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We provide a C/C++ software for the shape analysis of deflated elastic capsules in a pendant capsule geom-
etry, which is based on an elastic description of the capsule material as a quasi two-dimensional elastic
membrane using shell theory. Pendant capsule elastometry provides a new in situ and non-contact
method for interfacial rheology of elastic capsules that goes beyond determination of the Gibbs- or dila-
tional modulus from area-dependent measurements of the surface tension using pendant drop tensiom-
etry, which can only give a rough estimate of the elastic capsule properties as they are based on a purely
liquid interface model. Given an elastic model of the capsule membrane, pendant capsule elastometry
determines optimal elastic moduli by fitting numerically generated axisymmetric shapes optimally to
an experimental image. For each digitized image of a deflated capsule elastic moduli can be determined,
if another image of its undeformed reference shape is provided. Within this paper, we focus on nonlinear
Hookean elasticity because of its low computational cost and its wide applicability, but also discuss and
implement alternative constitutive laws. For Hookean elasticity, Young’s surface modulus (or, alterna-
tively, area compression modulus) and Poisson’s ratio are determined; for Mooney-Rivlin elasticity, the
Rivlin modulus and a dimensionless shape parameter are determined; for neo-Hookean elasticity, only
the Rivlin modulus is determined, using a fixed dimensionless shape parameter. Comparing results for dif-
ferent models we find that nonlinear Hookean elasticity is adequate for most capsules. If series of images
are available, these moduli can be evaluated as a function of the capsule volume to analyze hysteresis or
aging effects depending on the deformation history or to detect viscoelastic effects for different volume
change rates. An additional wrinkling wavelength measurement allows the user to determine the bending
modulus, fromwhich the layer thickness can be derived. We verify themethod by analyzing several mate-
rials, compare the results to available rheological measurements, and review several applications. We
make the software available under the GPL license at github.com/jhegemann/opencapsule.
� 2017 The Authors. Published by Elsevier Inc. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
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1. Introduction

Elastic capsules that consist of a solid thin shell enclosing a liq-
uid volume can be produced artificially by a variety of chemical
processes, such as interfacial crosslinking or polymerization [1].
Moreover, solid-like interfaces can form by interfacial adsorption
and self-assembly of surface active micro- or nano-particles such
as colloidal particles in colloidosomes [2], petroleum [3], various
proteins at interfaces [4,5], for example hydrophobins at water-
air interfaces [6]. Eventually, solid-like shells can likewise be
formed using layer-by-layer assembly by employing electrostatic
interactions of polyelectrolytes [7–9]. Elastic capsules have many
applications for transport and delivery of the enclosed liquid in
pharmaceutical, cosmetic or chemical industry [10]. Likewise, they
serve as biological model systems for red blood cells or the cell cor-
tex. For all applications, a characterization of the mechanical prop-
erties of the capsule shell, i.e., its elastic moduli, is necessary
[11,10].

Encapsulation applications employ closed microcapsules, but
often capsules can likewise be produced in a pendant or hanging
capsule geometry, where the capsule is not closed and the capsule
edge is attached to a capillary [12–16,6,17,18,9]. Such capsules can
be produced by self-assembly onto a droplet hanging from a capil-
lary or onto an air bubble rising from a capillary, or by interfacial
crosslinking at the interface of a pendant droplet [19]. An advan-
tage of this pendant capsule geometry is that volume reduction
or pressure application can easily be realized by fluid suction
through the capillary and it, thus, offers a simple way of microma-
nipulation for mechanical characterization.

The related pendant droplet tensiometry is a standard tool to
determine the surface tension of a liquid interface using the
Laplace-Young equation to model the droplet shape [20–23],
which is commercially available. The same Laplace-Young analysis
has frequently been applied to pendant elastic capsules with differ-
ent shell materials or droplets coated with solid-like layers of
adsorbed particles [3,24,8,12,25,26,4,15–17] resulting in the deter-
mination of an ‘‘effective surface tension” c describing the solid
shell interface of surface area A. Changing the surface area A in
deflation experiments, the so-called Gibbs- or dilational modulus
EGibbs ¼ dc=d lnA can be calculated. Pendant drop tensiometry
can also be applied to droplets or capsules with a viscoelastic inter-
face by employing oscillating droplets [24,12,25,26,4]; then a com-
plex dilational modulus can be obtained, which includes a real
elastic and an imaginary loss part. The elastic dilational modulus
is equal to the area compression modulus K2D for a fluid interface
or for a two-dimensional solid interface in a planar Langmuir-
Blodgett trough geometry. Application of the same concept to pen-
dant elastic capsules gives misleading results because of inhomo-
geneous and anisotropic elastic stresses in the capsule geometry
and the existence of a curved undeformed reference shape of the
capsule [12–14,19,9]. In Ref. [19], an elastic model based on shell
theory has been developed which is capable of describing capsule
shapes in a deflation experiment more realistically. Similar elastic
models have been formulated in Refs. [12–14,9]. In Ref. [19] this
approach has been extended to the pendant capsule elastometry
method, where the elastic model is used to determine two elastic
constants, the surface Young modulus Y2D and Poisson’s ratio m2D,
by optimally fitting calculated shapes to experimental images. Pen-
dant capsule elastometry has already been applied to OTS-capsules
and hydrophobin-coated bubbles [19] but also to bacterial films at
interfaces [27].

Here, we want to present and make publicly available a much
more efficient implementation of the pendant capsule elastometry
method as a C/C++ software with a high degree of numerical effi-
ciency and automation. In contrast to Ref. [19], where elastic con-
stants were optimized on a grid in parameter space to optimally
match the experimental shape profile, we optimize elastic con-
stants in continuous parameter space, which improves both perfor-
mance and accuracy. Moreover, we go beyond Ref. [19] and
generalize the shape analysis method to other constitutive laws.
In particular we investigate the behavior of the shape analysis
method in combination with Mooney-Rivlin or neo-Hookean elas-
ticity models, which are commonly used for inextensible poly-
meric materials.

These significant improvements turn the analysis into a strong
tool to investigate different materials in a short time and on a large
scale. We demonstrate these capabilities by analyzing a variety of
deformation experiments for different materials. In pendant cap-
sule elastometry Young’s modulus and Poisson’s ratio (or the Rivlin
modulus and the dimensionless shape parameter) of the two-
dimensional capsule shell material are obtained from an analysis
of a digitized image of the deflated capsule shape and a second
image of its undeformed reference shape. If the capsule wrinkles
upon deflation, an additional wrinkling wavelength measurement
allows us to determine the bending modulus, from which the layer
thickness can be derived if the shell material is a thin layer of a
three-dimensional isotropic elastic material.
2. Available experimental methods

Several interfacial rheology methods exist, which allow the
determination of the elastic properties of the capsule shell mate-
rial. We review four different rheological methods, which we will
use as references for the pendant capsule method described in this
paper. Typical experimental methods are (i) surface shear-
rheometry [28], (ii) Langmuir-Blodgett trough, (iii) shear flow
rheoscope (flow cell) [29], and (iv) spinning drop apparatus [30].
Methods (i) and (ii) work with planar membranes of the shell
material, whereas methods (iii) and (iv) directly work in the curved
capsule geometry, like pendant capsule elastometry does. Apart
from these four methods there are other contact techniques such
as probing capsules with AFM tips, micromanipulators, or optical
tweezers (see Ref. [10] for a review). Pendant capsule elastometry
is a non-contact technique and, in comparison with methods (iii)
and (iv), it does not require fluid motion in the surrounding fluid.
We focus here on elastic capsule shell materials. For viscoelastic
materials there are other interfacial rheology methods available
[25], such as double wall ring rheometry [31] or magnetic rod
rheometry [32].

In shear-rheometry, a transducer (thin disk or ring) is placed in
a circular vessel at a planar liquid-liquid or air-liquid interface;
between transducer and container wall a membrane with the shell
material is prepared, such that membrane deformations can be
applied in circumferential direction. While oscillating at a certain
frequency, the mechanical response is measured, which gives the
interfacial storage modulus l0 and the loss modulus l00. From l0

one determines the surface Young modulus Y2D ¼ 2ð1þ m2DÞl0 pro-
vided that the Poisson ratio m2D is known.

In a Langmuir-Blodgett trough, a membrane made from the
shell material is prepared in a rectangular vessel at a liquid-
liquid or air-liquid interface. During compression of the mem-
brane, the surface tension c and area A are measured, from which
the Gibbs modulus EGibbs ¼ dc=d lnA is determined. The Gibbs
modulus EGibbs corresponds to the area compression modulus K2D

in the planar trough geometry; we will show that these two
parameters differ substantially in the curved capsule geometry.

In a shear flow rheoscope, a closed capsule is placed in a liquid
phase between two concentric hollow cylinders. By rotating the
cylinders in opposite directions a shear flow is induced, which
deforms the capsule. Comparing the shape profile with ellipses
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gives the compression of the surface and, thus, the surface Young
modulus [33].

In a spinning drop apparatus a closed capsule is placed in a
cylindrical vessel filled with a fluid. When the vessel is rotated at
high frequencies the capsule is exposed to centrifugal forces, which
induce a deformation. Similar to the shear flow rheoscope the sur-
face Young modulus is obtained from a shape analysis [30].

3. Pendant capsule elastometry

The pendant drop apparatus is widely spread in industrial envi-
ronments and research departments. Typically it is shipped with a
software performing a Laplace-Young analysis on captured images
in order to determine the surface tension of fluid interfaces. In this
paper, we provide a generalized algorithm as a C/C++ software,
which is able to perform an analogous shape analysis for elastic
membranes in order to determine the surface Young modulus
Y2D and the Poisson ratio m2D (or the Rivlin modulus YM and the
dimensionless shape parameter W) of the material. In Section 9,
we will present examples with several different capsule shell
materials, which demonstrate that our software is widely applica-
ble and that pendant capsule elastometry results are in good agree-
ment with other rheological measurements. As compared to
pendant drop tensiometry, the shape analysis of pendant elastic
capsules comes at the cost of an additional amount of runtime
(one or few minutes per image), but enables the proper character-
ization of the elastic material properties.

In the following, we will focus on pendant elastic capsules pro-
duced by interfacial crosslinking, gelation or polymerization, see
Fig. 1. Consider a droplet of size � 1 mm hanging from a capillary.
The inner (liquid) and outer phase (liquid/air) are separated by a
liquid interface with a surface tension compensating the pressure
difference. Surfactants, and potentially crosslinkers, are dissolved
in the droplet or the surrounding fluid. When forming the droplet,
surfactants immediately start to adsorb to the interface and spread
over it. During equilibration of bulk and interface surfactant con-
centrations, the surface tension decreases. Though the interface
is now partially occupied by surfactants, it is still a liquid interface
obeying the Laplace-Young law. This changes when crosslinkers
start to connect previously freely diffusing surfactants and turn
the interface into an elastic solid by forming elastic bonds above
a threshold concentration for gelation. After completion of this
crosslinking process, an elastic capsule in its reference, i.e., unde-
formed or stress-free shape has been formed.
Fig. 1. Typical experimental procedure in pendant drop elastometry. In a first step, a p
example, by interfacial crosslinking. When the coating process is completed, cyclic pres
during this procedure. Fitting theoretical shapes from the elastic model to the shape pr
sufficiently solid and thin materials wrinkles occur upon deflation, which can be analyz
multiple inflation-deflation-cycles, which can reveal aging effects or hysteresis. Applicat
By slowly reducing the volume of the capsule one observes
elastic deformations, which are specific to the microscopic struc-
ture of the membrane. We neglect such microscopic details by
assuming a homogeneous isotropic material and focus on the
set of elastic constants, which describe the macroscopic proper-
ties of the membrane. Nonetheless, microscopic effects can be
observed in the elastic constants, if these are measured during
the course of deflation. Phase transitions that occur as a function
of the accessible surface area induce a rapid change in the elastic
moduli and are, therefore, detected. Viscoelastic or creep behavior
are detected, if elastic moduli change with the rate of volume
reduction. Aging effects are detected, if elastic moduli change
during the course of multiple cycles of de- and inflation that
are applied to the capsule.

The general aim of pendant capsule elastometry is the same as
in pendant drop tensiometry, namely to adjust material parame-
ters (elastic constants or surface tension and, eventually, pressure)
such that theoretically generated axisymmetric capsule/droplet
shapes optimally fit a given experimental shape. The shape of an
elastic capsule can be described by classical elastic shell theory
(if bending moments are included) or elastic membrane theory
(if bending moments are neglected) [34], which requires an elastic
material model specified by its constitutive stress-strain relation or
a corresponding elastic energy. We neglect bending moments and
mainly focus on Hookean membrane elasticity throughout this
paper but also discuss Mooney-Rivlin or neo-Hookean elastic
membranes, which are also implemented in the software. Each
elastic material model is characterized by a set of elastic material
parameters, such as the surface Young modulus Y2D and the Pois-
son ratio m2D in Hookean membrane elasticity (or the Rivlin modu-
lus YM and the dimensionless shape parameterW in Mooney-Rivlin
membrane elasticity), which we aim to determine by optimally fit-
ting theoretical to experimental shapes. For an elastic material we
also need an elastically relaxed reference shape, with respect to
which local stretch factors or strains in the material are defined,
in order to calculate deformed shapes. This problem will be dis-
cussed in Section 5 in detail.

In a pendant capsule geometry (see Fig. 1) the capsule is formed
hanging from an axisymmetric capillary. Therefore, we assume
axisymmetric shapes which can be uniquely described by their
shape profile, i.e., the intersection of the capsule surface with a
plane. We use cylindrical coordinates to describe axisymmetric
shapes (with the z-axis as symmetry axis) and describe the profile
as a contour in the r-z-plane, see Fig. 2. The shape profile can be
endant capsule is prepared by coating a pendant droplet with an elastic shell, for
sure/volume changes are applied to the capsule and images are taken continuously
ofile extracted from the image gives the elastic moduli of the shell membrane. For
ed to give the bending modulus of the shell membrane. The procedure allows for
ion of different volume change rates can reveal viscoelastic effects.



Fig. 2. Parametrization of the shape equations. Axisymmetric shapes are described by a shape profile in the r-z-plane, which generates a surface of revolution by rotation with
respect to the z-axis. The shape equations are integrated over the thickness H of an infinitesimal membrane patch, which is an approximation for thin shells. Forces and
torques resulting from curvature are neglected and, thus, depicted in gray.
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trivially acquired experimentally by taking a two-dimensional
image from the side.

For a given elastic model, tangential and normal force equilib-
rium of stresses and external forces at every point on the surface
determine the equilibrium shape. The equations of force equilib-
rium, geometric relations, and constitutive relations can be used
to derive a closed system of first order differential equations for
r; z, a slope angle w (see Fig. 2) and the meridional elastic stress
ss with the arc length s0 of the undeformed spherical profile as
independent variable, which are called shape equations and dis-
cussed below in Section 4 in detail. The shape equations use the
constitutive relations and are, therefore, specific for the elastic
model that is used to describe the capsule material. We discuss
shape equations for Hookean elasticity, Mooney-Rivlin, and neo-
Hookean materials in detail in Section 4. The solution of the shape
equations determines the theoretical shape profile of an axisym-
metric shape for a given set of material parameters, a given pres-
sure inside the capsule, and a given elastically relaxed reference
shape. We solve the shape equations numerically by a shooting
method (see Appendix C) because boundary conditions have to
be applied at both ends of the shape profile, i.e., at the attachment
point to the capillary and at the lower apex of the capsule.

Comparison between experiment and theory is achieved by
overlaying the theoretical shape and the image, regardless of the
employed elastic model. In pendant capsule elastometry elastic
material parameters of individual capsules are then determined
by fitting the parameters (i.e., elastic moduli) of the model until
the theoretical shape (for each parameter set obtained by solution
of the shape equations) optimally matches the contour given in the
image. We determine the optimal fit by minimizing the mean-
square deviations between image contour points and theoretical
contour (see Appendix D).

This approach works with different constitutive relations with
different numbers of elastic moduli, as long as the shape is sensi-
tive to each of the employed material parameters. One prominent
example for a parameter, where the shape is rather insensitive to,
is the bending modulus EB for a thin capsule membrane. Therefore,
the bending modulus of a thin capsule membrane cannot be deter-
mined reliably by fitting to the shape profiles but has to be deter-
mined via a different approach, namely the analysis of wrinkle
wavelengths. In case of a wrinkling instability, we have to use an
effective constitutive relation in the wrinkled part of the shape
profile and corresponding effective shape equations, which are also
discussed in the next Section 4.

Thus, for the complete pendant elastometry shape analysis we
have to handle three major tasks, (i) solving the shape equations
for the given elastic model to determine the theoretical deformed
shape from the elastically relaxed reference shape, (ii) decoding
the contour from the image and (iii) adapting the model param-
eters (elastic moduli) to fit the contour. Details of the algorithm
are described in the Appendix: (i) solving the shape equations
by a multiple shooting method in Appendix C and determining
the reference shape in Appendix B, (ii) the image processing in
Appendix F, and (iii) parameter determination by shape regres-
sion in Appendix D. In contrast to previous implementations
[19], we strongly focus on numerical performance and robustness
as well as a high degree of automation and make the resulting C/
C++ code publicly available under a GPL License [35]. We also
implement shape equations for different constitutive relations
for elastic membranes: nonlinear Hookean as in Ref. [19], strictly
linear Hookean as in Refs. [12,14,9], Mooney-Rivlin, and neo-
Hookean membranes as in Ref. [13]. We verify our method by
analyzing several materials and comparing the results to rheolog-
ical measurements.

4. Shape equations

4.1. Liquid reference shape

The shape of a liquid droplet hanging from a capillary can be
described by a system of nonlinear differential shape equations
with the arc length s0 of the contour as independent variable,

r00ðs0Þ ¼ cosw0; z00ðs0Þ ¼ sinw0;

w0
0ðs0Þ ¼ ðp0 � Dqgz0Þ=c� sinw0=r0

ð1Þ

(primes denote derivatives d=ds0). The z0-axis is the axis of symme-
try, r0 the radius and w0 the slope angle of the contour. We use
quantities with a subscript ‘‘0” because we will employ a Laplace-
Young fit for the elastically relaxed reference state of our elastic
capsule before deformation by volume reduction, see Section 5
below. The first two equations are geometric relations involving
the slope angle w0; the third equation is the Laplace-Young force
balance equation in cylindrical parametrization, where we use
js0 ¼ dw0=ds0 for the curvature of the droplet in meridional direc-
tion. Note that the Laplace-Young shape Eqs. (1) are already closed,
i.e., the right hand side is completely written in terms of the three
functions r0ðs0Þ; z0ðs0Þ; w0ðs0Þ on the left hand side. The arc length
s0 varies in the range ½0; L0�; the lower apex is located at s0 ¼ 0, and
the drop is attached to the capillary at s0 ¼ L0. The Laplace-Young
shape equations are solved with initial conditions
r0ð0Þ ¼ 0; w0ð0Þ ¼ 0, and z0ð0Þ ¼ f arbitrary; the contour length L0
is determined by the boundary condition r0ðL0Þ ¼ a=2, where a is
the inner capillary diameter. The right hand side of w0

0ð0Þ at s0 ¼ 0
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is ambiguous using the initial values; L’Hôpital’s rule leads to
w0

0ð0Þ ¼ ðp0 � DqgfÞ=2c at s0 ¼ 0 which is also needed to start the
integration of the shape equations. The solution gives the droplet
shape ðr0ðs0Þ; z0ðs0ÞÞ as a function of the parameters p0;Dq and c.
The pressure p0 is the hydrostatic pressure at the apex (if f ¼ 0),
Dq the density difference between the inner and outer phase, and
c the surface tension. The pressure difference Dqgz0 is induced by
gravity.
4.2. Elastic membrane materials

The Laplace-Young shape equations (1) are well suited for fluid
interfaces, but interfacial crosslinking or gelation actually turns the
interface into a two-dimensional elastic solid. From classical shell
theory and neglecting bending moments one derives the elastic
shape equations with the arc length s0 of the undeformed spherical
contour as independent variable, [19]

r0ðs0Þ ¼ ks cosw; z0ðs0Þ ¼ ks sinw;

w0ðs0Þ ¼ ks
ss

p� Dqgz� sinw
r

s/
� �

;

s0sðs0Þ ¼ �ks
cosw
r

ðss � s/Þ

ð2Þ

(primes denote derivatives d=ds0). The meridional and hoop
stretches ks ¼ ds=ds0 and k/ ¼ r=r0 capture the elastic deformation
state and are, thus, only defined with respect to the undeformed
reference shape r0ðs0Þ (with subscript ‘‘0”); the corresponding
strains are ðk2s � 1Þ=2 � ks � 1 and ðk2/ � 1Þ=2 � k/ � 1. Note that s
denotes the arc length of the deformed configuration, whereas s0
denotes the arc length of the undeformed configuration. Fig. 2 illus-
trates the involved quantities. The first to equations are geometric
relations involving the slope angle w. The third and fourth equations
describe normal and tangential force balance, respectively. In the
normal force balance, the principal curvatures js ¼ dw=ds and
j/ ¼ sinw=r have been used.

It is important to note that Eqs. (2) are still valid regardless of
the constitutive relation. This is also the reason why Eqs. (2) are
not yet closed: we have to rearrange the constitutive relations
ss ¼ ssðks; k/Þ and s/ ¼ s/ðks; k/Þ in order to express s/ and ks on
the right hand side of Eqs. (2) in terms of ss and k/ ¼ r=r0, i.e.,
in terms of the functions ssðs0Þ and rðs0Þ from the left hand side
(and the known reference shape r0ðs0Þ). We will discuss closure
of the shape equations for different constitutive relations and also
in the presence of wrinkles in the following sections. Once the
shape Eqs. (2) are closed, they are solved with the boundary con-
ditions rð0Þ ¼ 0, wð0Þ ¼ 0, and zð0Þ ¼ f arbitrary at the capsule
apex. A fourth boundary condition ssð0Þ ¼ l at the capsule apex
serves as shooting parameter to satisfy the boundary condition
rðL0Þ ¼ a=2 at the capillary (see Appendix C for the numerical
realization of the shooting method). The right hand sides of
w0ð0Þ and s0sð0Þ at s0 ¼ 0 are ambiguous using the initial values;
L’Hôpital’s rule leads to ksð0Þ ¼ k/ð0Þ and isotropic tensions
ssð0Þ ¼ s/ð0Þ at the apex. This results in s0sð0Þ ¼ 0 and
w0

0ð0Þ ¼ ksð0Þðp� DqgfÞ=2l at s0 ¼ 0 which are also needed to
start the integration.

The pressure p is the hydrostatic pressure at the apex of the
deflated shape (if f ¼ 0), which is below the pressure p0 of the ref-
erence shape, i.e., p < p0. In principle, information on the pressure
p could be experimentally available if pressure measurements are
possible. In the current implementation of the method and all
applications below, the pressure p serves as Lagrange multiplier
that is changed to control the capsule volume and determined from
shape fitting along with the elastic moduli.
4.3. Nonlinear Hookean elastic membrane

For a Hookean stretching elasticity the meridional and circum-
ferential tensions ss and s/ are related to the stretches ks and k/ by
the constitutive relations

ss ¼ 1
k/

Y2D

1� m22D
ððks � 1Þ þ m2Dðk/ � 1ÞÞ þ c;

s/ ¼ 1
ks

Y2D

1� m22D
ððk/ � 1Þ þ m2Dðks � 1ÞÞ þ c;

ð3Þ

where Y2D is the surface Young modulus and m2D Poisson’s ratio.
Instead of the surface Young modulus Y2D we could also use the sur-
face shear modulus l0 (sometimes called storage modulus G0) or the
area compression modulus K2D as alternative elastic constants of
the membrane material, which are related by

l0 ¼ Y2D
2ð1þm2DÞ ¼ K2D

1�m2D
1þm2D

and K2D ¼ Y2D
2ð1�m2DÞ :

ð4Þ

Although we use a simple Hookean elastic energy, the relations (3)
are nonlinear because of the additional 1=k-factors, which arise for
purely geometrical reasons: the Hookean elastic energy density is
defined per undeformed unit area, whereas the Cauchy stresses ss
and s/ are defined per deformed unit length. The relations (3) still
contain an interfacial tension c because the elastic capsule is
formed in the initial shape of a fluid interface. We assume that c
is the tension of the fluid interface in presence of a saturated inter-
facial surfactant concentration before crosslinking the surfactants
to an elastic shell. This assumption is addressed in detail in
Section 5.

The system of shape Eqs. (2) can now be closed by using on the
right hand side the constitutive relation for s/ from Eqs. (3), and
the relation

ks ¼ ð1� m22DÞk/ ss�c
Y2D

� m2Dðk/ � 1Þ þ 1

with k/ ¼ r
r0
;

ð5Þ

which derives from the constitutive relation for ss from Eqs. (3). The
resulting shape equations have also been used in Ref. [19].

4.4. Strictly linear Hookean, Mooney-Rivlin, and neo-Hookean
membranes

At this point we want to compare to similar approaches to pen-
dant capsule shapes by shape equations in the literature. Shape
equations very similar to Eqs. (2) have been obtained in Refs.
[12–14,9], where the same normal and tangential force balance
and geometry relations have been employed, however, in combina-
tion with different constitutive relations. In Ref. [13], an incom-
pressible neo-Hookean constitutive relation has been used for
the shell material, which is a special case of an incompressible
Mooney-Rivlin material. In Refs. [12,14,9], a strictly linear Hookean
constitutive law has been used, where the 1=k-factors are missing
as compared to the relations (3), (note that constitutive linear Hoo-
kean laws in Refs. [14,9] contain some misprints). In Refs. [13,14],
exemplary theoretical shapes have been discussed but no elastic
parameters have been determined from systematically fitting the-
oretical shapes to experimental images, i.e., using a least square
minimization algorithm to optimally match the experimental
shape with a theoretically generated contour. Therefore, we want
to discuss how the shape Eqs. (2) can be closed not only for a non-
linear Hookean membrane as in (5) but also for other constitutive
relations.

The simplest example is a strictly linear Hookean membrane,
where the closure is simply lacking one factor k/ as compared to
Eq. (5) [36],
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ks ¼ ð1� m22DÞ ss�cY2D
� m2Dðk/ � 1Þ þ 1

with k/ ¼ r
r0
;

ð6Þ

Thus, the closure relations are, as for the nonlinear Hookean mem-
brane, analytically accessible.

The Mooney-Rivlin membrane model is frequently used for poly-
mer materials as it describes membranes made from incompress-
ible materials. It describes these materials also deep into the
nonlinear regime as it captures effects from strain-stiffening. It
has the constitutive relation [36]

ss ¼ YM

3k/ks
k2s �

1

ðksk/Þ2
 !

Wþ ð1�WÞk2/
h i

þ c;

s/ ¼ YM

3k/ks
k2/ � 1

ðksk/Þ2
 !

Wþ ð1�WÞk2s
� �þ c;

ð7Þ

where YM is the surface Rivlinmodulus andW a dimensionless shape
parameter. A neo-Hookean membrane hasW ¼ 1. In the limit of small
strains a neo-Hookean membrane reduces to a Hookean membrane
with Y2D ¼ YM and m2D ¼ m3D ¼ 1=2 (for incompressibility). In order
to close the shape equations we have to use the constitutive rela-
tions (7) to find ks and s/ as a function of ss and k/ ¼ r=r0 in order
to replace ks and s/ on the right hand side in the shape Eqs. (2), as
for the Hookean case. Unfortunately, this involves roots of fourth
order polynomials. Therefore, we perform this task numerically in
our software. Note that this numerical solution has to be obtained
in each step of numerical integration of the shape equations, i.e.,
during each evaluation of the shape equations, which increases the
computational runtime significantly (roughly by a factor of 10) as
compared to fits with the nonlinear Hookean relation.

4.5. Wrinkling

The above shape Eqs. (2) only hold for thin materials H � R,
since we neglected bending elastic energy terms resulting from
curvature, which can, in principle, be included into shape equa-
tions (see Ref. [37]). This is justified as the bending modulus is
expected to scale EB / H3, whereas Young’s modulus scales as
Y2D / H. Consequently, for thin capsule shells, the shape profiles
are insensitive to changes in the bending modulus, which makes
it practically impossible to infer EB from fitting theoretical shape
contours to experimental images.

Nevertheless, we can determine the bending modulus in a sep-
arate analysis of the wrinkle wavelength [19]. Wrinkles in merid-
ional direction are present if s/ < 0, i.e., if compressive stresses
occur in circumferential direction (neglecting a small critical Euler
stress necessary to trigger wrinkling). This condition determines
the extent of the wrinkled region in meridional direction. In order
to describe wrinkled shapes violating axisymmetry we use a
pseudo-surface (�rðs0Þ; zðs0ÞÞ (all modified quantities related to the
pseudo-surface are denoted with bars) representing the average
amplitude of the wrinkling modulation. If s/ < 0, the algorithm
switches to a different set of shape equations for the pseudo-
surface which is obtained by explicitly setting s/ ¼ 0 [19]. The
modified set of shape equations is also obtained from force-
balance for the pseudo-surface. The meridional stresses for the
pseudo-surface are related to the original stresses by
�ss ¼ ssk/=�k/, where �k/ ¼ �r=r0 is the apparent stretch of the
pseudo-surface. Together with �s/ ¼ s/ ¼ 0 we obtain shape equa-
tions for the pseudo-surface,
�r0ðs0Þ ¼ ks cos �w; z0ðs0Þ ¼ ks sinw;

�w0ðs0Þ ¼ ks
�ss

p� Dqgzð Þ;

�s0sðs0Þ ¼ �ks
cos �w
�r

�ss:

ð8Þ
Note that these shape equations hold independently of the constitu-
tive relation of the material. Therefore, they are not yet closed. To
close these shape equations we need to rearrange the constitutive
relations �ss ¼ ssðks; k/Þk/=�k/ of the considered model and the wrin-
kling condition 0 ¼ s/ðks; k/Þ in order to express ks in terms of �ss and
�k/ ¼ �r=r0. We switch to this new set of shape Eqs. (8) as soon as
s/ < 0 is reached at s0 ¼ s1 along the contour; this gives a switching
condition that also depends on the constitutive relation of the
material. We switch back to the shape Eqs. (2) without wrinkles
as soon as this condition is violated again at s0 ¼ s2 > s1. The extent
of the wrinkled region is Lw ¼ s2 � s1.

For a nonlinear Hookean membrane the constitutive relations
(3) lead to a wrinkling condition

k/ ¼ 1� c
1� m22D
Y2D

ks � m2Dðks � 1Þ ð9Þ

which is also used to identify the wrinkled region s/ < 0 along the
contour. The constitutive relations (3) also lead to the following
expression for ks in terms of �ss and �k/ ¼ �r=r0,

ks ¼
�k/�ss þ Y2D � cð1þ m2DÞ

Y2Dð1� 2m2DÞ � ð1� m22DÞc2=Y2D
; ð10Þ

which closes the modified shape equations (8) in the wrinkled
region.

Similarly we proceed for the constitutive relations of a strictly
linear Hookean, and Eqs. (7) of a Mooney-Rivlin or neo-Hookean
membrane in the wrinkled region. For the strictly linear Hookean
membrane the wrinkling condition s/ ¼ 0 is given by

k/ ¼ 1� c
1� m22D
Y2D

� m2Dðks � 1Þ; ð11Þ

where a factor ks is missing compared to (9). Again, we find a rela-
tion for the meridional stretching factor in terms of �ss and �k/ ¼ �r=r0,

ks ¼ Y2DðY2Dþcðm�1ÞÞð1þ2mÞ
2Y2

2Dm

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2
2DðY2

2Dþc2ðm�1Þ2þ2Y2Dðcðm�1Þ�2k
�
/s
�
smÞÞ

p
2Y2

2Dm
;

ð12Þ

where the solution with the negative root has to be chosen.
Unfortunately, for the Mooney-Rivlin membrane analytic

expressions are impracticable since they contain roots of fourth
order polynomials. However, ks and k/ can be reliably determined
by numerically solving

s/ðks; k/Þ ¼ 0 and �ss � ssðks; k/Þk/=�k/ ¼ 0: ð13Þ
Note that, in the wrinkled region, ks and k/ have to be determined,
whereas in the non-wrinkled region ks and s/ have to be deter-
mined. The solution ðks; k/Þ of the above set of equations closes
the shape Eqs. (8) and can, in principle, be obtained in the same
way for any constitutive law.

The extent of the wrinkled region where s/ < 0 of course
depends on the value of the interfacial tension c in all constitutive
relations (3) or (7). The fact that we generally obtain good agree-
ment with experiments regarding the extent of the wrinkled region
also supports the inclusion of the interfacial tension into the con-
stitutive relations.

5. Equilibrium and reference shapes

Solutions of the elastic shape Eqs. (2) presume an elastically
relaxed reference shape, with respect to which elastic strains are
defined. The choice of the reference shape is subject to certain
assumptions which will be discussed in this section.

Capsule formation by crosslinking or polymerization proceeds
via three phases (see Fig. 1). In phase (i) we have a liquid drop
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without any surfactants and a stationary shape (which is a tear-
drop shape due to gravity). Phase (ii) starts when surfactants
and/or crosslinkers are added to one of the bulk phases such that
adsorption of surfactants and subsequent crosslinking into a two-
dimensional network can occur. If surfactants and/or crosslinkers
are dissolved in the droplet or the surrounding fluid, then phase
(ii) starts immediately when forming the droplet. In phase (ii)
the shape changes and the capsule finally reaches a new equilib-
rium shape. In phase (iii) the capsule is in its new stationary shape
after successful crosslinking; this is the state where the deflation
experiment is started.

For the regression of deflated capsule shapes we usually assume
that the equilibrium state reached in phase (iii) is identical to the
elastically relaxed state and, thus, free of elastic tensions. As dis-
cussed above, we also assume in the constitutive relations (3) that
the surface tension c gives a constant contribution to the tensions
ss and s/. Then the surface stress in the elastically relaxed state of
the membrane is solely determined by the isotropic surface ten-
sion c. We thus assume in (3) that the elastically relaxed state
can be described as a liquid drop shape using the Laplace-Young
equation. Based on these two assumptions we use a Laplace-
Young fit for the equilibrium shape in phase (iii).

These two assumptions are based on the following picture for
the crosslinking process in phase (ii): When adding surfactants to
one of the bulk phases at the beginning of phase (ii), the surface
tension typically decreases linearly or exponentially in time until
it reaches a plateau at the equilibrium surface tension cA. The
actual crosslinking of the membrane only happens after the plateau
at the surface tension cA has been reached. During crosslinking the
interfacial tension cA of the fluid interface remains unchanged. If
this picture is valid, we should observe a sagging of the capsule
under the action of gravity while a decreasing surface tension gives
shapes that can be successfully fitted using the Laplace-Young
shape Eqs. (1). The sagging should stop when the surface tension
reaches the plateau. During this plateau phase the crosslinking is
established, while the capsule shape is unchanged. Fig. 3 (right)
shows an example of an OTS-capsule where all these features
can indeed be observed. Fitting the shape using the Laplace-
Young shape equations gives only small errors and the interfacial
tension c follows the expected temporal evolution.

There are, however, capsule formation processes which deviate
from this picture. Another possible scenario is that the formation of
a solid shell by crosslinking happens earlier in phase (ii) but further
polymerization during phase (ii) generates elastic strains and
stresses. All further shape changes during phase (ii) have to be
Fig. 3. The interfacial gelation phase (ii) fitted with a model for liquid interfaces (Laplace
we use the reference shape from the very beginning of phase (ii), i.e., phase (i). No ac
CeðSO4Þ2 and CTAB-surfactants in a dodecane phase. Right: OTS-capsule, i.e., a p-xylol dro
mixture.
interpreted as a result of strain and stress generation during the
polymerization process, and the capsule shell is pre-stressed in
the equilibrium state in phase (iii). Then the elastic reference shape
is not exactly known and, in principle, can be any of the shapes
encountered in phase (ii). One extreme assumption is that
crosslinking is fast and a solid membrane is established right at
the beginning of phase (ii). Then the shape in the beginning of
phase (ii) directly after addition of surfactants and crosslinkers
can be viewed as the elastic reference shape and all subsequent
shapes should be fitted with an elastic model using this reference
shape. Fits with the elastic model should reveal how strains, stress,
and elastic moduli evolve during phase (ii).

In order to decide which choice of reference shape is most
appropriate, one can try different fits using different shapes from
phase (ii) as elastically relaxed reference shapes (for example, from
the end or the beginning of phase (ii)). All shapes before the refer-
ence shape are fitted using the Laplace-Young shape equations and
described by an interfacial tension c that decreases in time. All
shapes following the reference shape are fitted using the elastic
shape equations and described by a surface Young modulus Y2D

and a Poisson ratio m2D, which evolve in time. The reference shape
giving the best fits (with smallest errors) should be chosen. More-
over, choices of reference states producing unphysical results, such
as a surface Young modulus Y2D which is decreasing in time during
the crosslinking process in phase (ii) (more crosslinks or junction
points should always increase Y2D), should be discarded.

Two examples are shown in Fig. 3. OTS-capsules show the typ-
ical sagging in phase (ii) and can be fitted quite well with the
Laplace-Young shape equations giving a surface tension c, which
at first decreases linearly or exponentially and then reaches a pla-
teau, consistent with the standard scenario that the shell is cross-
linked at the end of phase (ii). But the shapes can also be fitted
quite well assuming that crosslinking is established at the begin-
ning of phase (ii); then the observed sagging leads to fits with a
decreasing Young modulus Y2D and should, therefore, be discarded
as unphysical.

The second, untypical example are H20-droplets coated with
coagulated films of CeðSO4Þ2 and CTAB-surfactants, which only
show little sagging during crosslinking and even develop wrinkles
already during phase (ii), which is a strong hint that a solid mem-
brane had been established early in phase (ii). The crosslinking
process is much slower for these capsules. Here, fits with the
Laplace-Young shape equations give a decreasing c that reaches a
plateau; the resulting fit errors are, however, quite large and grow-
ing in time. The assumption that the shape in the beginning of
-Young, orange) and a model for elastic interfaces (Hooke membrane, gray), where
tive pressure or volume change have been applied. Left: H2O-droplet coated with
plet in solution with 1,2,4-trichlorobenzene and coated with OTS in a glycerol-water
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phase (ii) is already crosslinked and can be regarded as the elasti-
cally relaxed reference shape gives a Young modulus Y2D, which
increases sharply in the beginning of phase (ii) and then reaches
a plateau; there is no pronounced decrease in Y2D. Fit errors for this
scenario are decreasing in time. The fit errors for the two fitting
approaches actually show an intersection point early in phase
(ii). Between the beginning of phase (ii) and the intersection point,
the capsule shape is adequately described by the liquid model.
Beyond the intersection point the elastic model provides a more
accurate description than the liquid model. One might conclude
that the formation of the network at the interface is completed,
when the system passes the intersection point. The surface Young
modulus does not change significantly after passing the intersec-
tion point, which confirms our conclusion. Comparing fit errors
could serve as a simple method to estimate the time needed to
built a crosslinked solid shell for different materials or chemical
processes.

6. Software overview

The software and source code [39] provided with this paper are
freely available at github.com under a GPL license [35]. It is a
command line program developed in C/C++ and most compatible
with Linux/Unix. Usage is fairly simple and a guideline (README.
md) is provided as part of the github repository. We give a brief
description of how the program works and how the typical work-
flow looks like.

Presuming that at least one image of the reference capsule and
at least one image of a deformed capsule is given, a first call
OpenCapsule will establish the workspace, i.e., create folders for
Fig. 4. Pendant capsule elastometry results for five different types of capsules. The above
scale-bar is of length 1 mm. These images are automatically generated by our Software
polymers and crosslinked with cucurbit[8]uril in H2O [18]. Both the capsule contour and
analysis yields a surface tension c ¼ 20:0 mN=m. The elastic analysis yields an area com
EB ¼ 5 � 10�16 Nm and a layer thickness H ¼ 256 nm. (B) Reference and deflated shape of
Young analysis yields a surface tension c ¼ 13:2 mN=m. The elastic analysis yields an a
modulus EB ¼ 2:20 � 10�14 Nm and a layer thickness H ¼ 1:28 rlm. (C) Reference and
trichlorobenzene and coated with OTS in a glycerol-water mixture, see also Fig. 7, (D) Refe
(sorbitan tristearate) in dodecane, see also Fig. 6 (left). (E) Reference and deflated shape
N-ð3� AminopropylÞ-methacrylamide, and DTAB (E1) or CTAB (E2) surfactants, surround
all five capsule types predicted wrinkle regions (blue lines) fit the actual wrinkled area
because of a very thin shell and, thus, a small wrinkle wavelength. Span 65 is expected
the input/output files as well as a standard configuration file. The
essential information in the configuration file should be updated
according to the needs. In particular, the density difference Dq
between the inner and the outer phase is needed, as well as the
outer capillary diameter b. Both can be manipulated via the corre-
sponding environment variables EXPERIMENT_DENSITY and
EXPERIMENT_CAPDIAMETER. In addition, the names and paths of
the image files need to be specified. Files have to be listed (sepa-
rated by colons) next to the environment variables REFERENCE_
SHAPE and ELASTIC_SHAPE. Note that the software searches for
images by default in the ./input/-folder. If images are placed
somewhere else, the path should be specified via the variable
INPUT_FOLDER. Requirements for capsule images are detailed in
the appendix.

This suffices to run the first analysis. To check if everything
works correctly the command OpenCapsule -r should be called,
which will analyze the reference shapes and determine the surface
tension as an average over all given images and, of course, for each
individual image. This analysis can also be used to fit the deformed
shapes with the Laplace-Young equation, e.g., to determine the
Gibbs-modulus. If the results are satisfactory, the command
OpenCapsule -s will run the elastic analysis. Both types of anal-
yses are completely automatized. The essential numerical results
are placed in the ./global_out/-folder. The results for the refer-
ence shapes are listed in reference.dat; the results for the
deformed shapes in sequence.dat. Though no graphical user
interface is provided, the results will be printed in a comprehen-
sive html-report, which can be opened in a web browser. This
report contains the original capsule images with an overlay of
the theoretical shape and a scale bar (see Fig. 4), from which one
images are the original input files overlayed with the best fit theoretical contour, the
. (A) Reference and deflated shape of a FC-40 droplet coated with supramolecular
the wrinkling region are perfectly described by the elastic model. The Laplace-Young
pression modulus K2D ¼ 44 mN=m, a Poisson ratio m2D ¼ 0:29, a bending modulus
a dodecane droplet coated with three layers of PMAA/PVP in H2O [38]. The Laplace-
rea compression modulus K2D ¼ 141 mN=m, a Poisson ratio m2D ¼ 0:75, a bending
deflated shape of an OTS-capsule, i.e., p-xylol droplet in solution with 1,2,4-

rence and deflated shape of a Span 65 capsule, i.e., H2O-droplet coated with Span 65
of an amino-functionalized polyacrylamide capsule, i.e., H2O-droplet with Na2CO3,
ed by an outer phase with p-xylol and sebacoyl dichloride, see also Fig. 6 (right). For
quite well. The wrinkles of the Span 65 capsule are hardly visible by eye, probably
to form molecular monolayers, which is consistent with this interpretation.
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can instantly judge if the fitting procedure was successful. In case
of failure, one should adapt the configuration file according to the
guideline. Setting up a proper configuration file once for a specific
capsule type is typically sufficient. Afterwards it can be used with-
out changes for the same type of capsules.
7. Reference analysis

The shape analysis is split into two batched parts, which are (i)
reference shape analysis and (ii) deformed shape analysis. For the
former one it is advantageous to analyze as many images as possi-
ble showing the same, undeformed state of the capsule. This is par-
ticularly necessary if images are slightly blurred from camera
shake or capsule motion. Averaging over all images improves accu-
racy, which is important here, since we use the reference shape
and parameters during the complete analysis of the deformed
shapes. The reference analysis gives the surface tension c and the
shape profile that is necessary to define the strains in the elastic
analysis.

From the experiment we know the outer capillary diameter b
and the density difference Dq both in SI units. Solutions of the
shape equations have to match the inner capillary of width a,
which is the relevant length scale. This quantity is typically speci-
fied by the needle manufacturer, but due to material sediments,
which potentially change the effective inner capillary diameter,
we prefer to measure it directly from the image. Actually, we
determine a in units of the image (pixels) by choosing it as an inde-
pendent fit parameter that rescales all lengths occuring in the
Laplace-Young shape equations. From image processing we also
know the outer capillary diameter b in units of the image (pixels).
Thus, we find a ¼ ha=bib, which is the effective inner capillary
diameter in SI units. Scaling dimensionless lengths with a trans-
forms them to SI units. We introduce dimensionless quantities
~p0 ¼ ap0=c and D~q ¼ a2Dqg=c and minimize the mean square devi-
ation between shape and contour with respect to the parameter set
x0 ¼ ð~p0;D~q;aÞ. After successful minimization, we obtain the sur-
face tension via c ¼ aDqg=D~q. To prepare all contours for the elas-
tic analysis we scale them with 1=a and thereby transfer them to
dimensionless units.
8. Elastic analysis

In the elastic regression we determine the area compression
modulus K2D and the Poisson ratio m2D by minimizing the mean-
square deviations between image contour points and theoretical

contour, i.e., with respect to the parameter set x ¼ ð~p; m2D; eK 2DÞ,
where ~p ¼ ap=c and eK 2D ¼ K2D=c. From these quantities we also
obtain the surface Young modulus Y2D ¼ 2K2Dð1� m2DÞ, see Eq.
(4). For the Mooney-Rivlin elasticity model we determine analo-

gously the parameter set x ¼ ð~p;W;Y
�
MÞ within the shape regres-

sion. For the neo-Hookean elasticity model we keep W ¼ 1 fixed
during the shape regression.

It is not required that elastic shapes are ordered chronologically,
but it decreases the runtime significantly, since the final parame-
ters of a deformed shape can be used as an initial guess for the fol-
lowing shape, which is probably deformed by a similar extent.

In the current implementation, the pressure p is an additional
fit parameter and will also be determined from fitting calculated
shapes to an image. In this implementation the elastometry
method also serves as pressure measurement and no additional
pressure measurement is necessary. If such information is experi-
mentally available from additional measurements, it could be used
to improve the results for the elastic moduli, by fixing the pressure
to the experimentally obtained value.
After a successful regression we can estimate the bending mod-
ulus [19]

EB ¼ K4�ss=16p2L2w ð14Þ
by an image analysis of the wrinkles. We determine the length Lw of
the wrinkles in meridional direction directly from the shape by
finding the zero crossings s1 and s2 of s/ðs0Þ. The interval ½s1; s2� in
which wrinkles occur sets the meridional extent of the wrinkled
region, in which we determine the average meridional tension �ss.
It is important to note that the extent of the wrinkled region is
not a fit parameter but is predicted by the shape equations and
the wrinkling criterion s/ < 0, according to Section 4.5. In order
to estimate the wrinkling wavelength K, we select the wrinkling
region from the image and perform an edge detection with high
sensitivity and only in horizontal direction to estimate the average
distance between the wrinkles, which should correspond to one
wavelength K. We then count the detected edge pixels NE and the
total number N of pixels in the selected region. The ratio N=NE

now approximately gives the number of wrinkles apparent in the
image, if we consider the region as rectangular with equidistant
vertical wrinkles. Finally, we use the estimate K � p�rNE=N, where
�r is the capsule radius rðs0Þ averaged over the interval ½s1; s2�.

Knowing Y2D, m2D and EB, we can directly determine the Föppl
von Kármán number cFvK ¼ Y2DR

2
0=EB of the capsule, where R0 is

the maximum capsule radius. If we assume that the shell material
is a thin layer of a three-dimensional isotropic elastic material, we

additionally find the thickness H ¼ ½12EBð1� m22DÞ=Y2DÞ�1=2 of the

layer, where we use Y2D ¼ Y3DH, EB ¼ Y3DH
3=12ð1� m23DÞ and

m3D ¼ m2D.
9. Applications

In this section we demonstrate the wide applicability of our
pendant capsule elastometry software to different capsule materi-
als, see Fig. 4. We apply our software to crosslinked polymeric cap-
sule shell materials like OTS (octadecyltrichorosilane) (Fig. 4C) and
amino functionalized polyacrylamide (Fig. 4E), as well as more
exotic capsule materials like Span 65 [40–42], which is a food
emulsifier (Fig. 4D). Moreover, Fig. 4 shows analyses of two sorts
of capsules from literature, cucurbit[8]uril-capsules that have been
introduced and discussed in Ref. [18] (Fig. 4A) and PMAA/PVP-
capsules from Ref. [38] (Fig. 4B). In addition, the method has been
used previously (in a less advanced implementation) on
hydrophobin-coated air bubbles [19].

As can be seen in Fig. 4, nonlinear Hookean fits for all capsule
materials work well and correctly predict the extents of the wrin-
kled regions (blue lines). The different capsule materials that could
be analyzed have quite diverse area compression moduli ranging
from K2D � 50 mN=m (polyacrylamide capsules and cucurbit[8]
uril-crosslinked capsules) to K2D � 4 N=m (OTS-capsules), which
corresponds to two orders of magnitude. The bending moduli from
the wrinkle analysis range from EB ¼ 5 � 10�16 Nm (cucurbit[8]uril-
crosslinked capsules) to EB ¼ 10�13 Nm (OTS-capsules from Fig. 8).
For the Span 65 capsules we find even lower bending moduli of
order EB ¼ 10�20 Nm assuming a quite short wrinkle wavelengths
just below the image resolution. However, the existence of these
wrinkles could not be verified experimentally, yet.

Capsules in Fig. 4 develop a ‘‘neck” upon deflation. We note that
this neck is not associated with any mechanical instability (e.g., a
buckling-type instability [37,43]), i.e., there is no bifurcation
between different types of shapes upon deflation but all shapes
continuously evolve into the necked shapes. The deflated shapes
exhibit high compressional stretches in particular in the wrinkled
region as Fig. 5 shows, where the resulting stretches ks and k/



Fig. 5. Stretching factors ks;/ along the deflated capsule contours from Fig. 4 obtained from shape regressions with the nonlinear Hookean elasticity (solid lines), and the
Mooney-Rivlin or neo-Hookean elasticity model (dashed lines). The wrinkled region is indicated by transparent lines (either solid or dashed) for both elasticity models. Left:
Meridional stretching factor ks as a function of the arc length s0. Except of the cucurbit[8]uril and the Span 65 capsules, all capsules have small strains j ks � 1 j< 0:1 and, thus,
can be successfully treated with small strain approximations, i.e., the nonlinear Hookean elasticity model. Right: Circumferential stretching factor k/ (apparent stretch �k/ in
the wrinkled region) as a function of s0. Particularly in the wrinkled region, we see significant deviations from the small strain limit j k/ � 1 j< 0:1. In the wrinkled region we
use, however, a different constitutive law (s/ ¼ 0) independent of �k/. In the non-wrinkled region, we find again small strains j k/ � 1 j< 0:1 for PVMAA/PVP, OTS, and
polyacrylamide capsules.
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are plotted along the deflated contours for all capsules shown in
Fig. 4 and, indeed, values significantly smaller than 1 occur for
k/. This raises the question whether nonlinear effects are ade-
quately treated by the nonlinear Hookean material model. This
model contains nonlinearities only via the 1=k-factors in the con-
stitutive relations (3), which arise because we use Cauchy stresses
defined per deformed unit length in the force-equilibria.

Our model explicitly includes, however, wrinkle formation,
which is a nonlinear phenomenon. We actually use a different con-
stitutive relation s/ ¼ 0 (see Eqs. (8) above) in the wrinkled region,
such that a further decrease in the apparent stretch �k/ ¼ �r=r0 in the
wrinkled region does no longer lead to increased compressive
stresses s/ but only modifies the effective constitutive law (10)
for the meridional stresses �ss of the pseudo-surface. Therefore,
small values of �k/ in the wrinkled region do not imply that a differ-
ent, more appropriate nonlinear constitutive relation should be
used. The results in Fig. 5 show that strains jk/ � 1j become large
only in this wrinkled region. This suggests that usage of the nonlin-
ear Hookean elasticity is justified.

In order to investigate nonlinear effects further, we also per-
formed fits of all capsules from Fig. 4 with a nonlinear Mooney-
Rivlin or neo-Hookean elasticity model. The resulting best fits for
the theoretical contour are not distinguishable from the nonlinear
Hookean contours shown in Fig. 4, which already suggests that
nonlinearities are already adequately treated by the nonlinear
Hooke law. In Fig. 5 we also compare the stretches resulting from
shape regressions with the nonlinear Hookean and the Mooney-
Rivlin or neo-Hookean elasticity model for all deflated capsule
shapes from Fig. 4. We see that strains are similar for both models
for any of the capsule materials, except of the Span 65 capsules,
where we were not able to obtain a reliable fit result using the
Mooney-Rivlin elasticity model. For Span 65 the meridional
stretching factor varies strongly with the arc length indicating
strongly inhomogeneous stresses, which might be the reason for
these problems. Treating the dimensionless shape parameter W
within Mooney-Rivlin elasticity as an independent fit variable
results in W ! 1 for PVMAA/PVP, OTS, polyacrylamide CTAB, and
polyacrylamide DTAB capsules. It is noticeable that all these mate-
rials give a Poisson ratio m2D > 0:5 employing the nonlinear Hoo-
kean fit. Only for the cucurbit[8]uril capsules, which have a
Poisson ratio m2D < 0:5 we find W < 1 and, thus, deviations from
the neo-Hookean behavior. This indicates that most of the capsule
materials discussed in this paper behave like a neo-Hookean mate-
rial and, thus, also similar to a nonlinear Hookean material in the
small strain limit. This limit is obviously applicable to PVMAA/
PVP, OTS and polyacrylamide capsules, since they all satisfy
j ks � 1 j< 0:1 over the whole contour, and also j k/ � 1 j< 0:1 in
the non-wrinkled region. Because of these results and the fact that
Mooney-Rivlin fits require a much higher computational cost, we
focus on nonlinear Hookean elasticity in the following, which gives
good results for all capsule types.

Where comparison to other rheological measurements is possi-
ble, results from pendant droplet elastometry are in good agree-
ment. For PMAA/PVP-capsules, the surface Young modulus of
Y2D ¼ 211mN=m agrees with the findings in Ref. [38]. In the fol-
lowing we will discuss results on the OTS-, amino-functionalized
polyacrylamide, and Span 65 capsules, which have not been previ-
ously discussed in the literature, in more detail. Pendant capsule
elastometry allows us to obtain elastic moduli of the two-
dimensional capsule shell material for each digitized image of
the deflated capsule shape (if at least one image of its undeformed
reference shape is provided). Therefore elastic moduli can be deter-
mined as a function of the deflation volume. If the volume change
rate can be controlled, elastic moduli can be determined as a func-
tion of the volume change rate to investigate viscoelastic effects. If
series of images over one or several deflation cycles are available,
we can investigate aging effects, for example, by plastic deforma-
tion over many deflation cycles. We will explore these possibilities
for OTS-, polyacrylamide, and Span 65 capsules, starting with the
latter.

9.1. Span 65 capsules

Span 65 has a polar head group connected to three carbon
chains leading to intermolecular interactions when adsorbed to a
liquid interface. Though not explicitly crosslinked, the material
shows elastic properties due to the formation of temporary net-
works. For Span 65, our method agrees with four different rheolog-
ical measurements (surface shear-rheometry, Langmuir-Blodgett,
spinning-drop method, and shear flow rheoscope), which all give
area compression moduli K2D between 0:3 and 0:9 N/m. These fit
well to the values K2D ¼ 0:2 . . .1:0 N=m obtained by our method
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for small deformations at V=V0 > 0:8, see Fig. 6 (left). The pendant
capsule elastometry results in Fig. 6 (left) also reveal that the area
compression modulus strongly varies with the volume: deflated
capsules with V=V0 < 0:5 become very soft with K2D < 0:1 N=m.
This pronounced compression softening can eventually explain
the deviations among previous rheological measurements. Upon
re-inflating the capsule, the compression modulus exhibits a
non-monotonous behavior (see Fig. 6 inset) but we do not find a
generic pathway among the eight individual capsules that we ana-
lyzed. We can, however, speculate based on visual impressions
from the images that the capsule material develops overlaps or
similar microscopic folds that vanish after complete re-inflation.
As a consequence, we see hysteresis but no aging effects as the
compression modulus returns to its original value after completing
a deformation cycle, see Fig. 6 (left). We also do not see a pro-
nounced change of this behavior if the volume change rate is chan-
ged. All these results suggest that the compression softening could
be a result of reversible rearrangements of the temporary network
of the capsule material on time scales, which are short compared to
the time scale of volume changes. These reversible rearrangements
lead to an apparent decrease of elastic moduli with decreasing vol-
ume. In Fig. 5 we showed that Span 65 capsules exhibit strongly
inhomogeneous strains, which likewise indicates a quite complex
elastic behavior. Eventually, one might conclude that Span 65 is
not well described by classical elastic models. Specific models that
account for the microscopic details of the material have to be
developed to analyze the elastic properties of Span 65 in more
detail. In contrast to permanently crosslinked polymer membranes
Span 65 forms temporarily crosslinked network structures [44].
Within these structures, the applied stresses can relax with time
constants of the order of several minutes, which leads to time-
dependent transitions from solid into liquid like membranes. This
more complicated rheological behavior, can only be described by
time-dependent nonlinear constitutive laws. Bending moduli can
not be determined directly from the images since the wrinkles
are not visible by eye although the shape analysis suggests the
existence of wrinkles over an extended region, see Fig. 4 D. One
could assume a wrinkle wavelength just below the image resolu-
tion, which gives K 6 8 lm; EB 6 2 � 10�20 Nm, and H 	 1:67 nm.
Eventually wrinkles could also be absent in this system because
compressive hoop stresses can be relaxed by the rearrangements
in the temporary network.
Fig. 6. Left: Pendant capsule elastometry results for Span 65 capsules, i.e., H2O-droplets c
capsules (color code), most of them fitted over three phases of deflation. The inset also sh
significantly among the capsules, and there is no generic behavior as for the deflation p
1:0 ll=s. Surface shear-rheometry measurements give K2D ¼ 0:9 N=m, Langmuir-Bl
K2D ¼ 0:54 N=m. Rheological measurements are thus consistent with our method, wh
roughly given by m2D ¼ 0:8. Right: Pendant capsule elastometry results for polyacrylamid
DTAB (circles) or CTAB (quads) surfactants. The outer phase consists of p-xylol and sebaco
most of them fitted over three phases of deflation. Deformations were applied after 60 m
surfactants and m2D ¼ 0:5 with CTAB surfactants. The values of the area compress
K2D ¼ 30 . . .100 mN=m.
9.2. OTS-capsules

For the OTS-capsules from Fig. 7 we find values
K2D ¼ 1:0 . . .4:0 N=m, which is just slightly below the rheological
data from other methods giving K2D ¼ 3:0 . . .10:0 N=m (spinning
drop measurements give K2D ¼ 3:0 . . .7:5 N=m and rheoscope
measurements K2D ¼ 4:0 . . .10 N=m), see Fig. 7. In Fig. 7, we
analyzed a single OTS-capsule for different volume change rates
ranging from 0:5 (slow) to 10:0 ll=s (fast). In principle, this enables
us to see viscoelastic effects. We expect a viscoelastic material to
exhibit a smaller shear modulus l0 for slow deformation such
that creep or viscoelastic relaxation is possible. Fig. 7 shows
that the surface Young modulus and the shear modulus
l0 ¼ K2Dð1� m2DÞ=ð1þ m2DÞ are both significantly decreased for
higher volume change rates. Therefore, this is probably an effect
of aging rather than viscoelastic behavior. It is thereby difficult to
explain the increased area compression modulus and Poisson’s
ratio, which indicates that the capsule material tends to become
incompressible due to microscopic effects, that cannot be observed
in detail experimentally. However, by exploring volume cycles for
a wide range of volume change rates, it should, in principle, be pos-
sible to determine the frequency dependence of the surface shear
(storage) modulus l0 from these measurements. Therefore, indi-
vidual capsules should be prepared for each volume change rate
to eliminate the influence of aging.

For OTS-capsules (with different liquid phases compared to
those in Fig. 7) we analyzed aging effects in more detail in Fig. 8
by monitoring the change of elastic constants over three consecu-
tive deformation cycles of the same capsule. For this capsule, the
deformation behavior becomes approximately reversible only after
completing two deflation-inflation cycles. The first two cycles exhi-
bit hysteresis hinting to plastic deformation in the capsule. Similar
effects can be seen in Fig. 7, where the OTS-capsule was subject to
30 de- and inflation cycles in total. The orange circles show the last
five cycles where we observe a softening regarding the shear mod-
ulus, a stiffening regarding the area compression modulus, as well
as an increased Poisson ratio. For all quantities the volume depen-
dence is weakened. Capsules from Fig. 7 obviously exhibit a more
complex aging behavior, which can only be caused by the different
liquid phases (essentially oil and water phase swapped), because
the OTS shell material is the same. However, these results suggests
that by iteratively applying small volume change rates and small
oated with Span 65 (sorbitan tristearate) in dodecane. We analyzed eight individual
ows the three inflation phases for one of these capsules. The inflation phases differ
hases. Among the individual capsules, volume change rates vary between 0:5 and
odgett trough K2D ¼ 0:33 N=m, spinning-drop K2D ¼ 0:36 N=m, and rheoscope
ich also reveals a strong variation of K2D with the volume. The Poisson ratio is
e capsules, i.e., H2O-droplet with Na2CO3, N-ð3-AminopropylÞ-methacrylamide and
yl dichloride. We analyzed four individual CTAB and four individual DTAB capsules,
in equilibration time with the crosslinker. The Poisson ratio is m2D ¼ 0:6 with DTAB
ion modulus are consistent with shear-rheometer measurements, which give



Fig. 7. Pendant capsule elastometry results for OTS-capsules, i.e., a p-xylol droplet in solution with 1,2,4-trichlorobenzene and coated with OTS in a glycerol-water mixture.
We analyzed a single individual capsule with a volume change rate of 0:5 ll=s (points) and total volume reductions of 2:5 ll (gray), 5:0 ll (blue), 7:5 ll (dark violet), 10:0 ll
(light violet), 12:5 ll (red). The same capsule was analyzed with step-wise increased volume change rates (1:0;2:5;5:0;7:5 ll=s) up to 10 ll=s (orange) and the same total
volume reductions. The capsule was subject to 30 cycles of de- and inflation, and we analyzed 1674 images for the first and last five cycles, which allows us to calculate error
bars by averaging over small volume ranges. Spinning drop measurements give K2D ¼ 3:0 . . .7:5 N=m and rheoscope measurements K2D ¼ 4:0 . . .10 N=m, depending on which
Poisson ratio m2D is assumed to obtain K2D from the actually measured Y2D. These values are slightly higher than our pendant elastometry measurements. For the Poisson ratio
we get roughly m2D ¼ 0:85, which is slightly above previous measurements predicting m2D ¼ 0:5 . . .0:8 [29]. We see that, for the last 5 cycles with a volume change rate of
10:0 ll=s (orange), the material has softened significantly, regarding Y2D and l0 . The area compression modulus K2D increased, however, due to an increased Poisson ratio. In
principle, these effects could either be induced by aging or by viscoelastic effects. For viscoelastic materials we typically expect a stiffening when volume change rates are
increased. Therefore, we suggest that this softening is induced by aging at the intermediate rates 1:0;2:5;5:0 and 7:5 ll=s that have been applied before the final 10:0 ll=s
rate. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. We analyze a single OTS-capsule [19], i.e., a H2O-droplet coated with OTS in p-xylol, for three consecutive deflation and inflation cycles. This reveals aging effects:
deformations become nearly reversible after two complete deformation cycles. For the first two cycles we clearly see hysteresis. Note that these OTS-capsules exhibit much
smaller values of the area compression modulus K2D compared to those in Fig. 7. Since both capsule membranes are made from OTS, and both should have a similar thickness
ranging from 100 to 1000 nm, we conclude that this has to originate in the different liquid phases that have been used. Here, a water droplet was used in a p-xylol phase,
whereas for the capsules in Fig. 7 a p-xylol droplet was used in a gylcerin-water mixture. This possibly influences the network forming process, such that capsules from Fig. 7
appear more like an incompressible material.
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total volume reductions, capsule deformations can reach a reversi-
ble regime, where subsequent deformation cycles yield the same
elastic constants and aging is effectively absent. If, however, the
volume change rates or total volume reductions are successively
increased, aging proceeds and the capsule material becomes even
softer.

By applying the wrinkling analysis to the capsules from Fig. 7
we measure wrinkling wavelengths K ¼ 0:2 mm leading to a bend-
ing modulus of EB ¼ 10�15 . . .10�14 Nm and a thickness
H ¼ 90 . . .290 nm. Electron microscopy measurements give
H ¼ 100 . . .1000 nm, which roughly agrees. The quality of these
estimates depends crucially on the measurement of the wrinkling
wavelength since we have EB / K4. We prefer to measure K at the
bottom of the wrinkles, because length measurements in the cen-
ter of the capsule can be better translated to the length scale pre-
scribed by the outer capillary diameter.
9.3. Polyacrylamide capsules

We tested our software also on amino functionalized polyacry-
lamide capsules formed with two different surfactants CTAB and
DTAB, see Fig. 6 (right). For the CTAB polyacrylamide capsules we
find area compression moduli in the range
K2D ¼ 50 . . .100 mN=m and a Poisson ratio m2D ¼ 0:5, for the DTAB
polyacrylamide capsules we find K2D ¼ 30 . . .60 mN=m and
m2D ¼ 0:6. These values are consistent with surface shear-
rheometry measurements giving K2D ¼ 30 . . .100 mN=m. Our pen-
dant capsule elastometry results show that the elastic properties of
this type of capsule can be tuned by changing only the surfactants
(CTAB vs. DTAB) and not the crosslinker. Fig. 6 (right) clearly shows
that CTAB gives consistently stiffer capsules than DTAB. Bending
moduli for the DTAB polyacrylamide capsules are slightly smaller
than for the CTAB polyacrylamide capsules. We find
EB ¼ 10�14 Nm for CTAB and EB ¼ 8 � 10�15 Nm for DTAB (using
images from Fig. 4).
10. Gibbs modulus

Finally, we like to discuss why the Gibbs modulus is not suitable
to analyze solid-like elastic shell materials. As mentioned above,
the Gibbs modulus EGibbs ¼ dc=d lnA is frequently determined from
measurements of an ‘‘effective surface tension” c describing the
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solid shell interface as a function of the surface area A. We use the
term ‘‘effective” here, because, in principle, one cannot determine a
surface tension from deformations of a solid shell interface. The
Gibbs modulus EGibbs is equal to the area compression modulus
K2D for a fluid interface or for a two-dimensional solid interface
in a planar Langmuir-Blodgett trough geometry.

It is possible to determine the Gibbs modulus by using a stan-
dard pendant drop tensiometer measuring only the surface tension
and the surface area. Commercial pendant drop tensiometers apply
sine-like volume changes and determine the complex Gibbs mod-
ulus with an elastic and a viscoelastic contribution. This type of
analysis is sometimes referred to as the ‘‘oscillating drop” method.

To be consistent with our purely elastic model, we apply a lin-
ear fit in the ðlnA; cÞ-plane. For the OTS-capsules we find
EGibbs ¼ 40 mN=m, which is two orders of magnitude below the
actually measured area compression moduli. Similar results were
obtained in Ref. [19], where EGibbs and K2D were compared for the-
oretically generated shapes. For the Span 65 capsules we get
EGibbs ¼ 33 mN=m, which is one order of magnitude below the
value obtained in the Langmuir-Blodgett trough. We obtained sim-
ilar values EGibbs � 40 mN=m by applying the oscillating drop
method to Span 65 capsules, which explicitly demonstrates that
determining the Gibbs modulus with a pendant drop tensiometer
leads to misleading results, as already stated in Ref. [19]. The
deformed shapes of elastic capsules cannot be fitted accurately
with the Laplace-Young equation for fluid interfaces as we have
already shown in Fig. 3. Moreover, the relation between Gibbs
modulus and area compression modulus K2D becomes non-trivial
and geometry-dependent because of inhomogeneous elastic stres-
ses in the capsule geometry and the existence of a curved unde-
formed reference shape of the capsule. Only in a planar
geometry, where the elastically relaxed reference state is planar
and where stresses remain homogeneous, the Gibbs modulus coin-
cides with the area compression modulus.
11. Conclusion

We developed an efficient and completely automated C/C++
software in order to perform pendant capsule elastometry in pen-
dant drop devices. The analysis is based on a thin elastic shell
model of the capsule interface and, thus, applies for elastic solid
capsule materials. Such materials can be recognized, for example,
by their ability to develop wrinkles.

The analysis requires a reference shape, for which we usually
assume that it can be described by a liquid Laplace-Young shape
if the shell material is crosslinked at a liquid interface. A mini-
mum set of two images, one of the reference shape and another
of a deformed shape, and two experimental parameters, namely
the density difference Dq and the outer capillary diameter b,
are sufficient to run the complete analysis and obtain values for
Young’s modulus and Poisson’s ratio using the Hookean elasticity
model, or, alternatively, the Rivlin modulus and the dimension-
less shape parameter using the Mooney-Rivlin elasticity model.
In addition, if wrinkling occurs, the bending modulus and, thus,
the shell thickness can be determined from a wrinkle wavelength
measurement.

More interesting results are often obtained, if a whole sequence
of deformed states can be analyzed in chronological order, which
makes it possible to investigate the dependence of the elastic mod-
uli on the capsule volume. This is where possible phase transitions,
hysteresis and aging effects, or plastic deformations of the material
could be detected. Future work should explore whether a
frequency-dependent surface shear (storage) modulus l0 can be
reliably determined by measurements at different volume change
rates.
In our present implementation pendant capsule elastometry
does not require experimental information on the pressure p but
rather serves itself as a pressure measurement because p is deter-
mined by shape fitting. If such pressure is measured indepen-
dently, this additional information can be readily used to
improve the results for the remaining fit parameters by setting p
to a constant value within shape regression. This option is sup-
ported by the current version of our software. But there are also
other possibilities to use the pressure information, e.g., to directly
calculate local stresses in the deformed state from additional
image information on local curvatures and radii [17]. This addi-
tional stress information can then be used to improve the shape fit-
ting procedure beyond simple elimination of one fit parameter
[45].

In the present form of the code, we provide linear Hookean elas-
ticity, nonlinear Hookean elasticity, and Mooney-Rivlin or neo-
Hookean elasticity to describe the elastic behavior of the shell
material. We find that the nonlinear Hookean model gives the best
compromise between accuracy and performance. Moreover, we
randomly checked the results against Mooney-Rivlin elasticity
(which is much slower due to numerical determination of the clo-
sure relations). This revealed that both elasticity models give sim-
ilar results over a wide range of materials and deformation
behavior. We find that the simple linear Hookean elasticity can
only describe very small deformations compared to nonlinear Hoo-
kean or Mooney-Rivlin elasticity. We gained this insight from gen-
erating theoretical shapes, where we decreased the pressure
successively, thereby simulating proceeding deflation. Numerics
for the linear Hookean elasticity failed much earlier in fulfilling
the required boundary conditions, which is necessary to generate
a valid shape. It remains to be verified systematically, however,
what differences eventually arise between fitting with different
elasticity models. Fitting with the most appropriate model should
produce the least elastic parameter variation as a function of the
volume.

For certain materials the use of even more specific elastic mod-
els is more appropriate, for example, hydrophobins coating air
bubbles [6,19] act as interfacial rafts of hard particles with soft
shells, which require a more refined elastic description to interpret
capsule shapes correctly and avoid jumps in elastic constant in
elastometry fits [46]. Therefore, future work should also aim at
implementing different elastic models in order to compare fit
results for different models and determine the most appropriate
model from the data. In particular, for the Span 65 investigated
in this paper, we suggest to develop such microscopic models,
because we found strongly inhomogeneous strains and generally
atypical elastic behavior. Moreover fit results revealed a pro-
nounced compression softening, which we did not find for any
other capsule material, which also hints to the use of a more appro-
priate elasticity model.

As we have shown, our software for pendant drop devices is
widely applicable. We tested it on different materials and the
results are in good agreement with available rheological data.
We make the OpenCapsule software freely available under the
GPL license [35] at github.com/jhegemann/opencapsule. A
user manual is also available as Supplementary material.
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Appendix A. Least squares

Both the shooting method and the shape regression require
least square error/deviation minimization. Fitting shape equations
to experimental contours is implemented by a nested minimiza-
tion algorithm, which minimizes the distance between individual
shape segments (and the boundary conditions) in an inner loop,
which we call shooting method (see Section Appendix C below),
and the deviation between theoretical shape and contour in an
outer loop, which we call shape regression (see Section Appendix
D below). At first, we characterize the error function that has to
be minimized within the least square algorithm.

Consider a global residual vector

FðxÞ ¼ ðu1ðxÞ; . . . ;uNðxÞÞT ðA:1Þ
assembling the individual residuals ui that depend on an arbitrary
parameter set x. In case of the shooting method, the residuals ui are
defined by the distances between consecutive shape segments and,
finally, between the last shape segment and the boundary condi-
tion. Thus, the parameter set x can be identified with the set of
shooting parameters, which are the initial values of the individual
shape segments. In case of the shape regression, the residuals ui

give the shortest distances between the discrete points of the con-
tour (obtained from the image) and the theoretical shape profile
given by a solution of the shape equations. Thus, the parameter
set x can be identified with the shape parameters characterizing
the solutions of either the Laplace-Young Eqs. (1) or the elastic
shape Eqs. (2).

We now introduce the general least square method, stressing
again that we use this method for both the shooting method and
the shape regression. The Jacobian JF measures the change of
FðxÞ at some point x. In order to minimize the euclidean norm
kFðxÞk with respect to x we linearize FðxÞ within a small region
Dx according to

kFðxþ DxÞk ¼ kFðxÞ þ JFDxk¼! 0 ðA:2Þ
yielding the linear and typically over-determined system of
equations

JFDx ¼ �FðxÞ: ðA:3Þ
Standard algorithms like the Gauss-Newton method solve the quad-
ratic normal equation

JTFJFDx ¼ �JTFFðxÞ; ðA:4Þ
but we prefer to directly solve (A.3), because the condition of JTFJF
can be poor in comparison to the condition of JF , i.e.,

condðJTFJFÞ � condðJFÞ2: ðA:5Þ
We do so by decomposing JF ¼ QR via Householder transformations
and multiplying with QT ,

RDx ¼ �QTFðxÞ; ðA:6Þ
where we used that QTQ ¼ 1. Note that this yields

R ¼ R0

0

� �
ðA:7Þ

and

QTFðxÞ ¼ b0

b1

� �
ðA:8Þ

in case of over-determined systems, such that the solution is given
by

Dx ¼ R�1
0 b0 ðA:9Þ
with a finite error

kFðxÞ þ JFR
�1
0 b0k ¼ kb1k: ðA:10Þ

Applying the parameter shift Dx resulting from (A.9) or (A.3) itera-
tively to the current parameter set finally gives a solution x
, which
minimizes kFðxÞk, i.e.,
min

x
kFðxÞk ¼ x
: ðA:11Þ

To obtain the sequence fxkg that finally converges to x
, we use the
update scheme

xkþ1 ¼ xk þ kjDxk; ðA:12Þ
where kj is chosen such that kFðxÞk decreases in each step of itera-
tion. Several line search methods may be applied here, but, in view

of efficiency, we prefer to chose kj ¼ 1=2 j, where we increase j start-
ing from j ¼ 0 until

kFðxk þ kjDxÞk < kFðxkÞk: ðA:13Þ
This is sometimes referred to as a ‘‘backtracking line search”
method. The minimization algorithm will be used for the multiple
shooting method, where (A.3) is quadratic, as well as for the final
regression of the shape equations, where (A.3) is strongly over-
determined. Since we exclusively use numerical differential quo-
tients the algorithm converges linearly, whereas a classical Newton
minimization would converge quadratically due to analytical
derivatives.
Appendix B. Reference shape

Obtaining a shape profile from the set of shape equations (1) is
trivial, since there are no shooting parameters. In practice, one
integrates the set of shape equations (1) (while increasing the arc
length s0) until r0ðs0Þ ¼ a=2 is satisfied for the second time, mean-
ing that the shape enters the capillary from r0 > a=2 (there is also a
solution, which enters the capillary for the first time from r0 < a=2;
this solution has a much smaller volume and does usually not cor-
respond to the experimental reference shape). The arc length s0
that satisfies this condition is chosen as the undeformed contour
length L0, such that r0ðL0Þ ¼ a=2. Note that the undeformed length
L0 is fixed for the deformed shape profiles. The resulting reference
shape

y0ðs0; x0Þ ¼
r0ðs0; x0Þ
z0ðs0; x0Þ
w0ðs0; x0Þ

0B@
1CA ðB:1Þ

is obtained as a function of of the parameter set x0 ¼ fp0;q;ag,
which are adapted during the shape regression (see Sec-
tion Appendix D) to optimally match the contour points extracted
from the image.
Appendix C. Shooting method

Solving the elastic shape equations requires a shooting method
to be applied, because of the unknown initial tension ssð0Þ ¼ l at
the capsule’s apex. For a given initial value l we therefore inte-
grate the shape equations starting at the capsule’s apex from
s0 ¼ 0 to s0 ¼ L0, where L0 was determined before by satisfying
the boundary condition of the Laplace-Young reference shape.
We thereby obtain a deformed shape trajectory yðs0;lÞT , which
depends on the reference shape via the shape profile r0ðs0Þ and
the length of the undeformed contour L0. However, the deformed

length L ¼ R L0
0 ksds0 of course adapts according to the stretch factor
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ks. For a capsule with inner capillary width a centered at r ¼ 0 a
valid solution has to satisfy the boundary condition

f ðlÞ ¼ rðL0;lÞ � a=2¼! 0: ðC:1Þ
The function f ðlÞ, which is measured from the solution yðs0;lÞT ,
has to be minimized by applying a bisection with respect to the
parameter l. We recommend a bisection in this case, because the
function f ðlÞ is very steep, particularly for large area compression
moduli K2D. The algorithm is assumed to be converged if
j f ðlÞ j< �single. Note that our software takes this as a minimum
criterion, i.e., it tries to minimize j f ðlÞ j even further until the
interval within the bisection method becomes smaller than
10�16. It is generally important to minimize j f ðlÞ j as far as
possible, because the shape trajectories are very sensitive to the
initial value l.

In cases where the required accuracy �single can not be reached,
we further improve solutions by applying a multiple shooting
method subsequently. For this purpose we divide the interval
½0; L0� in q sub-intervals with qþ 1 grid points at sk ¼ kL0=q, where
k ¼ 0; . . . ; q. On the sub-interval ½sk; skþ1� we define the k-th
segment

ykðs0Þ � y0
k þ

Z s0

sk

ds00 f yðs00Þ; y0
k

� � ðC:2Þ

by integrating the set of shape equations

y0 ¼ f yðs0Þ; y0
k

� �
; ðC:3Þ

starting at

y0
k ¼ ðr0k ; z0k ;w0

k ; s
0
kÞ 2 R4 ðC:4Þ

and ending at

yk � ykðskþ1; y0kÞ 2 R4: ðC:5Þ
Note that the final segment yq�1 has to match the final grid point yq.
Having decomposed the continuous solution in q individual seg-
ments, we track the k-th residual vector separating the k-th and
ðkþ 1Þ-th segment via

uk ¼
yk � y0

kþ1 2 R4 k ¼ 1 . . . q� 2

yk;1 � y0
kþ1;1 2 R1 k ¼ q� 1:

(
ðC:6Þ

The last segment and grid point, yq�1;1 ¼ rq�1ðsqÞ and y0
q;1 ¼ r0q ¼ a=2,

define the final boundary condition (C.1), where the capillary has to
be matched. Any other residual corresponds to continuity condi-
tions that ensure a smooth shape. To arrange the segments into a
continuous solution while satisfying the boundary condition at
the capillary, we have to set up the Jacobians for each segment yk,
where k 2 ½0; q� 1�, with respect to the corresponding initial values
y0
k . At s0 only s00 can be chosen freely, whereas r00 ¼ 0; z00 ¼ f and

w0
0 ¼ 0 are fixed due to axis symmetry. At sq we have to satisfy

the boundary condition rq�1ðsqÞ � a=2 ¼ 0 whereas
zq�1ðsqÞ;wq�1ðsqÞ and sq�1ðsqÞ are arbitrary. The Jacobian J0 corre-

sponding to y0 is a column vector in R4, the Jacobian Jq�1 corre-
sponding to yq�1 is a row vector in R4. All intermediate Jacobians

Jk with k ¼ 1; . . . ; q� 2 are quadratic matrices in R4�4 and we can
write them as

J0 ¼ @y0

@s00
; Jk ¼ @yk

@y0
k

; Jq�1 ¼ @rq�1

@y0
q�1

; ðC:7Þ

where we use differential quotients

@yk

@y0
k;i

¼ 1
2D

yðskþ1; sk; y0
k þ DeiÞ � yðskþ1; sk; y0

k � DeiÞ
� � ðC:8Þ
with canonical unit vectors ei and i ¼ 1; . . . ;4. Note that we typically
use D ¼ 10�6. Finally we find the block-matrix

J ¼ @ðy0 � y0
1; . . . ; yq�1;1 � y0

q;1Þ
@ðy0

0; . . . ; y
0
q�1Þ

¼

J0 �1 . . . 0

..

. . .
. . .

. ..
.

..

. . .
. �1

0 . . . . . . Jq�1

0BBBBB@

1CCCCCA; ðC:9Þ

where 1 2 R4 denotes the identity matrix. Applying the least square
minimization method described above, i.e., solving the quadratic
system JFDx ¼ �F iteratively, where

F ¼ ðu0; . . . ;uq�1Þ ðC:10Þ

assembles the residuals and

Dx ¼ ðDs00;Dy0
1; . . . ;Dy

0
q�1Þ ðC:11Þ

is the initial value shift we get in each iteration, we finally converge
into the continuous solution. The speed of convergence varies with
the number of sub-intervals q, which thus has to be optimized in
each iteration. We typically increase q corresponding to q ! qþ 4
starting at q ¼ 4 until we achieve convergence. This is efficient,
because it keeps q small. Note that adding only a single interval,
i.e., q ! qþ 1, leads to four extra dimensions in the quadratic sys-
tem JDx ¼ �F.

The multiple shooting is assumed to be converged if kFk < �multi,
which also implies j f ðlÞ j< �multi. It is thus reasonable to use
�single ¼ �multi. Note that the multiple shooting method has to be
applied only if the required accuracy in the single shooting method
could not be reached.

The resulting deformed shape

yðs0; xÞ ¼

rðs0; xÞ
zðs0; xÞ
wðs0; xÞ
ssðs0; xÞ

0BBB@
1CCCA ðC:12Þ

is obtained as a function of the parameter set x ¼ fp; m;K2Dg, which
are adapted during the shape regression (see Section Appendix D) to
optimally match the contour points extracted from the image.

Appendix D. Shape regression

In the shape regression we find the material parameters which
minimize the deviation/error between contours and theoretical
shapes from solving shape equations.

The Laplace-Young equation depends on the parameter set
x0 ¼ ðp0;Dq;aÞ, where a is a scaling factor, which sets the length
scale. The elastic shape equations depend on the parameter set
x ¼ ðp; m2D;K2DÞ. Let ðr̂i; ẑiÞ with i ¼ 1; . . . ;N be a set of contour
points resulting from image processing. We translate this set of
contour points, such that these are symmetric with respect to
the z-axis and the apex is located at z ¼ 0. We then accordingly
chose zð0Þ ¼ f ¼ 0. We thereby fix the theoretical shape relatively
to the contour points at the apex, and minimize the residual along
the remaining shape profile.

The residuals

ui ¼ min
s02½0;L0 �

j r̂i j �rðs0; xÞ
ẑi � zðs0; xÞ

� �
ðD:1Þ

are calculated by a bisection-like algorithm in the arc length s0,
which terminates when the interval length falls below the thresh-
old �rms. From the residuals ui we calculate the average mean
square deviation
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v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1
kuik2

r
ðD:2Þ

between the contour and the theoretical shape, as well as the
Jacobians

J0 ¼ @ðu1; . . . ;uNÞ
@ðp0;Dq;aÞ

ðD:3Þ

J ¼ @ðu1; . . . ;uNÞ
@ðp0; m2D;K2DÞ ðD:4Þ

for the reference and the deformed shape. These Jacobians are suf-
ficient to minimize the error v and find the best fit parameter set x
by solving the strongly over-determined system JFDx ¼ �F itera-
tively. Note that we have to find the best fit parameter set for the
reference shape first, and afterwards perform the shape regression
for the deformed shape, using the already determined reference
shape. Each iteration of shape regression requires three numerical
derivatives to find the elements of the Jacobian, which in turn
require two executions of the shooting method. This yields a
parameter shift Dx in each iteration, which we assume to be con-
verged if we find kjkDxk < �laplace=hooke during the backtracking line
search. In addition to the minimization algorithm explained above,
our software additionally provides the so-called Nelder-Mead
downhill simplex method, which works without derivatives. In rare
cases, where the standard procedure fails, one should try this more
robust method.

Appendix E. Numerical thresholds

To ensure convergence of the shape regression and the shooting
method, we have to specify thresholds.

For the average mean square displacement (D.2), i.e., the indi-
vidual residuals (D.1) between the contour points and the theoret-
ical shape we apply a bisection-like algorithm terminating when
the interval length falls below the threshold �rms.

For the single and multiple shooting methods we define the
thresholds �single and �multi, which have different meanings: the
accuracy �single is reached if j f j< �single, see Eq. (C.1), is satisfied
for the boundary deviation at the capillary, whereas the accuracy
�multi is reached if kFk < �multi is satisfied for the global residual,
which also implies j f j< �multi. We define �laplace and �hooke as
thresholds for the euclidean norm of the parameter shift kjDx,
which is applied to the parameters of the shape equations during
the regression and the backtracking line search, respectively. To
integrate the shape equations we use a 4-th order Runge-Kutta
method with constant step widths hlaplace and hhooke.

In Table E.1 standard values for the numerical algorithms are
given. For the analysis of the capsules used in this paper, the
numerical thresholds always ranged within the given boundaries.
To improve the performance for specific capsules these thresholds
can be increased, but it should be checked if the results are still in
rough agreement with higher precision measurements, meaning
Table E.1
Precision and performance optimized values for the thresholds used in the numerical
algorithms.

Symbol Precision Performance

�rms 10�16 10�16

�single 10�6 10�4

�multi 10�6 10�4

�laplace 10�6 10�4

�hooke 10�6 10�4

hlaplace 10�4 10�3

hhooke 10�4 10�3
that no systematic errors occur. Note that the parameters of the
image processing also change the numerical behavior since the
set of contour points results directly from image processing.
Changing, for example, the width of the Gaussian smoothing of
the image will alter the fitting results.

Appendix F. Image processing and requirements

Several filters, transformations and algorithms are applied to
the image in order to get a set of contour points, which can be used
for shape regression. Initially, we use a Gaussian filter to smoothen
the image and run the Canny edge detection. This is common prac-
tice to extract contours from images. From the binary image we
measure the outer and inner capillary diameter (the latter implic-
itly in terms of the fit parameter a), which is necessary to relate the
length scale set in the image to SI units. Likewise, we measure the
height of the capsule and its distance from the bottom of the
image. These quantities are necessary to translate the contour
points according to the remarks stated in Appendix D. Further-
more, we extract the contour points and reduce their number to
improve efficiency. To ensure that the capturing algorithm works
correctly, images have to meet certain requirements. In principle,
all file formats supported by the OpenCV library can be used with
our software, but we recommend png-files. Gravity should act
downwards along the vertical axis and the capsule should be cen-
tered in the image with the capillary entering the image at the top.
If these requirements are fulfilled, it is, in contrast to the typical
pendant drop software packages, not necessary to select the cap-
sule region manually, since the software detects the capillary and
therefore the top side of the capsule automatically. The back-
ground should be uniformly colored and clean from small particles
or other objects disturbing the edge detection. To ensure a proper
automatic wrinkle detection the wrinkles should be visible over
the whole width of the capsule. If the edge detection for the wrin-
kles does not work, one can provide a manually measured wrinkle
wavelength in the configuration file. Even if the edge detection for
the wrinkles works, one should randomly check the results by
measuring the wrinkling length manually since the automatic
detection requires uniformly illuminated capsules.

Appendix G. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.jcis.2017.11.048.
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