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(i) Discussion of different interpolation functions I(x). (ii) Analytical transfer matrix calculation for planar
substrate in the stiff limit, which gives the critical potential strength for a square-well potential in the limit
of small potential range. (iii) Details of the cumulant method and finite size scaling procedure used to obtain
the critical potential strength in Monte-Carlo simulations. (iv) Results for the critical correlation length
exponent ν of the adsorption transition for a planar substrate. (v) Additional simulation snapshots in the
desorbed state.

I. ADSORPTION TO A PLANAR SUBSTRATE

A. Interpolation function of Deng et al.

In Ref. 1, Deng et al. also use an interpolation func-
tion to describe the crossover of the critical potential
strength gc for adsorption between the stiff and flexi-
ble limit. They measure the critical potential strength
in units of kBT/2Lp rather than kBT/` as in (11); the
critical potential strength does not exhibit a maximum
if measured in these units. In Ref. 1, an interpolation
gc(2Lp/kBT ) = Ĩ(2Lp/`) with a scaling function

ĨDeng(x) =
(cF /2)x2

[C2x2 + C1x+ 1]2/3

is used with two fit parameters C1 ' 0.94 and C2 ' 0.38,
which are determined from numerical transfer matrix cal-
culations.

Comparing the two scaling forms, we find the relation

Ĩ(x) = xI(x/2) , I(x) = Ĩ(2x)/2x

Consequently the scaling function proposed in Ref. 1 cor-
responds to

IDeng(x) =
cFx

[4C2x2 + 2C1x+ 1]2/3
(S1)

This scaling function does not obey the constraints
(13) and (14) listed in the main text:

(i) The numerical prefactor cSF has been treated as a
fit parameter because an analytical result was not
available. Using their fit results, we find cSF =

2−4/3cFC
−2/3
2 ' 0.619, which is close but smaller

than our analytical result cSF ' 0.929. The reason
is a different determination of the critical potential
strength from simulations. Deng et al. use an ex-
trapolation of adsorbed fraction, which is the first
cumulant of the adsorption energy, to zero, whereas
we mainly use the third cumulant.

(ii) The constraint (14) regarding the correct next to
leading order asymptotics in the stiff limit has
not been applied. The scaling function (S1) has

the asymptotics IDeng(x) = (cF /2C
2/3
2 )x−1/3 +

O(x−4/3) for x � 1, which differs from the ana-
lytical prediction (14).

B. Alternative interpolation function I(x).

In this appendix, we use the scaling argument for the
deflection length λ and gc ∼ kBT/λ to motivate a func-
tional form of the interpolation function I(x). The argu-
ment is based on a result for the thermal displacement
〈z2〉(L) ≡ 〈(z(L) − z(0))2〉 of a free worm-like chain in
the direction perpendicular to the average preferred ori-
entation in x-direction.

For a free worm-like chain in two dimensions (D = 2),
the thermal displacement 〈z2〉(L) can be calculated an-
alytically. In D = 2, we can parametrize the con-
figuration by a single angle θ(s) by t(s) = ∂sr(s) =
(cos θ(s), sin θ(s)). The angular correlations are

〈(θ(s)− θ(s′))2〉 =
kBT

κ
|s− s′| = 2|s− s′|

Lp,D

and

〈θ(s)2〉 = d1L/Lp,D

with a numerical constant d1.
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The angular correlations can be used to calculate

〈(z(L)−z(0))2〉 =

∫ L

0

ds1

∫ L

0

ds2〈sin θ(s1) sin θ(s2)〉

=

∫ L

0

ds1

∫ L

0

ds2
1

2

(
e−

1
2 〈(θ(s1)−θ(s2))2〉 − e− 1

2 〈(θ(s1)+θ(s2))2〉
)

=

∫ L

0

ds1

∫ L

0

ds2
1

2

(
e−

1
2 〈(θ(s1)−θ(s2))2〉 − e−〈θ2(s1)〉−〈θ2(s2)〉+ 1

2 〈(θ(s1)−θ(s2))2〉
)

=

∫ L

0

ds1

∫ s1

0

ds2

(
e−(s1−s2)/Lp,D − e−2d1L/Lp,De(s1−s2)/Lp,D

)

= L2
p,D

(
L

Lp,D
− 1 + e−L/Lp,D

)
− e−2d1L/Lp,DL2

p,D

(
− L

Lp,D
− 1 + eL/Lp,D

)

≡ L2
p,Dfd1(L/Lp,D)
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FIG. S1. MC data for 〈z2〉(L)/L2
p as a function of L/Lp for

a free worm-like chain in D = 3 and D = 2 dimensions con-
firms the scaling form 〈z2〉(L)/L2

p = cfd1(L/Lp), see eq. (S2),
with d1 = 0.76±0.08 and a prefactor d2 = 0.61±0.01 in three
and d2 = 0.94±0.01, d1 = 0.84±0.09 in two dimensions (for
L/b0 = 50, 100, 200, 300, 400 and Lp/b0 = 2, 4, 8, . . . , 1024).
We fix the first tangent to have a well-defined z-direction.

Although this calculation is difficult to adapt to three
spatial dimensions, we expect a similar behavior for D =
3 with an eventually different numerical prefactor d2:

〈z2〉(L)

L2
p,D

= d2fd1(L/Lp,D). (S2)

Because of 〈z2〉(L) = 〈(r(L)−r(0))2〉/D for a free worm-
like chain in the flexible limit L� Lp,D, we expect d2 =
2/D. Simulation results for a free SHC in D = 3, which
we present in Fig. S1, confirm the scaling form (S2) with
d1 = 0.76±0.08 and a prefactor d2 = 0.61±0.01 close to
the expectation d2 = 2/3. For the results in D = 2 we
get d2 = 0.94±0.01, which is close to d2 = 1, and d1 =
0.84±0.09. Because the scaling form is very insensitive
to variation of d2 for L/Lp,D � 1, we determine the
parameters d1 and d2 only with values L/Lp,D ≤ 10.

Therefore, the inverse function f−1
d1

(x) can be used

to solve the condition 〈z2〉(λ)/L2
p,D = d2fd1(λ/Lp,D) =

`2/L2
p,D for the deflection length λ. This suggests a crit-

ical potential strength gc = (kBT/`)I (Lp,D/`) with a
scaling function

I(x) =
1

xf−1
d1

(x−2/d2)
(S3)

with only two free parameters d1 and d2. In the flexible
limit x = λ/Lp,D � 1, we use fd1(x) ≈ x, in the stiff limit
x = λ/Lp,D � 1, we have fd1(x) ≈ (d1 − 1/3)x3. The
choices d2 = cF and d1 = (cSF /cF )3 +1/3 will reproduce
the known flexible and stiff limits. In contrast to the
interpolation function from eq. (15), the function I(x) in
eq. (S3) contains only two free parameters. Therefore,
the maximum of interpolation function I(x) is already
determined by d1 and d2.

We have determined the fit parameters d1 and d2

from the MC simulation results for the critical poten-
tial strength both by the cumulant method and finite
size scaling and both in D = 2 and D = 3. The the-
oretical expectation d2/cF = 1 and d2

c3SF
(d1− 1

3 ) = 1 for

the parameters d1 and d2 agrees reasonably well with the
simulation results.

In addition, the scaling argument leading to eq. (S3)
strongly suggests a constraint on the functional form
of the scaling function I(x) for the critical potential
strength gc: The asymptotics for the stiff limit shows
that the scaling function fd1(x) has a series expansion
fd1(x) = x3g(x) with some analytical function g(x) with
g(0) 6= 0. Therefore, the inverse function should have a
functional form f−1

d1
(y) = y1/3g̃(y1/3) with another an-

alytical function g̃(x) with g̃(0) 6= 0. It follows from
eq. (S3) that the scaling function I(x) should have an
asymptotic form

I(x) ∼ x−1/3

g̃(constx−2/3)
for x� 1. (S4)

Our first choice I(x) ∼ c1x−1/3(c2 + c3x
−2/3 + x−4/3)−1,
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data set d2
c3
SF

(d1− 1
3
) d2/cF max(I)

theory(D=3) 1 1 1.84

cumulant 1.21±0.04 0.82±0.01 2.47

finite size 1.0±0.1 0.54±0.02 3.36

theory(D=2) 1 1 1.26

cumulant 1.5±0.1 0.60±0.02 1.24

finite size 1.19±0.07 0.35±0.01 1.92

TABLE I. Simulation results for the fit parameters d1 and d2
for the interpolation function I(x) from eq. (S3) in comparison
with theoretical expectations. The maximum value of the
resulting interpolation function is given for comparison. All
fits for the cumulant method are performed for MC data from
simulations with N = 200, ` = 2b0, k = 1000 kBT/b

2
0. For

the analysis of simulation data we use the cumulant method
or finite size scaling as explained in the text.

see eq. (15), also fulfills this constraint, whereas the scal-
ing function used in Ref. 1 does not meet this constraint.

C. Analytical transfer matrix calculation in the
semiflexible limit

Using the transfer matrix method in the weakly bent
or stiff limit Lp � ` we will give an analytical deriva-
tion of the critical adsorption strength for weakly bent
semiflexible polymers for a planar surface and a short-
range adsorption potential, i.e., determine the numerical
prefactor cSF in (8) analytically.

In the following we measure all length scales in Kuhn
lengths 2Lp = 2κ/kBT and all energies in kBT , i.e., we
replace

z → z

2Lp
, `→ `

2Lp
, L→ L

2Lp
, g → 2Lp

kBT
g. (S5)

In the stiff limit we have ` � 1 in rescaled units. We
consider the restricted partition sum Z(z, v, z0, v0, L) of a
semiflexible polymer of length L with initial point z(0) =
z0, initial tangent ∂xz(0) = v0, end point z(L) = z, and
end tangent ∂xz(L) = v in the Monge representation (4)
appropriate for a weakly bent polymer. The restricted
partition sum Z(z, v, z0, v0, L) fulfills a transfer matrix
equation of the Klein-Kramers type2

∂LZ =
(
−v∂z + ∂2

v − V (z)
)
Z (S6)

with boundary condition Z(z, v, z0, v0, 0) = δ(z−z0)δ(v−
v0) at L = 0.

For an adsorbed polymer we make the Ansatz
Z(x, v, z0, v0, L) ∼ ZE(z, v)e−EL where E = ∆f < 0
is the adsorption free energy per length of the polymer,
i.e., the free energy difference of the adsorbed state as
compared to the free state (V = 0). We approach the
desorption transition for E ↗ 0. The “stationary” re-
stricted partition function ZE(z, v) (which we normalize
according to

∫
dz
∫
dvZE(z, v)ZE(z,−v) = 1) fulfills3,4

− EZE =
(
−v∂z + ∂2

v − V (z)
)
ZE . (S7)

In general we obtain a complete spectrum of solu-
tions for energy eigenvalues En with a ground state
energy E0. The solution Z(z, v, z0, v0, L) satisfy-
ing the boundary conditions at L = 0 is obtained
by summing over all solutions, Z(z, v, z0, v0, L) =∑
n ZEn(z, v)ZEn(z0,−v0)e−EnL. On length scales L �

ξ = 1/|E0| exceeding the correlation length ξ of the ad-
sorption transition, the ground state dominates and

Z(z, v, z0, v0, L) ≈ ZE0(z, v)ZE0(z0,−v0)e−E0L. (S8)

The ground state partition function ZE0(z, v) contains
the information about the segment distribution c(z, v) ∼
ZE0(z, v)ZE0(z,−v) of a polymer segment in the ad-
sorbed state. The ground state energy E0 determines the
free energy of adsorption ∆f = E0 < 0 and the correla-
tion length of the adsorption transition via ξ = 1/|E0|.
The condition E0 = 0 determines the critical poten-
tial strength gc for adsorption. The partition function
Z0(z, v) at E0 = 0 gives the critical segment distribu-
tion. Our main aim will be to determine gc from the
condition E0 = 0 in the following. Scaling properties
of ZE0

(z, v) and Z(z, v, z0, v0, L) have already been dis-
cussed in Refs.5,6.

In order to calculate the ground state energy E (we
leave out to subscript “0” in the following) and the
corresponding “stationary” restricted partition function
ZE(z, v), we first consider the region z > ` outside the
potential range, where V (z) = 0 and we can separate
the z-dependence for the adsorbed state using ZE =
e−αzΨα,E(v), because the operators ∂z and vα+∂2

v com-
mute. The function Ψα,E(v) satisfies

(αv + ∂2
v)Ψα,E = −EΨα,E ,

(analogous to the Schrödinger equation of a quantum par-
ticle in an electric field α), which gives

Ψα,E(v) = α−1/6Ai
(
−
(
vα1/3 + Eα−2/3

))
,

where Ai (x) is the Airy function7. The ground state
solution for z > ` has to be a linear combination of the
eigenfunctions of ∂z and αv + ∂2

v

ZE(z, v) =

∫ ∞

0

dαAE(α)e−αzΨα,E(v). (S9)

with a coefficient function AE(α).
The coefficient function has to be determined by a fam-

ily of matching and boundary conditions at the potential
well and the wall, that is at z = ` and z = 0. In the limit
of a small potential depth we approximate the square-
well adsorbing potential Va(z) by a delta-function in the
middle of the square-well, Va/z) = −g`δ(z − `/2), with

the same integrated potential strength
∫ `

0
Va(z) = −g`

(shaded area in Fig. 2). This approximation is valid in
the stiff limit ` → 0. Integrating the stationary transfer
matrix equation (S7) over z from 0 to ` and neglecting
the terms of higher order in ` we get matching conditions

v (ZE(`, v)− ZE(0, v)) = g`ZE(`/2, v) (S10)
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for each v. We also have to obey boundary conditions
ZE(0, v) = 0 for all v > 0: It is not possible that the
last tangent is starting at the wall at z = 0 and pointing
away (v > 0) because continuity of tangents would lead
to configurations crossing the wall.

1. Critical potential strength

In order to determine the coefficient function AE(α̃) we
make use of a set8 of functions Φα,E , which are biorthog-
onal to Ψα,E(z, v)

∫ ∞

0

dv vΨα,E(v)Φα̃,E(v) = δ(α− α̃). (S11)

on the half-space v > 0. We use the representa-
tion (S9) in the matching condition (S10) and apply∫∞

0
dv ...Φα̃,E(v) on both sides of the matching condition

to make use of the biorthogonality (S11). Assuming a
small potential width we approximate exp(α̃`) ≈ 1 and
obtain a self-consistent integral equation for the coeffi-
cient function AE(α̃)

AE(α̃) = g`

∫ ∞

0

dv

∫ ∞

0

dαAE(α)e−`α/2×

Ψα,E(v)Φα̃,E(v).

Investigating this integral equation for E ≈ 0 in the vicin-
ity of the adsorption transition will allow us to (i) deter-
mine AE(α) and thus the polymer segment distribution
and (ii) to find the critical potential strength gc at the
transition E = 0.

We substitute α = 2β/` and v = w(`/2)1/3, which
implies Ψα,E(v) = (`/2)1/6Ψβ,E(`/2)2/3(w), and obtain

AE(α̃) = g`

(
`

2

)− 1
2
∫ ∞

0

dw

∫ β

0

dβ e−β×

Ψβ,E(`/2)2/3(w)Φα̃,E

(
w(`/2)1/3

)
AE(2β/`).

(S12)

In principle, this integral equation can be solved by it-
eration. We start with AE(α) ≈ AE , which is assumed
to be independent of α. Iterating this equation once for
E ≈ 0 close to the transition and in the stiff limit `� 1,
we find that the resulting first iteration for AE(α) is in-
deed only weakly dependent on α for E ≈ 0 and remains
independent of α exactly at the transition E = 0. There-
fore, the first iteration already gives the correct scaling
behavior of AE(α) and allows to determine the critical
potential strength gc exactly for E = 0. For constant AE
and E(`/2)2/3 ≈ 0, we can perform the β-integration to

0
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B
(w

)

w

FIG. S2. Function B(w), see eq. (S13) with a maximum at
w ' 1.01.

obtain

B(w) ≡
∫ β

0

dβ e−βΨβ,0(w)

= 21/33−2/3 Γ
(

1
2

)

Γ
(

1
3

)M 5
6 ,

2
3

(
−w

3

9

)
+

2−4/33−5/6 Γ
(

1
3

)

Γ
(

1
2

)wM 7
6 ,

4
3

(
−w

3

9

)
, (S13)

where Ma,b(x) is Kummer’s confluent hypergeometric
function of the first kind7, and eq. (S12) becomes

AE(α̃) = g`

(
`

2

)−1/2 ∫ ∞

0

dwB(w)

× Φα̃,E

(
w(`/2)1/3

)
AE (S14)

The α-dependence of the coefficient function AE in eq.
(S14) stems from the biorthogonal function, and we find

AE(α) = ÑE,`
∫ ∞

0

dwB(w)Φα,E

(
w(`/2)1/3

)
(S15)

with a normalization factor ÑE,`, which is independent
of α but can depend on E and ` in general.

Because B(w) decreases exponentially for w � 1, see
Fig. S2, and ` � 1 in the stiff limit, we can use an ap-
proximation for small arguments,

Φα,E

(
w(`/2)1/3

)
≈
√

3w

π

(
`

2

)1/6

e−
2
3 (−E)3/2/α. (S16)

This leads to

AE(α) ≈ N` exp

(
−2

3

(−E)3/2

α

)
(S17)

in the stiff limit `� 1 with a modified normalization fac-
tor N`. Using this result for AE(α), we find that the nor-
malization factor N` ∝ `−1/3 is independent on E. The
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coefficient function AE(α) becomes indeed independent
of α for E ≈ 0, i.e., close to the transition. This justifies
our initial assumption of a constant coefficient function
AE(α) ≈ AE(0). Therefore, the first iteration already
provides a self-consistent solution of equation (S12) in
the limits of interest.

In order to obtain the critical potential strength gc
we set E = 0 in (S14) and use

∫∞
0

dwB(w)w1/2 =

21/33−1/6π/Γ (1/3) to find

1

gc`
=

√
3

π

(
`

2

)−1/3(∫ ∞

0

dwB(w)w1/2

)

=
22/331/3

Γ (1/3)
`−1/3 (S18)

In original unrescaled units, see eq. (S5), this corresponds
to a critical potential strength

gc = 2−13−1/3Γ (1/3)
kBT

`

(
Lp
`

)−1/3

(S19)

The scaling behavior of gc agrees with the result (8) from
the scaling argument and we quantify the numerical pref-
actor in (8) to be cSF = 2−13−1/3Γ(1/3) ' 0.929.

2. Critical exponent ν

The exponent ν characterizes the critical behavior of
the ground state energy |E| ∼ |g − gc|ν as a function of
g − gc close to the adsorption transition at E = 0. Be-
cause of the relations |∆f | = |E| = 1/ξ, the exponent ν
characterizes both the critical behavior of the correlation
length ξ and of the free energy of adsorption ∆f (i.e., hy-
perscaling holds). For g > gc, the correlation length ξ of
the adsorption transition is defined by the distribution of
loops lengths, which decays exponentially for large loop
lengths with a characteristic decay length given by the
correlation length ξ.

Because the exponent ν characterizes the critical free
energy behavior, it also determines the order of the ad-
sorption transition: For ν > 1 the transition is continu-
ous, whereas it is a first order transition for ν < 1. It is a
remarkable feature of the polymer adsorption transition
that a correlation length ξ = 1/|E|, which describes the
typical length scale of loops, can always be defined and
diverges at the transition, even if the transition is of first
order.

Using the result (S15) for AE(α) in the self-consistent
equation (S12), we obtain the relation g = g(E) in the
form

1

g`
≈ 1

Ñ`

∫
dvZE(`, v) (S20)

Expanding about E ≈ 0 gives the exponent ν. A leading
|E|-dependence ZE(`, v)−Z0(`, v) ∼ |E|3/2 has been ob-
tained in Ref. 8 and suggests

∫
dv(ZE(`, v)−Z0(`, v)) ∼

|E|, corresponding to ν = 1. Thus, the transfer matrix
approach in the approximation of a weakly bent semi-
flexible polymer gives5 ν = νSF = 1 for purely position-
dependent adsorption potentials as we use here. This
suggests that the adsorption transition is first order or
second order with a weak logarithmic correction5,6.

3. Corrections from Crossover to an effective flexible
polymer model

The transfer matrix calculation in the approximation
of a weakly bent polymer is, strictly speaking, only valid
in the stiff limit Lp →∞. Corrections start to arise if the
unrescaled correlation length ξ exceeds the persistence
length9 Lp: Because ξ specifies the typical length of an
unbound desorbed loop of the polymer, loops start to
loose orientation and to develop overhangs if ξ > Lp or
ξ = 1/|E| > 2 in rescaled units (S5). This happens for
potential strengths close to the critical value gc = gc,SF =

cSF (kBT/`)(Lp/`)
−1/3 in the semiflexible limit as given

by eq. (S19) or eq. (8) in the main text (in unrescaled
units), where the correlations length ξ starts to increase
and the transfer matrix ground state energy E becomes
small according to |E| ∼ |g − gc|ν with ν = νSF = 1.
The condition |E| < 1/2 corresponds to |g − gc| < 1/2
(or |g − gc| < kBT/Lp in unrescaled units).

Because gc ∼ `−2/3 (or gc ∼ (kBT/Lp)(Lp/`)
2/3 in

unrescaled units, see eq. (S19)), corrections will always
dominate if ` � 1 such that |g − gc| < gc � 1/2 for all
g < gc. In this regime the weak bending approximation
breaks down completely. The regime ` � 1 corresponds
to `� Lp in unrescaled units, which is the flexible limit.

Corrections to the weak bending results also arise in
the stiff limit ` � 1 or ` � Lp in unrescaled units.
In the stiff limit corrections arise only in a small in-
terval |g − gc,SF | < kBT/Lp � gc,SF around gc,SF . If
|g− gc,SF | < kBT/Lp we have to use an effective flexible
polymer model with a Kuhn length bK = 2Lp and an
effective adsorption potential per length geff ∼ |∆f | =
|E| ∼ g − gc,SF , which derives from the free energy ex-
ponent ν = νSF = 1 in the weak bending approxima-
tion, and an effective potential range `eff ∼ 〈z2〉1/2(ξ) ∼
ξ3/Lp ∼ Lp.

This effective flexible model determines the actual free
energy exponent6 νF = 2. Close to the transition, where
ξ > Lp or |g − gc,SF | < kBT/Lp, we expect a crossover
from an apparent exponent νSF = 1 to the actual ex-
ponent ν = νF = 2 for a flexible polymer, and the ad-
sorption transition becomes continuous. However, in a
system of finite size L, this crossover should only become
apparent if L > Lp such that a hierarchy of length scales
L > ξ > Lp is possible. Otherwise, ξ > Lp also implies
ξ > L, and finite size effects mask the crossover.

The crossover to an effective flexible behavior also leads
to a shift of the critical potential strength. For the ef-
fective flexible polymer the critical potential strength for

adsorption is given by gc,eff = cF
kBTLp

`2eff
, cf. eq. (10) in
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FIG. S3. Typical shape of the first three cumulants of the
order parameter NV , the number of beads of the SHC within
the potential range. We locate the adsorption transition by
the criterion 〈N3

V 〉c = 0 in simulations.

the main text. The actual critical potential strength gc
is given by the condition gc − gc,SF = gc,eff or

gc = gc,SF + cF
kBT

Lp
, (S21)

which is slightly higher than the stiff limit result gc =
gc,SF . Equation (S21) shows that the leading corrections
to the critical potential strength (11) in the stiff limit are
of the form I(x) ≈ cSFx−1/3 +O(x−1), which is exactly
the third constraint (14).

II. DETERMINATION OF CRITICAL POTENTIAL
STRENGTH IN SIMULATIONS

In order to determine the critical potential strength in
simulations we use two methods – a cumulant method
and finite size scaling – both of which are explained in
detail in this section.

A. Third cumulant method

An effective method to determine the critical poten-
tial strength uses the fact that the derivative of the free
energy density with respect to the potential strength g
gives the mean fraction of polymer length in the square-
well potential, which provides an order parameter for the
adsorption transition. For the discrete SHC, we have
∂gf = 〈NV 〉/N , where NV is the number of beads of the
SHC within the potential range 0 < z < `. Because of
the crossover to an effective flexible behavior close to the
adsorption transition, we expect a continuous adsorption
transition and the second cumulant of the order param-
eter, i.e., the second derivative ∂2

gf = 〈(NV − 〈NV 〉)2〉 =

〈N2
V 〉c of the free energy should diverge. Because of finite

size effects we find a maximum rather than a divergence
in the simulations, which results in a vanishing third cu-
mulant ∂3

gf = 〈N3
V 〉c = 0 at the transition, as shown in

Fig. S3. Therefore, we can use the vanishing third cumu-
lant to locate the adsorption transition in simulations.
In order to find the zero of the third cumulant we inter-
polate between the first negative and last positive value
to determine the critical potential strength. We use this
criterion both for the planar and for curved geometries
to locate the adsorption transition.

B. Finite size scaling procedure

Finite size scaling of the specific heat allows to deter-
mine the critical potential strength gc and to calculate
the critical exponent ν for the correlation length and the
free energy. We apply this method to analyze the sim-
ulation data for the planar substrate.

To systematically find the best parameter set (ν, gc),
we calculate a quantity S(ν, gc) which measures the
squared differences from one specific heat data set f
to the interpolated curves f̃ of another set for different
length10 L , as shown in Fig. S4. As contour lengths we
use L/b0 = 50, 100, 150, 200, 300, 400, 600 and 800. To
be able to compare different parameter sets (ν, gc) we
take only the relative differences.

overlap

fi,3−f̃j

(g − gc)L
1

ν

( 〈E
2
〉−

〈E
〉2
) L

−
2 ν

FIG. S4. Example for the overlap region of two data sets
for Lp = 2b0 and ` = b0 for two different lengths L = 800 b0
and L = 400 b0. In this example we have Nover = 4 and use
gc`/kBT = 0.3 and ν = 1.4.

For this analysis only a limited number Nover of data
points in the overlapping region can be used. Our best
estimate for (ν, gc) is the parameter set that minimizes
the overall error

S(ν, gc) =
1

Nover

∑

i

∑

j 6=i

Nover∑

k=1

(
1− f̃j

fi,k

)2

The determination of ν is quite difficult because the min-
imum is often rather shallow as shown in the example in
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Fig. S5.

1.8 2 2.2 2.4
ν

0.36

0.38

0.4

0.42
g
c

−6

−5

−4

−3

−2

−1

0

1

2

3
f
i
,k

(g − gc)L
1
ν

ln
(S

(ν
,g

c
))

FIG. S5. Logarithmic overall error ln (S(ν, gc)) as a func-
tion of parameters gc`/kBT and ν. Inset: Scaling function
fi,k for the optimal choices νmin = 1.99 and gc,min`/kBT =
0.37. Analysis for MC data for parameters Lp = 2b0, k =
100kBT/b

2
0 and ` = b0.

A simple approach to estimate the error in this proce-
dure is given by10

∆gc = ηgc,min

(
2 ln

S(νmin, gc,min(1±η))

S(νmin, gc,min)

)1/2

∆ν = ηνmin

(
2 ln

S(νmin(1±η), gc,min)

S(νmin, gc,min)

)1/2

,

where η ≡ 0.01 gives the relative distance to the min-
imum. We note that this method of error estimation
might be flawed, because the determination of gc is much
more precise than the determination of ν. While changes
in gc mainly shift data points in Fig. S4 horizontally and
influence the overlap region, variation of ν affects mostly
the rescaled specific heat values fi,k themselves and, thus,
shift data points vertically in Fig. S4. If the overlap re-
gion becomes smaller the overall error S(ν, gc) increases
fast. This explains why the variation of gc influences
S(ν, gc) much more than ν such that the determination
of ν is more difficult. To take this into account, we com-
pute the minimal and maximal value of gc and ν, where
S(ν, gc) < (1 + η2)S(νmin,max, gc,min,max), where η2 is an
arbitrary parameter. These minimal and maximal values
for gc and ν should be a valid estimation of the error.

III. SIMULATION RESULTS FOR CRITICAL
EXPONENT ν FOR PLANAR SUBSTRATE

The finite size scaling procedure also allows us to de-
termine the critical exponent ν for adsorption to a planar
substrate. Results for the exponent ν are shown in Fig.
S6 as a function of the stiffness parameter Lp/`.

The exponent ν is around ν = 2 for small bending
rigidity and lowers towards ν = 1 with increasing stiff-
ness. This is in agreement with the theoretical expecta-
tion that adsorption of flexible polymers is a continuous
transition with νF = 2. A semiflexible polymer should
exhibit a critical behavior corresponding to νSF = 1 with
a crossover to a flexible behavior with ν = νF = 2 in the
small regime |g−gc,SF | < kBT/Lp around the transition,
where the correlation length ξ exceeds Lp as explained in
section I C 2. This crossover might be the reason that we
obtain values ν ≈ 1.4 significantly larger than ν = 1 for
stiff polymers using the finite size scaling.

1
1.2
1.4
1.6
1.8
2

2.2
2.4

1 10 100
ν

Lpℓ
−1

FIG. S6. Finite size scaling results for the critical exponent ν
in D = 3 dimensions (circles) and D = 2 dimensions (squares)
as a function of the dimensionless stiffness parameter Lp/`
for ` = 1 (red), ` = 2 (blue) and ` = 4 (black). Simulation
parameters are as in Fig. 4.

IV. ADDITIONAL SIMULATION SNAPSHOTS

In Fig. S7 we present additional simulation snapshots
in the desorbed phase for all three adsorption geometries.

1M. Deng, Y. Jiang, H. Liang, and J. Chen, J. Chem. Phys. 133,
034902 (2010).

2K. F. Freed, Adv. in Chem. Phys. 22, 1 (1972).
3A. C. Maggs, D. A. Huse, and S. Leibler, Europhys. Lett. 8, 615
(1989).

4G. Gompper and T. Burkhardt, Phys. Rev. A 40, 6124 (1989).
5J. Kierfeld and R. Lipowsky, Europhys. Lett. 62, 285 (2003).
6J. Kierfeld and R. Lipowsky, J. Phys. A: Math. Gen. 38, L155
(2005).

7W. Abramowitz and I. Stegun, Handbook of Mathematical Func-
tions, Applied Mathematics Series No. 55 (National Bureau of
Standard, Washington, 1972).

8T. Burkhardt, J. Phys. A: Math. Gen. 26, L1157 (1993).
9Throughout this section we use scaling arguments. The distinc-
tion between Lp and Lp,D is therefore unnecessary.

10S. Bhattacharjee and F. Seno, J. Phys. A: Math. Gen. 34, 6375
(2001).

http://dx.doi.org/10.1002/9780470143728
http://dx.doi.org/10.1209/epl/i2003-00139-0


8

b)Lp/ℓ = 10 c)Lp/ℓ = 100

a)Lp/ℓ = 1

a) Lp/ℓ = 1

b) Lp/ℓ = 2

c) Lp/ℓ = 4

e) Lp/ℓ = 16

d) Lp/ℓ = 8

f) Lp/ℓ = 32

d) Lp/ℓ = 2

e) Lp/ℓ = 4

f) Lp/ℓ = 8

a) Lp/ℓ = 0.25

b) Lp/ℓ = 0.5

c) Lp/ℓ = 1

0.2

0.5

1 10 100

g c
ℓ/
k
B
T

Lp/ℓ

flat
sphere
washb.

FIG. S7. Phase diagrams for a planar substrate (red line), an adsorbing sphere (blue line) and an adsorbing washboard in
D = 2 (brown line) and simulation snapshots in the desorbed phases corresponding to the open circles in the phase diagram.
Solid circles correspond to the simulation snapshots in the adsorbed phase presented in the main text.
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