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We discuss the adsorption of semiflexible polymers to a planar attractive wall and focus on the
questions of the adsorption threshold for polymers of finite length and their loop and tail distributions
using both Monte Carlo simulations and analytical arguments. For the adsorption threshold, we find
three regimes: (i) a flexible or Gaussian regime if the persistence length is smaller than the adsorption
potential range, (ii) a semiflexible regime if the persistence length is larger than the potential range,
and (iii) for finite polymers, a novel crossover to a rigid rod regime if the deflection length exceeds
the contour length. In the flexible and semiflexible regimes, finite size corrections arise because the
correlation length exceeds the contour length. In the rigid rod regime, however, it is essential how the
global orientational or translational degrees of freedom are restricted by grafting or confinement. We
discuss finite size corrections for polymers grafted to the adsorbing surface and for polymers confined
by a second (parallel) hard wall. Based on these results, we obtain a method to analyze adsorption
data for finite semiflexible polymers such as filamentous actin. For the loop and tail distributions,
we find power laws with an exponential decay on length scales exceeding the correlation length. We
derive and confirm the loop and tail power law exponents for flexible and semiflexible polymers.
This allows us to explain that, close to the transition, semiflexible polymers have significantly smaller
loops and both flexible and semiflexible polymers desorb by expanding their tail length. The tail
distribution allows us to extract the free energy per length of adsorption for actin filaments from
experimental data [D. Welch et al., Soft Matter 11, 7507 (2015)]. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4990418]

I. INTRODUCTION

For semiflexible polymers, their intrinsic bending energy
associated with their bending rigidity, κ, is relevant for shape
fluctuations. The competition between thermal and bending
energies determines the persistence length Lp ∼ κ/kBT of the
polymer, which is the decay length of orientational correla-
tions along a free polymer. For semiflexible polymers, the
persistence length is large and comparable to other length
scales in the problem. Examples of semiflexible polymers
are stiff synthetic polymers, such as polyelectrolytes,1,2 and
many stiff biopolymers, such as DNA, filamentous (F-)actin, or
microtubules. The persistence length of F-actin is in the 10 µm-
range3 and ranges up to the mm-range for microtubules.4 The
bending rigidity also modifies the adsorption behavior of semi-
flexible polymers. In a recent experiment,5 the conformations
of single, finite actin filaments adsorbed onto a planar wall by
a depletion interaction have been analyzed and compared with
Monte Carlo simulations based on the phenomenological treat-
ment of finite size effects. In this paper, we want to go beyond
the analysis given in Ref. 5 and systematically derive a pro-
cedure to analyze finite size effects for semiflexible polymer
adsorption.

The adsorption of single flexible polymer chains has been
extensively studied theoretically (see, for example, Refs. 6–8).

a)Electronic mail: tobias.kampmann@udo.edu
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Theoretical studies on the adsorption of semiflexible poly-
mers with intrinsic bending stiffness are less but still numer-
ous2,5,9–27 and fall into two main classes, which are studies
of lattice polymers9,13,15,24,27 or off-lattice continuous poly-
mers;2,5,10–12,14,16–21,23,25,26 in Ref. 22, only the binding poten-
tial was realized in a discrete manner by explicitly discrete
pinning sites. We will conduct off-lattice simulations and
exact off-lattice calculations in the rigid rod limit. In order to
quantify loop and tail distributions, we use critical exponent
relations based on the necklace model28 and transfer matrix
approaches for off-lattice polymers. Closely related to adsorp-
tion is the conformational statistics of semiflexible polymers
confined to the half-plane29 and slits or channels,30–36 from
which we will also use concepts such as the deflection length
and exact results on critical exponents.

From a theoretical point of view, the adsorption of semi-
flexible polymers is challenging because it involves several
competing length scales. For a freely fluctuating semiflexible
polymer, the persistence length Lp and its contour length L are
the relevant length scales. For L . Lp, thermal fluctuations are
dominated by bending energy. This is the regime which we
will mostly focus on in this work and which is relevant for
actin filaments, where typically both L and Lp are in the range
of 10–20 µm. For L . Lp, the bending energy will also sup-
press self-intersections and, thus, effects from self-avoidance.
If L� Lp, the semiflexible polymer approaches a rigid rod.
For L� Lp, on the other hand, the polymer is well described
by a flexible polymer with an effective segment length ∼Lp. In
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the adsorption problem, both L and Lp also compete with the
correlation length ξ of the adsorption transition and the range
` of the adsorption potential.

For the adsorption transition, polymers longer than the
correlation length, L� ξ, can be regarded as quasi-infinite.
Then the correlation length ξ is the characteristic maximal
length of desorbed segments (loops and tails) and diverges at
the adsorption transition. If the persistence length is small com-
pared to the correlation length, Lp < ξ, the critical exponents
of the adsorption transition cross over to those of a flexible
polymer, if self-avoidance is taken into account to those of a
flexible self-avoiding chain. For semiflexible polymers with
large Lp, this crossover can only be observed very close to
the adsorption transition.10,23 We will show that the crossover
from a semiflexible to flexible critical behavior is also reflected
in the length distribution of the desorbed loops or tails. We
find different exponents for loop and tail distributions of flex-
ible and semiflexible polymers, which give rise to a different
desorption behavior: semiflexible polymers have significantly
smaller loops close to the transition but both flexible and semi-
flexible polymers desorb by expanding the tail. This explains
the previous observations in simulations.5,27

The critical potential strength itself is, however, to leading
order, the critical potential strength to adsorb single segments
of size Lp and, thus, mainly determined by semiflexible fluctu-
ations on scales <Lp.23 The flexible behavior only occurs if the
persistence length becomes smaller than the adsorption poten-
tial range, Lp < `.25,26 This can be qualitatively understood
from the simple argument that the adsorption of individual seg-
ments of length Lp is a necessary condition for the adsorption
of the entire chain. The result is in accordance with simula-
tion results on the adsorption threshold, which can be well
explained using semiflexible polymer theory26 regardless of
whether ξ < Lp or ξ > Lp as long as only Lp� `, i.e., the

TABLE I. Different regimes for the adsorption threshold of a continuous
semiflexible polymer. The critical exponents should cross over from semi-
flexible to flexible (or self-avoiding flexible) for ξ > Lp close to the des-
orption threshold. In addition, for a semiflexible chain with bond length b,
discretization effects occur for b> Ld .

Lp < ` Lp > ` Ld > L

L > ξ , Ld
Flexible, Semiflexible,

n.a.
infinite infinite

L < ξ
Flexible, Semiflexible, Finite

finite size effect finite size effects rigid rod

semiflexible polymer is sufficiently rigid that its persistence
length remains large compared to the potential range ` and loop
formation of adsorbed trains inside the adsorption potential
remains suppressed.

According to the theory of phase transitions, finite size
effects will modify the adsorption behavior close to the tran-
sition if L < ξ such that the length of desorbed loops or tails is
limited by the finite polymer length.

For finite stiff polymers, we find a novel rigid rod regime
with qualitatively different finite size effects. In the rigid rod
regime, it is essential how the global orientation degrees of
freedom are restricted by grafting or confinement. Finite size
effects then crucially depend on Odijk’s deflection length,

Ld ∼ L1/3
p `2/3, (1)

which is the length scale for collisions of the adsorbed poly-
mer with the boundaries of a potential well of width `.30 A
finite stiff polymer with the deflection length Ld exceeding
its length L effectively behaves as a weakly fluctuating rigid
rod. We will show that finite size effects are then governed
by the global orientation of the weakly fluctuating rod if it is

FIG. 1. Simulation data for the adsorption threshold gc of finite end-grafted polymers as a function of dimensionless polymer stiffness Lp/` and three snapshots
for different stiffness illustrating the three regimes of flexible, semiflexible, and rigid rod adsorption. We also show the corresponding snapshots for polymers
confined between two walls (see also Fig. 7 for the simulation results on the adsorption threshold). The snapshots show barely adsorbed (g & gc, N = 10)
polymers and are taken in two dimensions for clarity, whereas all simulations in this paper were performed in D = 3. To illustrate typical configurations, each
snapshot shows several (>100) configurations. We use the maximum of the cumulant Cad = 〈L2

ad〉 − 〈Lad〉
2 to determine the adsorption threshold gc numerically.

For stiffer chains (filled colored circles, Lp/` > 1), we vary Lp and for more flexible chains (colored circles with black filling, Lp/` < 1), we vary `. Additionally,
we simulate chains without bending stiffness κ = 0, where the persistence length is 2Lp = b according to the Kuhn length (colored open circles). In the stiff
regime, horizontal lines indicate the adsorption threshold of a rigid rod (Lp → ∞) from Eq. (23).
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end-grafted to the adsorbing surface. For a stiff polymer con-
fined by a second wall to the adsorbing surface, the global
translational degree of freedom becomes relevant. For a flexi-
ble polymer, on the other hand, there is no preferred orientation
of the polymer, which is thus irrelevant for finite size scaling.

The different regimes for the adsorption threshold are
summarized in Table I and illustrated by simulation snapshots
in Fig. 1. Understanding the influence of global degrees of
freedom on finite size effects for stiff polymers is important to
correctly analyze the adsorption data for finite semiflexible
polymers. For decreasing stiffness such that Ld� L, inter-
nal deformation degrees of freedom dominate, and there is a
crossover from the novel rigid rod regime to the standard finite
size corrections from a correlation length growing beyond the
contour length, ξ > L. From these results, we can derive a pro-
cedure to analyze finite size effects for semiflexible polymer
adsorption in simulations or, for example, in the experimental
data of Ref. 5 on the adsorption of filamentous actin.

The paper is organized as follows. In Sec. II, we intro-
duce the theoretical and Monte Carlo simulation model for
the adsorption of semiflexible polymers on a planar substrate.
Then, we briefly recapitulate results on the adsorption thresh-
old of infinite semiflexible polymers. Afterwards, the loop and
tail distributions close to the adsorption transition are derived
and used to extract the free energy of adsorption from the
measured adsorption data. We then focus on the adsorption
threshold for finite semiflexible polymers and obtain a com-
plete picture featuring a flexible, a semiflexible, and a novel
rigid rod regime. We consider different adsorption geome-
tries; in particular, we compare end-grafted semiflexible poly-
mers and semiflexible polymers confined between two walls.
Finally, our results lead to a method to analyze adsorption data
for finite semiflexible polymers such as filamentous actin. We
conclude with a discussion of experimental realizations.

II. MODEL AND SIMULATION

We use the same semiflexible polymer model as in
Ref. 26 and start from a continuum worm-like chain model
for a polymer contour r(s) of length L parameterized by
its arc length s (0 < s < L). Its energy consists of a bending
energy Hb[r(s)] = ∫

L
0 ds κ2 (∂2

s rr)
2

and an adsorption energy
Had[r(s)] = ∫

L
0 dsV (z(s)) in an external potential V (z) that

only depends on the distance z to the absorbing surface at z
= 0, H = Hb + Had. The adsorption potential is an attractive
short-range square-well part Va of range ` in front of a hard
wall potential Vwall for a planar surface,

V (z) = Va(z) + Vwall(z) =




∞ for z < 0,

−g for 0 < z ≤ `,

0 for z > `.

(2)

The potential strength g> 0 is an energy per length. Using
this model, we can study adsorption both in D = 2 and D
= 3 spatial dimensions. The persistence length of the semi-
flexible polymer as defined from the tangent-correlations
of a free polymer is Lp = 2κ/(D − 1)kBT37 (note that the
definition Lp = 2κ/kBT has been used in Refs. 5, 21, 23,
38, and 39, whereas Lp = κ/kBT was used in Ref. 26). In
the weak bending approximation (valid for L, ξ < Lp), we

switch to the Monge parametrization with r(x) = (x, y(x),
z(x)) and rewrite the energies as Hb[z(x)]= ∫

L
0 dx κ2 (∂xz)2 and

Had[z(x)]= ∫
L

0 dxV (z(x)).
For the simulation, we discretize the semiflexible polymer

into N beads connected by harmonic springs with a spring con-
stant k and a bending energy derived from the bending angle of
three neighboring beads with a bending rigidity κ.38 In the sim-
ulations, this semiflexible harmonic chain is a phantom chain
with no additional hard-core interactions between beads, i.e.,
there is no explicit self-avoidance (as opposed to simulations
in Ref. 27) but self-avoidance will be effectively fulfilled on
length scales below Lp because of the bending energy. The dis-
cretization introduces another length scale into the simulation,
which is the rest length b of the harmonic bonds resulting in
an equilibrium contour length,

L = (N − 1)b . (3)

Discretization also affects the actual persistence length, which
becomes40

Lp,dis =
b

ln
(
ID/2−1

(
κ

bkBT

)
/ID/2

(
κ

bkBT

)) , (4)

where In(x) is the modified Bessel function. For Lp,dis/b & 2,
the persistence length Lp,dis approaches the continuous worm-
like chain result Lp = 2κ/(D−1)kBT . In the following, we will
use result (4) as the persistence length to analyze the simulation
data for discrete semiflexible polymers.

We perform Monte Carlo (MC) simulations of the adsorp-
tion process using the Metropolis algorithm with bead dis-
placement moves of single beads or segments of beads. Each
MC sweep consists of N MC moves, where segments of suc-
cessive beads are moved by a random vector of length v. The
MC displacement v is determined before each simulation to
realize an acceptance rate of about 50% (typical values are
v ' 0.05). A typical MC simulation consists of 107 sweeps.

In order to avoid that the polymer eventually diffuses away
from the adsorbing plane to infinity, one has to confine the
polymer to the adsorbing plane. For the analysis of finite size
effects in the adsorption transition, it will turn out to be rel-
evant how this confining mechanism is chosen, in particular,
for finite stiff polymers with Ld > L. We use an end-grafting
procedure and attach one end of the polymer to the boundary
of the attractive potential, i.e., at z = `, in order to suppress the
diffusive motion of the polymer center of mass in the desorbed
phase.27 Confinement by end-grafting turns out to be conve-
nient for the calculation of finite size effects in the rigid rod and
stiff limit because it eliminates global translation of the chain
and only allows for global rotation. Another choice is to con-
fine the polymer by two hard walls as in Ref. 5, which allows
for both global translation of the chain and global rotation
between the confining walls.

Typical simulated polymers consist of several hundreds
of beads. In the simulation, we measure lengths in units of
the bond length b and energies in units of kBT. We use val-
ues k = 100 kBT/b2 or k = 1000 kBT/b2 for the harmonic
spring stiffness to mimic a practically inextensible polymer.
We change the persistence length Lp via the stiffness κ to
explore finite size effects as a function of the dimensionless
stiffness parameter Lp/`.
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The bond length has to be sufficiently small to avoid
discretization effects. In the semiflexible regime Lp > `, a
firmly adsorbed polymer decays into independently fluctuat-
ing segments of the size of the deflection length Ld ∼L1/3

p `2/3

by collisions with the potential boundary:30,35,36 thermal
fluctuations of a weakly bent free semiflexible polymer of
length L are 〈z2〉(L)∼L3/Lp, and the collision condition
〈z2〉(Ld)∼ `2 determines the scaling of Ld . Therefore, the
simulation exhibits discretization effects if b> Ld because
these collisions from fluctuations within the adsorption poten-
tial layer can no longer be properly resolved. This implies
a choice (Lp/b)1/3(`/b)2/3 > 1 or (Lp/`)1/3(`/b)> 1 to avoid
discretization effects for Lp > `. Note that also lattice sim-
ulation such as in Ref. 27 often represents the potential
range by a single layer of adhesive sites effectively corre-
sponding to a contact potential `� b and, therefore, can-
not resolve any fluctuations within the adsorption potential
layer.

In the flexible regime Lp < `, on the other hand, the poly-
mer can be regarded as a flexible polymer with an effective
bond length of 2Lp also inside the potential well. Then dis-
cretization effects occur if b> 2Lp turns of the polymer can no
longer be resolved properly. This implies a choice 2Lp/b> 1
to avoid discretization effects for Lp < `.

III. CRITICAL POTENTIAL STRENGTH
OF INFINITE POLYMERS

It is useful to first summarize known results for the adsorp-
tion transition of quasi-infinite semiflexible polymers (ξ < L).
They desorb by their internal configuration fluctuations, which
can be envisioned as the formation of desorbed loops and tails.
The maximally accessible desorbed loop and tail’s size is lim-
ited by the correlation length ξ. All fluctuations on scales <Lp

are governed by the bending energy of a semiflexible polymer,
whereas fluctuations on scales �Lp can be regarded as fluc-
tuations of a flexible polymer with an effective bond length
of 2Lp.

A. Semiflexible regime

Infinite semiflexible polymers desorb by internal configu-
ration fluctuations. If the persistence length exceeds the corre-
lation length, Lp & ξ, the desorbed “loops” are actually oriented
segments without turns. If the persistence also exceeds the
potential range `, Lp & `, the adsorbed tail segments cannot
perform turns within the potential range. Then we are in the
stiff or semiflexible limit of adsorption, where the critical
potential strength is

gc,SF = cSF
kBT
`

(
Lp

`

)−1/3

(Lp & `). (5)

The exact exponent 1/3 occurring in Eq. (5) has been obtained
using different approaches: This result has been derived in
Ref. 12 via the necklace model approach.28 It has also been
obtained explicitly in Refs. 2, 20, and 21 by scaling arguments2

or analytical transfer matrix calculations.20,21 References 23
and 26 (see also the supplementary material of both references)
contain a more detailed account of analytical transfer matrix

calculations of this result. In Ref. 26 (and the supplementary
material of Ref. 26), there are also results for the numerical
prefactor

cSF = 2−2/33−1/3
Γ(1/3)(D − 1)−1/3 ' 0.93

(
2

D − 1

)1/3

(6)

in Eq. (5) (remember the different definition Lp = κ/kBT used
in Ref. 26). In Ref. 5, the exponent 1/3 in result (5) has been
“rediscovered” ignoring all of these previous explanations.

The scaling with an exponent 1/3 in result (5) for the crit-
ical potential strength is directly related to a corresponding
scaling dependence of Odijk’s deflection length Ld ∼ L1/3

p `2/3.
This relation is established by a standard statistical mechan-
ics argument: Confinement to the potential well costs entropy
of the order of 1kB per collision with the potential boundary,
which gives a free energy cost per length∆f = T∆s = kBT/Ld .
Balancing this with the energy gain g per length gives the scal-
ing of the adsorption threshold as gc ∼ kBT/Ld resulting in
Eq. (5).

As a consequence, lattice simulations that cannot resolve
fluctuations within the potential layer due to discretization
effects, such as in Ref. 27, will find a different scaling behavior
of the adsorption threshold, which is dominated by discretiza-
tion effects. A semiflexible lattice polymer will change the
lattice direction on its persistence length Lp on average. If the
adsorption layer is a single layer of adhesive sites, confine-
ment to this layer suppresses a finite fraction of configuration
on the lattice for every persistence length Lp, which leads
to an entropy cost T∆s ∼ kBT/Lp per length and, thus, to
an adsorption threshold gc ∼ kBT/Lp as it was observed in
Ref. 27.

In Ref. 23, it has been pointed out that result (5) for the
critical potential strength remains valid also if Lp < ξ because it
represents the critical potential strength to adsorb single seg-
ments of size Lp. In fact, result (5) holds as long as these
segments are larger than the potential range `, Lp� `.25,26

Then the semiflexible polymer is sufficiently rigid that the loop
formation of adsorbed trains inside the adsorption potential
remains suppressed.

B. Flexible regime

The semiflexible result, Eq. (5), is applicable if Lp is larger
than the potential range `.25,26 For Lp . `, the polymer is in the
flexible regime, where it can perform turns within the potential
range. As it has been observed and analyzed in Refs. 25 and 26,
there is a maximum in the critical potential gc` for Lp/` ∼ 1,
such that adsorption becomes easier again in the flexible limit
Lp . `, where

gc,F = cF
kBT
`

Lp

`
(Lp . `) (7)

is found with cF = 2π2/4D(D − 1) in D spatial dimensions in
the absence of self-avoidance. Result (7) is the standard result
gc,F ∼ kBTb/`2 for a flexible ideal chain6 with effective bond
length b = 2Lp. Again, lattice simulations can only find such a
scaling behavior if the potential range is represented by several
lattice spacings.41
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TABLE II. Simulation results for the fit parameters c1, c2, and c3 for the inter-
polation function I(x) from Eq. (9) in comparison with theoretical expectations
for D = 3 and D = 2. The adsorption threshold is determined by the cumulant
method (maximal adsorption energy fluctuations) or finite size scaling.

Data set c1/cF c2cSF /c1 c3

Theory (D = 3) 1 1 Free
cumulant 1.50 ± 0.05 1.03 ± 0.01 0.52 ± 0.06
finite size 1.08 ± 0.05 1.04 ± 0.02 0.74 ± 0.1

Theory (D = 2) 1 1 Free
cumulant 1.05 ± 0.05 1.03 ± 0.01 0.00 ± 0.06
finite size 0.83 ± 0.05 1.05 ± 0.02 0.52 ± 0.1

C. Crossover between regimes

In Ref. 26, the interpolation formula,

gc`

kBT
= I

(
Lp

`

)
, (8)

I(x) = c1x(1 + c2x4/3 + c3x2/3)−1, (9)

has been derived, which describes both stiff and flexible limits
and contains three free fit parameters c1, c2, and c3. The choices
c1 = cF and c2 = cF /cSF reproduce the analytically known flex-
ible and semiflexible limits, and the remaining parameter c3

allows us to vary the position of the maximum to fit simula-
tion data. In D = 3, we find best fits of our MC simulation
data for parameter values as given in Table II; these values
slightly differ from results in Ref. 26 because we include dis-
cretization effects properly by using the persistence length,
Eq. (4); this improves the fit to the simulation data for small
Lp/b . 2.

The MC data in Fig. 1 confirm that long polymers
approach these results for infinite polymers. The data also show
pronounced finite size effects and a third adsorption regime in
the stiff rod limit, which we will address below.

IV. THEORY OF LOOPS AND TAILS
A. Return exponents

Before discussing the adsorption of finite polymers, it is
useful to understand how the diverging correlation length ξ
governs the length distribution of desorbed loops and tails
of a semiflexible or flexible polymer. The length distribu-
tions of loops and tails have been examined recently in
simulations,5,27 where it was found that stiffer semiflexible
polymers tend to desorb from their end by increasing tail
lengths.

We want to explain the observations in Refs. 5 and 27
using results from transfer matrix approaches and necklace
models based on the grand canonical partition sum9,41,42 (see
Ref. 28 for a review on necklace models). The relevant quan-
tity characterizing the size distribution of loops is the return
or loop exponent χ, which determines the probability p return

∼L−χ for a free polymer starting in the attractive region of the
potential well to return to this region for the first time as a func-
tion of its (projected) length L in the large L limit. The first
return or loop exponent χ determines the critical properties

of the adsorption transition. This can be seen in the necklace
model approach, where the grand canonical partition sum is
written as alternating series of bound (train) segments and loop
segments. For polymer adsorption, we need the exponent χ for
first returns to the attractive potential well at 0 < z < ` in front
of a hard wall.

In the following, we distinguish between unconditioned
returns, for which we use an exponent χ̃, and first returns, for
which we use the exponent χ. There is the general relation

χ = max(2 − χ̃, χ̃) (10)

between unconditional and first returns, which holds both for
flexible and semiflexible chains and which can be derived,
for example, using generating functions and the necklace
representation.28

For a flexible polymer without self-avoidance, the uncon-
ditioned return exponent in the absence of a wall is the standard
result χ̃RW = D/2 for the return of Gaussian chains or random
walks in D dimensions to the origin (starting point). For the
adsorption of Gaussian chains, this result is applied to a single
dimension (D = 1), namely, the z-coordinate of the polymer
contour, which has to return to the potential well at 0 < z < `,
and with the arc length s as a time-like coordinate of the random
walk: p return ∼ L−1/2 is the probability that the z coordinate
returns to the adsorbing state z ≈ 0 after length s = L, i.e.,
χ̃F,0 = 1/2 in the absence of the hard wall at z = 0. In front of
a hard wall, introduction of an image walker leads to a return
exponent χ̃F = 3/2 for flexible polymers or random walks.
This also follows from the observation that for flexible chains,
returns in front of a hard wall are equivalent to first returns
in the absence of a hard wall such that, according to (10),
χF = χ̃F = 2 − χ̃F,0 = 3/2.

The unconditioned return exponent for the weakly bent
semiflexible phantom polymer to the adsorption potential in
the presence of a hard wall is χ̃SF = 5/2 for a return with
orientation parallel to the wall. This is a non-trivial result
which is derived from an Ornstein-Uhlenbeck process and
modeled as a random walker with inertia, i.e., with random
acceleration in 1 spatial dimension29 (for semiflexible poly-
mers, returns in the presence of a hard wall are not equivalent
to first returns in the absence of a wall because of additional
restrictions on tangent vectors from the hard wall). For the
adsorption problem, this result is applied to the z-coordinate
of the polymer contour with the projected length x along the
preferred orientation of the weakly bent semiflexible poly-
mer as a time-like coordinate of the inertial random walk:
p return ∼ L−5/2 is the probability that the z-coordinate returns
to the adsorbing state z ≈ 0 in parallel orientation ∂xz = 0
after the projected length x = L and in the presence of a
hard wall at z = 0. The corresponding exponent for a return
irrespective of orientation is χ̃SF = 2 as integration over
tangents always gives an additional factor L1/2 reducing the
exponent.39

Alternatively, the exponents χ̃F = 3/2 and χ̃SF = 5/2
follow from the exponent relation χ̃ = 1 + νR,43 which holds
in D = 1 dimensions (i.e., for returns in the z-coordinate)
and in which νR is the exponent characterizing the end-to-
end distance 〈R2〉 ∼ L2νR and, thus, also the roughness in the
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z-coordinate 〈z2〉 ∼L2νR . For semiflexible polymers νR,SF

= 3/2 resulting in χ̃SF = 5/2; for flexible phantom polymers
νR,F = 1/2 resulting in χ̃F = 3/2.

Using relation (10) between unconditioned and first
returns we see that for adsorption in front of a hard wall, as
considered here, return and first return (loop) exponents are
identical,

χF = χ̃F = 3/2,

χSF = χ̃SF = 2.
(11)

Loop or first return exponents are also known for self-
avoiding chains, where

χSAW =



1 − γ11 ' 1.39 in D = 3

19/16 = 1.1875 in D = 2
(12)

holds for returns of self-avoiding chains to a short-range
adsorption potential in front of a hard wall.42,44,45 Note that
these results are close but not identical to the naive estimate
p return ∼ L−νR or χ̃SAW,0 = νR,SAW using the exponent νR of the
end-to-end distance 〈R2〉 ∼ L2νR and assuming that the return
in the z-coordinate is simply governed by the extension of
the polymer, preturn ∼ 1/〈R2〉

1/2
. Assuming also that returns in

front of a hard wall are equivalent to first returns in the absence
of a hard wall, we have χ̃SAW = 2− χ̃SAW,0 ' 2−νR,SAW accord-
ing to (10). The Flory estimate νR,SAW = 3/(D + 2) for self-
avoiding polymers gives νR,SAW = 3/5 in D = 3, and more exact
field-theoretical calculations give νR,SAW ' 0.588;46 νR,SAW

= 3/4 is exact in D = 2.45 The reason for deviations from
these naive estimates in Eq. (12) is additional correlations
between the z-component of the walk and components paral-
lel to the surface by self-avoidance. Interestingly, in Ref. 42 it
was shown that additional self-avoidance interactions between
different adsorption loops exactly restore the naive result such
that

χ̃SAW = 2 − νR,SAW =



' 1.41 in D = 3,

= 1.25 in D = 2.
(13)

According to (10), also for self-avoiding chains, return and
first return exponents are identical in front of a hard wall, i.e.,
χSAW = χ̃SAW = 2 − χ̃SAW,0.

We note that by comparing loop exponents for flexible,
self-avoiding, and semiflexible polymers, we find χSAW < χF

< χSF [see (11) and (13)], i.e., the exponent is smallest for the
self-avoiding chain, although the exponents νR for the end-
to-end distance are ordered differently, νR,F < νR,SAW < νR,SF

[see (15)].

B. Order of adsorption transition

The Necklace model28 and transfer matrix approaches39

independently show that the return exponent χ determines all
other critical exponents of the adsorption transition. In partic-
ular, there is a relation between the first return exponent χ and
the correlation length exponent ν of the adsorption transition
(ξ ∝ |g − gc |

−ν), which is

1/ν = min(χ − 1, 1) (14)

(correcting an error in Ref. 39). This relation gives

νF = 2,

νSAW =
1

1 − νR
=



' 2.43 in D = 3

= 4 in D = 2,

νSF = 1 + log

(15)

from (11)21,23,39 and (12).
For the adsorption transition, transfer matrix theory shows

that the exponent ν is identical to the free energy exponent
describing the singular part of the adsorption free energy den-
sity |fad | ∼ kBT/ξ ∝ |g − gc |

ν21,28 (i.e., hyperscaling holds).
Thus, also the nature of the phase transition is entirely deter-
mined by the first return or loop exponent χ: If χ < 1, the
polymer is always bound for arbitrary weak potential; this case
is not possible for a first return probability as immediately fol-
lows from relation (10). If χ > 1, a threshold potential strength
is necessary for adsorption. For 1< χ < 2 or ν = 1/(χ−1)> 1,
the transition is continuous. For χ > 2 or ν = 1, the transition
becomes discontinuous. So χ = 2 and ν = 1 mark the boundary
between a discontinuous and continuous transition. The semi-
flexible polymer with χSF = 2 is at this boundary and is weakly
second order with νSF = 1 + log as closer inspection shows.21

Both flexible and self-avoiding chains have 1< χF , χSAW < 2
such that adsorption is continuous.

If the persistence length is small compared to the correla-
tion length, Lp < ξ, there is a crossover in the critical proper-
ties, i.e., the critical exponents of the adsorption transition, to
those of a flexible polymer, eventually a flexible self-avoiding
chain. Because the correlation length ξ ∼ kBT/|fad | ultimately
diverges at the transition, the critical properties observable
right at the adsorption transition should always be those of
flexible chains with νF = 2 or νSAW = 1/(1 − νR)' 2.43 in
the presence of self-avoidance. For stiff polymers with large
Lp, this critical behavior is, however, only observable for
|g − gc | < kBT/Lp (because of νSF ≈ 1), i.e., very close to
the critical point.23 As long as |g−gc | > kBT/Lp, the transition
should have apparent critical exponents from the semiflexible
regime.26 Only in the rigid rod limit Lp → ∞, a truly discon-
tinuous transition as predicted from the semiflexible criticality
should be observable. This crossover in critical properties often
causes confusion; see, for example, a recent discussion in
Ref. 27.

C. Finite size scaling results for critical properties

In principle, the correlation length or free energy expo-
nent ν can be determined by a finite size scaling of the
adsorbed length 〈Lad〉=−〈Had〉/g or its second cumulant

Cad ≡ 〈L2
ad〉 − 〈Lad〉

2. Because Cad =−kBTL ∂2fad

∂g2 and |fad |

∼ kBT/ξ ∝ |g − gc |
ν , we have Cad ∝L |g− gc |

ν−2 ∝Lξ−1+2/ν ,
which results in a finite size scaling

Cad = L2/νf ((g − gc)L1/ν) (16)

for g> gc with a scaling function f (x). This type of standard
finite size scaling applies if the polymers are long enough
to avoid the crossover to the additional rigid rod finite size
corrections, which will be discussed in Sec. V.
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FIG. 2. Finite size scaling results for the exponent ν in D = 2 (squares) and
D = 3 (circles) and for ` = b (red), ` = 2b (blue), ` = 4b (black) as a function
of the stiffness parameter Lp/`. Polymer lengths used in finite size scaling are
N = 50–800, i.e., polymers are long enough to avoid the crossover to the rigid
rod regime discussed in Sec. V.

An analysis of simulation data (see also Ref. 26 and the
supplementary material of Ref. 26 for more details) shows
that the critical exponent measured by this approach indeed
changes from ν ≈ νF = 2 for Lp/` < 1 to ν ≈ νSF = 1
for Lp/` > 10, see Fig. 2. The contour lengths and potential
ranges used for finite size scaling in Fig. 2 are L/b = 50–800
and `/b = 1–4, respectively (therefore, for Lp/` < 100, the
deflection length Ld ∼ L1/3

p `2/3 is small compared to the con-
tour length, Ld < 20b< L, such that the rigid rod limit and
corrections from global rotational degrees of freedom to be
discussed below can be neglected). For infinite semiflexible
polymers, the crossover to the critical properties of flexible
polymer adsorption should happen for ξ > Lp. For finite semi-
flexible polymers, this crossover should remain unobservable
if L . Lp < ξ because the finite polymer cannot explore the rel-
evant fluctuation wavelengths >Lp. Figure 2 shows, however,
that the semiflexible criticality for Lp/` > 10 remains observ-
able even if much longer contour lengths up to L/Lp = 80 are
used for finite size scaling. This suggests that L has to be sub-
stantially larger than Lp in order to observe the flexible polymer
criticality.

D. Loop size distribution

The loop size distribution takes the form

ploop(l) ∼ l−χe−l/ξ (17)

with the loop exponent χ from Eq. (11). This loop size distri-
bution as derived from the transfer matrix or necklace models
only holds for large loops l exceeding any microscopic scales
set by the potential range ` such as the deflection length
Ld ∼ L1/3

p `2/3, which acts like an effective segment length
for a bound semiflexible polymer. Loop sizes are cut off
exponentially at the correlation length ξ. The shape of the
loop size distribution (17) including the exponential cutoff by
the correlation length follows from the transfer matrix treat-
ment of the problem.21,39 For a polymer segment of length
l starting at z = 0 and ending at z = 0, the number of
loop configurations (not touching the potential in between)
is given by the restricted partition sum Z0(z, z′, l) of a free

polymer as Z0(0, 0, L) ∼ l−χ. For an adsorbed polymer, the
transfer matrix treatment shows the relation |fad | = kBT/ξ
between the free energy per length (relative to f 0 = 0 for
the free polymer, fad < 0 in the adsorbed phase) and the cor-
relation length ξ of the transition.21,28,39 The total is, thus,
Zad(l) = exp(−fadl/kBT ). The probability to find a loop of size
l is

ploop(l) =
Z0(0, 0, L)

Zad(l)
, (18)

which is of the form (17) with ξ = kBT/|fad | (fad < 0).
From the larger return exponent χSF = 2 as compared

to χF = 3/2 or χSAW ' 1.412 (in d = 3), see Eq. (11), it
follows that the loop size distribution shifts its weight to
smaller sizes for stiffer polymers. For χ ≤ 2, the mean loop
size 〈l〉loop = (∫

∞
0 dllploop(l))/(∫

∞
0 dlploop(l)) diverges with ξ as

〈l〉loop ∼ ξ2−χ for 1< χ < 2 and 〈l〉loop ∼ ln ξ for χ = 2. For
finite polymers with L < ξ, loop sizes are cut off at the polymer
length L and we find 〈l〉loop ∼ L2−χ for χ < 2 and 〈l〉loop ∼ ln L
for χ = 2 accordingly. We conclude that loop sizes are much
smaller for semiflexible polymers, where we only find a weak
log-divergence close to desorption (χSF = 2) as compared to
flexible polymers (χF = 3/2), where 〈l〉loop ∼ L1/2 (for L < ξ).
This has also been observed in Ref. 5 in simulations.

For increasing loop size l, we expect to see a crossover
from a semiflexible behavior with χSF = 2 for loops l < Lp to
a phantom or self-avoiding flexible behavior for loops l > Lp.
The result χSAW ' 1.412 for the self-avoiding walk is in qual-
itative agreement with an exponent χSAW ' 1.3 observed in
simulations in Ref. 27 for the loop distribution of very long
self-avoiding semiflexible chains l > Lp. In order to probe the
regime l > Lp for l < ξ, L, it is necessary to have L, ξ� Lp,
which is the regime investigated in Ref. 27. Experimentally,
the flexible or self-avoiding regimes should be accessible, for
example, for long DNA-strands with L� Lp ' 50 nm close to
their adsorption transition. For polymers with L . Lp as for
F-actin as investigated in Ref. 5 or also for microtubules, we
rather expect to see the semiflexible behavior of adsorption
loops.

The exponents χF = 3/2 for flexible polymers and
χSF = 2 for semiflexible polymers from Eq. (11) are con-
firmed by our MC simulations of long polymers without
self-avoidance as shown in Fig. 3.

E. Tail size distribution

The corresponding length distribution of desorbed tails
follows from interpreting a tail as the beginning of a loop.
Therefore, the tail distribution follows from integrating over
all possible completions to a loop of size s > l,

ptail(l) =
∫ ∞

l
dsploop(s),

ptail(l) ∼



l−(χ−1) exp(−l/ξ), χ > 1

l−χ exp(−l/ξ), χ < 1
(19)

resulting in a tail exponent χF −1 = 1/2 for flexible polymers,
χSAW − 1' 0.412 for self-avoiding flexible polymers (in d
= 3), and χSF−1 = 1 for semiflexible polymers. The reduction
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FIG. 3. Loop and tail size distributions for flexible (κ = 0) and stiff poly-
mers (κ = 2000). The expected power law behavior [see Eqs. (17) and (19)]
on intermediate length scales b� l < ξ is marked as colored lines. We
obtain return exponents χF = 1.487(2) and χSF = 1.85(1) and correlation
lengths ξF/b = 1471(65) and ξSF/b = 589(21) via an iterative fit scheme
(see text).

of the exponent by one shows that tails are always much larger
than loops at the adsorption transition where ξ → ∞. Both
become limited by ξ in the adsorbed phase. For the mean tail
size 〈l〉tail = (∫

∞
0 dllptail(l))/(∫

∞
0 dlptail(l)), we find 〈l〉tail ∼ ξ

for 1 < χ < 2 and 〈l〉tail ∼ ξ/ ln ξ for χ = 2. For finite
polymers with L < ξ, the cutoff ξ is replaced by the length
L as for loops. Both for flexible and semiflexible polymers
of length L, tails are diverging as 〈l〉tail ∼ L with logarithmic
corrections for semiflexible polymers.

Comparing loop and tail sizes, we conclude that both flex-
ible and semiflexible polymers desorb by expanding tails over
the whole polymer. Loop sizes at the transition are, however,
significantly larger for flexible polymers. This explains the
simulation results in Refs. 5 and 27.

As for loops, we also expect for increasing tail sizes
l to see a crossover from a semiflexible behavior with an
exponent χSF − 1= 1 for loops l < Lp to a flexible behavior
for loops l > Lp with χF − 1= 1/2 in the absence of self-
avoidance and to χSAW − 1= 1 − νR,SAW for self-avoiding
flexible polymers.

Figure 3 shows our MC simulation results for the loop and
tail distributions of long flexible polymers (κ = 0) and semi-
flexible polymers (Lp/b' 4000, simulations in D = 2) without
self-avoidance and with N = L/b + 1 = 2000 beads close to
the transition such that the correlation length ξ . L and loops
and tails occur up to large sizes. We find χF = 1.487(2)
and χSF = 1.85(1) in qualitative agreement with the theo-
retical result, Eq. (11). We determine the exponents χ and
the corresponding correlation lengths ξ from fitting loop and
tail distributions simultaneously and iteratively using Eqs. (17)
and (19): We first fit the tail distribution with ξ as a fit param-
eter at fixed χ and then the loop distribution with fixed ξ and
with χ as a fit parameter until ξ and χ converge. We omit
small loop and tail sizes l/b < 40 for the fits (the potential
range is ` = 0.1b such that Ld ' 3.4, i.e., only loops l� Ld are
considered).

F. Analyzing loop and tail distributions

The loop and tail distributions not only give insight into
the desorption process but also the differences between flexible

FIG. 4. Free energies of adsorption |fad |(in units of kBT /Lp) from the tail
distribution data in Fig. 5 of the referred paper as a function of depletant
concentration together with a fit |fad | ∝ γ/ ln |γ | (yielding Cp ,m = 0.61 for
the transition point).

and stiff polymers. The exponential cutoff ptrain(l) ∝ exp(−l/ξ)
can also be used to determine the correlation length ξ and, thus,
the free energy of adsorption via the relation |fad | = kBT/ξ. The
free energy of adsorption is otherwise difficult to determine
experimentally.

Both loop and tail distributions (17) hold for loops l longer
than the deflection length Ld ∼ L1/3

p `2/3, which acts like an
effective segment length for the bound trains in the model.
Therefore, we propose to fit loop and tail distributions from
simulations or experiments using Eqs. (17) and (19) for l > Ld

using χ and ξ = kBT/|fad | as fit parameters. For simulations,
we performed such fits in Fig. 3.

We can also fit the experimental data of Ref. 5 on the tail
distribution of actin filaments adsorbed by depletion attrac-
tion. The quantity ζ from the simple exponential fit [Eq. (1) in
Ref. 5] should actually be the inverse correlation length 1/ξ
and, thus, related to the free energy (per length) of adsorp-
tion by ζ = |fad |/kBT [the experimental data do not allow
determination of the exponent χ in (19)]. We obtain free
energies of adsorption as |fad | ' 1.48, 8.76, 41.38 kBT/Lp for
the three data sets from Fig. 5 in Ref. 5 for depletant con-
centrations Cp = 0.61, 0.65, 0.72, see Fig. 4. The depen-
dence on the reduced distance to the adsorption threshold
γ ≡ (ε − εm)/εm = (Cp −Cp,m)/Cp,m is governed by the expo-
nent ν with νSF = 1 + log for χSF = 2, see Eq. (15), i.e.,
|fad | ∝ γ/ ln |γ |. The fit in Fig. 4 shows that the data for f ad are
consistent with this scaling law.

V. CRITICAL POTENTIAL STRENGTH
OF FINITE POLYMERS

We have shown that tail sizes diverge with the correlation
length ξ upon approaching the desorption transition. There-
fore, we expect finite size effects as soon as the correlation
length exceeds the polymer length, L < ξ. According to the
standard argument underlying finite size effects at a critical
point, a polymer of finite length L should desorb easier, i.e.,
at larger gc as soon as the correlation length ξ, which sets the
scale for the desorbed tail length, reaches the polymer length
L. In Ref. 41 it has been found that finite flexible lattice poly-
mers have gc(L)> gc, i.e., finite polymers desorb easier only
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for narrow potentials corresponding to small `� b, and
gc(L) < gc, i.e., finite polymers adsorb easier for wide poten-
tials `� b. The latter effect is due to the large number of
contacts with a wide attractive potential, which become more
frequent for a short polymer if one end is grafted to the potential
layer. Therefore, the direction of the finite size shift of gc(L) is
a subtle issue that depends on the potential range `. For desorp-
tion if ξ grows beyond L, finite size effects of the critical poten-
tial strength gc are calculated according to ξ(gc) = L, which
corresponds to replacing the free energy criterion f ad(gc)
= 0 by an apparent offset fad(gc) = kBT/ξ(gc) = −kBT/L.
Because ξ ∝ |g − gc |

−ν , this results in a finite size correction
gc(L) − gc ∝ L−1/ν , where the exponent ν is given by (15).
This type of finite size correction is the basis of the standard
finite size scaling that we employed in Eq. (16) and applies for
sufficiently long polymers.

Finite size corrections have to be modified, however, for
stiff or short polymers if the deflection length exceeds the
polymer length, Ld > L. Then the polymer acts effectively as
a rigid rod and internal conformational fluctuations become
negligible, whereas global rotational or translational degrees
of freedom become relevant. These are additional fluctuation
degrees of freedom, which tend to desorb the polymer leading
to an increase in gc(L). In general, finite size corrections from
a small number of global degrees of freedom can only be of
the order of gc(L) − gc ∼ kBT/L (eventually with logarithmic
corrections). Therefore, this type of finite size correction is
only relevant if ν ≤ 1, which is the case in the semiflexible and
stiff limits where νSF = 1 + log, see Eq. (15). For phantom
flexible polymers with νF = 2 or self-avoiding chains with
νSAW ' 2.43, on the other hand, finite size corrections from
the diverging correlation length ξ are dominating. Therefore,
we have to analyze finite size effects from global rotational and
translational degrees of freedom in the rigid and semiflexible
limits in the following.

A. End-grafted rigid rod

For a rigid rod, i.e., if Ld/L → ∞, result (5) for infinite
polymers gives gc,SF ∼ kBT/Ld ≈ 0, i.e., an infinite rigid rod
will adsorb for all g> 0 because all internal shape fluctua-
tions and, thus, entropic costs of confinement to the poten-
tial well are suppressed in the rigid limit. We neglected,
however, contributions from global translations and rota-
tions of the rigid rod in the derivation of the adsorption
threshold (5).

For finite rigid rods, adsorption is not a genuine phase
transition because the rod has only D � 1 rotational (if the
rod is axially symmetric) and D translational global degrees
of freedom. Nevertheless, we can define a characteristic
potential strength for adsorption either by the criterion that
the adsorbed length, Lad = −Had/g, exceeds half the polymer
length,5 〈Lad〉> L/2, or by a maximum in the second cumulant
Cad = 〈L2

ad〉 − 〈Lad〉
2 of the adsorbed length.

A rigid rod with one end attached to the boundary of the
attractive potential has only rotational degrees of freedom, and
the adsorbed length can be calculated exactly. If θ is measured
with respect to the positive z-axis, the polymer is out of the
potential well for 0 < θ < π/2 and inside the potential well
for a small angular interval 0 < θ̃ ≡ π/2 − θ < arcsin(`/L)

resulting in (β ≡ kBT )

Zr = SD/2 + SD−1

∫ arcsin(`/L)

0
d θ̃ cosD−1 θ̃eβgL, (20)

Fr = −kBT ln Zr

≈ − kBT ln

(
1
2

SD + SD−1
`

L
eβgL

)
, (21)

and

〈Lad〉 = −
∂Fr

∂g
=

L

1 + SD
2SD−1

L
` e−βgL

,

Cad = −kBT
∂2Fr

∂g2
= L2

SD
2SD−1

L
` e−βgL(

1 + SD
2SD−1

L
` e−βgL

)2
,

(22)

where SD = 2πD/2/Γ(D/2) is the surface of the unit sphere
in D dimensions, i.e., S3 = 4π, S2 = 2π, and S1 = 2 (and
β ≡ kBT ). Both the adsorption criterion 〈Lad〉> L/2 and the
maximum of the second cumulant Cad agree and give

gc,rod(L) =
kBT

L
ln

(
SD

2SD−1

L
`

)
(23)

with S3/2S2 = 1 in D = 3 and S2/2S1 = π/2 in D = 2. From
the derivation starting from the partition sum (20), we see that
gc ,rod(L) can also be re-written in terms of the ratio of the acces-
sible phase space volumes Zr ,0 = SD/2, where Had = 0 and
no potential acts, and Zr,g = SD−1

`
L eβgL, where the adsorption

potential acts,

gc,rod(L) =
kBT

L
ln

(
Zr,0/Zr,g(L)

)
. (24)

It is important to note that gc,rod ≈ 0 for L → ∞, i.e., desorption
of a rigid rod by global rotation fluctuations is only possible
for finite rods. For a rigid rod, gc ,rod(L) can also be interpreted
as the finite size corrections to the infinite rod result gc,SF ≈ 0.

MC simulation results in Fig. 1 confirm that the adsorp-
tion threshold of finite polymers indeed exhibits pronounced
finite size effects in the stiff limit and approaches gc,rod(L)
∼ (kBT/L) ln(L/`) from Eq. (23) in the stiff limit.

B. Crossover to the semiflexible regime

Upon reducing the ratio Ld /L by reducing stiffness or
increasing length, result (23) for a rigid rod should cross over
to result (5) for an infinite semiflexible polymer. Equating
gc,rod(L) = gc,SF ∼ kBT/Ld gives Ld ∼ L as the crossover
point. For Ld > L, we thus expect the adsorption of a very
weakly fluctuating almost rigid rod, whereas for L > Ld , there
should be a crossover to semiflexible result (5), for which col-
lisions with the adsorption potential boundaries on the scale
Ld are important. This crossover proceeds via three regimes
upon reducing the stiffness and, thus, the deflection length
Ld ∼ L1/3

p `2/3 and the persistence length Lp (Ld < Lp because
`� Lp) or increasing the length L:

(i) For large stiffness L < Ld < Lp [or N = L/b + 1
< (Lp/`)1/3(`/b)], an adsorbed rigid rod starts to bend
by thermal fluctuations but will have typically no ther-
mal collisions with the boundaries of the adsorption
potential of range `. Thermal fluctuations only give
rise to a finite effective thickness 〈z2〉

1/2
of the rod. For
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FIG. 5. Effective thickness `eff ≈ ` − cL3/2/L1/2
p of a stiff rod caused by

thermal fluctuations.

an end-grafted rod, this restricts the accessible rotation
angles θ (Fig. 5).

(ii) For reduced stiffness such that Ld < L < Lp [or
(Lp/`)1/3(`/b)<N < (Lp/`)(`/b)], thermal fluctuations
within the potential well are sufficient to induce
repeated collisions with the boundaries of the adsorp-
tion layer, which gives rise to an additional free energy
cost per length.

(iii) For Ld < Lp < L [or N > (Lp/`)(`/b)], the length over
which the orientation of the first segment grafted
to the potential well can persist, which is by def-
inition the persistence length Lp, becomes smaller
than the polymer length L. Then the global rotational
degree of freedom only affects a segment of length
Lp.

(i) For L < Ld , an adsorbed semiflexible polymer bends by
thermal fluctuations with 〈z2〉 ∼ L3/Lp < `2 such that
it typically has no thermal collisions with the bound-
aries of the adsorption layer of size `. The fluctuations
give the rigid rod, however, an increased effective thick-
ness 〈z2〉

1/2
, which restricts the range of rotation angles

where the polymer fits without bending into the poten-
tial well to 0 < θ−π/2 < arcsin(`eff/L) with a reduced
effective width

`eff = ` − 〈z
2〉

1/2
≈ ` − cL3/2/L1/2

p , (25)

where c is a numerical prefactor (Fig. 5).
Using the effective potential width (25) in the

rigid rod result (23) gives a T -dependent shift of the
adsorption threshold,

gc(L) = gc,rod(L) +
kBT

L
ln *
,
1 + c

L3/2

L1/2
p `

+
-

. (26)

For L� Ld , we can expand the logarithm, and the shift
becomes gc(L) − gc,rod(L) ≈ ckBTL1/2/L1/2

p ` ∝ L−1/2
p .

(ii) If Ld < L < Lp, thermal fluctuations are sufficient to
induce repeated collisions with the boundaries of the
adsorption potential. This increases the free energy f ad

per length of a polymer with 0 < θ − π/2 < arcsin(`/L)
by an additional entropic contribution for the confine-
ment to the potential well of width `,

fad ≈ −g + akBT
1

`2/3L1/3
p

. (27)

This contribution stems from restricting the inter-
nal shape fluctuations. The prefactor of the confine-
ment free energy has been measured in simulations as
a' 1.132 for a hard confinement to a width `, which
should be appropriate for large g� gc. At g = gc ,SF

the free energy f ad should vanish; this suggests that a
= cSF with cSF as in (6) in the vicinity of the transi-
tion. Both a' 1.1 for g� gc and a = cSF for g ≈ gc are
comparable and of order unity. Estimate (27) is also
compatible with an exponent ν = 1 of the adsorption
free energy |fad | ∼ kBT/ξ ∝ |g − gc,SF |

ν close to the
transition, i.e., by neglecting the logarithmic correction
in ν = νSF = 1 + log, see Eq. (15). Therefore, we can
approximate the partition sum of the internal deforma-
tion degrees of freedom of an adsorbed semiflexible
polymer by Zi(L) = e−βfadL, which replaces the rigid
rod Boltzmann factor e βgL.

Replacing g in the free energy (21) of a rigid
rod by the adsorption free energy f ad results in a
critical potential strength for a finite semiflexible
polymer

gc(L) = gc,rod(L) + akBT
1

`2/3L1/3
p

= gc,rod(L) + gc,SF . (28)

This result holds independently of the adsorption crite-
rion [〈Lad〉(gc) = L/2 or based on the second cumulant].
The critical potential strength (28) can be interpreted
in two ways: first as the rigid rod result (23), which
is shifted by an offset identical to the semiflexible
result gc ,SF from Eq. (5). Therefore, the temperature-
induced shift with respect to the rigid rod result scales
as gc(L) − gc,rod(L) ∝ L−1/3

p , in the regime L < Ld ,

which differs from the scaling gc(L)−gc,rod(L) ∝ L−1/2
p

for L > Ld , see Fig. 6. Second as the semiflexible result
gc ,SF from Eq. (5) for an infinite polymer, which is
shifted by finite size corrections due to the global rota-
tional degree of freedom and given by the rigid rod
result gc,rod(L) ∝ L−1 ln L.

Additional finite size corrections arise from the
internal shape fluctuations for ξ > L, the shift of which
will also give a shift ∆gc(L)∼ kBTL−1 ln L because
ν = νSF = 1 + log, see Eq. (15). They correspond to an
additional contribution ±kBTL−1 ln L to f ad in Eq. (27)
from fluctuations in a finite size system. Therefore, we
expect gc(L) = αgc,rod(L)+gc,SF with a numerical pref-
actor α to the rigid rod correction to the semiflexible
result gc ,SF from Eq. (5). Therefore, for Lp < L < Ld ,
it should be possible to find a numerical constant
α ∼ O(1) such that gc(L)−αgc,rod(L) ∼ gc,SF collapses
onto the length-independent infinite semiflexible poly-
mer result gc ,SF from Eq. (5). Our simulation data in
Fig. 6 are well described by α ' 0.5, suggesting that
finite size effects from internal fluctuations and from
the rigid rod degrees of freedom become comparable
in this regime.

(iii) If Lp is further reduced below L such that L > Lp, rota-
tions of the first segment only affect the polymer over
a persistence length Lp. Then the free energy is

F(L) = −kBT ln Z(Lp) + (L − Lp)fad,

where Z(Lp) is the partition sum of an end-grafted seg-
ment of length Lp > Ld [as in regime (ii)] and f ad is the
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FIG. 6. Finite size effects for various potential widths ` and contour lengths for an end-grafted semiflexible polymer. For shorter chains (N = L/b + 1 = 10,
20, 30), finite size effects are best described by the rigid rod with an increased effective thickness using Eq. (26) (A with `/b = 1, 0.1, 0.01), which allows data
collapse onto one curve ∝ L−1/2

p . Longer chains (N = L/b + 1 = 50, 100, 200) are best described by the rigid rod with additional entropic free energy cost using
Eq. (28) (B with ` = 0.1b). Subtracting αgc,rod(L) (with α ≈ 0.5) from the measured critical potential strengths recovers the critical potential strength of the
infinite chain. The crossover takes place when L becomes shorter than the deflection length Ld [for L < (Lp/`)1/3(`/b)].

adsorption free energy per length of the infinite poly-
mer. The adsorbed length is given by 〈Lad〉=−∂F/∂g,
and using the criterion 〈Lad〉=L/2 we obtain an adsorp-
tion threshold, which approaches, for Lp = L/2, the
semiflexible result gc ,SF for an infinite polymer. There-
fore, finite size effects from the global rotational
degrees of freedom become irrelevant for Lp < L/2.
Then we only expect small finite size effects from inter-
nal deformation degrees of freedom if ξ > L, which
also scale as ∆gc(L)∼ kBTL−1 ln L because ν = νSF

= 1 + log.

C. Semiflexible polymer confined by two hard walls

Alternatively, we can consider the confinement by a sec-
ond parallel non-adsorbing hard wall at a distance Lz > ` in
order to avoid that the polymer diffuses away. This type of
confinement has been considered in Ref. 5. For a completely
rigid rod, we calculate the ratio of the phase space volumes
Zr ,0, where Had = 0, and Zr ,g, where the adsorption poten-
tial acts, and then apply Eq. (24) as above for the end-grafted
rod. Contrary to the end-grafted polymer, where the first bead
is held fixed, the prefactor for a free polymer is ∝ 1/Nb,
since the potential acts on N = (L + 1)/b beads, where the
entropic confinement depends on the actual contour length
L = (N � 1)b.

Now the rod can perform global rotations and transla-
tions. We parametrize global rotations by the angle θ (or
θ̃ ≡ π/2 − θ with 0 < θ, θ̃ < π/2 for non-polar rods) and
global translations by the coordinate z of the rod center (rota-
tions within the adsorbing plane or translations parallel to the
adsorbing plane play no role). The phase space volume Zr ,0

is (for `� Lz) simply the partition sum of a free rod between
two walls with distance Lz, which is obtained from the obser-
vation that only angles 0 < θ̃ < arcsin(Lz/L) are possible and
that, for a given angle θ̃, only z-coordinates, z > (sin θ̃)L/2 and

z < Lz − (sin θ̃)L/2, are accessible,

Zr,0 = SD−1

∫ arcsin Lz/L

0
d θ̃ cosD−1 θ̃(Lz − L sin θ̃)

≈ SD−1
L2

z

2L
. (29)

Likewise, phase space volume Zr ,g is approximately the par-
tition sum of a polymer confined between two walls with
separation `, i.e., Zr,g ≈ SD−1`

2/2L, resulting in

gc,rod(L) =
kBT
Nb

ln
(
Zr,0/Zr,g(L)

)
≈

2kBT
Nb

ln

(
Lz

`

)
(30)

(which deviates by a factor of 2 from the result given in
Ref. 5). MC simulation results in Fig. 7 confirm that the
adsorption threshold of finite polymers between two hard

FIG. 7. (30) Finite size effects for a free semiflexible polymer (with N = L/b
+ 1 = 10, 20, 30) confined between two walls separated by a distance Lz
= 10b. In front of one wall, there is an attractive square-well potential with
width ` = 0.1b. The critical potential strength is best described by Eq. (31)
(solid curves), which shows the crossover from an infinite semiflexible chain
[Eq. (5), solid black line] to a rigid rod [Eq. (30), dashed horizontal lines].
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walls indeed approaches gc ,rod(L) from Eq. (30) in the stiff
limit.

For Lz ∼ L the result becomes similar to (23) for an end-
grafted polymer. The global degrees of freedom involved in
(30) are, however, rotations and translations, whereas they are
only rotations for the end-grafted rod. Also corrections for
finite temperatures are similar and go through the same three
regimes for decreasing Lp.

(i) For L < Ld , the polymer is a weakly fluctuating rigid
rod with an increased effective thickness leading to
an effectively decreased potential width `eff as in
Eq. (25). Using `eff in the rigid rod result (30) gives
a T -dependent shift

gc(L) = gc,rod(L) +
2kBT

L
ln *
,
1 + c

L3/2

L1/2
p `

+
-

, (31)

which, for L� Ld , gives a shift gc(L) − gc,rod(L)
∼ kBTL1/2/L1/2

p ` ∝ L−1/2
p as for end-grafting.

(ii) For Ld < L < Lp, there is an additional entropic free
energy cost due to repeated collisions with the bound-
aries, see Eq. (27). This leads to the same shift as in the
end-grafting result (28).

(iii) For L > Lp, the overall orientation of the polymer is lost
and finite size effects only come from the global trans-
lational degree of freedom. If the size of the polymer
as measured by its end-to-end distance 〈R2〉

1/2
is of the

order of Lz or larger, we do not expect finite size cor-
rections from global translation. For Lz > 〈R2〉

1/2
, finite

size corrections from global translation will be of the
order of gc(L) − gc,SF ∼ kBT ln(Lz/〈R2〉

1/2
).

D. Finite size effects in the flexible limit

As discussed above, in the flexible regime Lp� `, finite
size corrections from internal shape fluctuations result in a
shift |gc(L) − gc | ∝ L−1/ν with ν = νF = 2 if ξ > L.

There is, however, an additional source of finite size
corrections associated with a finite potential range `. Upon
decreasing Lp, the mean square radius 〈R2〉 ∼ 2LpL as given
by the flexible chain result with an effective segment length
of b ≈ 2Lp becomes smaller than the square of the potential
range for L < `2/2Lp. Then, the entire chain can be accommo-
dated in the potential well without entropic free energy costs
resulting in gc ≈ 0 for L < `2/2Lp. Therefore, in the flexible
limit, the finite size result for gc should approach the infinite
polymer result gc ,F from Eq. (7) from below.

VI. FINITE SIZE SCALING PROCEDURE

Based on our results for the finite size corrections of the
adsorption threshold, we obtain a method to analyze adsorption
data for finite semiflexible polymers such as filamentous actin.
We assume that the adsorption threshold gc(L) has been deter-
mined by experiment or in simulations for finite polymers and
want to demonstrate how to fit to the theory presented above,
which will allow us to extract possible fit parameters such as
the persistence length Lp or the potential range `.

Our above results in the semiflexible regime L < Lp [Eqs.
(23) and (26) for case (i) L < Ld and Eqs. (30) and (31) for
case (ii) Ld < L < Lp] show that global rotational and transla-
tional degrees of freedom play a dominating role for finite size
corrections in this regime. In order to correct for these effects,
we can subtract the rigid rod result gc ,rod(L) and continue with
an analysis of the data for gc(L) � gc ,rod(L).

We then have to distinguish between case (i) L < Ld and
case (ii) Ld < L < Lp. In case (i) we fit the shifted data gc(L)
� gc ,rod(L) according to (23) and (30) with gc(L) − gc,rod(L)
∼ kBTL1/2/L1/2

p ` for both end-grafting and wall-confinement.
In case (ii) we fit the shifted data gc(L) � gc ,rod(L) according to
(26) and (31) using gc(L) − gc,rod(L) ∼ gc,SF ∼ kBT/`2/3L1/3

p .
In both cases, these fits should enable us to extract material
parameters such as the persistence length Lp.

A similar fit procedure [using only case (ii)] has actually
been used in Ref. 5 to analyze data but on phenomenological
grounds. The arguments presented in this paper systemati-
cally justify this technique and show the necessary distinction
between case (i) of an essentially rigid rod for L > Ld and case
(ii) of a semiflexible polymer for Ld < L < Lp. In Ref. 5 the
use of case (ii) was appropriate because the potential range `
and, thus, Ld were small.

VII. DISCUSSION AND CONCLUSION

In this paper, we unraveled the different adsorption
regimes for finite semiflexible polymers if persistence length
Lp, potential range `, and the finite contour length L are
changed. An overview of all the regimes is given in Table I.
Finite semiflexible polymers exhibit three distinct regimes for
the adsorption potential strength: (i) a flexible or Gaussian
regime if the persistence length is smaller than the adsorption
potential range, (ii) a semiflexible regime if the persistence
length is larger than the potential range, and (iii) for finite poly-
mers, a novel crossover to a rigid rod regime if the deflection
length exceeds the contour length.

Our main result is the novel adsorption regime (iii)
for finite stiff polymers if the deflection length Ld exceeds
the contour length, L < Ld ∼L1/3

p `2/3, see Fig. 1. Then the
adsorption threshold is governed by the global rotational and
translational degrees of freedom of a finite rigid rod. For
end-grafted polymers, we find that in the rigid rod limit
gc,rod(L)∼ (kBT/L) ln(L/`), see Eq. (23). Upon reducing the
stiffness or increasing the length, the threshold crosses over
to the semiflexible regime with gc,SF ∼ kBT/Ld ∼ kBT/L1/3

p `2/3

according to (5), which can be described by Eq. (28). For
adsorption in confinement between two walls, we find an anal-
ogous result, see Fig. 7. Based on our results, we can derive
a finite size scaling procedure to analyze adsorption data on
finite semiflexible polymers.

In Ref. 5 the adsorption of the semiflexible polymer,
F-actin, has been studied recently. For F-actin, contour and
persistence lengths L ∼Lp ∼ 10–20 µm are typical. Depletion
potentials in Ref. 5 have a range ` ∼ 10 nm. Other possi-
ble attractive potentials are electrostatic interactions with
` ∼ 1 nm at physiological conditions for monovalent ions
and larger ranges ` ∝ 1/z

√
csalt at lower salt concentrations

or higher valencies z, which gives similar ranges as for
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depletion. Therefore, we are in the regime Ld� Lp ∼L for
F-actin experiments, and the adsorption threshold should be
described by the semiflexible result for an infinite polymer,
gc,SF ∼ kBT/Ld ∼ kBT/L1/3

p `2/3 according to (5). Only rela-
tively small finite size corrections of the rigid rod form accord-
ing to (28) should be observable according to our theory. This
is in accordance with the results in Ref. 5.

The novel rigid rod regime with a pronounced length-
dependence of the adsorption threshold (23) should be acces-
sible, for example, for short microtubules. For a microtubule
persistence length Lp ∼ 5 mm and similar potential ranges
` ∼ 10 nm as for F-actin, we find Ld ∼L� Lp for contour
lengths L ∼ 1 µm.

Moreover, we presented a theory for the loop and tail dis-
tributions of flexible and semiflexible polymers and the critical
exponents governing these distributions close to the adsorp-
tion threshold. Our results (17) for loops and (19) for tails
explain that, close to the transition, semiflexible polymers have
significantly smaller loops and both flexible and semiflexible
polymers desorb by expanding their tail length. This agrees
with simulation observations in Refs. 5 and 27. The tail distri-
bution allows us to directly extract the free energy per length of
adsorption f ad from the experimental data presented in Ref. 5,
see Fig. 4.
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36S. Köster, J. Kierfeld, and T. Pfohl, Eur. Phys. J. E 25, 439 (2008).
37P. Gutjahr, R. Lipowsky, and J. Kierfeld, Europhys. Lett. 76, 994 (2006).
38J. Kierfeld, O. Niamploy, V. Sa-Yakanit, and R. Lipowsky, Eur. Phys. J. E

14, 17 (2004).
39J. Kierfeld and R. Lipowsky, J. Phys. A: Math. Gen. 38, L155 (2005).
40H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer

Physics, and Financial Markets, 3rd ed. (World Scientific, River Edge, NJ,
2004), based on a Course on Path Integrals, Freie Univ. Berlin, 1989/1990.

41L. I. Klushin, A. A. Polotsky, H.-P. Hsu, D. A. Markelov, K. Binder, and
A. M. Skvortsov, Phys. Rev. E 87, 022604 (2013).

42S. Bhattacharya, V. G. Rostiashvili, A. Milchev, and T. A. Vilgis, Macro-
molecules 42, 2236 (2009).

43R. Lipowsky, Z. Phys. B: Condens. Matter 97, 193 (1995).
44P. Grassberger, J. Phys. A: Math. Gen. 38, 323 (2005).
45C. Vanderzande, Lattice Models of Polymers, Cambridge Lecture Notes in

Physics (Cambridge University Press, 1998).
46J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. B 21, 3976 (1980).

http://dx.doi.org/10.1021/ma60059a011
http://dx.doi.org/10.1021/ma990263h
http://dx.doi.org/10.1103/physreve.48.r1642
http://dx.doi.org/10.1039/c5sm01457c
http://dx.doi.org/10.1039/c5sm01457c
http://dx.doi.org/10.1016/s0370-1573(03)00118-2
http://dx.doi.org/10.1002/bip.1979.360180511
http://dx.doi.org/10.1209/0295-5075/8/7/006
http://dx.doi.org/10.1103/physreva.40.6124
http://dx.doi.org/10.1088/0305-4470/23/22/002
http://dx.doi.org/10.1002/mats.1993.040020201
http://dx.doi.org/10.1002/mats.1993.040020201
http://dx.doi.org/10.1063/1.471175
http://dx.doi.org/10.1021/ma950400k
http://dx.doi.org/10.1063/1.474834
http://dx.doi.org/10.1007/s101890070022
http://dx.doi.org/10.1021/ma000493s
http://dx.doi.org/10.1063/1.1379533
http://dx.doi.org/10.1140/epje/i2002-10092-2
http://dx.doi.org/10.1209/epl/i2003-00139-0
http://dx.doi.org/10.1103/physreve.67.051108
http://dx.doi.org/10.1103/physrevlett.97.058302
http://dx.doi.org/10.1088/1742-5468/2009/11/p11002
http://dx.doi.org/10.1063/1.3452322
http://dx.doi.org/10.1063/1.4813021
http://dx.doi.org/10.1021/ma400112q
http://dx.doi.org/10.1007/bf01009436
http://dx.doi.org/10.1088/0305-4470/26/22/005
http://dx.doi.org/10.1021/ma00242a015
http://dx.doi.org/10.1103/physreve.60.4671
http://dx.doi.org/10.1088/0305-4470/34/29/301
http://dx.doi.org/10.1140/epje/i2004-10088-x
http://dx.doi.org/10.1209/0295-5075/78/38001
http://dx.doi.org/10.1142/s1793048007000374
http://dx.doi.org/10.1140/epje/i2007-10312-3
http://dx.doi.org/10.1209/epl/i2006-10390-3
http://dx.doi.org/10.1140/epje/i2003-10089-3
http://dx.doi.org/10.1088/0305-4470/38/9/l01
http://dx.doi.org/10.1103/physreve.87.022604
http://dx.doi.org/10.1021/ma8024392
http://dx.doi.org/10.1021/ma8024392
http://dx.doi.org/10.1007/bf01307470
http://dx.doi.org/10.1088/0305-4470/38/2/003
http://dx.doi.org/10.1103/physrevb.21.3976

