water-
solubility or evaporation of surfactants, is crucial for
prolonged propulsion.

We could produce alginate swimmers down to radii
of several hundreds of micrometers, which is slightly
above the realm of low Reynolds numbers. The future
work could address further miniaturization of capsules.

Starting from low Reynolds numbers, we developed
a theory for Marangoni boat propulsion of a com-
pletely symmetric, half-spherical, surfactant emitting
swimmer. The theoretical description comprises the
coupled problems of surface tension reduction by sur-
factant adsorption at the air–water interface includ-
ing the possibility of surfactant evaporation, fluid flow
(both Marangoni flow and flow induced by swimmer
motion), diffusion and advection of the surfactant. In
particular, advection is systematically included in our
approach and turns out to be essential for all swim-
mer velocities U 	 D/a (Ū 	 1). These three prob-
lems are first solved for prescribed swimmer velocity
U ; the actual swimming velocity Uswim is determined
by force balance between the drag force, the direct
Marangoni force from the surface tension contribu-
tion at the air–water–swimmer contact line, and the
Marangoni flow force. We find that Marangoni flows
can either act to increase the direct Marangoni force
(at low velocities) or to increase the drag (at higher
velocities). For low Reynolds numbers, all theoretical
results are supported by numerical FEM simulations.
Non-dimensionalization shows that the swimmer is con-
trolled by two dimensionless control parameters, the
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Peclet number (21), which is the dimensionless emis-
sion rate of surfactant, and the Biot number (22), which
is the dimensionless evaporation rate. Evaporation is
practically absent for PEG, but strong for other fre-
quently studied Marangoni boat swimmers, such as
camphor boats [26].

We showed that a spontaneous symmetry breaking,
i.e., a spontaneous transition into a swimming state
is possible also for a completely symmetric swimmer
above a critical Peclet number. Spontaneous symmetry
breaking resulting in propulsion is possible by estab-
lishing an asymmetric surfactant concentration profile
that is maintained by advection. We find that the crit-
ical Peclet number for this transition approaches zero
logarithmically for large system sizes, Pec ∝ 1/(ln R̄)3.
The possibility of such a spontaneous symmetry break-
ing has been pointed out for autophoretic swimmers
[9,18] and liquid Marangoni swimmers [17] before. Also
in these systems, advection by the surrounding fluid can
maintain the necessary concentration gradients in fields
and/or concentrations.

In Eqs. (44) and (45), we obtain the power laws gov-
erning the swimming velocity as a function of Peclet
and Biot number, which are Ūswim ∝ Pe3/5, without
evaporation (PEG) and Ūswim ∝ k̄−3/4Pe3/4, in the
presence of strong evaporation (camphor). This demon-
strates that additional evaporation reduces swimming
speed.

Experimentally realizable PEG–alginate or camphor
swimmers are operating at moderate Reynolds num-
bers around 60 or more. Accordingly, we generalized
the theoretical approach to higher Reynolds numbers
by using the concept of the Nusselt number, for which
many results at higher Reynolds numbers are known
phenomenologically. This might also account for some
effects related to the formation of vortices around the
swimmer during propulsion at higher Reynolds num-
bers (see PIV-results in Fig. 6 and Ref. [29]). Finally,
we obtained the swimming relations (52) and (53),
which give Ūswim ∝ Pe3/4, without evaporation (PEG)
and Ūswim ∝ k̄−2/3Pe1/2, in the presence of strong
evaporation (camphor). We find a good quantitative
fit (without any free fitting parameters) with our own
experimental results on PEG–alginate swimmers and
the results of Ref. [28] on camphor swimmers in Fig.
14. This is the main result of this paper. The future
work should extend the numerical approach to higher
Reynolds numbers in order to verify our scaling results
for the swimming relation using, for example, the meth-
ods introduced in Ref. [37]. There are several aspects of
the self-propulsion of PEG–alginate capsules, where we
presented first experimental results but which deserve
a much more detailed investigation in future work:
curved trajectories, interactions with container walls,
and swimmer-swimmer interaction.

Curved trajectories as observed in Figs. 4 and 5 with
a swimming direction of the swimmer that is, at least,
weakly linked to its orientation, while the orientation
of the swimmer is slowly turning can only be explained
by small asymmetries of capsules induced by irregular-

ities in the pore structure. This view is supported by
the individual character of the turning characteristics
of different swimmers (see Fig. 5). Future work should
explore the relation between capsule irregularities and
turning statistics in more detail. Experimentally, purely
rotary systems could be constructed [42].

PEG–alginate swimmers are repelled by walls. In
normal collisions we observe direction reversal without
reorientation of the swimmer. In the framework of the
Marangoni boat mechanism, this can be explained by
an accumulation of surfactant emitted by the swimmer
in front of the wall because of the zero flux bound-
ary condition at the wall. Surfactant accumulation cre-
ates a gradient in surfactant concentration toward the
wall, and the swimmer reverses direction if advection
and accumulation balance without changing its orienta-
tion. This behavior is similar to what has been observed
for asymmetric [24] and symmetric [25] camphor boats
[22]. During the collision the orientation of the swimmer
particle does not change, while the swimming direction
reverses; therefore, the swimming direction also reverses
relatively to the particle orientation. This is consistent
with a weak symmetry breaking by small irregulari-
ties in the pore distribution, which give rise to many
possible metastable propulsion directions. A perturba-
tion as during surfactant accumulation and direction
reversal at the wall can easily cause a change between
these propulsion directions. There are more oblique col-
lisions (see Fig. 5), which take longer and can feature
a reorientation of the swimmer. The underlying mecha-
nisms could be similar to the reorientation mechanisms
of self-diffusiophoretic swimmers [13,14] but this issue
also requires future work.

Finally, we have experimental evidence that PEG–
alginate swimmers interact with each other via their
surfactant concentration fields. Similar observations
have been made already in Refs. [22,40,66], mostly in
channel geometries. We monitored different collisions
between swimmers, where we could find both attraction
and repulsion. In the framework of the Marangoni boat
mechanisms, where swimmers prefer to move opposite
to surfactant concentration gradients, we expect that
swimmers are repelled by their surfactant tails, which
represent traces of high concentration. This predicts
a kind of “chemo-repellent” behavior with respect to
the tails. For the interaction between swimmers, the
concentration dependence of the surface activity κ [the
c0-dependence in Eq. (5)] can also play an important
role [40]. The topic of swimmer interactions appears to
be very rich and important for applications regarding
the swarming of PEG–alginate swimmers; it deserves a
much more detailed investigation in future work.
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A Numerical methods

For Pe � Ū , the Marangoni flow problem decouples and the
advection problem becomes axisymmetric. Then, c = c(ρ, θ)
only depends on the radial coordinate and one angular coor-
dinate and we solve the diffusion–advection problem on a
two-dimensional rectangular domain in the ρ-cos θ plane.
Typically we use ρ < 30 and FEM-routines from Wolfram
MATHEMATICA; we use irregular triangular meshes with
a mean area of mesh elements of 0.00015 in the ρ-cos θ plane
(the maximal area is 0.005). We checked that discretization
effects are negligible.

For Pe � Ū , we have to solve the coupled problems of
Marangoni flow field (iib) and diffusion–advection equation
(iii) with the appropriate boundary conditions from the
adsorption problem (i). Numerically, we only address low
Reynolds numbers for the fluid flow such that the Stokes
equation applies. For the coupled problem we use an iter-
ative scheme of three-dimensional FEM solutions both for
Marangoni flow and for diffusion–advection, again employ-
ing FEM-routines from Wolfram MATHEMATICA. For the
Stokes flow, we use the analytical result [Eqs. (9a) and (9b)].
In the iterative scheme we solve for the Marangoni flow field
(iib) starting from an initial guess for the concentration pro-

file (typically c̄(0)(ρ) = 1/ρ). Then, we use this Marangoni
flow field in the advecting fluid flow field in the FEM solu-

tion v̄
(1)
M (ρ) of the diffusion–advection equation (iii), which

gives in turn an improved approximation c̄(1)(ρ) for the con-
centration profile. With this improved approximation we go
back into solving for the Marangoni flow field (iib) to obtain

the next iteration v̄
(2)
M (ρ), and so on. This results in improv-

ing approximations c̄(n)(ρ) and v̄
(n)
M (ρ), and the iteration

typically converges within n = 5 − 10 iterations to the final
Marangoni flow field and surfactant concentration field. The
iterative approach has the advantage that the Marangoni
boundary condition in the fluid flow problem (iib) is a fixed
one at each iterative step and only adjusts over the iter-
ation; the coupling of the two problems is correctly estab-
lished over the iteration. Similar iterative numerical schemes
for coupled problems have been applied successfully in Refs.
[67,68]. The iterative scheme works well up to Pe ∼ 50 for
the system sizes we use. As outlined in the section on strong
Marangoni flow in the limit Pe � Ū , Marangoni flows are
fully established on the scale ρM ∼ Pe, which is growing
with the Peclet number. Therefore, numerical problems typ-
ically arise for higher Peclet numbers when the Marangoni
roll becomes strongly distorted by the system boundaries,
which gives rise to numerical instabilities and a failure of
the iteration procedure. This is why the data presented in
Fig. 12 is limited to the range Pe = 0 − 50.

The FEM solution of the stationary equations (iib) and
(iii) is obtained on a cylindrical or cubical irregular tetrahe-
dral mesh. We use cubical volumes (for example, with edge
length 14 in x̄z̄-plane and height 7 in ȳ-direction in Fig.
12) for the FEM calculations. Cylindrical volumes can also
be easily implemented. The maximal volume of mesh ele-
ments is 0.2, the mean volume is 0.01. Mesh volumes are
smaller (< 0.005) in the region −1 < ȳ < 0 below the inter-
face to capture Marangoni advection. Again, we checked
that discretization effects are small. Because of the mirror
symmetry x̄ → −x̄, we only need to solve on half-cubes
x̄ > 0 and apply Neumann boundary conditions ∂x̄c̄|x̄=0 = 0
and ∂x̄v̄M|x̄=0 = 0 to enforce the mirror symmetry. The
boundary conditions at the outer boundaries are Dirichlet
conditions for the concentration c̄ = 0 and the Marangoni
flow v̄M = 0. For sufficiently large cubes or cylinders these
boundary conditions should not matter but we still have
finite size effects, in particular at larger Peclet numbers
Pe > 50 as explained above. In particular, our systems are
always several particle radii long in every direction such that
strong confinement effects as observed in Ref. [37] for system
sizes below two particle radii should be absent.

We are interested in the resulting symmetry-breaking
Marangoni forces caused by a symmetry-breaking swimming
motion as a function of the velocity Ū . At small Ū , there is
the problem that artificial symmetry breaking from lattice
irregularities/defects is often larger than symmetry break-
ing by swimming. Therefore, we average all measured quan-
tities over two simulations with Ū and −Ū to cancel artifi-
cial symmetry-breaking effects. This step is crucial to obtain
accurate results.
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