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Supplementary Figures

Supplementary Figure 1: DNA bundles at high DNA nanotube concentra-
tions

Supplementary Fig. 1: Increasing amounts of DNA nanotubes (formed from 10 nM, 100 nM,
1000 nM DNA tiles) were incubated at room temperature with 500 nM starPEG-(KA7)4-TAMRA
in 1x PBS and 10mM MgCl2. The DNA nanotube bundling correlates with the ratio of crosslinker
concentration to DNA nanotube concentration. The laser settings were kept the same at all
conditions. Scale bar: 30 µm.



Supplementary Figure 2: Colocalization intensity of TAMRA-labeled syn-
thetic peptides

Supplementary Fig. 2: Mean pixel colocalization intensity cp of TAMRA-labeled synthetic
peptides. (a) Confocal image of 30 nM DNA nanotubes (yellow, Atto633, λex = 640 nm) in
presence of 500 nM starPEG-(KA7)4 (λex = 561 nm). Scale bar: 2 µm. The image was analyzed
with ImageJ ((Fiji Is Just) ImageJ 2.3.0/1.5q; Java 1.8.0_322 64-bit) [9] and thresholded via
the method Otsu (b) and the binary image was processed further with the Plugin Skeletonize
(c) to reduce the location of the DNA nanotube bundle to the central line. Pixel values 0 and 1.
(d) Confocal image of the same bundle in the starPEG-(KA7)4 channel (cyan, λex = 561 nm).
Pixel values from 0 to 255. (e) starPEG-(KA7)4 pixel intensity at the central line of the DNA
nanotube bundle, calculated by the ImageCalculator function ’AND’. Pixel values from 0 to
255. (f) Colocalization intensity of TAMRA-labeled synthetic peptides (λex = 561 nm) with the
DNA nanotubes (mean ± standard deviation (SD), n = 9 analysed DNA nanotube bundles per
condition). As expected, the colocalization intensity of starPEG-(KA7)4 is the highest with 51.3
± 12.5. The colocalization is significantly lower for KA7 and starPEG-(DA7)4 (16.7 ± 3.3 and
14.1 ± 1.6, respectively).



Supplementary Figure 3: Colocalization of DNA nanotubes and starPEG-
(KA7)4

Supplementary Fig. 3: Colocalization of DNA nanotubes (top) and starPEG-(KA7)4 (bottom).
The mix contained starPEG-(KA7)4-TAMRA (cyan) at varying concentrations (0, 50, 100, 200,
500 nM), DNA nanotubes (yellow) formed from 30 nM DNA tiles, 1× PBS and 10 mM MgCl2.
After incubation at room temperature for one hour the samples were imaged at the confocal laser
scanning microscope with the same laser settings for all conditions. Scale bar: 10 µm.



Supplementary Figure 4: Transmission electron micrographs for bundle
thickness analysis

Supplementary Fig. 4: Transmission electron micrographs of DNA nanotube bundles. DNA
nanotubes from 30 nM DNA tiles are bundled in the presence of 0, 25, 50, 200 and 500 nM
starPEG-(KA7)4 in 1× PBS and 10mM MgCl2. Bundles of different thicknesses were analyzed
and the corresponding data is shown in Fig. 2c. Per condition the thicknesses were measured at
ten different positions in each of a total of ten images. Scale bar: 500 nm.



Supplementary Figure 5: Colocalization intensity over time

Supplementary Fig. 5: Colocalization intensity over time. DNA nanotubes formed from 30 nM
DNA tiles were left to incubate with 500 nM starPEG-(KA7)4-TAMRA at room temperature. The
sample was imaged at 0, 7.5, 15, 22.5 and 30min after adding 500 nM starPEG-(KA7)4-TAMRA.
The laser settings were kept the same at all time points. For each condition 10 overview images
were analyzed (Mean±SD).



Supplementary Figure 6: Yield of DNA rings

Supplementary Fig. 6: Yield of DNA rings per µL for different starPEG-(KA7)4 concentrations,
30 nM DNA nanotubes in 1× PBS and 10mM MgCl2. Per condition 10 overview images
(101.41x101.41 µm2) were acquired and rings were counted 1 h (a) and 24 h (b) after sample
preparation. The numbers of DNA nanotube rings per microliter are averaged over all images and
their standard deviation has been calculated. Volumetric densities were calculated by measuring
the chamber height (97 µm) and the image area. The displayed values are therefor shown as
(Mean±SD).



Supplementary Figure 7: Microscopic structure of DNA nanotube rings

Supplementary Fig. 7: Microscopy images reveal structure of rings formed from DNA nanotube
bundles. 30 nM tiles and 200 nM starPEG-(KA7)4 are mixed in 1× PBS and 10mM MgCl2.
Confocal (upper row) and STED (lower row) microscopy images of DNA rings without (a) and
with (b) 2.5 kDa dextran. Scale bars: 3 µm. (c) Transmission electron micrographs of DNA rings
without dextran. Scale bars: 1 µm.



Supplementary Figure 8: DNA ring size dependence on MgCl2 and DNA
tile concentration

Supplementary Fig. 8: DNA ring size dependence on MgCl2 and DNA tile concentration. (a)
Ring diameter at different buffer conditions containing 1, 5 or 10mM MgCl2 and 50 nM DNA
tiles while maintaining the starPEG-(KA7)4:DNA tile ratio of 10:1 (500 nM starPEG-(KA7)4)
in 1× PBS. (b) DNA ring diameter for different DNA nanotube concentrations maintaining a
starPEG-(KA7)4:DNA tile ratio of 10:1 and 10mM MgCl2 and 1× PBS. Per condition 30 single
rings were imaged and ring diameters are plotted as Mean±SD.



Supplementary Figure 9: DNA ring diameter is time-independent

Supplementary Fig. 9: DNA ring diameter is time-independent. DNA nanotube ring diameter
at room temperature after 0 and 15min of incubation as used for the temperature increase
experiments (Mean ± SD, n = 29, 31 DNA nanotube rings per condition).



Supplementary Figure 10: Analysis of the circularity of DNA rings

Supplementary Fig. 10: DNA ring circularity for DNA nanotubes formed from 50 nM DNA
tiles, 500 nM starPEG-(KA7)4 in 1x PBS and 10mM MgCl2 and according molecular weights
(2 500, 35 000, 70 000, 250 000, 500 000 g/mol) of dextran at 25wt% (Mean ± SD, n =
(32, 32, 31, 32, 31, 30) DNA nanotube rings analysed per condition).



Supplementary Figure 11: DNA ring contraction with Methylcellulose

Supplementary Fig. 11: DNA ring contraction with Methylcellulose. 25 nM DNA nanotubes and
250 nM starPEG-(KA7)4 are mixed in 1× PBS and 5mM MgCl2 and varied concentrations of
Methylcellulose. Per condition, 100 µL sample solution is freshly mixed and pipetted into a well
slide (ibidi §µ-Slide 18 Well, glass bottom). (a) 30 rings are then imaged and analyzed using
ImageJ [9] and the ring diameter is plotted (Mean±SD, n = 30, 30, 30, 30, 30, 30, 29, 29, 29
DNA nanotube rings per condition). (b) The ring diameter data from a is tested for significance.
The corresponding p-values are obtained performing an unpaired non-parametric Mann-Whitney
test.



Supplementary Tables

Supplementary Table 1: List of DNA sequences

Name DNA sequence

SE1 CTCAGTGGACAGCCGTTCTGGAGCGTTGGACGAAACT
SE2-DIAG GTCTGGTAGAGCACCACTGAGAGGTA

SE3 CCAGAACGGCTGTGGCTAAACAGT
AACCGAAGCACCAACGCT(-6-FAM/Atto633/Biotin)

SE4-EE10 CAGACAGTTTCGTGGTCATCGTACCT
SE5 CGATGACCTGCTTCGGTTACTGTTTAGCCTGCTCTAC

DNA sequences from 5’ to 3’ for single-tile DNA nanotubes, adapted from Rothemund et al. [8].



Supplementary Notes

Supplementary Note 1: Theory of bundle contraction

We present additional details of the theory of bundle contraction.

We consider a toroidal DNA nanotube bundle with radius D and a roughly circular cross

section containing N DNA nanotubes resulting in a total length Ltot = πND. The total length is

fixed as we assume a fixed number of DNA nanotube monomers throughout contraction. This

length can change by depolymerization or polymerization processes of DNA nanotubes. The

bundle has a bending rigidity κb(N), which is related to the bending energy κ of individual DNA

nanotubes via κb(N) = κNα, with α = 1 for decoupled sliding DNA nanotubes and α = 2 if

crosslinking resists shear [4]. We assume an adhesion energy g per length for the DNA nanotubes

inside the bundle. For roughly circular cross sections, there should be Ns = asN
1/2 out of N

DNA nanotubes at the bundle surface with a geometric factor as of order unity (in principle, it is

possible to consider a wider class of bundle cross section geometries along the lines of Schnurr

et al. [10]). This results in an effective DNA nanotube length

Li = Ltot − πasN
1/2D (1)

at the interior of the DNA nanotube bundle, which is the length that is fully accessible to the

attraction of strength g. Contraction of toroidal bundles can then be described by the total free

energy

F = Ebend + Ead + Fc (2)

= 2πκb(N)D−1 − gLi + Fc(Li), (3)

which is the sum of bending energy, adhesion energy at the interior and the entropic free energy

Fc of the crosslinker gas at the interior of the bundle, which will arise if crosslinkers are mobile.



We neglect the entropy of DNA nanotube shape fluctuations because we focus on the bundled

state; this entropy is relevant, however, for the process of bundle formation [5].

In the bundled state, the entropy of the quasi-one-dimensional gas of Nc crosslinkers dis-

tributed over the accessible bundle length Li becomes relevant. We approximate Fc by the

(entropic) free energy of a Tonks gas of Nc non-overlapping particles of crosslinker size bc in a

one-dimensional volume of length Li with a line density of 1/bc of possible binding sites,

Fc(Li) = kBTNc ln

(
Ncbc

Li −Ncbc

)
. (4)

Minimizing F with respect to D gives the equilibrium diameter D of the toroidal DNA

nanotube bundle,

0 =
dEbend

dD
+

dEad

dD
+

dFc

dD
. (5)

We minimize at fixed Ltot, i.e., using N(D) = Ltot/πD; the effective interior bundle length to

use in minimization becomes

Li(D) = Ltot − π1/2asL
1/2
tot D

1/2. (6)

The bending energy will favor large D

dEbend

dD
= −(1 + α)2π1−ακLα

totD
−α−2 < 0. (7)

Adhesion energy and crosslinker entropy favor ring contraction via increasing the overlapping

interior length Li of the bundle. The crosslinker gas increases Li by exerting an ideal gas pressure



onto the boundaries of the overlapping region,

dEad

dD
= −g

dLi

dD
=

1

2
π1/2asgL

1/2
tot D

−1/2 > 0 (8a)

dFc

dD
= − kBTNc

Li −Ncbc

dLi

dD
(8b)

=
1

2
π1/2as

kBTNc

Li −Ncbc
L
1/2
tot D

−1/2 > 0. (8c)

Neglecting prefactors of order unity, the minimization condition (5) leads to the equilibrium

diameter (Eq. (3) in the main text)(
D

Ltot

)(3/2)+α

∼ Lp

Ltot

1

Nc

(
gdc
kBT

+
1

1− bc/dc

)−1

, (9)

where dc = Li/Nc ≈ Ltot/Nc is the average distance between crosslinkers (while bc is their

minimal possible distance) and Lp = κ/kBT is the persistence length of individual DNA

nanotubes.



Supplementary Note 2: MD simulations

Equilibration

We perform coarse-grained Molecular Dynamics (MD) simulations using LAMMPS [11] with a

Langevin dynamics thermostat. DNA nanotubes are represented as bead-spring polymers with

bending rigidity.

Beads interact by an attractive Lennard-Jones (LJ) interactions

VLJ(r) = ε
(
(r/σ)−12 − (r/σ)−6

)
(10)

with a length scale σ, which represents both the range of attraction and the size of the hard core.

Equilibration is impeded by the tendency of neighboring bead-spring polymers in a bundle to

“lock-in” by attraction to two adjacent beads on neighboring polymers, see Supplementary Fig.

12.

Supplementary Fig. 12: Sketch of a bundle of two mutually attractive bead-spring polymers. The
transparent spheres represent the range of the LJ attraction. The beads assume a configuration
where each bead has two attractive overlaps with beads from the neighboring polymer. This
leads to a “locked-in” configuration, where sliding motion of beads requires activation over a
barrier, where a bead has only one attractive interaction.

Bead motion along the neighboring polymer then requires activation over energy barriers,

which impedes polymer sliding in simulations as the essential process for the toroidal ring to

find its equilibrium diameter.



Therefore, we employ an annealing protocol to facilitate faster equilibration, where we

increase the temperature to T2 ∼ 2–8 T1 for short time intervals for a simulation at temperature

T1 (measurements are always performed after switching back to temperature T1 and after a

certain waiting time at T1). This allows the bundle to “loosen” at T2 (because ε/kBT2 is reduced)

such that sliding becomes possible. The value of T2 is adapted depending on the simulated

potential strength ε to prevent complete unbundling of the ring structure during the interval at

T2. For small potentials 0.2 < ε ≤ 0.5 kBT , an annealing temperature T2 = 2T1 is sufficient to

equilibrate the rings within achievable simulation times. The annealing temperature is gradually

increased with the potential up to T2 = 8T1 for ε = 2.0 kBT because annealing at T2 = 2T1

turns out to be insufficient to “loosen” the bundle effectively for these larger values of ε. For

very small ε/kBT1 ≤ 0.2, we do not use simulated annealing.

We can test equilibration by starting from different initial ring diameters for the same system

parameters and monitoring how long the MD simulation requires to contract rings to their

common equilibrium diameter, see Supplementary Fig. 13. Equilibration in the MD simulation

at a fixed temperature T1 is fairly slow for all interaction strengths ε/kBT1 ≳ 0.5 well above

the bundling threshold. The comparison of the different simulations in Supplementary Fig. 13

demonstrates a much more efficient equilibration with simulated annealing. For ε/kBT1 = 1

equilibration of DNA nanotube rings with parameters typical for experiments is practically

arrested without annealing. For small ε/kBT1 ≲ 0.2, however, simulated annealing should not

be employed as it results in an artificial widening of the ring.

We equilibrate rings over ∼ 109 MD steps and measure ring diameters in a fixed time interval

between 8–10 × 108 MD time steps. Fig. 14a shows all measured equilibration curves of ring

diameters for weak attraction ε/kBT = 0.3 and Supplementary Fig. 14b for strong attraction

ε/kBT = 1.0. For strong attraction and smallest bending rigidity resulting in the smallest

diameters, equilibration is most difficult because of the lock-in of neighboring polymers. The
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Supplementary Fig. 13: Comparison of equilibration dynamics by monitoring ring contraction
from three different initial ring diameter to the final identical equilibrium diameter. All plots
show ring diameter as a function of simulation time. Top row: Standard MD simulations
for a fixed temperature kBT1 for different interactions ε/kBT1 = 0.2, 0.3, 1.0 (from left
to right). Equilibration is only reached for small ε/kBT1 = 0.2, 0.3. Bottom row: MD
simulations employing simulated annealing, where we increase the temperature to T2 ∼ 2T1 (for
ε/kBT1 = 0.2, 0.3) or T2 ∼ 4T1 (for ε/kBT1 = 1.0) for short time intervals. This allows us to
achieve equilibration also for larger ε/kBT1 = 1.0. For small ε/kBT1 = 0.2, however, simulated
annealing results in an artificial widening of the ring.

lowest curves in the Supplementary Fig. 14b show the resulting bundle contraction during

equilibration in this regime.

Extended simulation runs up to 2 × 109 MD simulation steps actually show that the lowest

three simulations are not fully equilibrated and the ring diameter is still decreasing at the end of

the simulations. This explains the relatively large deviation of the first three light yellow crosses

in Fig. 5c in the main text from the scaling law (the time interval for ring diameter measurements

is shifted to 18−20×108∆t for these simulations). The annealing procedure is less effective for

strong attraction and small bending rigidity because small bending rigidities reduce the bending

moments expanding the ring after annealing has effectively weakened the attraction by thermal

shape fluctuations. This considerably slows down “loosening” of the bundle during annealing.
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Supplementary Fig. 14: Bundle contraction during equilibration (ring diameter as a function
of MD simulation time) for different single DNA nanotube rigidities κ for a, ε/kBT = 0.3
(showing data for more κ-values as compared to Fig. 5a in the main text) and b, ε/kBT = 1.0.

Time scales of MD simulation

The natural time scale of the LAMMPS MD simulation is the Lennard-Jones times scale

τLJ =
√

mσ2/ε. This is the time scale over which the inertial force F⃗i = m¨⃗ri of a bead

becomes comparable to the typical Lennard-Jones force between beads. The mass m of a DNA

nanotube piece of length σ ≈ 12nm is m ≈ 240kDa using a mass density λ ≈ 20kDa/nm

[8]. For ε = 1kBT , this gives a Lennard-Jones time scale τLJ ≈ 3.8 ns. The actual LAMMPS

MD simulation time step ∆t is chosen much smaller than τLJ to assure accurate results, ∆t =

5× 10−3 τLJ ≈ 0.02 ns.

Using the Langevin thermostat we introduce an additional friction force F⃗f = −γm ˙⃗r with

a friction coefficient γ = 3πση/m for each bead and a corresponding thermal noise satisfying

the Einstein relation. Here, η is the viscosity of the surrounding medium. The friction force

sets a frictional time scale τγ = γ−1 ∝ η−1, over which the inertial force F⃗i of a bead becomes

comparable to the friction force such that for times t > τγ the motion becomes overdamped.

The equilibration process during which rings contract to their final equilibrium diameter

takes up to ∼ 109 MD steps for the smallest ring diameters. This corresponds to a simulation

time t = 109∆t = 20ms. To achieve such a fast equilibration we employ, however, viscosities η



much lower than the realistic viscosity of water, η ≈ 10−5ηWater or τγ = 100τLJ ≈ 105τγ,Water.

We argue that this will correspond to equilibration times

tWater ∼ min

(
τLJ

τγ(η)
, 1

)
ηWater

η
t ≈ 103t ≈ 20 s (11)

if we could simulate with the high viscosity of water. For high viscosities such that τγ(η) < τLJ,

the simulation is overdamped already on the Lennard-Jones time scale such that inertia can

be neglected, and we essentially have a Brownian dynamics. For the viscosity of water, we

have τγ(ηWater) = 10−3τLJ and are deep in the overdamped limit (as is typical for all biological

systems on the micron scale). Within the overdamped Brownian regime, the equilibration

time t scales linearly with viscosity t ∼ η such that tWater ∼ (ηWater/η)t because all motion

is slowed down proportional to friction. This can be shown strictly by non-dimensionalizing

time in the Brownian equation of motion in units of τγ , which completely removes viscosity

from the equation of motion. For lower viscosities such that τγ(η) > τLJ, on the other hand,

the simulation is underdamped and the equilibration time t becomes essentially independent of

viscosity. Combining the findings for overdamped and underdamped regimes leads to the above

overall result (11) for the equilibration time at different viscosities.
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Supplementary Fig. 15: a, MD simulation of two bundled polymers sliding apart by pulling
with a force F . Polymers have 580 beads, the pulling force is F = 1kBT/σ, and the interaction
energy is ε/kBT = 0.5. b, Desorption time tdes in units of τLJ as a function of the damping time
scale τγ(η)/τLJ ∝ 1/η.



To further support this argument we performed MD simulations of a faster process than ring

contraction, namely the pulled sliding of only two bundled polymers with a fixed external pulling

force F , see Fig. 15a, where we consider the desorption time tdes to separate both polymers. This

process is faster, such we can explore a wider range of viscosities in MD simulations. According

to our arguments leading to Eq. (11), the total desorption time tdes should scale linearly with

viscosity in the overdamped regime τγ(η) < τLJ and become essentially independent of viscosity

in the underdamped regime τγ(η) > τLJ,

tdes/τLJ ∝ max

(
1,

τLJ

τγ(η)

)
. (12)

Extrapolating desorption times from a lower viscosity η to the high viscosity of water with

τγ(ηWater) < τLJ gives again

tdes(ηWater)

tdes(η)
=

τLJ/τγ(ηWater)

max (1, τLJ/τγ(η))
= min

(
τLJ

τγ(η)
, 1

)
ηWater

η
(13)

in agreement with Eq. (11).

In Supplementary Fig. 15b, we measure the desorption time as a function of the damping time

scale τγ(η)/τLJ and fully confirm Eq. (12): we find a decrease ∝ (τγ(η)/τLJ)
−1 corresponding

to a linear increase with viscosity in the overdamped regime τγ(η) < τLJ, and an essentially

η-independent desorption rate in the underdamped regime τγ(η) > τLJ.

Ring formation

In a different set of simulations we aim to follow the process of ring formation starting from a

solution of polymers. To observe the process of ring formation on computationally accessible

time scales, we employ a reduced bending stiffness because the bending energy enters the time

scale for ring closure in an Arrhenius-type exponential dependence. We use κ = 200kBTσ as

compared to the realistic stiffness of κ = 600kBTσ for DNA nanotubes. Fig. 4c in the main text



shows a sequence of snapshots of a ring formation simulation. We find that ring formation in

simulations is optimal for an initial small bundle containing few DNA nanotubes such that its

total contour length is ∼ 3Lp. For all MD simulations of ring contraction (Fig. 5 in the main

text), we enhance initial ring formation by initially positioning DNA nanotubes in a ring-like

structure ´and employ realistic bending stiffnesses.

Measuring ring diameters

In order to calculate the ring diameters of DNA nanotube bundles in simulations we compute the

3x3 gyration tensor

Smn = N−1
tot

Ntot∑
i=1

r(i)m r(i)n (14)

by averaging over all bead positions r⃗(i). The tensor is symmetric and has three eigenvalues X2,

Y 2 and Z2. For a homogeneous torus with major axis b and minor axis a, we can calculate the

eigenvalues of the gyration tensor as

X2 =
1

4
a2, Y 2 = Z2 =

1

2

(
b2 +

3

4
a2
)
. (15)

Therefore, we calculate the eigenvalues X2, Y 2, and Z2 of the measured tensor S in a toroidal

ring configuration numerically and identify

D2 = 4b2 = 4Y 2 + 4Z2 − 12X2 (16)

as ring diameter D.



Supplementary Note 3: Discussion of ring contraction-driving parameters
for physical system

Temperature dependence of parameters

According to the theoretical result (9) the ring diameter is controlled by several parameters that

can be controlled experimentally and in simulations and that are possibly temperature dependent:

• The bending rigidity κ appears via the corresponding persistence length Lp = κ/kBT

(which measures κ in units of kBT ). The bending rigidity κ is assumed to be temperature

independent (both in experiments and simulations) such that the persistence length Lp ∝

1/T by definition.

• The (free) adhesion energy g per length for the DNA nanotubes inside the bundle appears

as g/kBT , which is an inverse length measuring g in units of kBT . The free energy of

adhesion g is temperature-dependent in general.

Close to the bundling threshold it will contain entropic contributions from shape fluctu-

ations of the DNA nanotubes [5]. This complication is absent sufficiently deep in the

bundled phase; this is the limit we focus on in experiments and simulations. Additional

temperature dependencies can arise depending on the nature of the interaction.

Crosslinker-mediated adhesion can be assumed to lead to a largely temperature independent

g. The only temperature dependence stems from the unbinding and rebinding equilibrium

of crosslinking molecules [5]. For a fixed number Nc of firmly bound crosslinkers, this

temperature-dependence is absent. Then g/kBT ∝ 1/T . This is the relevant situation for

crosslinked DNA nanotube bundles.

Depletion attraction by additional crowding agents is an entropic interaction with a linear

temperature-dependence g ∝ kBT such that g/kBT becomes temperature independent.



This is relevant for the additional depletion attraction triggering ring contraction.

In simulations, we employ a temperature independent fixed g, which is given by a temper-

ature independent parameter ε via g ≈ ε/σ.

• The total contour length Ltot is assumed to be temperature independent, since we neglect

the possibility of melting. Therefore, also the average crosslinker distance dc = Li/Nc ≈

Ltot/Nc is temperature independent (for fixed number Nc of crosslinkers).

• Geometric parameters such as the crosslinker size bc are temperature independent.

Conclusion for the physical system from theoretical predictions

The theoretical result (Eq. 9) predicts several experimentally testable scenarios under which ring

contraction could occur given the temperature dependence of the parameters:

(i) Rings contract for decreasing persistence length or bending rigidity, D ∝ L
1/(3/2+α)
p with

Lp = κ/kBT .

In experiments, a decrease in persistence length (i) could be achieved by increasing the

temperature, as temperature is known to decrease the persistence length of semiflexible

polymers and in particular DNA [2]. As an experimental control, the persistence length of

the DNA nanotube bundle can be increased by depletion when first adding a molecular

crowder, like dextran, and second adding the crosslinker starPEG-(KA7)4 in order to form

larger rings. In the simulation experiments, the bending stiffness κ/kBTσ can be altered

directly.

(ii) Rings contract if the total DNA nanotube length is decreased, for example, by depolymer-

ization, D ∝ L
(1/2+α)/(3/2+α)
tot .



In experiments, we have to consider the melting of DNA from its double stranded into

its single stranded state. The critical melting temperature for DNA nanotubes can be

calculated as a function of the enthalpy of disassembly, the entropy, the number of sticky

end bonds and base pairs per bond and the concentration of free tiles [3, 12]. Decreasing

free tile concentrations lower the corresponding melting temperature of a DNA nanotube in

solution. Assuming 50 nM final tile concentration (of assembled DNA nanotubes, they are

pre-formed at 5 µM and then diluted 1:100), one could gently estimate the concentration

of free tiles to be below 5 nM. This would result in a melting temperature of 37.2 ◦C

(compare to 50 nM free tiles resulting in 42.0 ◦C).

In addition, experiments have shown that in absence of free tiles, the depolymerization rate

measures around 0.3 layers per second at 40 ◦C [3]. Moreover, the gradual disassembly of

DNA nanotubes confined in water-in-oil droplets has been shown for temperatures above

room temperature [13].

At the interior of the bundle, the concentration of free tiles is higher (due to recent de-

polymerization and depletion effects), leading to an effective increase of the melting

temperature. A moderate increase in temperature will thus likely lead to depolymerization

of the loose ends of the DNA nanotubes that were seen experimentally in STED (Fig. 3b,

Supplementary Fig. 7) and electron microscopy (Fig. 4e) as well as in simulation experi-

ments (Fig. 4c, Fig. 4d, Supplementary Movies 2,3) . DNA nanotube depolymerization

can thus enhance ring contraction further. However, depolymerization is not included in

the simulations. For simplicity Ltot is kept constant.

(iii) If crosslinker entropy can be neglected, the ring diameter will contract with increasing g

according to D ∝ (κ/g)1/(3/2+α). This means that if g is an entropic depletion attraction

with g ∝ T ring contraction occurs for increasing temperature or decreasing persistence



length of individual DNA nanotubes, D ∝ T−1/(3/2+α) ∝ L
1/(3/2+α)
p (iii.a). If g is a

crosslinker-mediated attraction, D is independent of temperature although the persistence

length will decrease (iii.b).

For a purely crosslinked system (only starPEG-(KA7)4, no dextran) the DNA nanotube

colocalization assay indicates that nanotube-nanotube interaction relies on specific crosslink-

ing (Fig. 2a,b). Moreover, increasing starPEG-(KA7)4 concentration alone did not contract

the ring size (Fig. 3c), indicating that assumption (iii.b) is not valid on its own. Experimen-

tally, g can be increased by an additional depletion force (iii.a). The addition of dextran

could shed light on the contraction for increasing attraction strength g and, furthermore,

on the temperature dependence of the contractile system.

(iv) For dominant crosslinker entropy, rings will contract with increasing temperature or

decreasing persistence length, D ∝ T−1/(3/2+α) ∝ L
1/(3/2+α)
p . The crosslinker entropy

is dominant for gdc < kBT/(1 − bc/dc), where gdc is the average adhesion energy per

crosslinker; in particular, it becomes dominant for a dense crosslinker gas with bc/dc ≤ 1 if

the average adhesion per crosslinker is of the order of several kBT . An additional entropic

depletion attraction with g ∝ T will further contract rings under these conditions (iv.a).

In our experimental system (iv) would indicate that at low crosslinker concentrations tem-

perature increase would not cause crosslinker entropy to constrict the ring size. However,

since this setting cannot be completely isolated experimentally from crosstalk effects, we

can only make sure that we are in the parameter range of a dense crosslinker gas to obtain

efficient constriction. Then (iv.a) predicts ring contraction for increasing temperature and

further ring contraction upon increasing the depletion attraction, for example, by increasing

the depletant concentration or the molecular size of depletants.

In summary, the key parameters for ring constriction are Lp and g. These can be controlled in



simulations as well as experiments with DNA nanotube rings, making the theoretical predictions

testable.



Supplementary Note 4: Molecular weight dependence of dextran-induced
depletion attraction

Addition of molecular crowders gives rise to an additional depletion attraction between DNA

nanotubes. For two long hard rods of diameter d, the depletion interaction energy per rod from a

molecular crowder with a depletion length δ around the rod is [6]

gdep = kBT
c

M
Aov(δ, d), (17)

where c is the mass concentration of a crowder of molecular mass M and Aov is the overlap area

of the circular cross sections of two rods of diameter d+ 2δ and center distance d,

Aov =
1

2
(d+ 2δ)2 (φ− cosφ sinφ) with

cosφ =
d

d+ 2δ
. (18)

The depletion length δ is the size of the depletion layer and will be related to the size of the

molecular crowders below. In the limits of small (δ ≪ d) or large (δ ≫ d) depletion length we

obtain φ ≈ 2
√

δ/d ≪ 1 and φ ≈ π/2, respectively, leading to

Aov ≈

8
3
d1/2δ3/2 (δ ≪ d),

πδ2 (δ ≫ d).
(19)

To a good approximation, dextran can be considered as an ideal polymer with a gyration

radius Rg ∝ M1/2: In Fragasso et al. [1], Rg = R0M
0.48 (with R0 = 0.072 nm and M in Da),

has been measured.

For polymers, the depletion length δ is defined as the depletion layer thickness via δ =∫∞
0

dx(1 − f(x)), where x is a coordinate measuring the distance from a flat surface and

f(x) ∈ [0, 1] the relative polymer segment distribution [6]. For ideal polymers, the depletion



length is essentially given by the radius of gyration Rg [6, 7]; we use δ ≈ 1.4Rg [7] resulting in

δ = 1.4Rg = 1.4R0M
1/2 (20)

Using this in (19) and (17), we find a depletion attraction

gdep ∼

kBTcd
1/2R

3/2
0 M−1/2 (Rg ≪ d),

kBTcR
2
0 (Rg ≫ d),

(21)

between hard rods, i.e., the depletion attraction decreases with molecular weight M before it

saturates for large M in the regime Rg ≫ d (see Fig. 16, p = 0).

For crosslinked DNA nanotubes, on the other hand, we see stronger ring contraction for larger

molecular weights (Fig. 5 main text), which points at an increasing depletion attraction with

molecular weights. The reason for this behavior are the crosslinkers, which act as a penetrable

layer of thickness p around the DNA nanotubes, and play a similar role as the soft glycocalix

for the aggregation of red blood cells by dextran [7]. For a soft rod of total diameter d with a

penetrable layer of thickness p, the depletion attraction is modified to

gdep = kBT
c

M
Aov(δ − p, d). (22)

Switching from a energy per length gdep to an energy per bead εdep ≈ gdepσ used in our MD

simulations (with σ = d), we obtain

εdep

kBT
= d

c

M
Aov(δ − p, d)

≈

d c
M

8
3
d1/2(1.4R0M

1/2 − p)3/2 (Rg ≪ d),

d c
M
π(1.4R0M

1/2 − p)2 (Rg ≫ d).
(23)

For p > 0 the depletion attraction only sets in for δ > p above a threshold molecular weight M .

We write the total effective diameter d of a crosslinker-decorated DNA nanotube as d = d0 + 2p,
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Supplementary Fig. 16: Additional depletion attraction εdep/kBT as a function of dextran
molecular weight M (in kDa) for different thicknesses p of penetrable layer around a DNA
nanotube of diameter d0 = 12 nm. The dextran concentration is 25 wt% = 1.5×10−3 kDa/nm3.

where the crosslinkers act as a penetrable layer of thickness p and d0 = 12 nm is the bare

diameter of the DNA nanotubes, which are regarded as inpenetrable. The depletion attraction

(23) typically increases with molecular weight M (for p ≳ 2 nm) before it saturates for large M

in the regime Rg ≫ d (see Fig. 16, p = 6, 12, 18 nm) to εdep/kBT ≈ 2cdR2
0.

Using the fit D/σ = a(ε/kBT )
−2/5 with a fit parameter a ≈ 100 for the dependence of

the ring diameter D on attraction from our MD simulation results (for fixed κ/kBTσ = 600,

blue circles in Fig. 4e in the main text) together with equation (23) and σ = d0, we can obtain

predictions for the ring diameter as a function of depletant molecular weight,

D = 100d0 ((εcross + εdep(M))/kBT )
−2/5 . (24)

With a crosslinker contribution εcross = 0.3kBT , d = d0+2p as effective diameter of a crosslinker-

decorated DNA nanotube, and d0 = 12 nm, we obtain the results in Fig. 17 with a steep decrease

of the ring radius for M ≲ 50 kDa and a saturation for M ≳ 50 kDa.

Fig. 5d in the main text shows a weighted least-square fit of the experimental data with

d = d0 + 2p and three fit parameters: the bare DNA nanotube diameter d0, the penetration depth
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Supplementary Fig. 17: Ring diameter as a function of dextran molecular weight M (in kDa)
for different thicknesses p of penetrable layer around a DNA nanotube of diameter 12 nm
according to MD simulations with ε = 0.3kBT + εdep(M). The dextran concentration is 25 wt%
= 1.5× 10−3 kDa/nm3.

p indicating the size of the penetrable crosslinker layer, and the crosslinker contribution εcross

to the attraction. The resulting fit values are d0 = 18.58± 2.38nm, p = 11.03± 3.28nm, and

εcross/kBT = 0.31± 0.14.



Supplementary References

[1] Alessio Fragasso et al. “Reconstitution of Ultrawide DNA Origami Pores in Liposomes

for Transmembrane Transport of Macromolecules”. In: ACS Nano 15.8 (2021), pp. 12768–

12779. ISSN: 1936086X. DOI: 10.1021/acsnano.1c01669.

[2] Stephanie Geggier, Alexander Kotlyar, and Alexander Vologodskii. “Temperature de-

pendence of DNA persistence length”. In: Nucleic Acids Research 39 (4 Mar. 2011),

pp. 1419–1426. ISSN: 03051048. DOI: 10.1093/nar/gkq932.

[3] Rizal F. Hariadi, Bernard Yurke, and Erik Winfree. “Thermodynamics and kinetics of

DNA nanotube polymerization from single-filament measurements”. In: Chemical Science

6 (4 Apr. 2015), pp. 2252–2267. ISSN: 20416539. DOI: 10.1039/c3sc53331j.

[4] Claus Heussinger, Mark Bathe, and Erwin Frey. “Statistical Mechanics of Semiflexible

Bundles of Wormlike Polymer Chains”. In: Phys. Rev. Lett. 99.4 (July 2007), p. 048101.

ISSN: 0031-9007. DOI: 10.1103/PhysRevLett.99.048101.

[5] Jan Kierfeld, Torsten Kühne, and Reinhard Lipowsky. “Discontinuous unbinding tran-

sitions of filament bundles”. In: Phys. Rev. Lett. 95.3 (July 2005), p. 038102. ISSN:

00319007. DOI: 10.1103/PhysRevLett.95.038102.

[6] Henk N.W. Lekkerkerker and Remco. Tuinier. Colloids and the Depletion Interaction.

Vol. 833. Lecture Notes in Physics. Dordrecht: Springer Netherlands, 2011. ISBN: 978-94-

007-1222-5. DOI: 10.1007/978-94-007-1223-2.

[7] Björn Neu, Rosalinda Wenby, and Herbert J. Meiselman. “Effects of Dextran Molecular

Weight on Red Blood Cell Aggregation”. In: Biophys. J. 95.6 (Sept. 2008), pp. 3059–3065.

ISSN: 00063495. DOI: 10.1529/biophysj.108.130328.

https://doi.org/10.1021/acsnano.1c01669
https://doi.org/10.1093/nar/gkq932
https://doi.org/10.1039/c3sc53331j
https://doi.org/10.1103/PhysRevLett.99.048101
https://doi.org/10.1103/PhysRevLett.95.038102
https://doi.org/10.1007/978-94-007-1223-2
https://doi.org/10.1529/biophysj.108.130328


[8] Paul W. K. Rothemund et al. “Design and Characterization of Programmable DNA

Nanotubes”. In: Journal of the American Chemical Society 126.50 (Nov. 2004), pp. 16344–

16352. DOI: 10.1021/ja044319l.

[9] Johannes Schindelin et al. “Fiji: an open-source platform for biological-image analysis”.

In: Nature methods 9.7 (2012), pp. 676–682.

[10] B. Schnurr, F. Gittes, and F. C. MacKintosh. “Metastable intermediates in the condensation

of semiflexible polymers”. In: Phys. Rev. E 65.6 (June 2002), p. 061904. ISSN: 1063-651X.

DOI: 10.1103/PhysRevE.65.061904.

[11] A. P. Thompson et al. “LAMMPS - a flexible simulation tool for particle-based materials

modeling at the atomic, meso, and continuum scales”. In: Comp. Phys. Comm. 271 (2022),

p. 108171. DOI: 10.1016/j.cpc.2021.108171.

[12] Erik Winfree. Simulations of Computing by Self-Assembly. California Institute of Technol-

ogy, 1998. DOI: 10.7907/Z9TB14X7.

[13] Pengfei Zhan et al. “Functional DNA-based cytoskeletons for synthetic cells”. In: Nature

Chemistry 14 (June 2022), pp. 958–963. ISSN: 1755-4330. DOI: 10.1038/s41557-

022-00945-w.

https://doi.org/10.1021/ja044319l
https://doi.org/10.1103/PhysRevE.65.061904
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.7907/Z9TB14X7
https://doi.org/10.1038/s41557-022-00945-w
https://doi.org/10.1038/s41557-022-00945-w

	Supplementary Figures
	Supplementary Figure 1: DNA bundles at high DNA nanotube concentrations
	Supplementary Figure 2: Colocalization intensity of TAMRA-labeled synthetic peptides
	Supplementary Figure 3: Colocalization of DNA nanotubes and starPEG-(KA7)4
	Supplementary Figure 4: Bundle thickness analysis
	Supplementary Figure 5: Colocalization intensity over time
	Supplementary Figure 6: Yield of DNA rings
	Supplementary Figure 7: Microscopic structure of DNA nanotube rings
	Supplementary Figure 8: Dependence on MgCl2 and DNA tile concentration
	Supplementary Figure 9: DNA ring diameter is time-independent
	Supplementary Figure 10: Analysis of the circularity of DNA rings
	Supplementary Figure 11: DNA ring contraction with Methylcellulose

	Supplementary Tables
	Supplementary Table 1: List of DNA sequences

	Supplementary Notes
	Supplementary Note 1: Theory of bundle contraction
	Supplementary Note 2: MD simulations
	Supplementary Note 3: Ring contraction-driving parameters for physical system
	Supplementary Note 4: Dextran-induced depletion attraction


