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We study the adsorption of semiflexible polymers such as polyelectrolytes or DNA on planar and
curved substrates, e.g., spheres or washboard substrates via short-range potentials using extensive
Monte Carlo simulations, scaling arguments, and analytical transfer matrix techniques. We show that
the adsorption threshold of stiff or semiflexible polymers on a planar substrate can be controlled by
polymer stiffness: adsorption requires the highest potential strength if the persistence length of the
polymer matches the range of the adsorption potential. On curved substrates, i.e., an adsorbing sphere
or an adsorbing washboard surface, the adsorption can be additionally controlled by the curvature
of the surface structure. The additional bending energy in the adsorbed state leads to an increase
of the critical adsorption strength, which depends on the curvature radii of the substrate structure.
For an adsorbing sphere, this gives rise to an optimal polymer stiffness for adsorption, i.e., a local
minimum in the critical potential strength for adsorption, which can be controlled by curvature.
For two- and three-dimensional washboard substrates, we identify the range of persistence lengths
and the mechanisms for an effective control of the adsorption threshold by the substrate curvature.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4813021]

I. INTRODUCTION

Typical synthetic polymers are flexible and effects from
their bending rigidity can be neglected on length scales com-
parable to their contour length. For semiflexible polymers, on
the other hand, the bending rigidity is relevant for large scale
fluctuations. Many biopolymers such as DNA, filamentous
(F-) actin, or microtubules belong to the class of semiflexible
polymers. The biological function of these polymers requires
considerable mechanical rigidity; for example, actin filaments
are the main structural elements of the cytoskeleton, in which
they form a network rigid enough to maintain the shape of the
cell and to transmit forces. Prominent examples for synthetic
semiflexible polymers are polyelectrolytes at sufficiently low
salt concentration1 or dendronized polymers,2 where the elec-
trostatic repulsion of charges along the backbone or the steric
interaction of side groups give rise to considerable bending
rigidity.

The bending rigidity of semiflexible polymers is char-
acterized by their bending rigidity κ . The ratio of bending
rigidity and thermal energy determines the persistence length
Lp ∼ κ/kBT, which is the characteristic length scale for the
decay of tangent correlations.3 The physics of semiflexible
polymers becomes qualitatively different from the physics of
flexible synthetic polymers on length scales smaller than the
persistence length where bending energy dominates over con-
formational entropy. Typical biopolymer persistence lengths
range from 50 nm for DNA4 (at high salt concentrations) to
the 10 μm-range for F-actin5 or even up to the mm-range for
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microtubules6 and are, thus, comparable to typical contour
lengths.

Polymer adsorption is the most important phase transi-
tion for single polymer chains with numerous applications.7–9

Here, we consider the adsorption of a single semiflexible
polymer to a planar surface and investigate, in particular, how
the bending rigidity allows to control the adsorption transi-
tion, i.e., to control the critical potential strength necessary
for adsorption. Relevant adsorption interactions are van der
Waals interactions or depletion interactions for uncharged
semiflexible polymers and screened electrostatic interactions
or counterion-induced interactions for charged polymers such
as DNA or F-actin.10 F-actin can also be bound via crosslink-
ing molecules.11–13

From a theoretical point of view, the adsorption of semi-
flexible polymers exhibits a rich behavior because several rel-
evant length scales compete. For a free semiflexible polymer,
the persistence length Lp and its contour length L are the rel-
evant length scales, and for L < Lp the behavior is dominated
by bending energy. In the adsorption problem, both length
scales compete with the correlation length ξ of the adsorp-
tion transition and the range � of the adsorption potential.
The correlation length ξ is given by the characteristic length
of desorbed segments (loops) and diverges at the adsorption
transition. If the contour length is small compared to the cor-
relation length, L < ξ , finite size effects are relevant and affect
the critical behavior close to the adsorption transition. If the
persistence length is small compared to the correlation length,
Lp < ξ , there is a crossover in the critical properties of the ad-
sorption transition to those of a flexible polymer,14, 15 which
can only be observed close to the adsorption transition, and
corrections to the critical potential strength are small. If the
persistence length becomes even smaller than the potential
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range, Lp � �, we expect that the critical potential strength
for adsorption itself will cross over to the flexible polymer
result. This crossover is the central subject of this paper.

Various aspects of the adsorption transition of semiflex-
ible polymers to planar substrates by short-range potentials
have been studied theoretically. An early study of semiflex-
ible polymer adsorption by Birshtein16 was based on an an-
alytical transfer matrix calculation for lattice polymers. The
main finding was that the critical potential strength for adsorp-
tion decreases with stiffness, i.e., stiff polymers adsorb more
easily, and that the transition sharpens with increasing stiff-
ness but remains continuous. These findings were confirmed
by numerical calculations.17 A decreasing critical potential
strength for adsorption has also been found in off-lattice
molecular dynamics simulations18 and Monte Carlo (MC)
simulations.19 Scaling arguments for the critical potential
strength for the adsorption of semiflexible polyelectrolytes20

indicate the same trend, whereas Monte Carlo simulations on
polyelectrolytes found a critical potential strength increasing
with stiffness.21 There has also been some rigorous mathe-
matical analysis of the binding transition onto a hard wall.22

Adsorption of semiflexible polymers can be studied both for
lattice polymers16, 23 and off-lattice as in the present approach.
In this paper, we focus on the dependence of the critical po-
tential strength for adsorption on the polymer stiffness, i.e.,
as a function of the dimensionless ratio Lp/� of persistence
length (stiffness) and potential range, which are the two ba-
sic length scales for semiflexible polymer adsorption. We will
address both the flexible limit Lp � � and the stiff limit
Lp � �. For a lattice polymer, the lattice constant a provides
a third intrinsic length scale of the problem, which introduces
lattice effects on small scales. The flexible limit is unaffected
from lattice effects only if a � Lp � �, which is difficult to
achieve in simulations and motivates the use of an off-lattice
model.

Frequently, transfer matrix methods24 have been applied
to the adsorption of continuous off-lattice semiflexible poly-
mers to planar surfaces.14, 25–34 Many transfer matrix ap-
proaches have employed a weak bending approximation (or
Monge parametrization),14, 25, 26, 28, 30, 31, 33 where it is assumed
that deviations from the orientation parallel to the adsorbing
surface are small. The main findings of the transfer matrix
studies in Refs. 31 and 33 were as follows: The adsorption
transition is continuous for an orientation-independent ad-
sorption potential, whereas it can become discontinuous if an
additional orientation-dependence is present. All critical ex-
ponents governing the transition were determined, and ana-
lytical results for the scaling function governing the segment
distribution were derived. In the present paper, we will focus
on the critical potential strength for adsorption and give an
analytical derivation of its value for weakly bent semiflexible
polymers adsorbing on a planar surface with a short-range ad-
sorption potential using a transfer matrix approach. We con-
firm our analytical results quantitatively by extensive Monte
Carlo simulations, which are not limited by a weak bending
approximation.

There are two limitations of the weak bending approxi-
mation: (i) If the persistence length Lp becomes smaller than
the potential range �, the polymer can change orientation in

the adsorbed state, and we have to use a flexible polymer
model with a Kuhn length bK = 2Lp to treat the adsorption
transition. (ii) The correlation length ξ , which is closely re-
lated to the length of unbound polymer segments (so-called
loops), diverges upon approaching the transition. Sufficiently
close to the transition, ξ will exceed the persistence length
Lp, and we have to use a flexible polymer model with a Kuhn
length bk = 2Lp to obtain the correct critical properties.15

The corrections for (ii) Lp < ξ mainly affect the critical be-
havior in the vicinity of the adsorption transition and have
already been addressed in the supplementary material of
Ref. 15. In the present paper, we will address the conse-
quences of a crossover to a flexible limit with (i) Lp � �

in detail. The corrections for Lp � � are more serious and
strongly affect the value for the critical potential strength it-
self. This dependence can be exploited to control the adsorp-
tion of semiflexible polymers.

We argue that not only stiff polymers adsorb more eas-
ily to a planar surface but also flexible polymers adsorb more
easily. This has also been observed in Ref. 29 in a transfer
matrix treatment in an expansion around the flexible limit.
We find that the combination of easy adsorption in both the
stiff and flexible limit results in a maximum in the critical po-
tential strength or a minimum in the critical temperature for
adsorption in the intermediate range. This maximum is a re-
sult of the competition between Lp and the potential range �

and is attained for Lp ∼ �. It is, therefore, closely connected
to the problem (i) of the weak bending approximation ex-
plained above. We confirm the existence of a maximum in
the critical adsorption potential strength as a function of the
polymer rigidity by performing extensive Monte Carlo simu-
lations without any weak bending approximation. An equiva-
lent crossover in adsorption behavior has also been observed
in numerical transfer matrix studies in Ref. 34. The numer-
ical transfer matrix results of Ref. 34 are in agreement with
our Monte Carlo simulations (because lengths are measured
in units of Lp in Ref. 34, the critical potential strength for
adsorption does not show the existence of a maximum as a
function of polymer stiffness). We derive two different inter-
polation functions, which describe this crossover behavior of
the critical potential strength for adsorption accurately over
the whole range of polymer rigidities. Our interpolation func-
tions are based on exact analytical results that we obtain in the
stiff limit and differ from the interpolation function proposed
in Ref. 34.

The existence of a maximum in the critical potential
strength for adsorption has interesting and potentially use-
ful consequences for applications because tuning the poly-
mer rigidity versus the potential range allows to control the
adsorption threshold. For example, tuning Lp or � to match
each other can prevent adsorption. Another attractive op-
tion to control the adsorption transition are modifications
of the adsorbing surface geometry. Adsorption of polyelec-
trolytes has been studied for various different geometries in-
cluding spherical,21, 35–39 cylindrical,39 or pore40 geometries.
Because semiflexible polymers have a bending rigidity, we
will explore adsorption control by additional curvature of
the adsorbing surface. Then, the adsorption free energy gain
will compete with the additional bending energy imposed by
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FIG. 1. Schematic figure of adsorption geometries studied in this paper. The
darker beads are adsorbed onto the surface.

the substrate curvature such that systematic variation of the
persistence length will also allow to control the adsorption.
We will study three different types of curved substrate geome-
tries, which are an adsorbing sphere, an adsorbing washboard,
and a checkered washboard surface as schematically shown in
Fig. 1. For such curved substrates, the radii of curvature will
set additional length scales competing with the persistence
length Lp and allowing to control the adsorption threshold.

The spherical adsorption geometry is relevant for com-
plexation of DNA or other polyelectrolytes with oppositely
charged colloids or histone proteins.21, 35–39 In Refs. 36 and
38, a minimum of the critical charge for a wrapping transi-
tion has been found as a function of the electrostatic screening
length using numerical minimization of bending and electro-
static energies. Here, we include thermal fluctuations in the
adsorption problem. Based on the results for the planar geom-
etry, we can make analytical estimates for a spherical adsor-
ber, which also exhibit a local minimum in the critical poten-
tial strength for adsorption as a function of the potential range
due to a crossover from thermally driven to bending energy
driven desorption. These results are in quantitative agreement
with our Monte Carlo simulations for this geometry.

Structured adsorbing substrates can give rise to inter-
esting shape transitions of semiflexible polymers in the ad-
sorbed state41, 42 and also give rise to activated dynamics of
polymers.43, 44 Here, we focus on the influence of the sur-
face structure on the adsorption transition itself for a wash-
board and checkered washboard geometry. Adsorption of
semiflexible polymers on washboard structures has been con-
sidered analytically in Ref. 45. Using scaling arguments and
Monte Carlo simulations, we find a single adsorption transi-
tion for a washboard surface structure with a critical adsorp-
tion strength, which exhibits a rich behavior as a function
of polymer stiffness: Whereas we have a single local maxi-
mum in the critical adsorption strength as a function of poly-
mer stiffness for a planar substrate, we find two maxima and
one local minimum for a washboard surface structure. For a
checkered washboard surface structure, the local minimum is

suppressed again and we find a single maximum, which is
broadened as compared to a planar substrate. We identify the
range of persistence lengths, for which the adsorption thresh-
old can be effectively changed and, thus, controlled by the
substrate curvature.

The paper is organized as follows. In Sec. II, we intro-
duce the theoretical and simulation model for semiflexible
polymers, and the Monte Carlo simulation technique. The
paper is then divided into two parts. First, we study the ad-
sorption onto a flat surface. We focus on the critical poten-
tial strength and its dependence on polymer rigidity, which
is determined analytically by scaling arguments and transfer
matrix calculations and numerically from Monte Carlo sim-
ulations. In the second part, we investigate adsorption onto
curved substrates for a sphere, a washboard, and a checkered
washboard surface. Using scaling arguments and Monte Carlo
simulations, we determine the critical potential strength for
these surfaces as a function of polymer rigidity. This allows
us to predict how adsorption of semiflexible polymers can be
controlled by the curvatures of the surface structure. Finally,
we relate our results to experiments on polyelectrolyte adsorp-
tion.

II. MODEL AND SIMULATION

A. Model

The fundamental model to describe freely fluctuating
inextensible semiflexible polymers on all length scales is
the Kratky-Porod model, also known as worm-like chain
model.46, 47 The Hamiltonian for a polymer with contour r(s),
which is parametrized by the arc length s, is given by the
bending energy

Hb[r(s)] = κ

2

∫ L

0
ds

(
∂2
s r(s)

)2
, (1)

where κ is the bending rigidity and L the contour length of the
polymer. The persistence length Lp,D of the worm-like chain is
defined as the decay length of tangent correlations in D spatial
dimensions and is given by3, 48

Lp,D = 2κ

(D − 1)kBT
. (2)

In the following, we will use Lp to denote the three-
dimensional persistence length, Lp ≡ Lp,3 = κ/kBT. The
worm-like chain model contains the two limiting cases of flex-
ible polymers for Lp � L and rod-like polymers for Lp � L.

Adsorption by an attractive planar or curved surface is
modeled by a potential V (n) per polymer length, which only
depends on the coordinate n perpendicular to the surface. The
surface is at n = 0; for a planar surface in the xy-plane, the co-
ordinate n is the Cartesian coordinate z. The adsorption poten-
tial consists of a short-ranged attractive square-well potential
Va(n) of potential range � and with an energy gain g > 0 per
unit length of an adsorbed polymer and a hard wall potential
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FIG. 2. Square-well adsorption potential V (n) as a function of the coordinate
n perpendicular to the wall (for a flat substrate n = z).

Vwall(n), see Fig. 2,

V (n) = Va(n) + Vwall(n) =

⎧⎪⎨
⎪⎩

∞ for n < 0

−g for 0 < n ≤ �

0 for n > �.

(3)

The total adsorption energy is Had [r(s)] = ∫ L

0 ds V (n(s)).
Short-range attractive potentials can arise from van der Waals
forces or screened electrostatic interactions. In these cases,
the potential range � is comparable to the polymer thick-
ness or the Debye-Hückel screening length, respectively. For
polyelectrolytes, we have g/kBT ∼ στ lB/κ̃ and � ∼ κ̃−1,
where lB = e2/4πε0εkBT is the Bjerrum length, 1/σ is the
area per unit charge on the surface, 1/τ is the length per
unit charge on the polymer, and κ̃ = (8πlBc)1/2 is the in-
verse Debye screening length depending on the total concen-
tration c of (monovalent) counterions.20 The polyelectrolyte
persistence length is given by the sum of the bare mechanical
persistence length Lp,mech and an electrostatic contribution,
Lp = Lp,mech + lBτ 2/4κ̃2.1, 49

Whereas our findings for the critical potential strength
gc for adsorption will depend on microscopic features of the
attractive potential such as the potential range, results for crit-
ical exponents are expected to apply to all short-ranged in-
teraction potentials, i.e., to all potentials which decay faster
than z−2/3 for large separations z.50 We also expect the pa-
rameter dependence of the critical potential strength for all
short-range adhesion potentials, which have only one charac-
teristic length scale � for the potential range and one energy
scale g for the potential strength, to be identical to our generic
square-well potential. Numerical prefactors can vary. There-
fore, our results for the parameter dependence of the critical
potential strength for adsorption should also apply, for exam-
ple, to polyelectrolytes using the above identifications � ∼ κ̃

and g ∼ στ lB/κ̃ .
A weakly bent semiflexible polymer without overhangs

has a preferred orientation parallel to the adsorbing surface.
For a planar surface, this allows for a particularly simple
Monge parametrization by choosing the x-coordinate along
the preferred orientation and r(x) = (x, y(x), z(x)), which leads
to

H[z(x)] = Hb[z(x)] + Had [z(x)]

≈
∫ L

0
dx

κ

2
(∂2

x z)2 +
∫ L

0
dx Va(z(x)), (4)

where we used ds = dx(1 + (∂xy)2 + (∂xz)2)1/2 ≈ dx assuming
weakly bent configurations. Then, fluctuations in y(x) decou-
ple and can be neglected for the planar adsorption problem,
which can be treated as a two-dimensional problem of con-
figurations (x, z(x)) in a plane as done in Eq. (4). We use the
Hamiltonian (4) for analytical transfer matrix calculations for
adsorption on planar substrates.

For a free polymer, the assumption of weak bending is
valid as long as 〈(∂xz)2〉, 〈(∂xy)2〉 ∼ L/Lp � 1, i.e., for con-
tour lengths below the persistence length. At the adsorption
transition, the correlation length ξ of the transition is an addi-
tional relevant length scale, which is comparable to the typical
length of unbound polymer segments (so-called loops). For an
adsorbed polymer, the weak bending approximation remains
valid as long as the contour length of these unbound segments
is smaller than the persistence length, ξ � Lp, even if L � Lp.

We neglect effects from self-avoidance. Generally, we ex-
pect this to be a good approximation as long as typical poly-
mer configurations are elongated and contain only few loops,
as it is the case for sufficiently stiff polymers. We will discuss
possible effects of self-avoidance on our results in the end of
the paper.

B. Simulation model

In order to perform Monte Carlo simulations, we use
a discrete and extensible representation of the semiflexible
polymer in terms of the semiflexible harmonic chain (SHC)
model.51 The SHC model represents a discretization of the
original worm-like chain model (1) with additional bond ex-
tensibility and is, therefore, not limited to the weak bending
regime. The SHC model consists of a fixed number N + 1
of beads ri (i = 0, . . . , N) connected by N bonds ti ≡ ri+1

−ri (i = 0, . . . , N − 1) with equilibrium length b0, such that
N = L/b0. Each bond is extensible with a harmonic stretch-
ing energy (k/2)(|ti| − b0)2. The SHC Hamiltonian containing
the discretized version of the bending energy (1) and the har-
monic stretching energies is given by

HSHC = κ

b0

N−2∑
i=1

(1 − t̂i · t̂i+1) + kb2
0

2

N−1∑
i=0

( |ti |
b0

− 1

)2

, (5)

where t̂i = ti/|ti | are the unit tangent vectors. Extensible
bonds allow for a more effective Monte Carlo simulation us-
ing displacement moves of the beads. The use of bead dis-
placement moves is preferred over bond rotation moves be-
cause the adsorption energy is naturally given in terms of bead
positions. The discretized adsorption energy used in the SHC
simulations is Had [{ri}] = ∑N−1

i=0 b0V (ni(s)).
In order to approximate an inextensible worm-like chain,

we have to choose the bond extensibility k as large as possi-
ble. Real polymers always have a certain mechanical exten-
sibility. Moreover, the SHC model is a coarse-grained model
of a worm-like chain, which does not contain configurational
fluctuations on length scales smaller than b0. Therefore, an
upper bound for k is given by the entropic elasticity associ-
ated with the stored filament length within each segment of
contour length b0. If we use N = 100 segments in simulations
to discretize a polymer of micrometer length, for example, an
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actin filament of contour length L = 10 μm the bond length
b = 0.1 μm is much larger than the actin monomer size and
each bond can perform configurational fluctuations reducing
its length to an apparent bond length b. In response to a tensile
force f fluctuations are pulled out, and we find52

b0 − b = b

π

∫ ∞

π/b0

dq
kBT

κq2 + f
≈ b2

0

π2Lp

+ b4
0

3π4kBT L2
p

f,

(6)
where we only integrate over small wavelength fluctuations
with q > π /b0, which correspond to shape fluctuations of a
single segment. If f � κ/b2, the stretching is weak and the
expansion in Eq. (6) justified. From the last term, we obtain
the entropic stiffness

k = 3π4kBT L2
p/b4

0. (7)

For actin filaments, this entropic stiffness is much smaller
than the mechanical stiffness53 and, therefore, dominates the
elasticity (entropic and mechanical springs have to be consid-
ered loaded in series rather than parallel).

C. Adsorption geometries

Apart from adsorption to a planar substrate, we also
investigate adsorption to three different curved substrates
(shown in Fig. 1) in D = 2 or D = 3 spatial dimensions: (i)
adsorption to a sphere of radius Rs in D = 3 dimensions, (ii)
adsorption to a washboard surface consisting of a sequence
of alternating concave and convex half-circles of radius Rw in
D = 2 dimensions, (iii) adsorption to a checkered washboard
potential consisting of a square lattice of alternating concave
and convex spherical pieces of radius Rc in D = 3 dimensions.

For all three geometries, we focus on the critical poten-
tial strength gc as a function of polymer stiffness, which is
captured by the dimensionless ratio Lp/� of persistence length
and potential range.

D. Simulation

We perform extensive MC simulations of the adsorption
process for all four geometries. We use the Metropolis algo-
rithm with bead displacement moves of single beads or seg-
ments of beads as shown in Fig. 3. We always attach one end
of the polymer to the boundary of the attractive potential, i.e.,
at n = �, in order to suppress diffusive motion of the polymer
center of mass in the desorbed phase.

FIG. 3. MC moves used in the simulation. Each move displaces segments
of S successive beads, but the bending and stretching energy for only two
tangents at the ends of the segment have to be updated. The choice of the
distribution of S depends on the simulated geometry; large values of S are
only suitable for free polymers. A single monomer displacement corresponds
to the special case S = 1.

In the simulation, we measure lengths in units of the bond
length b0 and energies in units of kBT. Typical simulated poly-
mers consist of several hundreds of beads. The number of
beads N is at least 200 to minimize finite size effects. Each
MC sweep consists of N MC moves, where segments of S
successive beads are moved by a random vector of length v.
The MC displacement v is determined before each simulation
to realize an acceptance rate of about 50% (typical values are
v � 0.05). A typical MC simulation consists of 107 sweeps.
The entropic spring constant k ∼ 300 kBT L2

p/b4
0 (see Eq. (7))

is very high due to the large prefactor and the quadratic depen-
dence on the persistence length. We use smaller values such
as k = 100 kBT /b2

0 or k = 1000 kBT /b2
0, which are also in-

dependent of Lp, to speed up the simulation, because the dis-
placement length v is determined by the dominant energy and
has to be chosen very small for stiff springs k.

It turns out that the most important control parameter
for the adsorption transitions is the ratio Lp/�. The parameter
ranges that we explore are 0.5 ≤ �/b0 ≤ 10 and 1 ≤ Lp/b0

≤ 10000, i.e., 10−1 ≤ Lp/� ≤ 104. We only consider per-
sistence lengths larger than one bond length, Lp > b0. For
smaller persistence lengths Lp < b0, effects from the stiff-
ness are always negligible as compared to discretization ef-
fects and the effective persistence length will be Lp ∼ b0 such
that lowering Lp below b0 would not further decrease the ef-
fective stiffness.

For simulations with curved surfaces, the curvature can
be characterized by a curvature radius R. For typical applica-
tions, curvature radii larger than the potential range � should
be most interesting. Therefore, we focus on this parameter
regime. We also choose R larger than b0, otherwise discretiza-
tion effects dominate curvature effects.

III. ADSORPTION TO A PLANAR SUBSTRATE

A. Analytical results

The parameter dependence of the critical potential
strength for adsorption to a planar substrate can be obtained
from a simple scaling argument, which takes into account the
competition between the entropic free energy cost of confin-
ing an adsorbed polymer to the attractive region 0 < z < �

of the square-well potential and the adsorption energy gain.
The entropic free energy cost can be estimated by the de-
flection length λ, which is the typical length scale between
contacts with the confining boundaries.54 The resulting free
energy cost per length is approximately 1kBT per deflection
length.14, 26 The adsorption energy gain per length is −g.
Therefore, the total free energy change per length upon ad-
sorption is �f = kBT/λ − g. Adsorption requires �f < 0 or g
> gc with a critical potential strength of the form gc ∼ kBT/λ.

For a semiflexible polymer with Lp � �, the collision
condition 〈z2〉(λ) ∼ λ3/Lp = �2 for a thermally fluctuating
segment of contour length λ gives54–56 λSF ∼ L

1/3
p �2/3 � Lp.

The resulting critical potential strength for adsorption is26, 31

gc ∼ kBT

λSF

= cSF

kBT

�

(
Lp

�

)−1/3

. (8)
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This parameter dependence of gc has been obtained previ-
ously in Refs. 26, 30, and 31 and in the context of polyelec-
trolytes in Ref. 20. In Ref. 32, adsorption by discrete linker
molecules instead of a continuous adsorption potential has
been considered by transfer matrix methods taking the ther-
modynamic limit of an infinite linker number per length. The
results of Ref. 32 can only be compared to the other ap-
proaches if the polymer length Lm between linkers becomes
small; they lead to the same parameter dependence (8) only if
the linker distance Lm is identified with the deflection length
of the adsorption potential (i.e., setting J ∼ gLm and Lm ∼ λSF

in Ref. 32).
Here, we use transfer matrix methods to go beyond the

parameter dependence (8) and also derive the analytical result

cSF = 3−1/3�(1/3)/2 � 0.929 (9)

for the numerical prefactor in Sec. I C of the supplementary
material57 for a square-well potential in the limit � � Lp. In
this limit, the adsorbed semiflexible polymer is sufficiently
stiff that coiling within the potential range � is suppressed and
〈z2〉(λ) ∼ λ3/Lp holds.

For Lp � �, on the other hand, such coiling occurs, and
we have to employ a flexible polymer model with a Kuhn
length bK = 2Lp,D in order to describe the adsorption tran-
sition. For such a flexible polymer segment of length λ, we
have 〈z2〉(λ) ∼ λbk ∼ λLp and collisions with the confin-
ing boundary happen on a deflection length scale λF ∼ �2/Lp

� Lp as obtained from the collision condition 〈z2〉(λF) ∼ �2.
Adsorption then requires a critical potential strength

gc ∼ kBT

λF

= cF

kBT

�

Lp

�
. (10)

Using standard transfer matrix methods for flexible polymers
and solving the equivalent problem of a quantum mechanical
particle in a square-well potential,7 one finds cF = 2π2/4D(D
− 1) for the numerical prefactor in D dimensions.

Remarkably, the results (8) for a semiflexible polymer
with Lp � � and (10) for a flexible polymer with Lp � �

show a rather different behavior as a function of polymer stiff-
ness Lp: whereas the critical adsorption potential strength gc is
increasing with stiffness in the flexible regime, it decreases
with stiffness in the stiff regime. Both in the stiff and in
the flexible limit the critical potential strength for adsorp-
tion becomes small. The driving force behind this behavior is,
however, different. In the stiff limit, the entropic free energy
cost for adsorption becomes small because for a stiff poly-
mer shape fluctuations are small, and the stiff polymer does
not lose much configurational entropy upon adsorption. In the
flexible limit, on the other hand, the effective monomer length
decreases (and the effective monomer number increases) with
stiffness. For a small monomer size, positional fluctuations
and, thus, the entropy cost of confinement also decrease.
Therefore, also in the flexible limit the configurational en-
tropy cost during adsorption becomes small. As a result, we
expect a maximum of the critical potential strength for adsorp-
tion in the intermediate stiffness regime, where Lp ∼ �. Hence,
adsorption is most difficult if polymer persistence length and
adsorption potential range are tuned to match each other. This
has interesting consequences for applications because tun-

ing the polymer rigidity such that the persistence length Lp

matches the potential range � could be a measure to prevent
adsorption.

In order to quantify the location of the maximum, we will
use an interpolating function I(x) describing the critical ad-
sorption potential as a function of the dimensionless stiffness
parameter Lp/�,

gc�

kBT
= I

(
Lp

�

)
, (11)

which captures the correct asymptotics in the semiflexible and
flexible limit,

I (x) ≈ cF x for x � 1, (12)

I (x) ≈ cSF x−1/3 for x � 1, (13)

according to (8) and (10). Furthermore, in the stiff limit, the
leading corrections from flexibility are of the order

I (x) ≈ cSF x−1/3 + O(x−1), (14)

see Ref. 15 and the discussion in Sec. I C 3 of the supplemen-
tary material.57 An interpolation function I(x) has to fulfill the
three constraints (12)–(14). We will obtain a fourth constraint
below.

An interpolating scaling function I(x) can be motivated
by the behavior in the stiff limit (13). Additional compatibility
with the flexible limit (12) suggests I(x) = c1x/(1 + c2x4/3)−1

with c1 = cF and c2 = cF/cSF. The constraint (14) on the next
to leading order term in the stiff limit then suggests the pres-
ence of another term,

I (x) = c1x(1 + c2x
4/3 + c3x

2/3)−1. (15)

This scaling function contains three free fit parameters c1, c2,
and c3. The choices c1 = cF and c2 = cF/cSF will reproduce
the known flexible and semiflexible limits (12) and (13), re-
spectively, and the remaining parameter c3 allows to vary the
position of the maximum.

A scaling function similar to Eq. (15) has also been used
to describe numerical transfer matrix calculations in Ref. 34.
The interpolation function of Deng et al.34 differs in two as-
pects: (i) the numerical prefactor cSF, see Eq. (13), has been
treated as a completely free fit parameter because an analyti-
cal result was not available, and (ii) the interpolation function
does not obey the constraint (14) because of a next to lead-
ing term in the stiff limit IDeng(x) ≈ cSF x−1/3 + O(x−4/3). A
more detailed discussion of this scaling function is given in
Sec. I A of the supplementary material.57

Alternatively, we can use the above scaling argument for
the deflection length λ and gc ∼ kBT/λ to motivate an alter-
native functional form of the interpolation function I(x) with
only two free fit parameters, which is described in Sec. I B of
the supplementary material.57 The derivation in Sec. I B of the
supplementary material57 also suggests as a fourth constraint,
that the interpolation function I(x) should obey the functional
form

I (x) ∼ x−1/3

g̃(const x−2/3)
for x � 1 (16)
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in the stiff limit, where g̃(x) is an analytical function g̃(x)
with g̃(0) �= 0. The interpolation function (15) as well as the
alternative interpolation function given in the supplementary
material57 fulfill this constraint, whereas the scaling function
used in Ref. 34 does not obey this constraint.

B. Numerical results

We determine the critical potential strength from the MC
simulations using two different methods: (i) by order param-
eter cumulants and (ii) finite size scaling. Finite size scaling
(ii) also allows us to determine the free energy exponent ν.
The simulation results for the critical potential strength are
summarized in the phase diagrams Fig. 4(a) for D = 3 and
Fig. 4(b) for D = 2. The resulting fit parameters c1, c2, and c3

(a)

(b)

desorbed

adsorbed
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adsorbed
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finite−size

b0 →
b0 →
b0 →
b0 →

b0 →
b0 →
b0 →

0.25 b0
0.5 b0

b0

cumulant

= 1
= 4

finite−size

0.1

0.5

1

0.1 1 10 100

g c
k

B
T

Lp

0.2

0.5

1

0.1 1 10 100
Lp

g c
k

B
T

FIG. 4. Phase diagram for a flat substrate in (a) D = 3 and (b) D = 2 as ob-
tained from MC simulations. The double logarithmic plot shows the dimen-
sionless critical potential strength gc�/kBT as a function of the dimensionless
stiffness parameter Lp/� with increasing bending stiffness from left to right.
The yellow region marks the desorbed state. The analytical results (8) in the
stiff limit and (10) in the flexible limit are shown as straight black lines. Cir-
cles show results for the critical potential strength as determined from the
zero of the third order parameter cumulant using simulation parameters N
= 200, � = 2b0, and k = 1000 kBT /b2

0. By changing b0, we check that the
discretization length b0 has no influence on our results. Squares show results
from finite size scaling for k = 1000 kBT /b2

0. The colored curves show inter-
polation function (15) with fit parameters c1, c2, and c3 as given in Table I for
the cumulant method (red curves) and the finite size method (blue curves).
Large blue circles in (b) correspond to the simulation snapshots shown
in Fig. 5.

TABLE I. Simulation results for the fit parameters c1, c2, and c3 for the in-
terpolation function I(x) from Eq. (15) in comparison with theoretical expec-
tations. The maximum value of the resulting interpolation function is given
for comparison. All fits for the cumulant method are performed for MC data
from simulations with N = 200, � = 2b0, k = 1000 kBT /b2

0. For the analy-
sis of simulation data, we use the cumulant method or finite size scaling as
explained in the text.

Data set c1/cF c2cSF/c1 c3 max(I )

Theory (D = 3) 1 1 Free
Cumulant 1.13 ± 0.05 1.03 ± 0.01 0.26 ± 0.06 2.61
Finite size 0.9 ± 0.1 1.01 ± 0.03 0.6 ± 0.2 3.60

Theory (D = 2) 1 1 Free
Cumulant 0.51 ± 0.03 0.97 ± 0.01 −0.48 ± 0.05 1.49
Finite size 0.40 ± 0.01 0.98 ± 0.01 −0.03 ± 0.04 2.13

for the interpolation function I(x) from Eq. (15) are shown in
Table I.

1. Critical potential strength via third order
parameter cumulant

An effective method to determine the critical potential
strength uses the fact that the derivative of the free energy
density with respect to the potential strength g gives the mean
fraction of polymer length in the square-well potential, which
provides an order parameter for the adsorption transition.
Derivatives of the free energy with respect to g generate cu-
mulants of the mean fraction of adsorbed polymer length. In
Sec. II A of the supplementary material,57 we discuss in de-
tail that the second cumulant is expected to have a maximum
at the transition and, thus, the third cumulant a zero. We use
this criterion both for the planar and for curved geometries to
locate the adsorption transition.

The simulation results for the critical potential strength
gc as determined by the third cumulant are summarized in
the phase diagrams Fig. 4(a) for D = 3 and Fig. 4(b) for
D = 2 (circles). The resulting fit parameters of the interpo-
lation functions from Eqs. (15) and (S3) from Sec. I B of the
supplementary material57 are shown in Table I.

In the stiff limit, we find good agreement with the analyt-
ical result (8) as can also be seen from the values for the fit
parameter combination c2cSF/c1 of the interpolating function
I(x) from Eq. (15) in Table I, which are close to our analyti-
cal result c2cSF/c1 = 1 in the stiff limit. In the flexible limit,
simulation results for gc are slightly larger than the analytical
result (10) in D = 3 and smaller in D = 2 as can be seen from
the values for the fit parameter c1 of the interpolating function
in Table I: we expect c1/cF = 1 from the analytical results
in the flexible limit and find c1/cF � 1 for D = 3 and c1/cF

� 1 for D = 2. One reason for this deviation is the finite size
of the polymer; simulation results tend to the analytical result
(10) with increasing length of the polymer (using the same
discretization b0). We also examine discretization effects by
changing the bond length b0 → ab0 by a factor a and accord-
ingly N → N/a to keep the polymer length L = Na constant.
This allows further to explore smaller values for Lp/�, with-
out violating the condition Lp > b0, which ensures that the
persistence length is not cut off by the discretization b0. The
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(d) Lp = 2

(e) Lp = 4

(f) Lp = 8

(a) Lp = 0.25

(b) Lp = 0.5
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FIG. 5. (a)–(f) Typical simulation configurations for adsorption on a flat sub-
strate in D = 2 for increasing stiffness parameters Lp/�. Snapshots are taken
in the adsorbed phase close to the critical potential strength. The simulation
parameters are N = 400, � = 4b0, and k = 250 kBT /b2

0.

simulation data in Fig. 4 show that changing the discretization
b0 has only little effect on the critical potential strength.

For D = 2, we also show simulation snapshots of typical
polymer configurations in Fig. 5. These snapshots are taken in
the adsorbed phase close to the critical potential strength. We
can clearly distinguish the different characteristics of config-
urations in the stiff and flexible limit, which give rise to the
different adsorption behavior: in the flexible limit Lp/� < 1,
the adsorbed polymer exhibits turns within the attractive po-
tential layer of width � giving rise to compact adsorbed con-
figurations. In the stiff limit Lp/� > 1, on the other hand, the
configurations are elongated without turns within the attrac-
tive potential layer.

A comparison of our numerical results for D = 2
and D = 3 (see Figs. 4(a) and 4(b)) shows that the critical
adsorption strength is indeed independent of the number of
transversal dimensions in the stiff limit in agreement with
Eqs. (8) and (9). This justifies our treatment with only one
transversal dimension within the Monge approximation see
Eq. (4). Also the asymptote in the flexible limit is indepen-
dent of dimensionality except for the prefactor in agreement
with Eq. (10). Therefore, the general shape of the critical po-
tential strength as a function of stiffness with maximum for
Lp ∼ � is valid for all dimensions.

2. Critical exponent and potential strength
via finite size scaling

We also use finite size scaling of the specific heat
to corroborate our results for the critical potential strength
and to calculate the critical exponent ν for the correlation
length and the free energy. The (extensive) specific heat
C = β2(〈H2〉 − 〈H〉2) exhibits finite size scaling according
to

L−2/νβ2(〈H2〉 − 〈H〉2) = f ((g − gc)L1/ν) (17)

with a scaling function f(x). This expression is rather natu-
ral for a continuous transition, but it is important to note that
it also applies if the adsorption transition is of first order,

where58

L−2β2(〈H2〉 − 〈H〉2) = f1((g − gc)Ld ) (18)

with a scaling function f1(x) and d as the internal dimension
of the system. This expression is actually of the same form
as expression (17) for a continuous transition because a poly-
mer has internal dimension d = 1, and we have ν = 1 for a
first order transition. Therefore, there is no systematic bias re-
garding the order of the transition if Eq. (17) is used for finite
size scaling. In Sec. II B of the supplementary material,57 we
explain in detail how the best parameter set (ν, gc) for the fi-
nite size scaling (17) is determined using a systematic error
minimization procedure.

Data for the critical potential strength gc as obtained from
the finite size scaling procedure is presented in the phase dia-
grams 4(a) and 4(b) (squares). We find good agreement with
our analytical result. The resulting fit parameters of the inter-
polation functions from Eqs. (15) and (S3) from Sec. I B of
the supplementary material57 are shown in Table I.

The finite size scaling procedure also allows us to de-
termine the critical exponent ν. As discussed in Sec. III of
the supplementary material,57 we find an exponent ν around
ν = 2 for small bending rigidity, which lowers towards ν = 1
with increasing stiffness. This is in agreement with the theo-
retical expectation that a semiflexible polymer should exhibit
a critical behavior corresponding to νSF = 1 with a crossover
to a flexible behavior with ν = νF = 2 in the small regime
|g − gc, SF| < kBT/Lp around the transition, where the correla-
tion length ξ exceeds Lp.

IV. ADSORPTION TO CURVED SUBSTRATES

Because semiflexible polymers have a bending rigidity,
adsorption can be controlled by an additional curvature of the
adsorbing surface. We investigate the influence of surface cur-
vature for three different geometries, an adsorbing sphere, an
adsorbing washboard, and a checkered washboard surface as
shown in Fig. 1 both in D = 2 and D = 3 spatial dimensions.

Depending on the polymer stiffness, several additional
effects can occur for adsorption on curved substrates: (i) Flex-
ible polymers with Lp < � adsorb in a compact conforma-
tion on a flat substrate, as can be seen in Fig. 4(a). Concave
curvatures with radii R > � can give rise to an increased ad-
hesion energy gain because the polymer can realize a larger
contact area with the adhesive potential, see Fig. 7(a). This
effect favors adsorption on a curved substrate and is relevant
for washboard potentials. (ii) For stiff polymers with Lp > �,
an additional bending energy cost occurs during adsorption
on a curved substrate. This effect favors desorption and is the
most relevant effect to effectively control the adsorption for
all geometries we consider by tuning the substrate curvature
radius R.

A. Adsorption to a sphere

An additional bending energy cost arises for adsorp-
tion of a stiff semiflexible polymer with Lp > � to a sphere
with radius Rs. For a polymer of length L firmly adsorbed
with curvature 1/Rs, the additional total bending energy is
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FIG. 6. (Left) Phase diagram for an adhesive sphere in D = 3 and D = 2 as obtained from MC simulations: double logarithmic plot of the dimensionless
critical potential strength gc�/kBT as a function of the dimensionless stiffness parameter Lp/� as obtained with the cumulant method. Simulation parameters are
N = 200, � = b0, and k = 1000 kBT /b2

0. Equation (19) is used to fit the data via an effective sphere radius Rs; the results are Rs, 1/� = 10.46 ± 0.06, Rs, 2/�
= 10.27 ± 0.02, and Rs, 3/� = 30.6 ± 0.2. Filled circles are original MC results, hollow circles show the reduced potential strength gc�/kBT − Lp�/2R2

s ,
which agrees well with our simulation results for a planar surface. (a)–(c) Typical simulation configurations for increasing stiffness parameters Lp/� and
Rs = 10�. Snapshots are taken in the adsorbed phase close to the critical potential strength. The simulation parameters are N = 400, � = 2b0, and
k = 100 kBT /b2

0. The simulation snapshots correspond to the large brown circles in the phase diagram on the left.

ER ∼ 1
2Lκ/R2

s . We can include this energy into the simple
scaling argument for the critical potential strength. The to-
tal free energy change per length upon adsorption becomes
�f = kBT /λ − g + kBT Lp/2R2

s with the deflection length
λ ∼ L

1/3
p �2/3, which we assume to be unchanged by curvature

effects (which should be justified for Rs � λ56). The adsorp-
tion condition �f < 0 leads to the following estimate for the
critical potential strength:

gc�

kBT
= gc(Rs = ∞) + Lp�

2R2
s

= cSF

(
Lp

�

)−1/3

+ Lp�

2R2
s

(19)

with the critical potential strength gc(Rs = ∞) for a planar
substrate from Eq. (8).

The result (19) can also be interpreted in terms of the con-
tact curvature radius Rco ∼ (κ/|�f|)1/2 for polymer adsorption
by an effective contact potential of strength15 �f = kBT/λ
− g, which is given by the free energy of adsorption to a
planar substrate. The adsorption condition g > gc with gc as
given by (19) corresponds to the condition Rco < Rs that the
contact curvature is smaller than the sphere radius.

MC simulation data agree well with the analytical result
(19) for the adsorption threshold. We describe our MC simu-
lation results for the critical potential strength (as obtained by
the cumulant method) by Eq. (19) with the radius Rs as fit pa-
rameter. We expect the resulting effective adsorption radius to
be of the order Rs + �/2. The simulation results are shown in
the phase diagram in Fig. 6 and exhibit good agreement with
Eq. (19) with effective curvature radii within the interval [Rs,
Rs + �]. In Fig. 6, we also show the reduced critical potential
strength gc�/kBT − Lp�/2R2

s , which agrees very well with
our results for a planar substrate.

Remarkably, the critical potential strength (19) has a
local minimum at

Lp

�
∼

(
Rs

�

)3/2

(20)

with gc,min ∼ (kBT /�) (�/Rs)
1/2 because of the bending en-

ergy correction. This can be used to design an “optimally
sticky” sphere for adsorption of a semiflexible polymer by
choosing a radius Rs,opt ∼ �(Lp/�)2/3 for given persistence
length and potential range or by choosing an optimal poten-
tial range �opt ∼ R3

s /L
2
p for given sphere radius and persis-

tence length. The latter can be realized for polyelectrolytes
by adjusting the salt concentration. In the absence of thermal
fluctuations, such a minimum in the critical potential strength
for adsorption has also been found for the complexation of
polyelectrolytes with oppositely charges spheres.36, 38

B. Washboard surface

In D = 3 dimensions, the washboard surface is transla-
tionally invariant in one direction and is composed of alter-
nating half-cylinders of radius Rw, see Fig. 1. Then the poly-
mer orients parallel to the half-cylinders during adsorption
in order to avoid additional bending energies, and the critical
potential strength for adsorption is very similar to the planar
surface result. Consequently, the substrate structure radius Rw

gives no control on the adsorption threshold for a cylindrical
washboard in D = 3.

Therefore, we focus first on washboard surfaces in D
= 2 dimensions, which are composed of half-circles of ra-
dius Rw. This two-dimensional adsorption geometry is equiv-
alent to the situation where the polymer is confined to a two-
dimensional plane perpendicular to the half-cylinders of a
three-dimensional washboard surface. We will show that un-
der this confinement, pronounced effects from the surface
structure occur, and the substrate curvature radius can be used
to control adsorption. Afterwards, we will discuss the check-
ered washboard surface as an alternative substrate structure to
effectively control the adsorption threshold in D = 3 spatial
dimensions without applying additional constraints.

Figure 7 shows typical simulation snapshots and the
phase diagram for the adsorption transition on a washboard
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FIG. 7. (Left) Phase diagram for an adhesive washboard surface in D = 2 as obtained from MC simulations: double logarithmic plot of the dimensionless
critical potential strength gc�/kBT as a function of the dimensionless stiffness parameter Lp/� as obtained with the cumulant method for different values
Rw/� = 2, 4, 8, 16. The remaining simulation parameters are N = 200, and k = 100 kBT /b2

0. The solid lines show fits using Eq. (8) (using Rs as fit parameter)
for an adsorbing sphere for small Lp/� and fits using Eq. (25) (using w1 and w2 as fit parameters) for larger stiffnesses Lp/�. The dashed line is the fit for the
flat substrate. (a)–(f) Typical simulation configurations for increasing stiffness parameters Lp/� and Rw = 4�. Snapshots are taken in the adsorbed phase close
to the critical potential strength. The simulation parameters are N = 400, � = 2b0, and k = 100 kBT /b2

0. The simulation snapshots correspond to the large blue
circles in the phase diagram on the left.

surface in D = 2. The simulation snapshots illustrate the
following four distinct regimes of characteristic adsorption
behavior:

(a) Rw � Lp ≈ �: The concavely curved valleys of
the washboard surface support adsorption of a
flexible polymer in a compact shape.

(b) and (c) Rw > Lp > �: The curvature is negligible on the
scale of the persistence length. We find adsorp-
tion to an effectively planar substrate in an elon-
gated shape.

(d) Rw ≈ Lp � �: The scale of the persistence
length corresponds to a single half-sphere. The
adsorption behavior is similar to adsorption on a
single sphere.

(e) and (f) Lp > Rw � �: The persistence length is larger
than a half-sphere radius. This results in “incom-
plete” adsorption on the tips of the washboard
substrate.

For Lp � Rw (snapshots (a)–(d)), we have a “complete”
adsorption into the concavely curved valleys of the wash-
board structure. Because there is only one such valley on the
scale of the persistence length, the adsorption threshold for
“complete” adsorption is well described by the previous result
(19) for adsorption to a single sphere, where we use Rs = Rw.

This result is only modified in the regime of “incomplete”
adsorption on top of the washboard surface for stiff polymers
with Lp > Rw. In this regime, bound configurations consist of
an alternating sequence of short adhered segments on top of
the half-spheres and free segments of (projected) length 4Rw

between adhered segments. To estimate the critical potential
strength, we calculate the free energy difference of such an in-
completely adsorbed configuration to the completely unbound
state.

The free segments between the adsorption points have
a partition sum Z(4Rw) ∼ Z0(4Rw)�αLp/(4Rw)2, where
Z0(4Rw) is the unconstrained partition sum of the free poly-

mer and Z(4Rw) the partition sum constrained to hit the top
of the half-circle within a distance � and with a tangent25, 32

v ≤ α. The scaling z2 ∼ L3/Lp and v2 ∼ L/Lp = (z/Lp)2/3

implies α ∼ (�/Lp)1/3. This results in an entropic free energy
loss per length of

�ffree = −w1
kBT

4Rw

ln(Z(4Rw)/Z0(4Rw))

= w1
kBT

4Rw

ln

[
w2

16R2
w

Lp�

(
Lp

�

)1/3
]

(21)

with two numerical constants w1 and w2. Each short adhered
segment of length �L on top of the half-circle within the at-
tractive layer of thickness � contributes a free energy differ-
ence �f�L = (−g + kBT/λSF)�L comparable to a segment
adsorbed on planar substrate. Because there is one segment
per length 4Rw between adhered segments, the resulting free
energy difference per length is given by

�fad = �L

4Rw

(
−g + cSF

kBT

�2/3L
1/3
p

)
. (22)

The condition �ffree + �fad < 0 for adsorption results in a
critical potential strength

gc = cSF

kBT

�2/3L
1/3
p

+ w1
kBT

�L
ln

[
16w2

(
Rw

�

)2 (
�

Lp

)2/3
]

.

(23)

For straight polymers (T = 0, Lp � Rw), the length
�L is calculated from the geometrical relation R2

w + �L2

= (Rw + �)2, which gives �L = 2
√

Rw� (1 + O(�/Rw)). In
the presence of thermal fluctuations, the polymer can use
an energy kBT to adapt further to the potential and increase
the adsorbed length �L. Equating the thermal angular fluc-
tuations �α = (�L/Lp)1/2 over a length �L with the cur-
vature angle α = �L/Rw of the half-circle, we obtain �L

= R2
w/Lp. Both effects should add up to give �L = 2

√
Rw�
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+ R2
w/Lp. The first contribution dominates for larger stiff-

nesses

Lp

�
�

(
Rw

�

)3/2

. (24)

For these stiffnesses, we can also neglect the first entropic
contribution in the result (23) for the critical adsorption
strength in Eq. (23) and find

gc�

kBT
= w1

1

2
√

Rw/�
ln

[
16w2

(
Rw

�

)2 (
�

Lp

)2/3
]

(25)

which is only logarithmically Lp-dependent.
For smaller stiffness (Lp/�) � (R/�)3/2, we find

gc�

kBT
= cSF

(
Lp

�

)−1/3

+ w1
Lp�

R2
w

ln

[
16w2

(
Rw

�

)2 (
�

Lp

)2/3
]

(26)

which is very similar to the complete adsorption result as
given by the single sphere result (19) with Rs = Rw. The
crossover from complete to incomplete adsorption should
happen if the condition (24) is fulfilled. Therefore, incom-
plete adsorption on top of the washboard only involves
short straight segments �L ∼ 2

√
R� without much curva-

ture in agreement with the simulation snapshots (e) and (f)
in Fig. 7.

Incomplete adsorption is different from the adsorption
transitions discussed in Refs. 45 and 59, where it has been
proposed that adsorption proceeds via the shortening of des-
orbed bridges between segments strongly adsorbed in the con-
cave valleys of the washboard surface. The main differences
in Refs. 45 and 59 are (i) the use of a contact adsorption poten-
tial in Refs. 45 and 59, which corresponds to the limit � ≈ 0,
(ii) the presence of a tension, which is absent in our system,
as we do not consider external stretching forces, and (iii) a
surface undulation amplitude, which is small compared to the
wavelength, where we consider a washboard structure con-
sisting of half-circles, i.e., the undulation amplitude equals the
wavelength. For a contact potential, incomplete adsorption on
top of the substrate has for zero temperature only been found
in the presence of tension in Ref. 59. A finite potential range
� > 0 as used in the present work favors incomplete adsorp-
tion because it gives rise to a length �L > 0 of adsorbed seg-
ments and, thus, an extensive adhesion energy for a straight
rod, i.e., in the limit of infinite stiffness. For a contact po-
tential, on the other hand, a straight rod touches the adhesive
structure only at single points and the adhesion energy is zero.
Furthermore, a finite potential range allows for thermal fluc-
tuations within the potential at non-zero temperatures, also
favoring a (incompletely) adsorbed phase.

The MC simulation results in the phase diagram in
Fig. 7 show good agreement with the analytical result (25)
for the adsorption threshold in the regime of incomplete ad-
sorption for stiff polymers fulfilling (24). We can successfully
fit the MC data for the critical potential strength (as obtained
using the cumulant method) using Eq. (25) with the numeri-
cal constants w1 and w2 as fit parameters. The resulting values

TABLE II. Simulation results for the fit parameters Rs, w1, and w2 for the
interpolation functions (19) for smaller and (25) for larger stiffnesses.

Rw/b0 �/b0 Rs/� w1 w2

4 1 4.6 ± 0.1 0.532 ± 0.005 4.5 ± 0.2
8 1 8.29 ± 0.09 0.509 ± 0.008 7.5 ± 0.7
4 0.5 8.78 ± 0.07 0.512 ± 0.006 5.9 ± 0.4
8 0.5 15.7 ± 0.1 0.47 ± 0.02 11 ± 3

for the leading order fit parameter w1 (see Table II) are indeed
independent of the substrate curvature radius Rw/�.

For more flexible polymers violating (24), fits with the re-
sult (8) for an adsorbing sphere with Rs as fit parameter work
well. All resulting values for the effective curvature radii lie
in the interval [Rw,Rw + �] as expected.

MC simulations and our analytical results for the adsorp-
tion threshold show that adsorption control by the substrate
curvature radius Rw is most efficient in the regime

Lp

�
∼

(
Rw

�

)3/2

, (27)

where the critical potential strength exhibits a local
minimum as for adsorption on a single sphere. If the stiffness
is increased such that (24) holds, we find incomplete adsorp-
tion, where the dependence of gc on the curvature radius Rw

is much weaker according to Eq. (25). This is also clearly
supported by the MC simulation results in the phase diagram
Fig. 7. If the stiffness is much smaller than the minimum value
(27), curvature effects become negligible on the scale of the
persistence length, and we find the crossover to effectively
planar adsorption. The MC phase diagram in Fig. 7 clearly in-
dicates a window of stiffnesses for adsorption control around
the local minimum and in between two local maxima of the
critical potential strength. The maximum at small stiffness is
located at Lp/� ∼ 1 as for planar adsorption, the maximum for
large stiffnesses at Lp/� ∼ (Rw/�)3/2 as given by the condi-
tion (24) for the crossover between complete and incomplete
adsorption. The stiffness window for adsorption control van-
ishes if the substrate curvature radius Rw approaches the po-
tential range �, as can be seen in the phase diagram Fig. 7
(cyan data points for Rw/� = 2).

Our results not only apply to the control of the ad-
sorption of polymers on washboard surfaces, for example,
to control polyelectrolyte adsorption by tuning the salt con-
centration and, thus, the range � of the adsorption potential.
Another technologically important application is the control
of adsorption of graphene sheets to adhesive washboard po-
tentials consisting of a sequence of alternating concave and
convex half-cylinders. Our results apply to this problem as
well, and a transition from incomplete to complete adsorption
has also been discussed for graphene sheets.60

C. Checkered washboard surface

Now we want to discuss washboard substrates in D =
3 spatial dimensions, which is the relevant case for applica-
tions. We propose the checkered washboard (see Fig. 1) as a
substrate, which allows to effectively control adsorption by
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FIG. 8. The checkered washboard substrate. Brightness codes for the error
in the potential range implementation (see text). Dark color indicates larger
errors. Crosses indicate different attachment points of the polymer used in
simulations. Thick black lines indicate the square lattice of lines of preferen-
tial adsorption.

substrate curvature for D = 3. As pointed out above, a
washboard substrate consisting of cylinders (see Fig. 1)
does not allow for an adsorption control as the polymer
can reorient parallel to the cylinders. To construct a wash-
board structure in three spatial dimensions where the poly-
mer cannot simply reorient to avoid curvature during adsorp-
tion, we consider a checkered washboard consisting of rect-
angular subunits described by a Cartesian product of two
washboard half-circles with a height function zRc

(x, y) =
±Rc

√
1 − (x/Rc)2

√
1 − (y/Rc)2 (x, y ∈ [−Rc, Rc]) with a ra-

dius Rc. These rectangular subunits differ from half-spheres
but exhibit the same curvature at the tips of the surface. We
expect adsorption on the checkered washboard for Lp � Rc

to be similar to adsorption to the D = 2 washboard surface
for Lp � Rw because there is only a single valley or top on
the scale of the persistence length. We expect adsorption to
be well described by the result (19) for adsorption to a single
sphere, where we use Rs = Rc. For Lp > Rc, however, the al-

ternating checkered structure of valleys and top will modify
the adsorption behavior.

In the simulation, we need an effective approximate
method to implement the attractive range: For the checkered
washboard structure, we do not determine the normal dis-
tances n from Eq. (3) exactly, but approximate the attractive
region via zRc

< z < zRc+�. The relative error is worst at the
corners and can be estimated as 1

�
(zRc+� − zRc

) − 1 ≈ 0.155
for � � Rc. The checkered substrate and the numerically de-
termined error for the attractive range is illustrated in Fig. 8.

The MC simulation results in the phase diagram Fig. 9
show that the adsorption threshold can be controlled by the
substrate curvature radius Rc in a similar fashion as for the
washboard substrate in D = 2 dimensions for Lp � Rc. How-
ever, we find two characteristic differences for stiffer poly-
mers Lp > Rc: (i) As opposed to the D = 2 washboard sub-
strate, we do not find a local minimum of the critical potential
strength but we find a single broad maximum or shoulder in
the regime Lp/� ∼ (Rc/�)3/2 for Rc/� � 10b0. (ii) The critical
potential strength exhibits a remarkably stronger dependence
on the substrate curvature radius Rc for larger polymer stiff-
ness as compared to the D = 2 washboard. For large stiff-
nesses Lp � Rc, the critical potential decreases with increas-
ing Rc as can be seen in the phase diagram Fig. 9.

In order to illustrate the different adsorption mechanism
underlying these characteristic differences, we also present
typical simulation snapshots in Fig. 9. Whereas we find “in-
complete” adsorption on the substrate tips for the washboard
substrate in D = 2 (see simulation snapshots 7(e) and 7(f))
for large stiffnesses, the polymer preferentially adsorbs “be-
tween” the tops and valleys, i.e., along the straight bound-
aries of the square subunits for a checkered washboard in
the regime of large stiffnesses Lp � Rc as illustrated by the
simulation snapshot Fig. 9(c). These boundaries are the equal
height lines z(x, y) = 0 and form a plane-filling square lat-
tice of lines for preferential adsorption with in-plane lattice
constant 2Rc, see thick black lines in Fig. 8. No out-of-plane

desorbed adsorbed
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FIG. 9. (Left) Phase diagram for a checkered substrate as obtained from MC simulations: double logarithmic plot of the dimensionless critical potential strength
gc�/kBT as a function of the dimensionless stiffness parameter Lp/� as obtained with the cumulant method. The solid lines show fits using Eq. (28) (using a1
and a2 as fit parameters) for larger stiffnesses Lp/�. Simulation parameters are N = 200 and k = 100 kBT /b2

0. The red data points for Rc/� = 10 are results for
four different attachment points as shown in Fig. 8. (a)–(c) Typical simulation configurations for adsorption on a checkered washboard for increasing stiffness
parameters Lp/�. Snapshots are taken in the adsorbed phase close to the critical potential strength. The simulation snapshots correspond to the large red circles
in the phase diagram on the left.
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TABLE III. Simulation results for the fit parameters a1 and a2 for larger
stiffness. We use Eq. (28) as fit function.

Rc/b0 �/b0 a1 a2

5 1 0.25 ± 0.01 73 ± 15
10 1 0.38 ± 0.04 16 ± 10
20 1 0.42 ± 0.04 12 ± 7
10 0.5 0.46 ± 0.05 10 ± 7
20 0.5 0.42 ± 0.10 24 ± 43

curvature is required for adsorption onto this lattice of straight
lines. The regions around each straight line segment is almost
vertically tilted but locally flat such that for each adsorbing
segment our results for adsorption on a flat substrate will ap-
ply. In order to connect between neighboring straight lines of
the square lattice of adsorption sites, a stiff polymer has to
run through the discrete square lattice of intersection points
where four subunits meet.

This restricts the thermal fluctuations of the adsorbed
polymer parallel to the surface and implies an additional en-
tropy cost during adsorption because in-plane configurations
are restricted. This additional entropy cost can be used to con-
trol the adsorption via the distance 2Rc between the lattice
points. This entropy cost can be estimated in an analogous
manner as the entropy cost for adsorption on the discrete array
of tips for the D = 2 washboard. Adapting the corresponding
estimate (21) for the entropic free energy cost appropriately,
we obtain �fch = a1(kBT /2Rc) ln[a2(4R2

c /Lp�)(Lp/�)1/3].
The additional free energy cost leads to a corresponding shift
of the critical potential strength for adsorption as compared to
a flat substrate, gc = gc(Rs = ∞) + �fch, or

gc�

kBT
= cSF

(
Lp

�

)−1/3

+ a1
�

2Rc

ln

[
4a2

(
Rc

�

)2 (
�

Lp

)2/3
]

. (28)

This result predicts an offset in the critical potential strength,
which increases for smaller substrate curvature radii Rc. It de-
pends only logarithmically on the polymer stiffness Lp. The
result (28) exhibits a different dependence of the critical po-
tential strength on the substrate curvature radius Rc for larger
polymer stiffness as compared to the result (25) for the D = 2
washboard.

The MC simulation results in the phase diagram in
Fig. 9 confirm both of these predictions qualitatively. We can
successfully fit the MC data for the critical potential strength
(as obtained using the cumulant method) in the stiff regime Lp

� Rc using Eq. (28) with the numerical constants a1 and a2

as fit parameters, see Table III. The fit parameters are indeed
roughly independent of the substrate curvature radius Rc/�.

The MC simulations and the scaling argument for the ad-
sorption threshold show that, using a checkered washboard
structure, adsorption can be controlled rather effectively by
the substrate curvature radius Rc in the entire stiff limit, where
Lp � Rc. As opposed to the washboard substrate in D = 2
discussed in Sec. IV B, where a window of stiffnesses for ef-

fective adsorption control emerged, adsorption control by a
checkered washboard in D = 3 is still effective for large poly-
mer stiffnesses.

V. DISCUSSION OF EXPERIMENTAL RESULTS

Many experimental results are available for polyelec-
trolyte adsorption or complexation. For polyelectrolyte ad-
sorption, the potential strength g/kBT ∼ στ lB/κ̃ can be con-
trolled by the surface charge σ . Experimentally, the critical
surface charge σ c for polyelectrolyte adsorption can be mea-
sured as a function of the inverse Debye screening length
κ̃ = (8πlBc)1/2, which is controlled by the salt concentration,
resulting in a relation61, 62 σ c ∝ κa with a characteristic ex-
ponent a. Using our results for adsorption to a planar sur-
face, gc�/kBT ∼ (Lp/�)−1/3 in the stiff regime, see Eq. (8) and
gc�/kBT ∼ Lp/� in the flexible regime, see Eq. (10), and us-
ing a potential range � ∼ 1/κ̃ given by the Debye screening
length, we find

σc ∝ κ̃2(Lp/�)−1/3(stiff),
(29)

σc ∝ κ̃2(Lp/�)(flexible).

According to Odijk49 and Fixman and Skolnick,1 the poly-
electrolyte persistence length is given by the sum of the
bare mechanical persistence length Lp,mech and an electro-
static contribution due to the electrostatic self-repulsion of
the polymer, Lp = Lp,mech + lBτ 2/4κ̃2. For a mechanically
dominated persistence length, we have Lp/� ∝ κ̃ , whereas
we have Lp/� ∝ κ̃−1 for an electrostatically dominated per-
sistence length. Combining this with (29), we obtain four pos-
sible scaling behaviors σ c ∝ κa with exponents

a = 5/3 mechanical stiffness, stiff limit,

a = 3 mechanical stiffness, flexible limit,

a = 7/3 electrostatic stiffness, stiff limit,

a = 1 electrostatic stiffness, flexible limit,

which characterize polyelectrolyte adsorption onto planar sur-
faces. For curved surfaces such as a sphere, there are addi-
tional corrections in the stiff limit according to Eq. (19), such
that σc ∝ κ̃0(Lp/�), which leads to σc ∝ κ̃ (a = 1) for me-
chanical stiffness and σc ∝ κ̃−1 (a = −1) for electrostatic
stiffness.

The experimental results on polyelectrolyte adsorption
onto proteins and micelles in Ref. 62 agree best with an ex-
ponent a = 1 corresponding to an electrostatic stiffness and
the flexible limit for a planar substrate, which is reasonable in
view of the short mechanical persistence lengths of the stud-
ied polyelectrolytes and with protein radii larger than these
persistence lengths.

VI. CONCLUSION

We studied adsorption of semiflexible polymers on pla-
nar and curved substrates. Using extensive Monte Carlo
simulations and analytical arguments, we showed that the in-
terplay between three characteristic length scales – (i) the
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persistence length Lp characterizing polymer stiffness, (ii) the
range � of the attractive adsorption potential, and (iii) a char-
acteristic curvature radius R of the surface structure – allows
to control the adsorption threshold for semiflexible polymers
effectively.

For a planar adsorbing surface, we find a maximum of
the critical potential strength for adsorption, i.e., a “minimally
sticky” surface if the persistence length matches the potential
range, Lp ∼ �. We presented two scaling functions which can
quantitatively describe the crossover between flexible and stiff
limit and the location of the maximum in the critical potential
strength in agreement with MC simulations, see Fig. 4. We
also quantified the exact asymptotic value of the critical po-
tential strength for adsorption in the stiff limit, see Eqs. (8)
and (9). Our results can also resolve contradictory statements
in the literature. Simulations of adsorbing semiflexible poly-
mers in Refs. 18 and 19 found a critical potential strength
decreasing with stiffness: these simulations probed the stiff
limit with a persistence length exceeding the potential range.
On the other hand, simulations of adsorbing polyelectrolytes
found a critical potential strength increasing with electrostatic
stiffness:21 these simulations probed the flexible limit with a
small electrostatic persistence length.

For an adsorbing sphere of radius Rs, the critical poten-
tial strength is increased for large persistence lengths by the
additional bending energy involved in adsorption to a curved
object. This results in an “optimally sticky” adsorbing sphere
if the condition (20), Lp/� ∼ (Rs/�)3/2 holds. MC simulation
results in Fig. 6 confirm this result.

For a washboard surface consisting of cylinders, adsorp-
tion control is not possible because the polymer can ori-
ent parallel to the cylinders and avoid additional bending
during adsorption. The situation is different if we restrict
the polymer to a two-dimensional plane perpendicular to
the cylinders. For such a washboard surface in two spatial
dimension, we find an additional crossover from complete
adsorption to an incomplete adsorption on the tips of the
surface structure for large persistence lengths. The condition
Lp/� � (Rw/�)3/2, see Eq. (24), characterizes the regime of
incomplete adsorption. The adsorption threshold can be con-
trolled by the substrate curvature in a polymer stiffness win-
dow given by 1 � Lp/� � (Rw/�)3/2, as also shown by MC
simulations, see Fig. 7 with an “optimally sticky” curvature
radius for Lp/� ∼ (Rw/�)3/2, see Eq. (27).

Checkered washboard structures offer a possibility to
control adsorption also in three spatial dimensions. On the
one hand, the checkered washboard suppresses polymer re-
orientation as for a cylindrical three-dimensional washboard.
On the other hand, it suppresses an incomplete adsorption on
the tips of the substrate as it occurs for the two-dimensional
washboard. For a checkered washboard, stiff polymers rather
adsorb in the locally flat straight boundaries between tops and
valleys of the structure, which form a square lattice. The driv-
ing force for adsorption control on this type of substrate is
the restriction to the square array of straight adsorption lines
within the adsorbing plane rather than the control of the out-
of-plane curvature. As a result, there is no polymer stiffness
window for adsorption control, adsorption control always ef-
fective for large stiffnesses Lp � Rc.

We expect similar results for other, eventually more irreg-
ularly curved substrates, where the substrate curvatures can be
adjusted to the polymer persistence length and the potential
range to create sticky or non-sticky regions. Our results for
the washboard surfaces demonstrate that not only the out-of-
plane curvature will be important but also the shape and cur-
vature of locally flat preferred lines of adsorption sites, which
are given by the lines of equal substrate height.

In this work, we neglected all effects from self-
avoidance. Generally, we expect this to be a good approxima-
tion as long as typical polymer configurations are elongated
and contain only few loops, as it is the case for sufficiently
stiff polymers. For the adsorption of semiflexible polymers,
this is typically the case in the stiff regime Lp/� > 1. However,
we expect pronounced corrections in the flexible limit Lp/�
< 1. On the other hand, it is well-known7 that the critical po-
tential strength adsorption of a self-avoiding chain on a planar
substrate is gc ∼ kBT(Lp/�)5/3 rather than gc ∼ kBT(Lp/�) in the
absence of self-avoidance (see Eq. (10)). Therefore, the criti-
cal potential remains an increasing function of polymer stiff-
ness. Consequently, we expect the most important features of
the phase diagrams, such as the maximum of the critical po-
tential strength as a function of polymer stiffness for adsorp-
tion on a planar substrates, to be similar also in the presence of
self-avoidance. This remains to be investigated quantitatively
in future work.
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