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Chapter 1

Introduction

As opposed to type-I superconductors which have a direct phase transition from the su-

perconducting Meissner phase to the normal phase, type-II superconductors exhibit the

so-called mixed phase [Figure 1.1]. Upon increasing the magnetic field above a lower crit-

ical field Hc1, the diamagnetic Meissner effect ceases to be complete, and the magnetic

field penetrates the sample in form of vortices or flux lines carrying each a magnetic flux

quantum φ0 = hc/2e. At the upper critical field Hc2, the Meissner effect is lost and the

transition to the normal phase takes place. As predicted by Abrikosov [1], the vortices

arrange themselves at low temperatures in a triangular Abrikosov lattice, which bears his

name since. After the discovery of the high-Tc superconductors by Bednorz and Müller

in 1986 [2], theoretical and experimental interest in the properties of the vortex lattice

strongly revived. In the first place, this is due to the technological importance of the new

class of materials discovered by Bednorz and Müller, which opens up a possibility to gen-

erate dissipation-free currents at relatively high temperatures (up to 125K, i.e., above the

temperature of liquid nitrogen). Unfortunately, as we will see, a current causes motion

of vortices in the mixed phase, which leads to dissipation. In order to produce a techno-

logical useful high-Tc superconductor, disorder has to be introduced, i.e., defects in the

superconductor that “pin” flux lines and hinder them from moving. These processes re-

quire a more profound theoretic understanding of the physics of flux lines in a disordered

superconductor, to which this thesis hopefully can contribute a little.

From the phenomenological point of view, that we want to take throughout this the-

sis, superconductors can be described by the Ginzburg-Landau theory [3]. This theory

starts from a free energy functional describing the superconducting electrons in terms of

a complex order parameter Ψ, that can be interpreted as the macroscopic wave function

of the condensate of Cooper pairs and that couples to the electromagnetic vector potential

A. In the mean-field theory, minimizing the Ginzburg-Landau functional, one finds the

superconductor in the ideal Meissner phase at low temperatures and low fields [Figure

1.2]. The superconductor exhibits a perfect diamagnetism with A = 0, and all electrons

1
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Φ0

Hc2H> Hc2 Hc1>H> Hc1>H

B=0

B

normal phase mixed phase Meissner phase
ρ>0 ρ=0 ? ρ=0

Figure 1.1: The three phases of a type-II superconductor. Left: In the normal phase

at H > Hc2, the magnetic field penetrates the sample and the resistivity is non-zero

ρ > 0. Right: In the Meissner phase at H < Hc1, the magnetic field is excluded and the

superconductor is a diamagnet with ρ = 0. Middle: In the mixed phase at Hc2 > H > Hc1,

magnetic flux penetrates in form of flux lines carrying each an elementary flux quantum

Φ0.

are paired into Cooper pairs and condensed into one quantum state such that |Ψ| = 1.

Much of the physics contained in the Ginzburg-Landau functional is determined by the

interplay of two basic length scales. The magnetic penetration depths λ is the typical scale

for variations of A, and the coherence length ξ gives the correlation length of the Cooper

pairs and sets the scale for variations in the order parameter Ψ. In particular, the ratio

λ/ξ determines the “sensitivity” of the superconductor to fluctuations allowing a local

penetration of the magnetic field and reduction of the order parameter: For λ/ξ > 1/
√

2,

the superconductor becomes of type-II, and magnetic flux penetrates above a lower critical

field Hc1(T ) [Figure 1.2] in form of the flux lines. Increasing the magnetic field further,

more flux lines penetrate, and at the upper critical field Hc2(T ), the flux lines start to

overlap and the superconductivity is lost [Figure 1.2]. The ratio Hc2/Hc1 ∝ (λ/ξ)2 is given
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by the two basic length scales of the superconductor. The signatures of high-Tc materials

are extremely large penetration depths λ and short coherence lengths ξ with λ/ξ ≈ 100, and

a very pronounced anisotropy due to a layered crystal structure such that λ can change by

a factor of 100 depending on the direction probed in the experiment. In addition, we have

high transition temperatures typically around 100K. From these values alone, it is evident

that virtually the whole region of the phase diagram, that is relevant for applications, is

dominated by the presence of flux lines and, moreover, strong fluctuation effects of the

vortex lattice can be expected. These fluctuations can be caused by thermal excitation

of the vortices or by disorder, on which we focus in this thesis. An understanding of the

disorder-induced fluctuation effects, which lead to the above mentioned pinning of the flux

lines, is necessary for any technological progress in this field.

Hc1

Hc2

phase
Meissner-

mixed phase
(Abrikosov lattice)

H

T

liquid

liquid

normal

Figure 1.2: Schematic phase diagram of a pure type-II superconductor. Mean-field theory

predicts an ideal Meissner phase for H < Hc1 and a mixed phase with an Abrikosov vortex

lattice for Hc1 < H < Hc2. Thermal fluctuations melt the lattice into a flux liquid beyond

the indicated melting line.

The Abrikosov vortex lattice of the mixed phase can be described in wide parts of

the phase diagram much like a crystal by an elasticity theory in the displacements of the

lines with elastic moduli, which can be calculated from the Ginzburg-Landau theory [4].
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Though even less microscopic than the Ginzburg-Landau theory, this is a very fruitful way

of looking at the Abrikosov lattice and allows a quite detailed study of fluctuation effects.

Virtually all calculations performed in this thesis are based on such an elastic description

of the flux line lattice, and the whole first part of this work is devoted to estimate the

region in the phase diagram where it is internally consistent in the presence of disorder.

First, let us consider a clean sample of a high-Tc superconductor. The mean-field phase

diagram, represented by the lines Hc1(T ) and Hc2(T ) in Figure 1.2, has to be strongly

modified already due to the presence of thermal fluctuations. When the vortex lattice

becomes “soft”, or the shear modulus small, it is likely to melt by thermal fluctuations.

This happens for low vortex densities near Hc1, where the interactions become weak (like

in an “ordinary” crystal), or close to Hc2, where the order parameter φ is reduced and

thermal fluctuations are strong [Figure 1.2].

For technological aspects, the “performance” of a superconductor is mainly determined

by its dynamic properties when an external current j is applied. Also from a theoretical

point of view, the behaviour of the resistivity ρ clearly marks the differences between the

phases in a clean sample. In the normal conducting phase, we have a finite resistivity ρ > 0

as in the flux liquid, which turns out not to be thermodynamically distinct from the normal

phase due to the strong vortex motion leading to 〈Ψ〉 = 0. By contrast, we find a genuinely

superconducting state with ρ = 0 in the Meissner phase. However, this is not the case in

the mixed phase: An applied current causes a Lorentz force, since the vortex lattice carries

a magnetization B = (#vortices) ·Φ0. Under the action of the Lorentz force fL = j×B/c,

the flux lines start to move in the direction of fL. Moving flux lines with a velocity v

generate in turn an electric field E = B × v/c. Because j ‖ E, dissipation appears. This

mechanism causes a non-zero resistance ρ > 0 so that an ideally clean sample of a high-Tc

superconductor would be of very limited use: Due to the large extent of the mixed phase

(Hc2/Hc1 ∼ O(104)), one has a non-zero resistivity in the parts of the phase diagram, that

are of interest with regard to novel applications.

However, dissipation can be prevented when the sample is disordered, i.e., it contains

defects such as point impurities, columnar defects from heavy-ion irradiation or twin-

planes. Defects represent favorable regions for the normal-conducting cores of the flux lines

and thus exert a pinning force fpin on the vortices. As soon as fpin > fL, the flux lattice is

pinned and dissipation stops. The equilibrium properties of the pinned flux line lattice can

be described as “glassy” in the framework of the theory of disordered systems and have led

to the term “vortex glass phase” for this thermodynamic state of the disordered flux line

array [5]. Another characteristic of the high-Tc materials is their stoichiometry, which is

such that the presence of oxygen vacancies in the crystal, and thus pinning of flux lines, is

an intrinsic property of these materials, and their technological usefulness is reestablished.

These oxygen vacancies are in most of the cases the dominant source of disorder and can

be theoretically treated as weak point defects. Throughout this thesis, we are dealing only
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with such point defects and do not consider higher dimensional defects such as columnar

defects. In combination with the above mentioned elasticity theory for the pure flux line

lattice, this allows to describe the mixed state of a high-Tc on a phenomenological basis as

what has been termed in the theory of disordered systems a pinned elastic manifold.

The concept of the pinned elastic manifold provides a link between theory and experi-

ment where, on the one hand, one of the most-studied models in the theory of disordered

systems can be applied to the phenomenology of vortex arrays in high-Tc superconductors

and, on the other hand, almost the entire theoretical field becomes experimentally acces-

sible. It is also the starting point for the work performed in this thesis. From a statistical

mechanics point of view, in particular regarding the phase diagram and possible phase

transitions of the vortex lattice, it is most important to identify the different universality

classes of pinned elastic manifolds, which are characterized by physical properties probing

the asymptotic large scale behaviour. For example, the technologically relevant depinning

current jc = cfpin/B of the flux line lattice (the current where fL starts to exceed fpin)

is such a quantity for weak disorder. With regard to their universal large scale features,

elastic manifolds in a random medium can be characterized by only a few parameters,

which are (i) the dimensionality d of the manifold, (ii) its codimension, i.e., the number n

of components of the displacement-field, and (iii) its coupling to the disorder.

A large variety of combinations of these three parameters can be realized in a disor-

dered superconductor [4], of which a few are considered in this work. The most obvious

application is certainly the Abrikosov lattice itself with d = 3 and n = 2. However, as we

will work out in more detail in chapter 3, the coupling to the disorder has to be treated

in three different ways depending on the size of the regions under consideration. On the

shortest scales, disorder can be modeled as short-range correlated random forces, and the

instability of the Abrikosov-lattice with respect to arbitrarily weak point disorder below

d = 4 has first been demonstrated by Larkin [6] within this approximation. On larger

scales, disorder is overestimated in such a model, and the so-called “random manifold”

model with a short-ranged disorder potential in the displacements is appropriate. On the

largest scales, the periodicity of the Abrikosov lattice has to be retained, and the elas-

tic manifold is modeled as “living” in a periodic random medium. This regime is called

“Bragg Glass” or charge density wave regime. Such periodic random media are what is

considered mainly in this thesis, for d = 3 in part I and for d = 2 in part II. There,

we study extensively the case d = 2 and n = 1 in a periodic random medium, which is

experimentally realized for planar arrays of vortex lines. Because of the intrinsic layering

of most of the high-Tc superconductors, planar arrays of vortex lines occur when the layers

of the material are parallel to the applied magnetic field. Another important realization

of pinned elastic manifolds in a superconductor occurs close to Hc1, where the flux line

density is low enough that we can approximate the vortex array by a collection of single

flux lines, which are pinned elastic manifolds in d = 1 or, in other words,directed paths in
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a random medium.

phase
Meissner- Hc1

Hc2

H

T

liquidVortex-Glass

normal

pinned liquid

dilute glass

Figure 1.3: Schematic phase diagram of a high-Tc superconductor in the presence of point

disorder as proposed by a description as pinned elastic manifold.

Let us summarize very briefly the basic results of the theory of pinned elastic manifolds

regarding the phase diagram for a disordered superconductor (as compared to the clean

limit [Figure 1.2]) [4]. As already mentioned, the Abrikosov lattice has been shown to

be unstable with respect to disorder [6] and is believed to be replaced by a pinned glassy

phase, the vortex glass phase [5] [Figure 1.3], which is in the framework of the theory of

pinned elastic manifolds the above mentioned Bragg glass phase. By the term “glassy”

one usually refers quite losely to a bunch of properties all of which are connected in one

or the other way to some anomalous fluctuations in the free energy on large scales due to

the disorder. These fluctuations give rise to energy barriers U between different low-lying

metastable configurations of the disordered flux line array. For the dynamics it is this

property which reestablishes the vanishing linear resistivity. Driving the flux lines with a

small current j probes the large scale properties, and one finds diverging energy barriers

U(j) ∼ Uc(jc/j)
µ for small j with an exponent µ > 0. With an activated dynamics, this

leads directly to a “glassy” non-linear current voltage relation V ∝ exp [−(Uc/T )(jc/j)
µ]

such that ρ(j ↓ 0) = 0. Such a behaviour is as well obtained for single flux lines so that
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also in the regime of low flux line densities close to Hc1, we expect to find some “diluted

vortex glass” [Figure 1.3]. On the other hand, the liquid phase close to Hc2 is essentially

stable to weak disorder because entropic effects dominate over the pinning energies. This

short overview leads to the schematic phase diagram in Figure 1.3.

Pinned elastic manifolds are one of the most-studied objects in the statistical physics

of disordered systems [7]. Apart from superconductors, they occur in many other physical

systems, among which are domain walls in disordered magnetic systems, pinned charge

density waves and, for d = 2, numerous applications in surface physics (one of the latter

will be studied in detail in chapter 11). A good deal of this knowledge will be available for

a theoretical study of the properties of the disordered flux line array, leading to a phase

diagram as depicted in Figure 1.3, if the treatment by an elasticity theory is internally

consistent, in particular in the presence of disorder. This consistency may break down if

the topological order of the vortex lattice – that is tacitly assumed to be intact in writing

down an elastic energy – is destroyed by topological defects of the line lattice such as

dislocation loops. In the pinned glassy phase of the flux line lattice, dislocation loops may

occur when the flux lines optimize their configuration but are pinned by the impurities in

the sample at the same time. Such an instability with respect to dislocation loop formation

has been conjectured by Fisher, Fisher and Huse [8] for the vortex glass phase in d = 3,

however, quantitative arguments have not been brought forth in past approaches [8, 9].

Part I is devoted entirely to this important subject, and we will find a simple Lindemann-

like criterion giving the range of applicability of the elastic approach in the presence of

point disorder or, in other words, the region in the phase diagram 1.3, where the vortex

glass is indeed a topologically ordered Bragg glass [see Figure 6.1].

In part II, we consider in detail the glassy equilibrium properties of the two-dimensional

random field XY model, which corresponds in the above classification to d = 2, n = 1 and

a periodic randomness. As mentioned above, it models a disordered planar array of vortex

lines and is the only system for which the existence of a glassy low-temperature phase

can be shown analytically due to the topological perfection of a planar system. It were

essentially the properties of the low-temperature phase of the two-dimensional random

field XY model, which led to the first conjecture of a vortex glass phase by Fisher [5].

Though it is one of the simplest possible models describing many interacting flux lines in

a random medium, there is only a general agreement regarding the existence of a glassy or

pinned low-temperature phase. However, the properties of this glassy phase are less clear

and an agreement regarding for example the basic question of the shape of displacement-

correlations has not yet been reached. These issues will be the subject of part II.
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Topological Order
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of High Temperature

Superconductors
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Chapter 2

Introduction

The first part of this work is devoted to the issue of topological defects, in particular

dislocations, in a flux line (FL) array in the presence of “point disorder”, i.e., point defects

exerting pinning forces on the FLs. This issue is of special interest with regard to the nature

of the disordered FL array. Whereas it is well-known [6] that the FL array is unstable to

weak point disorder beyond the Larkin length, the nature of the FL array on larger scales is

still subject of intense studies [4]. It has been conjectured that the FL array is collectively

pinned, forming a vortex glass (VG) phase [5, 8, 10, 11] with zero linear resistivity at low

temperatures. This conjecture is supported by a number of experiments on disordered

samples of high-Tc superconductors [12, 13, 14, 15, 16], where a continuous transition to a

phase with zero linear resistivity was found upon cooling. However, Refs. [8, 10, 11] make

very different statements regarding the positional order of the FL array and, intimately

related to that issue, the role of dislocation loops on scales beyond the Larkin length.

Refs. [10, 11] describe the disordered FL array as an elastic system subject to a disorder

potential, so they consider an explicitly dislocation-free system. On the other hand, it is

argued in Ref. [8] by using an Imry-Ma-type argument that dislocation loops are always

relevant beyond the Larkin length and that a purely elastic description of the FL array is

therefore inadequate.

The dislocation-free, elastic FL array in a random medium [9, 10, 11, 17] is one of the

best studied disordered systems being very similar to the randomly-pinned charge-density

waves and the random-field XY model, which have been studied extensively in the past

decades [18, 19, 20, 21, 22, 23]. A variety of approximate methods have been used to obtain

the conclusion that the presence of weak point disorder leads to a glass phase with the

remarkable property that the transverse displacements of the FLs exhibit only logarithmic

fluctuations. This implies the existence of quasi-long-range positional order in the glass

phase of the dislocation-free flux array. This property is especially interesting in view of

recent experiments on pinned FL arrays, where Bitter-decoration [24], neutron scattering

[25, 26], and µSR [27] experiments on weakly disordered samples have all indicated some

11
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long-range order of the FL array. This suggests [9] that such a topologically ordered

glass may actually exist as a stable thermodynamic phase for some range of parameters in

the cuprate superconductors. Recently, related numerical studies of the random field-XY

model [28] and a layered model superconductor [29] further supported this scenario.

On the other hand, in neutron diffraction experiments by Cubitt et al. [25] it has been

observed that upon increasing the magnetic field, the topologically ordered glass phase

becomes unstable. In addition, critical current measurements of Khaykovich et al. [30] show

a sharp drop in the (local) critical current jc upon decreasing the magnetic induction below

a critical value. This can be attributed to the existence of a topological phase transition,

where topological order is regained upon lowering the magnetic field. The existence of such

a transition has also been demonstrated in the numerical studies in Refs. [28, 29] in good

agreement with the experimental results in Ref. [25]. An understanding of these signatures

of a topological transition where topological defects, i.e., dislocations, proliferate requires

a quantitative analysis of the stability of the topologically ordered, elastic VG phase.

Whereas the issue topological defects in the FL lattice is quite well understood for

disorder-free case [31, 32], it is on a quantitative level still essentially unresolved for a

disordered sample, when the FL array is in the VG phase. This is due to the fact that

the issue of spontaneous formation of topological defects, i.e., dislocation loops involves a

complicated interplay between elastic energies and disorder as we will see below. We try

to close this gap and explore quantitatively the possibility of a dislocation-free, elastic VG

phase.

However, before addressing the disordered system, it is useful to review shortly some

general facts about topological defects in line lattices. Thereafter, we discuss how the

melting of the disorder-free FL lattice can be understood qualitatively in terms of a pro-

liferation of dislocations. It is instructive to compare the physical mechanism underlying

the thermal melting of the disorder-free FL lattice by dislocations with the mechanism of

the “disorder-induced melting” by dislocations in the pinned FL array.

2.1 Topological Defects and Melting

There are various kinds of possible defects in a line lattice: Interstitials and vacancies,

edge and screw dislocations [33]. As we will see, only the latter have a long-range, non-

local effect on the deformation of the lattice and are for this reason more important. We

start with a short review of their properties in a perfect, i.e., disorder-free line lattice.

For definiteness, we take the z-direction as the direction of the lines so that the lattice,

e.g. the hexagonal Abrikosov lattice, is in the xy-plane; displacements u(r) of the lines

are lying in the xy-plane then. Mathematically speaking, dislocations are topologically

stable line defects with a non-zero topological charge. The integral
∫

C
du = −b, measuring
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the increase in the displacement u along a contour C around the dislocation line, is non-

zero and equals the Burgers vector b, which is a lattice vector (for the energetically most

favorable dislocations, it is a primitive lattice vector) [Figure 2.1]. The Burgers vector b

is the topological (vector) charge of the dislocation. Denoting the tangent vector of the

dislocation line with τ , an edge dislocation is defined by τ ⊥ b and a screw dislocation by

τ ‖ b.

An edge dislocation is created by inserting or removing a half-plane or “sheet” of lines

in the lattice, the edge of which is after relaxation the dislocation line [Figure 2.1]. In a line

lattice, dislocations are subject to more constraints than, for example, in a usual crystal

lattice, because we want to exclude that a line splits into two or two lines merge into one

[which is for FLs in a type-II superconductor forbidden due to the flux quantization]. This

requires that no edge dislocation can occur in the xy-plane, i.e., τ ‖ ẑ.

A screw dislocation can be created by cutting the line lattice along a half-plane in the

xy-plane, displacing one side of the half-plane parallel to the plane by a lattice vector,

joining the two sides again, and letting the lattice relax. The edge of the half-plane is the

dislocation line [Figure 2.1]. From this construction follows that screw dislocations always

lie in the xy-plane, i.e., τ ⊥ ẑ. Both sorts of dislocations are combined when a dislocation

loop is formed [Figure 2.1]. Because the edge components of the loop must not lie in the

xy-plane, loops are constrained to fulfill

τ · (ẑ × b) = 0 . (2.1)

Hence, they always lie in a single plane of the lattice spanned by ẑ and b.

However, this topological constraint is weakened in the presence of another kind of de-

fect, interstitials or vacancies [32]. Analogously to crystal defects, an interstitial/vacancy is

created by adding/removing a single line and letting the lattice relax. The main difference

to crystals lies in the line nature of the lattice constituents themselves. Hence, in a line lat-

tice interstitials/vacancies are not point defects but line defects. Interstitials/vacancies are

line defects with zero topological charge and therefore not subject to the topological con-

straint (2.1) as opposed to a dislocation. By absorbing or emitting interstitials/vacancies,

a dislocation loop can circumvent the above planarity restriction and “climb” gradually out

of the ẑb-plane it was confined to originally. Henceforth, we exclude interstitials/vacancies

for simplicity and comment on this subject later.

It is well-known that many phase transitions in two dimensions are in the Kosterlitz-

Thouless universality class and can be described by the occurrence of free (or unbound)

topological defects, which destroy the quasi-long-range order of the low-temperature phase

[35]. In a similar way, it is one possibility to describe the melting of the three-dimensional

line lattice by the proliferation of unbound dislocation loops [considering a cut through

the system in a xy-plane, intersections of a dislocation line with the plane represent indeed

topological defects in two dimensions with the Burgers vector as topological charge]. With
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Figure 2.1: Dislocation loop in the hexagonal Abrikosov flux line lattice with Burgers

vector b. Left: Contour C around the dislocation line measuring the increase
∫

C
du = −b.

Right: The part of the dislocation loop ‖ ẑ is an edge dislocation, the part ⊥ ẑ a screw

dislocation. Dashed lines represent flux lines in the next crystal plane behind the figure

plane. [The Figure is taken from Ref. [34].]

an “unbound” or “free” dislocation loop, we denote an arbitrary large or infinite loop;

upon cutting the loop, it can alternatively be viewed as a free, infinitely long, stretched

dislocation line threading the whole system [cutting in a xy-plane, this is the analog of free,

unpaired defects in two dimensions, as they occur in the high-temperature phase above a

Kosterlitz-Thouless transition].

Why is the melting of the line lattice mediated by free dislocation loops? A physical

answer to this question is that free dislocations are capable of providing a mechanism for

relaxing elastic stress, in particular shear stress: Upon applying shear stress on a single

dislocation loop, a so-called Peach-Köhler force is generated, which tends to expand the

loop. By plastic deformation, the dislocation loop starts to expand through the sample

along a “gliding plane”, the plane spanned by ẑ and b [31, 36]. This important property of

a dislocation loop drives the shear modulus of the lattice to zero and destroys the transla-

tional order when unbound loops occur. This can be checked analytically by studying the
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downward renormalization of the shear modulus by dislocations or the translational order

parameter

〈ρK〉 = 〈exp (iKu)〉 (2.2)

(K is a reciprocal lattice vector), which is also driven to zero by dislocations reflecting

the loss of translational order [31]. But these two properties just characterize a hexatic

flux liquid, which is distinguished from an isotropic flux liquid only by the persistence of

the bond-orientational order [dislocation loops cannot destroy the bond-orientational order

[31]]. Therefore, a proliferation of unbound dislocation loops can indeed describe a melting

of the lattice, at least into a hexatic liquid.

The nature of such a phase transition, i.e., whether it is first or second order, will be

determined by the details of what we just called “proliferation”. If there is a jump in

the density of free dislocations upon increasing the temperature beyond a the transition

temperature, a first order transition will occur. If the density increases continuously from

zero, we will have a second order phase transition. Let us consider an ensemble of free

dislocation loops or, equivalently, infinitely long dislocation lines threading the whole sys-

tem with an average areal density ρ in the xy-plane, which can be expressed in terms of

their average distance in the xy-plane L as ρ = 1/L2. In a first order phase transition, the

density jumps to ∆ρ at the transition, so that many (L = 1/
√

∆ρ is finite at the transition)

unbound dislocations occur at the transition. The second order phase transition can be

described by the formation of a single (L → ∞ at the transition) unbound dislocation.

The spacing of the dislocation loops L also sets an upper bound for the correlation length

of the system. Again, a second order phase transition with a diverging correlation length

can occur only if a single loop is formed at the transition.

On our way to a discussion of the effects of dislocations on the disordered, pinned vortex

lattice, it is instructive to consider first the disorder-free case, and we want to discuss the

melting of the disorder-free FL lattice by thermal fluctuations in terms of dislocations

qualitatively [31, 35, 37]. Of course, there are also other possibilities to describe this

transition: Phenomenologically, it can be described by the Lindemann-criterion [38], which,

however, does not give any information about the nature of the transition. Following a very

general mean-field argument of Landau [39], the liquid to crystal transition should be first

order. The most elaborated approaches [40, 41] start from the Ginzburg-Landau mean-

field theory, take into account fluctuations in the order parameter at the upper critical field

and obtain an unstable renormalization group (RG) flow indicating a first order melting

transition. [From these theoretical approaches and recent experiments, the general believe

today is that the melting transition is of first order [42].]

Let us start investigating the second order melting scenario, i.e., the free energy of

a single, large dislocation loop of size L. Generation of a single stretched dislocation

line involves insertion or cutting of a whole plane in the line lattice so that dislocations
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cause a global elastic rearrangement, i.e., a long-ranged stress-field decaying as 1/r from

the dislocation. Therefore, the elastic energy cost (per length) Eel of a single, straight

dislocation line is diverging logarithmically with system size:

Eel ∼ cb2 L ln (L/l) , (2.3)

where c is an elastic constant 1 and l the short-distance cutoff, i.e., the FL distance. In

addition, the core of the dislocation costs an energy of the order

Ecore ∼ c′b2 L (2.4)

(with c′ ≈ c), because ∇u ≈ b/l in the core region of extent O(l2). The dislocation loop will

occur at high enough temperatures if the total energy cost Eel + Ecore can be balanced by

the entropy gain due to meandering of the dislocation. The entropy gain can be estimated

from the number of configurations a dislocation line of length L can explore typically. Let

us neglect the loop-nature for the moment and consider a dislocation of length L stretched

along the z-direction. We assume that there is a typical scale ` in the z-direction on which

the dislocation line performs a “hop” of one lattice spacing l in the xy-plane. Due to the

planarity constraint (2.1) there are 2 possibilities for each “hop” and we obtain an entropy2

S ∼ ln
(
2L/`

)
∼ (ln 2) L/` . (2.5)

Thus, the free energy of a single, large loop of size L is

Floop = (Eel + Ecore) − TS ∼ L
(
cb2(ln (L/l)) − T (ln 2)/`

)
. (2.6)

Clearly, the elastic energy cost dominates for large L due to its additional logarithmic

divergence, and Floop(L → ∞) > 0 always, so that no second order melting transition can

take place. But we see already that the free energy of a finite loop can become negative

for high enough temperature indicating the possibility of a first order melting transition.

In a first order melting scenario, many dislocation loops with a finite density will occur

above the transition. On the one hand, this can be favorable because the logarithmic

divergence in the elastic energy can be screened but, on the other hand, also the entropy

gain is reduced because the dislocations start to collide. To study this scenario, we consider

an ensemble of dislocations loops with areal density ρ. In the dislocation ensemble, the

logarithmic divergence of the elastic energy cost (2.3) is cut off at the distance to the next

dislocation, which is of order L = 1/
√

ρ. The density of the elastic energy cost is thus

eel ∼ cb2ρ ln (1/l2ρ) . (2.7)

1For simplicity in the qualitative discussion, we assume that we can make the elastic energy isotropic

by rescaling, so that we have only one elastic constant.
2kB ≡ 1
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Figure 2.2: The free energy (2.11) f · l2/cb2 as function of the density ρ · l2 for different

temperatures t = T · (ln 2)/cb2`. The transition is first order.

The density of the energy cost for the cores (2.4) is

ecore ∼ c′b2ρ , (2.8)

and the density of the entropy gain (2.5) is for independent dislocation loops

s ∼ (ln 2)ρ/` (2.9)

for the ensemble. However, following up the argumentation leading to (2.5), the disloca-

tions are random walkers in 1+1 dimensions (i.e., with a roughness exponent ζ = 1/2) and

start to collide on scales Lcol ' `/l2ρ (in the z-direction). This leads in turn to an effective

entropy loss of Scol ∼ (ln 2)L/Lcol or a corresponding entropy density loss

scol ∼ (ln 2)ρ2l2/` . (2.10)

The free energy density for a dislocation ensemble of density ρ is then (in Ref. [37], the

authors give a more rigorous derivation by a mapping onto a tight-binding model)

f = eel + ecore − T (s − scol)

∼ Aρ ln (1/l2ρ) + B(T )ρ + C(T )ρ2

(2.11)

with A = cb2, B(T ) = c′b2 − T (ln 2)/` and C(T ) = T (ln 2)l2/`. Such a free energy yields

a first order melting [Figure 2.2] at a temperature

Tm ' α
cb2`

ln 2
(2.12)

with a jump in the equilibrium density of dislocations from zero to

∆ρ ' 1

α

1

l2
, (2.13)
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where α ≈ 3.15 is a number3. For high enough temperatures T > Tm, the entropy gain

s−scol from the meandering of the dislocation lines is big enough to compensate for the cost

in core energy and elastic energy. At the transition a rather dense ensemble of dislocations

occurs with distances L ∼ l/
√

α. The dislocations have to be sufficiently dense to screen

the logarithmically diverging elastic energy. It is interesting to note that the first order

transition is only obtained because the cost in elastic energy (per length) of a dislocation is

logarithmically diverging: Defects with zero topological charge (like interstitials/vacancies)

induce only a local, short ranged elastic deformation and thus, have only a finite elastic

and core energy (per length) cost. They proliferate in a second order phase transition as

can be shown by a similar argument [32].

2.2 Dislocations in the Presence of Disorder

What happens to this scenario in the presence of disorder? First of all, the dislocation-free

lattice is no longer an ideal line lattice but a pinned FL array, where point defects, e.g. oxy-

gen vacancies in high-Tc superconductors (HTSCs), lead to a collective pinning of the FLs,

and a glassy state on large scales. The statistical properties of the dislocation-free FL array

pinned by point disorder are highly non-trivial in themselves. It has been found by using

an elastic description of the FL array that the dislocation-free, pinned FL array exhibits

glassy properties with logarithmic displacement correlations on the largest scales [9, 11, 17].

Hence, the glassy FL array has quasi-long-range order with a disorder-averaged transla-

tional order parameter 〈ρK〉 (see (2.2)), which decays algebraically resulting in quasi Bragg

peaks in scattering experiments, the reason why this pinned, elastic phase bears the name

Bragg glass [17, 9]. These Bragg peaks can indeed be observed in neutron diffraction ex-

periments on Bi2Sr2CaCu2O8+x (BSCCO) at low magnetic fields [25]. A proliferation of

dislocation loops will destroy the elastic Bragg glass in a topological phase transition. Signa-

tures of such a transition have been observed in neutron diffraction experiments by Cubitt

et al. [25], where the Bragg peaks vanish upon increasing the magnetic field, indicating

an instability of the Bragg glass phase. Furthermore, the critical current measurements

of Khaykovich et al. [30], that show a sharp drop in the (local) critical current jc upon

decreasing the magnetic induction below a critical value, can be explained by the existence

of a topological transition, where FLs “disentangle” when topological order is regained.

The existence of such a transition has also been demonstrated in the numerical studies in

Refs. [28, 29]. In the closely related 3D XY model in a random field, vortex loops occur

in a topological phase transition at a critical strength of the random field [28]. In simula-

tions of disordered FL arrays [29], a proliferation of dislocation lines has been found at a

critical magnetic field in good agreement with the experimental results in Ref. [25]. As in

3α is a solution of α = exp (α − 2).
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the disorder-free line lattice, the bond orientational order can nevertheless persist, so that

upon the instability of the Bragg glass phase the system will either “melt” into an amor-

phous hexatic glass with bond-orientational order as discussed in [43] but with vanishing

shear modulus, or it undergoes directly a melting into an isotropic disordered flux liquid.

Let us give a short summary of the main results along with an outline of the remainder

of part I. For the Bragg glass, one finds a T =0 fixed point in the RG calculation, indicating

that thermal fluctuations are irrelevant for the large scale properties. This means that the

free energy is equal to the energy of a large dislocation loop, and the entropy gain of the

dislocation loop by meandering does not lead to a free energy gain in the disordered system.

However, the dislocation loop can gain a disorder energy Edis by allowing the line array

a more optimal adjustment to the disorder configuration by its occurrence. [This change

in the physical mechanisms underlying the behavior of a line-like object when switching

from the disorder-free system with a Gaussian, entropy-dominated finite temperature RG

fixed point to the point disordered system with a disorder dominated T = 0 RG fixed

point is a common phenomenon in disordered systems. For example, it occurs in a very

similar manner in the localization problem of a directed polymer by a columnar pin, which

delocalizes in the disorder-free system entropy-driven and in the presence of point disorder

driven by the energy gain from the point defects [44, 45].] We make use of this mechanism

in scaling arguments presented in chapter 5, where we consider the dislocation loop as

the result of a partial relaxation of the system. Thus, the long-range elastic rearrangement

that the dislocation induces must not be interpreted as an energy cost in the disordered

system. Rather, it has to be seen as the mechanism enabling an optimally configured

dislocation line to gain disorder energy by giving the FL array the possibility to re-optimize

its configuration. Of course, a dislocation loop has still to pay the core energy Ecore due to

the displacement gradients of order unity in the dislocation core. This suggests that in a

disordered system the (free) energy of a dislocation loop is determined by a quite different

mechanism as compared to (2.11):

Floop = Eloop = Ecore − Edis . (2.14)

In chapter 5, we will study the scaling of the different energies in (2.14) with the size

L of the dislocation loop in detail. This leads to an Imry-Ma-type argument based on

the energy balance (2.14) at T = 0. In (2.14) we consider a single, optimally configured,

large loop of size L. As discussed above, a second order phase transition, similar to a

Kosterlitz-Thouless transition, can occur when Floop(L) < 0 for large L → ∞.

We will study first a strongly layered model of a HTSC in a parallel field in chapter 5. In

this model the FLs are confined by a strong pinning potential in between the CuO-planes

of the HTSC (we assume a value of the magnetic field such that the Abrikosov lattice is

commensurate with the layer spacing of the HTSC). Displacements are then effectively

uniaxial, i.e., a scalar field. Our result from a detailed scaling analysis for the uniaxial
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system is for a dislocation loop with fractal dimension D (i.e., a loop of linear dimension

L has a length LD):

Ecore ∼ LD (2.15)

Edis ∼ Lω(D) . (2.16)

Ecore is proportional to the loop length as above in (2.4). For the exponent ω(D), we will

argue that an upper bound is ω(D) ≤ 1 and ω(D = 3/2) = 1; furthermore, ω(D) should

be monotonously increasing with D so that ω(D) < D for D > 1 and ω(D = 1) ≤ 1. This

yields Floop(L → ∞) > 0 for D > 1 excluding a second order melting of the Bragg glass by

dislocations with fractal dimensions > 1. Though from this argumentation it is tempting

to assume that ω(D = 1) < 1 holds, excluding a second order melting of the Bragg glass by

dislocations, also ω(D = 1) = 1 is well possible. This is a sort of “worst case”-scenario for

the stability of the Bragg glass with respect to dislocation loop formation, and therefore

maybe the preferred “channel” for an instability. In this “worst case”, it depends on the

prefactors in (2.4) and (2.16), whether dislocations will form, which will be studied in detail

in chapter 5.

On the other hand, as we have seen above in the treatment of the disorder-free case,

even if we have Floop(L → ∞) > 0, there is still the possibility of a first order melting,

where dislocations occur with a finite density at the transition. In chapter 4, we perform

a variational calculation of an effective shear modulus for the layered, uniaxial model.

Instead of an elastic inter-layer coupling characterized by the shear modulus of elasticity

theory for the FL lattice, we generalize to a coupling allowing a formation of dislocations

and determine an effective shear modulus self-consistently in a variational approach. How-

ever, the generalized coupling allows only a simultaneous formation of dislocation loops in

between every layer, i.e., on the shortest scale, the layer spacing. This is typical for a first

order phase transition, which is indeed found in the variational calculation where, upon

reducing the inter-layer coupling, the effective shear modulus drops to zero with a finite

jump. This can be assigned to a downward renormalization of the shear modulus due to

a proliferation of dislocation loops with a distance of the order of the layer spacing, i.e.,

the FL spacing in the direction perpendicular to the layers. However, in this model only

loops parallel to the planes can occur. In the usual experimental situation, where the FLs

are perpendicular to the planes, each dislocation is planar due to (2.1), but dislocations

can occur in all planes of the lattice with three possible orientations instead of one in the

layered model. Because in the layered model the in-plane order cannot be destroyed by

the dislocations, we obtain rather a first order melting into a smectic glass with an in-

plane quasi-long-range translational order, but without translational order in the direction

perpendicular to the layers.

The scaling approach for a single, large loop with D = 1 and ω(D = 1) = 1 (the

“worst case” for the stability of the Bragg glass) and the variational approach to the
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strongly layered system produce a stability criterion of the same form for the Bragg glass.

Assuming a stretched loop with D = 1 and ω(D = 1) = 1, the scaling argument is

generalized from the uniaxial model to the usual experimental situation with the magnetic

field perpendicular to the layers and two-component displacements of the FLs in chapter

5. This yields a generalized criterion, which can be viewed as the disordered analog of the

Lindemann criterion [38]:

Rl > c1/2ζ · max (l, λ) , (2.17)

where l is the FL spacing and λ the magnetic penetration depth of the superconductor

(which has to be further specified for the geometry at hand). Rl is the positional correlation

length of the FL array and defined as the transverse (to the FLs) scale, on which the typical

(disorder-induced) displacement of a FL is of the order of the FL spacing l, i.e., u(Rl) ∼ l.

The Bragg glass exists only on scales larger than Rl, because it is characterized by the

property that FLs start to compete for the same defects, which happens for u & l. Rl has

to be distinguished from another crossover length, the Larkin length Rξ, which is smaller

than Rl and gives the scale up to which perturbation theory in the disorder potential is

valid (i.e., the typical displacement of a FL is smaller than the scale, on which the disorder

varies), so that the pinning of the FL array can be described by random forces on smaller

length scales. On intermediate (transverse) scales between the positional correlation length

Rl and the Larkin length Rξ, the FL array is in the so-called random manifold regime. In

this regime, we have glassiness but FLs do not compete for the same defects and every

line “lives” in an independent disorder. The criterion (2.17) is called “Lindemann-like”

because it compares the positional correlation length Rl characterizing the strength of the

disorder-induced fluctuations with the length scale of the FL spacing set by the ordered

state of the lattice. c is a number playing a similar role as the Lindemann-number in the

conventional Lindemann-criterion [38]. The variational calculation (where we ignore the

existence of the random manifold regime) yields c ≈ O(50). Finally, ζ is the roughness

exponent in the random manifold regime, i.e., for a 3-dimensional random manifold with

a 2-component displacement field, the best estimate for which is ζ = 1/5 [7].

In the case of ω(D) < D, the scaling argument excludes an instability with respect to

the formation of a single, large dislocation loop. For D = 1 and ω(D = 1) = 1, we are in

the marginal case of the scaling argument for a single dislocation loop, and the stability of a

free dislocation depends on the prefactors of the involved energies. From the energy balance

(2.14), one obtains a criterion of the above form (2.17) but the value of the numerical factor

c is beyond the scope of a scaling argument. Though such an instability with respect to a

single loop is of course a sufficient criterion for the destruction of the Bragg glass phase,

namely in a second order transition, a first order melting by the occurrence of many loops at

the transition may well be favorable, as it is in the disorder-free case discussed above. The

variational calculation, where a first order melting on the shortest scale of a FL distance is
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realized, yields a value c ≈ O(50). In formulating the Lindemann-criterion (2.17), we take

this value for c obtained from the variational calculation. In chapter 5 we show by using

a scaling relation that the criterion (2.17) is indeed equivalent to a criterion in the form

suggested originally by Lindemann [38],

u(l) > c−1 · l , (2.18)

where u(l) is the average FL displacement on the shortest scale of a FL spacing l (as

opposed to thermal melting, u(l) is in wide parts of the phase diagram purely disorder-

induced here). We can read off the relation

c ' 1/c2
L , (2.19)

between the number c and the Lindemann-number cL. Indeed, the relation (2.19) produces

a good agreement between the value c ≈ O(50) from the variational calculation and the

value cL ≈ 0.1−0.2 widely used in the literature. This equivalence to a melting induced by

fluctuations on the shortest scale l and described by a Lindemann-criterion suggests that,

much like in the disorder-free case, the Bragg glass melts in a first order transition as it is

obtained in the variational calculation. At this transition, stretched dislocation loops (i.e.,

non-fractal loops with D = 1) should occur with a finite density. However, the nature of

the transition cannot be determined unambiguously [in analogy to the role, the Lindemann

criterion plays in describing melting transitions in a disorder-free system: It has proved to

be a very effective tool to obtain information about a melting curve without giving any

knowledge about the nature of the transition].

The Lindemann-like criterion (2.17) will be the central result of this chapter. In the

next chapter 3, we give a short review of the properties of the dislocation-free Bragg

glass phase, and introduce the models we use throughout part I. The chapters 4 and

5 are devoted to the detailed derivation of the Lindemann-criterion (2.17) by means of

the variational approach and Imry-Ma-type scaling arguments, respectively, as they were

outlined in this inroduction. Thereafter, we will use (2.17) to obtain a phase diagram for

a typical HTSC (e.g. BSCCO) in chapter 6.



Chapter 3

The Bragg Glass Phase, Random

Manifolds and Random Forces

The purpose of this chapter is to introduce the models of pinned elastic manifolds for the

disordered FL array which are relevant for what follows in the next chapters 4 and 5.

Pinned elastic manifolds give a consistent description of the disordered FL array in the

absence of dislocations and are thus the starting point of all considerations in chapters

4 and 5. In particular, we review shortly the properties of the dislocation-free Bragg

glass phase, which describes the asymptotic large scale properties of the dislocation-free

disordered FL array. But also the crossover between the different pre-asymptotic regimes of

the dislocation-free disordered FL array, as well described as pinned elastic manifolds, will

play an important role in the subsequent chapters 5 and 6. These crossovers are induced by

the interplay between the FL interaction, the periodicity of the FL lattice, and the disorder

potential, which are in addition affected by thermal fluctuations, and lead to essentially

two different pre-asymptotic regimes: The perturbative or random force regime on the

shortest scales, the random manifold regime on intermediate scales before the asymptotic

large scale behaviour of the Bragg glass phase sets in. The associated crossover scales and

the properties of the pre-asymptotic regimes are reviewed as well in this chapter.

3.1 Elasticity Theory and

Interaction-induced Length Scale L∗

We want to describe the disorder- and dislocation-free FL array by elasticity theory (see

Ref. [4] for a review). The relevant degrees of freedom of the FL array are the positions of

the vortices in this approach. Then, all configurations can be parameterized by allowing

for two-component displacements of each FL element from its equilibrium position in the

two directions transverse to the FL. The undistorted FLs are straight lines forming the

23
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hexagonal Abrikosov lattice. The z-coordinate is chosen parallel to the undistorted FLs;

the lattice formed by the undistorted FLs in the xy-plane is described by lattice vectors

Rν (with inverse lattice vectors Kν) with unit cell volume l2 = φ0/B. Furthermore, we

define the vector r as r = (Rν , z) → (R, z) when we switch to a continuous representation

in the vector R transverse to the FLs (or in momentum space k = (Kν , kz) → (K, kz)).

Let us begin with the usual experimental situation of an anisotropic HTSC in a magnetic

field perpendicular to the CuO-planes (H ‖ ĉ ⊥ ab); the lattice in the xy-plane, which

is then identical to the ab-plane of the HTSC, is a hexagonal lattice with Rν = R(i,j) =

( (2i + j)l0/2 , j
√

3l0/2 ) with a FL distance l0 ≈ l [l2 = φ0/B =
√

3/2l20]. Displacements

are parameterized by u = uν(z), or in a continuum description with R = (x, y) by

u = u(R, z) =

∫

BZ

d2K

(2π)2
eiK·R l2

∑

ν

e−iK·Rν uν(z). (3.1)

In elasticity theory, the following three-dimensional Hamiltonian in the two-component

displacement field u describes the disorder- and dislocation-free FL array:

H3D
el [u] =

1

2

∫

BZ

d2K

(2π)2

∫
dkz

2π

{
c11 [K · u(K, kz)]

2 + c66 [K × u(K, kz)]
2 +

c44 [kzu(K, kz)]
2} (3.2)

=
1

2

∫
d2R

∫
dz
{
c11 [∇R · u(R, z)]2 + c66 [∇R × u(R, z)]2 +

c44 [∂zu(R, z)]2
}

, (3.3)

where we switched to a continuum description in the last equation. The elastic energy of

the possible distortion-modes is characterized by the three elastic moduli: The compression

modulus c11, the shear modulus c66, and the tilt modulus c44.

For a two-component displacement field, two elastic modes are possible with the free

energy (3.2): (i) A longitudinal mode (u ‖ K) involving compression and tilt and (ii) a

transversal mode (u ⊥ K) involving shear and tilt. Because for H ‖ ĉ the compression

modulus c11 is over a wide range of inductions much bigger than the shear modulus c66

(only in the dilute limit l � λab, c11 becomes of the order of c66 and approaches c11 ≈ 3c66),

we can neglect the longitudinal (compression) modes to a good approximation and treat

the FL array as incompressible, i.e., c11 ↑ ∞. u(k) consists then only of a transversal part

u(k) = uT (k).

In the subsequent discussion, we use the symbols

L = longitudinal length scale ‖ FL

R = transversal length scale ⊥ FL

when we consider fluctuations in the displacements u on a certain length scale (or, alter-

natively, put the system in a box of linear dimensions R and L).
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In general, the proper elasticity theory describing the FL array is non-local, as soon

as the FLs interact over a range λ exceeding the FL distance l so that elastic distortions

on scales R smaller than the interaction range become possible. When the elastic theory

becomes non-local, the elastic moduli exhibit dispersion, that is they have a k-dependence

cxx = cxx[k] in (3.2). In the local limit, we have cxx = ĉxx := cxx[k = 0]. However, c66 is

always dispersion-free c66 ≡ ĉ66 [shear modes are volume preserving and thus not changing

for a given FL the number of FLs in its interaction range; thus, the non-locality cannot

affect the value of c66]. Results in the literature for the relevant moduli c44[k] and c66 for

H ‖ ĉ are given in Appendix A.3 for future use. c44 obeys to a good approximation a

dispersion relation [4]

c44[K] ' ĉ44
1

1 + K2λ̃2
c

. (3.4)

The length scale for the onset of dispersion is

λ̃c :=
λc

(1 − B/Bc2)1/2
, (3.5)

because with the magnetic field perpendicular to the CuO-planes (ab-planes), non-locality

occurs for R < λc, when the interaction range λc for tilted FL-elements lying in the ab-

planes exceeds the scale R for variations in the FL displacement. At higher magnetic fields,

λc has to be modified to the effective λ̃c in non-local elasticity theory [46, 47]. Neglecting

an additional weak dispersion in kz, the result (3.4) crosses over to the single vortex tilt

modulus cs
44 on the shortest scales R ∼ 1/K . l:

cs
44 ≈ l2 c44[K ' 2π

l
] . (3.6)

Using these approximations, we can rewrite the three-dimensional elastic Hamiltonian as

H3D
el [u] ≈ 1

2

∫

BZ

d2K

(2π)2

∫
dkz

2π

{
c66

[
K2|uT (K, kz)|2

]
+

c44[K]
[
k2

z |uT (K, kz)|2
]}

. (3.7)

From (3.7) and (3.4), we can deduce immediately the scaling relation between longitu-

dinal scales L and transversal scales R induced by the elastic Hamiltonian, i.e., the typical

“aspect ratio” of fluctuations involving elastic deformation:

L ∼
(

c44[2π/R]

c66

)1/2

R . (3.8)

The three-dimensional elastic Hamiltonian (3.2) is valid only on scales R & l or

L & L∗ :=

(
c44[2π/l]

c66

)1/2

l ≈
(

cs
44

c66

)1/2

(3.9)
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using (3.8) and (3.6). Because transversal fluctuations on scales R . l are not possible, the

interaction between FLs becomes irrelevant on scales L . L∗, and a description in terms

of single, non-interacting FLs is appropriate: The system crosses over to a single vortex

regime. In this regime, i.e., on length scales R . l smaller than the FL spacing, each FL

can be described by one-dimensional elasticity theory in the displacement u(z) with only

one elastic modulus, the “line tension” or single vortex tilt modulus cs
44 [note that at R ∼ l,

c44[2π/R] crosses over to the single vortex tilt modulus, see (3.6), which is approximately

dispersion-free]:

Hs
el[u] =

1

2

∫
dkz

{
cs
44 [kzu(kz)]

2} . (3.10)

In other words, the longitudinal length scale L∗ given by (3.9) (corresponding to a transver-

sal scale equal to the FL spacing l) separates a regime of “single vortex” behaviour on scales

L < L∗ or R < l from a regime of “collective” behaviour on larger scales L > L∗ or R > l

[see Figure 3.3].

From a statistical physics perspective, it is useful to introduce the generalization of

(3.2, 3.10) to the case of a d-dimensional elastic manifold with n codimensions, i.e., with

a n-component displacement field u(R, z) ∈ R
n with R ∈ R

d−1 by going over to d − 1

transversal dimensions. As in d = 3, we allow only in the tilt modulus associated with the

one longitudinal dimension for a dispersion of the form (3.4):

H(d,n≥2)
el [u] =

1

2

∫

BZ

dd−1K

(2π)d−1

∫
dkz

2π

{
c66

[
K2|u(K, kz)|2

]
+

+ c44[K]
[
k2

z |u(K, kz)|2
]}

. (3.11)

[To keep the notation simple, we write henceforth for n ≥ 2 simply u for uT but keep in

mind that the FL lattice is incompressible and only the transversal part of u is subject to

fluctuations for n ≥ 2.] We can identify H3D
el = H(3,2)

el and Hs
el = H(1,2)

el . Note that the

scaling relation (3.8) between longitudinal scales L and transversal scales R induced by

the elastic Hamiltonian H(d,n≥2)
el is unchanged.

However, this generalization, based on the approximation of an incompressible FL array,

is only valid for n ≥ 2. For n = 1 or uniaxial displacements, say u = u · x̂, there is only

one mode involving shear and compression, and we have to consider (K‖ := K · x̂ and

K⊥ := K × x̂)

H(d,n=1)
el [u] =

1

2

∫

BZ

dd−2K⊥

(2π)d−2

∫

BZ

dK‖

2π

∫
dkz

2π

{
c11[K]

[
K2

‖ |u(K, kz)|2
]

+

+ c66

[
K2

⊥|u(K, kz)|2
]

+ c44[K]
[
k2

z |u(K, kz)|2
]}

. (3.12)

In this chapter, we focus mainly on the generic case n ≥ 2. The treatment of the uniaxial

case n = 1 is analogous.
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3.2 Pinning Energy

Let us consider now a disordered superconductor, where the Hamiltonian for the disordered,

dislocation-free FL array contains also a disorder energy:

H[u] = Hel[u] + Hd[u] . (3.13)

In the disordered superconductor, point-like pinning centers, e.g. oxygen vacancies in a

HTSC, generate a pinning potential acting on the FLs. Because the pinning force exerted

by each defect on a FL has a range approximately equal to the coherence length ξ (which

is ξab for the magnetic field perpendicular to the CuO-planes), fluctuations in the pin-

density generate a Gaussian distributed disorder potential v(r) acting on a single FL [i.e.,

the pinning energy is Epin[u0] =
∫

dzv(u0(z), z)]. The disorder potential has mean zero

v = 0 (the overbar denotes the quenched average over the disorder configurations) and

fluctuations correlated only over a distance ξab

v(u, z)v(u′, z′) = g0 δ2
ξ (u − u′)δ1

ξ (z − z′) , (3.14)

where the parameter g0 measures the strength of the disorder. It is convenient to define

an associated energy ∆pin with ∆2
pin being the mean square pinning energy in a volume ξ3

ab

∆2
pin := (npinf 2

pinξ
2
ab)ξ

3
ab = g0ξ

−1
ab , (3.15)

where npin is the density of pinning centers and fpin the maximum pinning force exerted

by a single pinning center for H ⊥ ab. Then, the disorder energy of the FL array can be

written

H3D
d [u] =

∑

ν

∫
dz v(Rν + uν(z), z) (3.16)

=

∫
d3r v(r) ρ[r,u(r)] , (3.17)

where ρ[r,u(r)] =
∑

ν
δ2(R−Rν −uν(z)) is the FL density. The Hamiltonian H = H3D

el +

H3D
d models the FL array as an elastic manifold of dimension d = 3 with n = 2 components

of the displacement field in a random medium. However, the n = 2 “codimensions” of the

manifold are physically identical to the 2 transversal of the d = 3 dimensions. This leads

to important consequences for the asymptotic behaviour and to the existence of essentially

three physically different regimes: (i) The Larkin or random force regime, (ii) the random

manifold regime, and (iii) the Bragg glass phase or charge density wave (CDW) regime

on large scales. These regimes are existing on different length scales; the crossover scale

between (i) and (ii) is the Larkin length Lξ and the crossover scale between (ii) and (iii)

the positional correlation length Ll [see Figure 3.3]. We will discuss each regime in its
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appropriate generalization to d−1 transversal dimensions and n-component displacements

u [the single vortex disorder potential v(u, z) has then correlations analogously to (3.14)

with

g0 = ∆2
pinξn−1

ab , (3.18)

where we want to define ∆2
pin as the mean square pinning energy in a volume ξ1+n

ab for con-

sistency]. The three regimes are distinguished by the scaling behaviour of their roughness

〈|u(r) − u(r′)|2〉 ∝ |r − r′|2ζ
or

〈u2〉(R, L) ' 1

2
〈|u(R, L) − u(0)|2〉 ∝ L2ζ ∝ R2ζ (3.19)

[〈. . .〉(R, L) denotes an average for a system in a box of transversal and longitudinal di-

mensions R and L, respectively, where R and L are related by (3.8)], characterized by

the roughness-exponent ζ. As usual in disordered systems, also the scaling of the free-

energy fluctuations, either sample-to-sample fluctuations or fluctuations within a single

sample, will be of importance. Due to the anomalous roughness in a disordered system

ζ > ζth = (2 − d)/2 compared to the thermally induced roughness ζth, we expect anoma-

lously large fluctuations in the elastic energy

〈H(d,n)
el 〉(R, L) ∝ L2ζ+d−2 ∝ R2ζ+d−2 (3.20)

(and similar sample-to-sample fluctuations of the free energy), determining much of the

physics in each of the three regimes.

3.3 Random Force Regime and

Larkin Length Lξ

In the Larkin or random force (RF) regime of Larkin and Ovchinnikov [6, 48], the displace-

ments are small enough that perturbation theory in the displacements u is valid. This is

the case if a FL stays within one minimum of the disorder potential v(r). Because v(r)

varies typically on a scale ξab for H ⊥ ab, given by the range of the pinning forces, this is

the case for sufficiently small displacements u . ξab [Figure 3.1].

Thus, we can expand the disorder energy (3.16) in the displacements u

H3D
d,RF [u] ≈

∑

ν

∫
dz
(

v|(Rν ,z) + ∇uv|(Rν ,z) · uν(z) + . . .
)

H(d,n)
d,RF [u] ≈

∫
dd−1R

∫
dz f(R, z) · u(R, z) (3.21)



Chapter 3. The Bragg Glass 29

l

ξL

ξ

ξu<
R

v(R)

Figure 3.1: In the random force regime on scales L < Lξ, the typical FL displacement is

u . ξab: Perturbation theory in the displacements leads to random forces (tangents on the

disorder potential v).

and obtain a coupling of the FL-displacements to the (n-dimensional) random forces

f(R, z) = l−(d−1)∇uv|(0,z). The random forces f(r) are Gaussian distributed with mean

zero f = 0, uncorrelated components fifj = 0 (for i 6= j), and correlations

f(R, z) · f(R′, z′) = f 2
0 δd−1

ξ (R− R′) δ1
ξ (z − z′) (3.22)

f 2
0 ξ2

ab = n g0ξ
−n
ab l−(d−1) = n ∆2

pinξ−1
ab l−(d−1) . (3.23)

This leads for the Hamiltonian H(d,n)[u] = H(d,n)
el [u] + H(d,n)

d,RF [u] in momentum-space to

a k−4-divergence in the Fourier-transformed 〈uu〉-correlations at low temperatures (see

Ref. [6] and Appendix A.1.1). From this divergence, it follows a roughness exponent

ζRF =
4 − d

2
(3.24)

and the upper critical dimension d> = 4, above which random forces are irrelevant.

The Larkin lengths Lξ and Rξ (Lξ ' (c44[2π/Rξ]/c66)
1/2Rξ by (3.8)) of the FL array are

defined as the crossover length scales where the mean square FL displacements become of

the order of the range ξ2
ab of the elementary pinning forces (at low temperatures)

〈(u(Rξ, Lξ) − u(0))2〉 ' 2〈u2〉(Rξ, Lξ) ' ξ2
ab , (3.25)

and perturbation theory in the displacements, i.e., a description by random forces becomes
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inapplicable. Thus the 〈uu〉-displacements are of the form

2〈u2〉(R, L) ' ξ2
ab

((
R

Rξ

)2

+

(
L

Lξ

)2
)ζRF

. (3.26)

The Larkin lengths are calculated in Appendix A.1.1, formula (A.10), where we obtain for

dispersion-free elastic constants, i.e., c44[K] = ĉ44,

Lξ ' c̄d ξab

(
ĉ
(5−d)/2
44 c

(d−1)/2
66 ξd

ab

f 2
0 ξ2

ab

)1/(4−d)

' Rξ

(
ĉ44

c66

)1/2

. (3.27)

When the disorder increases, the Larkin length Rξ decreases and finally becomes com-

parable to the FL spacing l for strong enough disorder or, in the longitudinal direction,

Lξ ' L∗ with L∗ given by (3.9). Then the interaction between FLs becomes irrele-

vant in the whole RF regime, each FL can be described by a single vortex Hamiltonian

H[u0] = Hs
el[u0] +H(1,2)

d,RF [u0], and Lξ crosses over to the single vortex Larkin length (A.12)

Ls
ξ ∼ ξab

(
cs
44

2ξ2
ab

∆2
pin

)1/3

. (3.28)

Upon further increasing the disorder, Ls
ξ . L∗ becomes smaller than L∗, and each FL is

pinned independently with an irrelevant FL-interaction in the RF regime, a situation we

want to call single vortex pinning, as opposed to a collective pinning when Lξ & L∗ for weak

disorder. The length scales and displacements associated with both situations are depicted

in Figure 3.3. In the high-Tc materials like the Bi-compounds, the disorder is typically so

strong that single vortex pinning is the generic situation, as we will see in chapter 6.

The pinning is weakened by thermal fluctuations, which will lead to an increase of the

Larkin length above the so-called depinning temperature Tdp. With regard to experiments,

we are mainly interested in extreme high-Tc materials like BSCCO, where we have single

vortex pinning. Therefore, the role of thermal fluctuations will be reviewed shortly in

chapter 6 for single vortex pinning (i.e., for d = 1, n = 2).

3.4 Random Manifold Regime and

Positional Correlation Length Ll

In the random manifold (RM) regime [9, 49], perturbation theory breaks down, and every

line explores many minima of the disorder potential, giving rise to a much more complicated
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physics on scales exceeding the Larkin length. However, the typical displacements of the

FLs are still smaller than the FL distances u . l, such that each line “sees” a different

disorder configuration and does not compete with neighbouring lines for the same pinning

centers or the same minima of the disorder potential [Figure 3.2].

ξl> u>

ξ

ξ

l

LL lR
v(R)

Figure 3.2: In the random manifold regime on scales Lξ < L < Ll, the typical FL displace-

ment is ξab . u . l: FLs explore many minima of the disorder potential v (alternative

dashed configuration of the left FL) but do not compete for the same minima.

Then, we can treat the n codimensions of the RM approximately as physically inde-

pendent from the the d − 1 transversal dimensions of the FLs:

H3D
d,RM [u] ≈

∑

ν

∫
dz vν(uν(z), z)

H(d,n)
d,RM [u] ≈

∫
dd−1R

∫
dz V (R, z,u(R, z)) , (3.29)

where vνvµ = 0 for ν 6= µ, and thus V (r,u) is Gaussian distributed with mean zero V = 0

and second moment

V (r,u)V (r′,u′) = gRM δd
ξ (r− r′) δn

ξ (u − u′)

gRM = g0l
−(d−1) = ∆2

pinξn−1
ab l−(d−1). (3.30)

The Hamiltonian H(d,n)[u] = H(d,n)
el [u]+H(d,n)

d,RM [u] is the natural generalization of the classic

problem of a directed path in a random medium (d = 1) to higher dimensions and known
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as “random manifold” problem. This problem has been extensively studied in the past

[7], and various attempts have been made to deal with the correct treatment of the many

solutions of the Euler-Lagrange equations and its consequences for the calculation of large

scale properties, though only the case d = n = 1 can be solved exactly. For d = 1, the

mapping onto the quantum mechanical time evolution of a particle in n dimensions in

a random potential, which can be described by a stochastic partial differential equation,

the KPZ-equation [50], provides an exact solution, but only in d = n = 1 [7]. For the

RM in higher dimensions (d > 1), two methods have been particularly successful, the

functional renormalization group (FRG) analysis in replica space [51] and a Hartree-Fock

like variational calculation (which becomes exact for n ↑ ∞) using a replica symmetry

breaking (RSB) Ansatz for the propagator [52]. To access also the dense limit l . λc of

higher magnetic fields, it is necessary to include the dispersion (3.4) of the tilt modulus

in the elastic Hamiltonian (3.11) in our treatment. This is incorporated most easily when

taking a relatively simple scaling approach, which uses a so-called “Flory-argument” [52].

This simple scaling argument, equating disorder and elastic energy on one dominant scale,

allows nevertheless to reproduce the roughness-exponents obtained with the variational

calculation using RSB and is presented in the Appendix A.1.2 in detail, where we obtain

the result (A.26)

〈u2〉(R) ∼ R2ζ(d,n)

(
1 +

λ̃2
c

R2

)ζ(d,n)/(4−d)

(3.31)

[the dispersion-free results are regained by letting λ̃c ↓ 0]. ζ(d, n) is the roughness-exponent

for the RM regime, for which the Flory-argument gives ζ(d, n) = (4−d)/(4+n) (see (A.27))

in accordance with the variational RSB approach [52] [the upper critical dimension for the

RM is again d> = 4]. Flory-type arguments are known not to reproduce the correct

roughness-exponents ζ(d, n) because they consider only one dominant scale; therefore we

will use the values for ζ(d, n) obtained from the above mentioned more elaborate approaches

using the FRG when we make contact to experiments in chapter 6. The best available

estimates are [7]

ζ(1, n) ≈ (3 + n)

2(2 + n)

ζ(d, n) ≈ 2(4 − d)

8 + n
. (3.32)

The positional correlation lengths Rl and Ll (Ll ' (c44[2π/Rl]/c66)
1/2Rl by (3.8)) of the

FL array are defined as the crossover scales where the RM regime becomes inapplicable

because the mean square FL displacements become of the order of the FL distance l2:

〈(u(Rl, Ll) − u(0))2〉 ' 2〈u2〉(Rl, Ll) ' l2 . (3.33)
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They are related via the scaling (3.31) of the displacement correlations in the RM regime

to the Larkin lengths Rξ and Lξ (3.25). We will give the detailed derivation of this relation

in chapter 6 and give here only the general picture of the different scales associated with

the RM regime, which becomes crucial for an understanding of the quantitative details of

the Lindemann-criterion in chapter 5 and is visualized in Figure 3.3.

We have to distinguish between the two above mentioned cases of single vortex pinning

in the RF regime for relatively strong disorder, as it is the common situation in high-

Tc materials like the Bi-compounds, and collective pinning in the RF regime for a weak

disorder. In other words, we have to consider the role of the additional length scale L∗ (3.9)

set by the interaction strength between FLs: For collective pinning, we have L∗ < Lξ < Ll

or l < Rξ < Rl, whereas for single vortex pinning, we have Ls
ξ < L∗ < Ll. [Notice that

the positional correlation length Rl always exceeds the FL spacing l, otherwise the elastic

approach itself (which is based on small gradients 〈(u(R = l) − u(R = 0))2〉 < l2) breaks

down as follows from (3.33).]

For weak disorder and collective pinning on scales L∗ < L < Lξ or l < R < Rξ in the RF

regime, there is only one “collective RM regime” on scales Lξ < L < Ll or Rξ < R < Rl,

where FLs are pinned collectively and d = 3, n = 2. For strong disorder and single vortex

pinning in the RF regime on scales L < Ls
ξ, a “single vortex RM regime” occurs previous to

the collective RM regime on scales Ls
ξ < L < L∗, where the FL-interaction is still irrelevant

and each vortex behaves independently as an RM with d = 1, n = 2. On scales L∗ < L < Ll

or l < R < Rl, the FL array crosses over to the above collective RM regime.

3.5 Bragg Glass and

2D Random Field XY Model

In the Bragg glass phase or charge density wave (CDW) regime [9, 11, 53], the average FL

displacement becomes bigger than the FL spacing (u & l), and lines not only explore many

minima of the disorder potential but also start to compete for the same pinning centers or

minima of the disorder potential [Figure 3.4].

The Bragg glass is the asymptotic regime on the largest scales exceeding the positional

correlation lengths Rl of Ll, and determines the nature of the dislocation-free phase of

the disordered FL array. When FLs start to compete for the same pinning centers, it

becomes crucial that the n codimensions of the elastic manifold coincide with n of the

d dimensions (usually n of the transverse dimensions). Therefore, care has to be taken

that the discrete translational symmetry under u → u + Rµ in (3.16) [the invariance of

(3.16) under u → u + Rµ follows immediately by a relabeling of the lines] is preserved

[11, 53] for any approximation of the FL density ρ in (3.17); otherwise wrong asymptotic

behaviours could be obtained (see the comment in Ref. [9] on Ref. [49]). Starting from a
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Figure 3.3: Graph of the different physical regimes of the FL array depending on the

longitudinal scale L and the typical displacement u [(a)&(b)] or the transversal scale R

[(c)&(d)]. The 3 longitudinal crossover length scales L = L∗, Lξ, Ll are shown together

with the corresponding typical displacement u = u∗, ξ, l [(a)&(b)] and their transversal

counterparts R = l, Rξ, Rl [(c)&(d)]. (a)&(c) show the situation of “single vortex pinning”,

which realized in extreme HTSCs as BSCCO and which we will focus on in this work;

(b)&(d) show the situation for “collective pinning”. The shaded regime always marks

the single vortex regime (d = 1), in the unshaded regime the FL array exhibits collective

behaviour (d = 3).
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L ξ L l

l

lu~

ξ

R
v(R)

Figure 3.4: In the Bragg glass regime on scales Ll < L, the typical FL displacement is

l . u: FLs start to compete for the same minimum of the disorder potential v.

discrete description as a sum of peaks, we use the Poisson formula to switch to a continuum

description and obtain

ρ[r,u(r)] =
∑

ν

δ2(R − Rν − uν(z))

=

∫
d2R′ ρ0

∑

ν

eiKν ·R′

δ2(R − R′ − u(R′, z))

' ρ0(1 − ∇R · u(r))

(
1 +

∑

ν>0

2 cos (Kν · (R− u(r)))

)
, (3.34)

where ρ0 = 1/l2 = B/φ0 is the mean FL density. Above two dimensions, the ∇R · u-term

in (3.34) measuring the large scale fluctuations in the density gives only a sub-dominant

contribution to the mean square displacements [9] so that we will neglect this term in

the following except for the treatment of the case d = 2 below. To obtain the large

scale physics on scales exceeding Rl, we can limit ourselves to the first harmonic of the

density fluctuations, i.e., with the smallest primitive inverse lattice vector K0 (we define

a coordination number z ≤ d − 1 as the number of primitive inverse lattice vectors of size

|K0|, which we label by K0i, i = 1, . . . , z). However, via (3.17), this amounts to letting the
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disorder vary effectively on scales 2π/K0 ' l, and we loose some “fine structure” on scales

smaller than Rl, because the actual disorder potential (3.14) varies on a much smaller scale

ξab. This leads to the loss of the RM regime in this approximation because we have an

effective range of the disorder potential ξab,B ' l, and the Larkin lengths become equivalent

to the positional correlation lengths. Keeping only the smallest inverse lattice vectors in

(3.34), we obtain from (3.17) a disorder Hamiltonian

H(d,n)
d,B [u] =

∫
d3r v(r) ρ[r,u(r)]

≈
∫

dd−1R

∫
dz WB[(R, z),u(R, z)] (3.35)

for the Bragg glass, where WB[(R, z),u(R, z)] is a Gaussian distributed periodic disorder

potential with WB = 0 and (we neglect fast oscillating terms)

WB[r,u]WB[r′,u′] = 2gB

z∑

i=1

cos (K0i · (u − u′))δd(r − r′) . (3.36)

K0i is now the projection of the (d − 1)-dimensional inverse lattice vector down to the

n-dimensional displacement space. The disorder strength gB is

gB = g0l
−(n+d−1) = ∆2

pinξn−1
ab l−(n+d−1) =

f 2
0 ξ2

ab

n
ξn
abl

−n . (3.37)

1Note that upon expanding in the displacements u we recover the RF regime on scales

R < Rξ = Rl, but with an effective range ξab,B ' l of the random forces, so that we

have a direct crossover from the RF regime to the Bragg glass in the “Bragg glass model”

defined by (3.35, 3.36): As already mentioned, the RM regime is “skipped” (this is checked

explicitly in Appendix A.1.1), and

Rξ = Rl and Lξ = Ll . (3.38)

The resulting Hamiltonian, which is very similar to a Hamiltonian for randomly-pinned

charge-density waves, has been studied in detail by a variety of methods: A position-space

renormalization group (RG) treatment [20], a Flory-type argument [11], a functional RG

(FRG) [9, 17], and a variational approach with RSB [9, 17, 21]. In d = 2 dimensions

(with n = 1 displacement components), which marks the lower critical dimension of the

Bragg glass, the Hamiltonian is equivalent to the (vortex-free) 2D XY model in a random

symmetry breaking field [53], which has also been intensively studied in the past [18, 19,

20, 22, 23] and is treated in part II of this work in detail.

1In the elastic part of the Hamiltonian we can limit ourselves to local elasticity in the asymptotic regime

of large length scales where the Bragg glass phase is valid: c44[K < 1/λ̃c] ≈ ĉ44.



Chapter 3. The Bragg Glass 37

The upper critical dimension for the Bragg glass phase is d> = 4, above which disorder

is irrelevant. For 2 < d < 4, disorder is relevant and the system is in a glassy phase. In

the FRG analysis this manifests in a stable T = 0 fixed-point with non-analycities in the

disorder correlator governing the behaviour of the system, and in the variational approach

with RSB in the stability of a continuous RSB result for the propagator, indicating the

occurrence of a hierarchically organized set of metastable states [9]. Displacements are

found to grow logarithmically

ζB = O(
√

log) , (3.39)

corresponding to a k−d-divergence in the Fourier-transformed 〈uu〉-correlations. The pre-

cise form of the displacement correlations is

〈(u(R, L) − u(R′, L))2〉 = 2An(4 − d)
1

K2
0

ln

( |R−R′|2
R2

l

+
(L−L′)2

L2
l

)1/2

,

(3.40)

where A is a numerical constant of order unity. The variational calculation with RSB

yields a value A = 1, slightly smaller than the result from the FRG, A = π2/9 [9]. This

discrepancy can be assigned to the fact that variational calculations tend to underestimate

fluctuations. The relatively weak logarithmic divergence can be understood most easily

from the CDW-type coupling to the disorder in H(d,n)
d,B via the periodic density (3.34),

again by using a Flory-type argument due to Nattermann [11]. Large displacements u

cost an elastic energy increasing as u2; the disorder energy gained from the pinning, how-

ever, is bounded because it is periodic in u and the FL array “sees” the same disorder

configuration whenever it is displaced by a full FL spacing. Actually, assuming Gaussian

displacement fluctuations, the mean square pinning energy determined from (3.35, 3.36)

decays exponentially

(〈(H(d,n)
d,B )2〉)1/2(R) ∼ Rd/2 exp

(
−K2

0

2
(〈u2〉(R, L))

)
, (3.41)

which leads upon equating to the elastic energy on the scale R,

〈H(d,n)
el 〉(R, L) ∼ Rd−2 , (3.42)

to the above logarithmic 〈uu〉-displacements [again, the scaling relation between L and R

is given by (3.8) L ∼ (ĉ44/c66)
1/2R].

Due to the logarithmic displacements, the correlations in the disorder-averaged trans-

lational order parameter decay algebraically

〈ρK(r)ρ∗
K(r′)〉 = 〈exp (iK(u(r) − u(r′)))〉

∼
( |R − R′|

Rl

)−A(4−d)K2/K2

0

(3.43)
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(where K is a reciprocal lattice vector). This results in a structure factor

S(k) ∼ 1

|k − K|d−j2·A(4−d)
(3.44)

at the jth reciprocal lattice vector k ≈ K = j ·K0. Therefore, algebraically decaying Bragg

peaks should be obtained in scattering experiments, and this phase bears the name “Bragg

glass” [9, 17]. These Bragg peaks have been observed in neutron diffraction experiments

by Cubitt et al. [25].

The lower critical dimension of the Bragg glass is d< = 2, below which thermal fluctua-

tions induce stronger fluctuations than the disorder [the FRG eigenvalue of the temperature

is 2−d]. For d = 2 and n = 1, we have a planar FL array, which is a chain of FLs confined

to a plane, i.e., the magnetic field is parallel to the plane. [In other words we consider an

d = 1 + 1 dimensional FL array, which has to be distinguished from the widely studied

“pancake vortices” corresponding to d = 2 and n = 2, i.e., to d = 2 + 0 dimensions].

Such a system can be experimentally realized in disordered thin type-II superconduct-

ing films or for Josephson vortices in a planar, inhomogeneous Josephson junction. In

the following chapter, this type of system will serve as building block to model a layered

HTSC in a magnetic field parallel to the superconducting CuO-planes, where each layer

of Josephson-type vortices between two CuO-planes can be described by an FL array with

d = 2 and n = 1. At the marginal dimension d = 2, disorder and thermal fluctuations

lead both to logarithmic growth of the displacements and to the existence of a transition

temperature, above which thermal fluctuations dominate, and disorder is renormalized to

zero, whereas in the low temperature phase the system exhibits “glassy” properties. The

two-dimensional disordered FL array with uniaxial displacements (n = 1) can be mapped

[53] onto a (vortex-free) 2D XY model in a random symmetry breaking field (2D RFXY

model henceforth), for which the existence of the transition to a disorder-dominated low

temperature phase with glassy properties has been demonstrated by a variety of methods

[18, 19, 21, 22].

In fact, the glassy low-temperature phase of the two-dimensional FL array is the only

vortex glass (VG) phase whose existence has been proven analytically [actually, based on

this result for d = 2, Fisher [5] originally conjectured the existence of a VG phase for higher

dimensions]. This is due to the fact that topological defects are excluded in a planar FL

array in d = 2 because the original labeling of the lines and thus the displacement field are

always unambiguously defined; hence, the elastic description cannot be invalidated. This

is the essential difference to higher dimensions, which makes all our considerations in this

part I necessary.

To switch to the “language” of the 2D XY model in a random symmetry breaking field

(with a p-fold symmetry) for d = 2 and n = 1 (and z = 1), we introduce a phase-field φ
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instead of the scalar displacement-field u (u = u · x̂)

φ(r) :=
K0

p
u(r) =

2π

pl
u(r) . (3.45)

Note that the elastic part of the Hamiltonian H(2,1)
el is now given by (3.12), and contains

only a tilt (c44) and a compression (c11) term. Because we are interested mainly in the

asymptotic long wavelength properties, we use the local limit of the elastic Hamiltonian

and take the non-dispersive elastic constants c44/11[K] ≈ ĉ44/11. We switch to an isotropic

elastic Hamiltonian by rescaling

z′ =

(
ĉ11

ĉ44

)1/2

z and L′ =

(
ĉ11

ĉ44

)1/2

L = R , (3.46)

which leads to a Hamiltonian2

H2D[φ] = H2D
el [φ] + H2D

d [φ] (3.47)

with an elastic part of the Hamiltonian characterized by the isotropic elastic constant K

given in (3.53)

βH2D
el [φ] =

1

2

∫
d2r

{
K(∇φ)2

}
. (3.48)

In the disorder part of the Hamiltonian, we have to consider in d = 2 dimensions also

the marginally relevant gradient term in the density (see (3.34) with the smallest inverse

lattice vector K0 = (2π/l)x̂ only and ρ0 = 1/l)

ρ[r, φ(r)] ≈ ρ0

(
1 − pl

2π
∂xφ(r) + 2 cos

(
2π

l
x − pφ(r)

))
, (3.49)

which leads to an additional random bond term compared to (3.35):

βH2D
d [φ] =

∫
d2r {W [r, φ(r)] − w[r] · ∇φ} (3.50)

with

W [r, φ]W [r′, φ′] = 2g cos (p(φ − φ′)) δ2(r − r′) (3.51)

wi[r]wj[r′] = ∆ δijδ
2(r − r′) (3.52)

2β ≡ 1/T
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(W and w are Gaussian distributed with mean zero and uncorrelated wW = 0), where we

anticipated in (3.52) that the random bond terms become isotropic on large scales in the

thermodynamic limit. Furthermore, we have absorbed all temperature dependencies into

K = (ĉ44ĉ11)
1/2

(
pl

2π

)2
1

T
(3.53)

g = (ĉ44/ĉ11)
1/2gB

1

T 2
(3.54)

∆ =
p2l2

8π2
g . (3.55)

The such defined 2D RFXY model is studied in the absence of vortices in the φ-field,

which would correspond to FLs ending in a layer. This is assumed to cost a large amount

of magnetic energy [the FL has to either “tunnel” to some other nearby layer, or to end in

a magnetic monopole] and thus to be forbidden. Though it has been studied intensively

analytically [9, 17, 18, 19, 20, 22, 23, 21, 54, 55, 56] and numerically [57, 58, 59, 60], some

properties of the 2D RFXY model are still controversial, e.g. the exact form of the 〈φφ〉-
correlations in the low-temperature phase. [The 2D RFXY model, and in particular the

issue of its 〈φφ〉-correlations, will be considered in detail in part II of this work.] However,

all approaches agree in the existence of a high-temperature phase, in which disorder is

irrelevant, above a temperature Tg or for τ < 0, where

τ := 1 − Kc

K
=

Tg − T

Tg
with Kc =

p2

4π
(3.56)

is the negative reduced temperature, and a glassy low-temperature phase for τ > 0, which is

disorder dominated and exhibits glass-like dynamical properties [22, 23, 54, 57]. The 〈φφ〉-
correlations have been conjectured either to diverge ∝ ln r, i.e. similar to their behaviour

in 2 < d < 4 (3.40) [9, 17, 21, 54] or to exhibit rather a so-called “super-roughness” with

a somewhat stronger divergence ∝ ln2 r [18, 61]:

ζ2D = O(
√

log) −O(log) . (3.57)

Neither from the analytics or from the numerics one or the other could be ruled out so

far. Due to the pronounced thermal fluctuations in d = 2, which entirely “wipe out”

the disorder above Tg, the crossover length to the disorder-dominated phase, i.e., the

positional correlation length Rl [which is equivalent to the Larkin length Rξ = Rl in the

single-harmonic approximation (3.36) in (3.35) of the Bragg glass model] is renormalized

upwards also in the low-temperature phase [9] (see Appendix, equations (A.20, A.22)):

Rl,2D(T =0) ∼ K

g1/2
(3.58)

Rl,2D(τ) ' l

(
Rl,2D(T =0)

l

)1/τ

. (3.59)
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Now, that we have reviewed the properties of the dislocation-free disordered FL array

in some detail, we have set the stage for the appearance of dislocations in the disordered

FL array.
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Chapter 4

Variational Calculation

for a Layered Superconductor

in a Parallel Field

We want to start our study of dislocations in the disordered FL array with a variational

calculation for a strongly layered impure HTSC in a magnetic field parallel to the su-

perconducting CuO-planes H ‖ ab [Figure 4.1] [62, 63, 64, 65, 66, 67]. To avoid shear

instabilities of the FL lattice [63], we choose the magnetic field such that the FL lattice is

commensurate with the layer spacing d of the superconducting planes. The FL distances

are l‖ and l⊥ = nd (n integer) in the directions parallel and perpendicular to the layers,

respectively; the magnetic penetration depths are λc and λab for magnetic fields parallel

and perpendicular to the layers, respectively. The superconducting CuO-planes provide a

sufficiently strong confining potential for the Josephson-like vortex lines which exist in the

interlayer spacing so that we can exclude to a good approximation the possibility of lines

crossing the superconducting layers: In BSCCO with the fields parallel to the ab-planes,

typical vortex kink energies are of the order (φ0/4πλab)
2d ≈ 103(1 − T/Tc)

◦
K [64]. This

amounts to limiting the vortex displacement field from two components in an isotropic

sample to one component (i.e. , parallel to the layers). We will come back in chapter 5 to

the usual experimental situation of magnetic fields perpendicular to the CuO-planes of the

HTSC, where the displacements are two component.

In what follows, we model each layer of FLs in the HTSC as a planar FL array in

d = 1 + 1 dimensions subject to point disorder or, by virtue of the mapping described

in chapter 3, as 2D RFXY model given by formulae (3.45-3.55). For these layers, we

derive an inter-layer coupling between “adjacent” layers, which reduces to an elastic shear

coupling of the lattice for a strong inter-layer coupling but allows for the formation of

dislocation loops in between each layer. This enables us to explore quantitatively the

possibility of an instability with respect to a proliferation of dislocation loops by means

43
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of a variational calculation of an effective shear modulus. The effective shear modulus is

driven to zero upon a proliferation of dislocation loops. Though the application of the

model to a layered HTSC in a parallel field is interesting in its own right, we introduce

this model as a first step towards a systematic study of the usual experimental situation

of a HTSC in a field perpendicular to the CuO-planes or, more generally speaking, an

anisotropic type-II superconductor in the presence of point disorder with the magnetic

field along the symmetry axis. With regard to this generic situation, the layered model

we consider in this chapter has limitations based on the uniaxiality of the displacements,

which, on the other hand, make an analytic treatment possible at all. However, we can cast

the main result of the variational calculation into a Lindemann-like criterion comparing

the positional correlation length Rl [which is equal to the Larkin length Rξ in the Bragg

glass model we employ, see (3.38)] with the FL spacing. In this form, it can be generalized

easily to other more generic models with two-component displacements, which are studied

in detail in the following chapters 5 and 6.

l⊥

j+1
j x

z

H

||r =(x,z)
r

l ||

⊥

Figure 4.1: FL array in a layered superconductor in a parallel magnetic field

4.1 Hamiltonian for the

Layered Uniaxial Geometry

We choose r‖ = (x, z) as in-plane coordinates, such that the z-axis is parallel and the

x-axis is perpendicular to the undistorted FLs, and r⊥ = y as coordinate perpendicular to

the FL layers, which are labeled with an index j [Figure 4.1]. We adopt for the layered

HTSC the “language” of the 2D RFXY model introduced in the last chapter (3.45-3.55)

and write down the Hamiltonian in terms of a phase field φj(r‖) instead of the uniaxial,

scalar displacement field uj = φj x̂ l‖p/2π. Then, the FL array can be described by a
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Hamiltonian

H[{φj}] =
∑

j

{
H2D

el [φj] + H2D
d [φj]

}
+ Hint[{φj}] (4.1)

with the (isotropized) elastic energy H2D
el of the disorder-free 2D FL-array introduced above

(3.48) and characterized by an isotropic in-plane elastic constant K (3.53).

Pinning effects due to point disorder are described by the disorder part H2D
d [{φj}] of

the Hamiltonian, which is the sum of the random potentials of the 2D layers. These are

uncorrelated since the range of the disorder in the direction perpendicular to the CuO-

planes equals the coherence length ξc in that direction and is typically several orders of

magnitude smaller than l⊥ = nd in a HTSC. As mentioned in the introductory chapter 2,

only free, unbound dislocation loops induce a melting in the direction perpendicular to the

FL layers, so we have to use the approximation (3.50) for the disorder within each 2D FL

layer, that describes the large scale properties in the Bragg glass phase correctly:

βH2D
d [φj] =

∫
d2r‖

{
Wj[r‖, φj(r‖)] − wj[r‖] · ∇φj

}
(4.2)

with WjWj′ = δjj
′WW from (3.51) and wjwj′ = δjj′ww from (3.52).

Hint[{φj}] is the (φ-dependent part of the) interaction energy between the layers. It

can be written in the framework of the London-theory as interaction energy between all

pairs of FL-elements. In the continuum description of the planar FL arrays, we can write

it in terms of the FL densities ρ[r, φ(r)] as

βHint[{φj}] =
∑

i>j

∫

r‖,1

∫

r‖,2

Vint(i−j, r‖,1−r‖,2)ρ[r‖,1, φi(r‖,1)]ρ[r‖,2, φj(r‖,2)]. (4.3)

For simplicity, we want to consider here the dilute limit, where the FL interaction is

effectively a “nearest layer” interaction, i.e., Vint(i, r‖) ≈ δi,1l
2
‖vint(r‖). In the dilute limit

λab � l⊥, the range of the magnetic interaction given by the magnetic penetration depths

λab perpendicular to the planes exceeds the FL distance l⊥. Note that in this limit vint ∝
exp (−l⊥/λab) is small compared to the in-plane elastic energies. The generalization of our

results to the dense limit will be discussed below. Using the expression (3.49) for the FL

density ρ[r‖, φ] as in the disorder part of the Hamiltonian and neglecting fast oscillating

terms, we obtain

βHint[{φj}] ≈
∑

j

∫
d2r‖

{
Vj[p(φj(r‖)−φj+1(r‖))] +

1

2
Kµ∇φj · ∇φj+1

}

(4.4)

≈
∑

j

∫
d2r‖

{
Vj[φj(r‖) − φj+1(r‖)]

}
, (4.5)
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where we anticipated in (4.4) that the elastic term can be treated as isotropic in the

thermodynamic limit. After switching in every second FL layer to φj 7→ φj + π, taking

into account the hexagonal structure of the groundstate of the FL lattice, the inter-layer

coupling Vj[pφ] is

Vj[φ] = −µ cos (pφ) . (4.6)

This expression can be regarded as the repulsive magnetic interaction energy between the

lowest harmonics of density fluctuations between vortex lines in adjacent layers [65]. µ and

Kµ, which is in general dispersive Kµ = Kµ[k‖], are proportional to the shear energy, that

is given by vint and can be expressed in terms of the Fourier transform ṽint(k‖) as:

µ ' ṽint(2π/l‖) ∝ 1

T
(4.7)

Kµ[k‖] = ṽint(k‖)l
2p2/8π2 ∝ 1

T
(4.8)

[note that we had absorbed temperature dependencies into ṽint ∝ 1/T , see (4.3)]. In the

local long wavelength limit Kµ ≈ Kµ[0] of interest, one recognizes that in the continuum

limit of (4.4), the elastic term with the coupling constant Kµ can be absorbed into the

elastic constant K in H2D
el (3.48): K 7→ K +Kµ. Due to Kµ ∝ exp (−l⊥/λab) � K, we can

neglect Kµ completely for the following and arrive at (4.5). Putting everything together,

we obtain a Hamiltonian of the form

βH[{φj}] =
∑

j

∫
d2r‖

{
1

2
K(∇‖φj)

2 + Vj[φj(r‖) − φj+1(r‖)] +

+ Wj[r‖, φj(r‖)] − wj[r‖] · ∇φj

}
(4.9)

for the layered HTSC in a parallel field.

Clearly, a coupling of the form (4.6) allows for dislocations, because shifts of 2π/p in

the phase difference φj+1 − φj between two neighbouring layers (or equivalently by l‖ in

the relative displacement uj+1 − uj) do not cost interaction energy. So, a few remarks are

in order at this point about where and how dislocations can proliferate in this uniaxial,

layered system. Because the FLs are confined to one layer (between two CuO-planes) and

displacements are thus uniaxial, also the Burgers vectors b have to be uniaxial

b ‖ x̂ . (4.10)

As discussed in chapter 2, this entails that only dislocation loops parallel to the FL layers

can form [to which we assign a location on the plaquets formed by the bonds of the FL

array, so that dislocation loops are always lying in between two FL layers]. Obviously,

such dislocation loops cannot destroy the in-plane order of the FL layers. The in-plane
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order of the FLs cannot be destroyed in this uniaxial model at all, because FLs within the

same layer cannot cross each other, and the displacement or phase field φj(r‖) can always

be unambiguously defined within each plane j. [Consequences of this peculiarity for the

disorder-free system are discussed in detail in Ref. [65].] Therefore, a dislocation-mediated

melting will destroy only the positional order in the direction perpendicular to the FL

layers and lead rather to a smectic phase consisting of effectively decoupled 2D systems,

which was analyzed for the disorder-free system in Refs. [66, 67]. However, a proliferation

of dislocation loops will lead to a vanishing effective shear modulus, a characteristic of a

disorder-induced “melting” into a smectic phase.

4.2 Elastic and Decoupled Limit

In what follows, we study the phase diagram in terms of the inter-layer coupling µ and the

in-plane elastic constant K ∝ 1/T , which plays the role of an inverse temperature, for a

fixed strength of the disorder. The behaviour of the system is governed by the competition

between the inter-layer coupling and the disorder. The inter-layer coupling tries to bring

FLs in neighbouring layers into registry and favors a dislocation-free, hexagonal crystalline

order of the FL array. On the other hand, the disorder, which is uncorrelated between

the layers, tends to decouple the layers to allow for an optimal adjustment to the disorder

configuration in each layer separately; for dominating disorder, the FL array looses the

lattice order and “melts” into the just mentioned smectic glassy phase. Then, typical FL

configurations can only be described in terms of a collection of unbound dislocation loops

in between the layers.

For µ ↑ ∞, the FL array is dislocation-free, and Vint can be approximated by an elastic

energy

Vj,el[φ] =
1

2
µp2φ2 , (4.11)

and µ is related to the shear modulus. The “nearest neighbour” approximation for the

dilute limit leads to a local elasticity theory, i.e., with dispersion-free elastic modulus µ. The

continuum (introducing r = (r‖, r⊥ = j ·l⊥)) and disorder-free version of (4.9) with (4.11) is

just the uniaxial (n = 1) standard three-dimensional elastic Hamiltonian H(d=3,n=1)
el (3.12)

introduced in the preceding chapter 3. Remembering the in-plane rescaling (3.46), we find

the relations

µ ≈ c66(ĉ44/ĉ11)
1/2

l2‖
(2π)2l⊥

1

T
(4.12)

K ≈ (ĉ44ĉ11)
1/2

l2‖l⊥

(2π)2

1

T
(4.13)

between µ and the shear modulus and between K and the tilt and compression moduli
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of the 3D FL array. Whereas it is clear that the elastic energy of the uniaxial, layered

superconductor in a parallel field under consideration is completely described by a set

three elastic constants, lots of work in the literature has been devoted to the calculation

of the larger set of elastic constants for the general case of two-component displacements.

In the standard terminology [4] of this more general situation [but for H ‖ ab], we refer

here to the subset of moduli c
‖
11, c

‖
44 and c

‖
66 when specializing to uniaxial displacements

with u ‖ ab. The assumed suppression of vortex kinks crossing the planes is equivalent

to taking the remaining elastic constants c⊥11, c⊥44 and c⊥66 to be infinite. It can be checked

that this is indeed to a good approximation fulfilled for strongly anisotropic materials with

ε = λab/λc � 1 because c⊥11 = c
‖
11/ε

2, c⊥44 = c
‖
44/ε

2, and c⊥66 = c
‖
66/ε

4 [4].

K can be estimated from ĉ44 & BHc1/4π and ĉ11 ≈ B2/4π [68] for the dense limit

l⊥ < λab; using the relations B = φ0/l‖l⊥ and l⊥/l‖ ≈ λab/λc, we obtain for BSCCO

typical values

KT ≈ 1

16π3
B3/2H

1/2
c1 l2‖l⊥ ∼ (φ0/4πλab)

2λab ∼ 105(1 − T/Tc)
1/2 ◦K. (4.14)

In the 2D RFXY model corresponding to a single FL layer, this estimate implies that the

transition temperature Tg, see (3.56), is extremely high,

K � Kc or τ = 1 − Kc

K
' 1 , (4.15)

and we are effectively in the T =0-limit (K ↑ ∞). However, in the dilute limit l⊥ � λab it

is known [65] that within each layer steric repulsion dominates because the FL interaction

decays exponentially, and K becomes effectively temperature independent:

K ≈ Kc
1

1 − λc/l‖
' Kc or τ = 1 − Kc

K
' 0 . (4.16)

Thus, the physical realization of a HTSC in a parallel field maps always to the low-

temperature phase 1 ≥ τ > 0 (K ≥ Kc) of our model consisting of a stack of coupled

2D RFXY models: τ ' 1 is realized in the dense limit of the FL array, and τ ' 0 in the

dilute limit.

The disordered layered FL array is in the elastic, dislocation-free strong coupling limit

equivalent to a uniaxial Bragg glass in d = 3, but with a discretized coordinate in the di-

rection perpendicular to the layers1. As discussed in the previous chapter 3, it exhibits log-

arithmic roughness, see (3.40). The asymptotic form of the propagator has been calculated

in the framework of a variational approach with an RSB Ansatz for the propagator and by

a functional renormalization group (FRG) calculation by Giamarchi and LeDoussal [9, 17].

1The additional random bond term associated with the random field w is irrelevant in 3 dimensions [9].
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In the variational calculation one finds (k⊥ runs over the Brillouin zone [−π/l⊥, π/l⊥] of

the discrete coordinate)

〈φ(k‖, k⊥)φ(k′
‖, k

′
⊥)〉

3D
= (2π)3δ2(k‖ + k′

‖)δ
1(k⊥ + k′

⊥) G3D(k‖, k⊥)

G3D(k‖, k⊥) ' 2π2Kµ1/2

(
Kk2

‖ + 2µl2⊥ (1 − cos (k⊥l⊥))
)3/2

G3D(r‖ = 0, j = 0) ' ln

(
R2

‖

R2
l,3D,‖

+
R2

⊥

R2
l,3D,⊥

)1/2

(4.17)

for a finite system of (transversal) size R‖ and R⊥. The variational calculation yields a

prefactor of the log of exactly unity in the last equation (which we will use henceforth

for definiteness), whereas the FRG approach gives the slightly larger value π2/9. This

asymptotic form holds on lengths scales exceeding the Larkin length Rl,3D, which can be

expressed in terms of K, µ and g as

Rl,3D,‖ = Rξ,3D,‖ = c̄d=3
K3/2µ1/2

g

Rl,3D,⊥ = Rξ,3D,⊥ = c̄d=3
Kµ

g
l⊥ (4.18)

[(for p = 1); see (3.38, A.23), and for the numerical prefactors the discussion in Appendix

A.1.1] with c̄d=3 = 8π2 (A.11). Also, due to the existence of a statistical symmetry [69, 70],

it is known that the disorder-averaged responses of the system to various elastic deforma-

tions are identical to those of the pure elastic system, i.e., the Hamiltonian (4.9) with

W ≡ 0. In particular, there is a non-zero response to shear.

In the limit of a very small inter-layer coupling µ � 1, we can find perturbatively,

whether the inter-layer coupling (4.6) in (4.5) is relevant on large scales by evaluating the

correction ∆F µ to the (disorder-averaged) free energy per layer to leading order in µ, which

is the free energy gain due to the coupling in the disordered, decoupled FL array:

∆F µ = −µT

∫
d2r‖〈cos

(
p(φj(r‖) − φj+1(r‖))

)
〉
µ=0

≈ −µT

∫
d2r‖ exp

(
−p2〈(φj(r‖))2〉

2D

)
. (4.19)

The average is calculated with the Hamiltonian of the uncoupled system, therefore the last

average is performed with the 2D RFXY Hamiltonian. In (4.19) we applied a cumulant

expansion and neglected higher order cumulants, which is exact only for Gaussian averages

where the connected higher order correlations 〈φ2m〉2D,conn (m > 1) vanish. Let us discuss

the validity of this approximation along with the different results for the 2-point correlation



50 Part I. Topological Order in the Vortex Glass Phase

function of the 2D RFXY model, the correct asymptotic behaviour of which is still a subject

of current research and will be one of the main issues in part II of this work.

Up to now, essentially two analytical approaches to the 2D RFXY model are existing

as already mentioned, which are (i) a renormalization group (RG) treatment due to Cardy

and Ostlund [18] and Goldschmidt and Houghton [19], and (ii) a variational approach with

a RSB Ansatz by Korshunov [21] and Giamarchi and LeDoussal [9, 17], which has also been

successfully applied to the Bragg glass phase in higher dimensions 2 < d < 4. However,

the results of both approaches are not in agreement regarding important properties of the

low-temperature phase, which is in both approaches found for a reduced temperature τ > 0

or K > Kc = p2/4π.

In the RG-approach, one finds that the 2-point vertex of the replicated Hamiltonian

is renormalizable, i.e., all divergences occuring in the low-temperature phase in a double-

expansion in g and the reduced temperature τ can be absorbed in a renormalization of

g and ∆; K is unrenormalized due to a statistical tilt symmetry. The long-wavelength

properties can be analyzed by studying the RG-flow under a change of scale by a factor

e`. One finds a “runaway-flow” for ∆(`) and a perturbative fixed point g∗ for g(`) with

d∆

d`
=

p2

16c
(4cl2‖g)2 (4.20)

dg

d`
= 2τg − 4cl2‖g

2 (4.21)

g(`) → g∗ =
2τ

4cl2‖
, (4.22)

where c is a non-universal numerical constant depending on the IR cutoff procedure; we

take c = π henceforth corresponding to a circular cutoff. Upon integrating the RG-flow up

to e−` = k‖l‖/2π, the “runaway-flow” of ∆ leads to an additional logarithmic divergence

in the 2-point correlation function and a “super-rough” low-temperature phase [61]:

〈φ(k‖)φ(k′
‖)〉2D

= (2π)2δ2(k‖ + k′
‖)G(k‖)

G2D(k) ' 1

Kk2
+

(
∆(`)

K2k2
+

g(`)e−2`

K2k4

)∣∣∣∣
`=ln (2π/kl‖)

(4.23)

The first term is the propagator of the disorder-free system, the first two terms represent the

renormalized bare propagator of the disordered system, and the third term the renormalized

self-energy contribution to first order in g. Using

g̃(`) := 4πl2‖g(`) =
g̃ exp (2τ`)

1 + g̃
2τ

exp (2τ`)
→ g̃∗ = 2τ , (4.24)
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the first two terms in (4.23) give to leading order in τ the asymptotics

G2D(k) ' 1

Kk2
+ τ 2

ln
(

2π
kl‖

)

k2

G2D(r‖ = 0) ' 1

2πK
ln

(
R‖

l‖

)
+

τ 2

4π
ln2

(
R‖

l‖

)
(4.25)

for a finite system of (transversal) size R‖. The log2-divergence is the signature of the

“super-rough” low-temperature phase. The asymptotic log2-behaviour sets in above the

Larkin length Rl,2D, i.e., the scale where the mean square phase-shift exceeds (2π/p)2, and

perturbation theory breaks down. This scale is determined by the last term in (4.23),

which dominates the perturbative regime, and given by (3.58, 3.59).

Applying these results to higher order correlations 〈φ2m〉2D,conn (m > 1), we argue that

by means of the renormalization of the 2-point vertex all essential divergences should have

been removed (if renormalizability holds). Using renormalized vertices in a diagrammatic

calculation, one finds, similar to the asymptotics of the third term in (4.23), finite results of

the order of g∗ ∝ τ for the connected correlations 〈φ2m〉2D,conn in the thermodynamic limit.

Therefore, averages with the 2D RFXY Hamiltonian, i.e., the decoupled system (µ = 0),

are approximately Gaussian on large scales apart from finite corrections, and the neglect

of the higher order cumulants in (4.19) is justified. Using the asymptotic expression (4.25),

we obtain for layers of (transversal) size R‖

∆F µ ∼ −µT
(
R‖/l‖

)2τ−Kcτ2 ln (R‖/Rl,2D(τ))
, (4.26)

which is clearly irrelevant in the thermodynamic limit. A small coupling µ � 1 does not

lead to an energy gain in the disordered FL array, and the layers remain decoupled and

optimally configured with regard to the disorder in each layer.

In the variational approach, one uses an RSB Ansatz to calculate the optimal quadratic

approximation to the full propagator in replica space, i.e., the full propagator is approx-

imated by a hierarchically organized set of quadratic propagators. This leads a priori to

Gaussian averages and the cumulant expansion in (4.19) becomes exact in this framework.

The result for the asymptotic propagator is [9, 21]

G2D(k) ' 1

Kk2
+

K

Kc
(τ + y/2)

1

Kk2

(
1 +

(
kRl,2D(τ)

2π

)2
)

G2D(r‖ = 0) ' 1

2πK
ln

(
R‖

l‖

)
+

τ + y/2

p2
ln

(
R2

‖ + R2
l,2D(τ)

l2‖ + R2
l,2D(τ)

)
(4.27)

again for a finite system of size R‖ and with y := (l‖/Rl,2D(τ))2 ∝ g1/τ � 1 measuring

the disorder strength. Thus the variational approach gives only a log-divergence for the
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correlations in the low-temperature phase much like in the disorder-free high-temperature

phase, only with an increased prefactor. The Larkin length Rl,2D is in terms of K and g

given by (3.38, 3.58, 3.59):

Rl,2D(T =0) = Rξ,2D(T =0) ' c̄d=2
K

g1/2
(4.28)

Rl,2D(τ) = Rξ,2D(τ) ' l‖

(
Rl,2D(T =0)

l‖

)1/τ

(4.29)

[(for p = 1); see (A.20), and for the numerical prefactors the discussion in Appendix A.1.1]

with c̄d=2 = (2π)3/2 (A.11).

As for the coupling energy ∆F µ, also with the result (4.27) from the variational ap-

proach, we find that the inter-layer coupling is irrelevant in the thermodynamic limit:

∆F µ ∼ −µT
(
R‖/Rl,2D

)−y/2
. (4.30)

4.3 Variational Calculation

The above findings suggest the existence of a transition from a decoupled phase for small

inter-layer couplings to an elastically coupled phase at a non-zero inter-layer coupling µc.

For µ ↑ ∞, the system should be equivalent to the elastically coupled Bragg glass with a

non-zero shear modulus and free of unbound dislocations. In an underlying RG analysis,

we would expect a stable “glassy”, “elastic” fixed point at T = 0 with a relevant interlayer-

coupling µ(L) ↑ ∞ [Figure 4.2]. But we know from the above perturbative calculations that

at small enough couplings the RG flow of the inter-layer coupling µ is in a different basin

of attraction and flows to a “decoupled”, “glassy” (τ > 0) fixed point µ(L) ↓ 0 [Figure 4.2].

The above result µ(L) ↓ 0 (4.26, 4.30) is a signature of a vanishing shear modulus in the

decoupled phase. The underlying physical mechanism for the downward-renormalization

of the shear modulus is clearly the existence of plastic deformation mediated by unbound

dislocation loops. The “elastic” and “decoupled” RG sinks must be separated by a phase

transition at a critical non-zero inter-layer coupling µc.

We want to explore the outlined scenario by a variational calculation, where we deter-

mine an effective shear modulus µ̃. To this end, we define an elastic “trial” Hamiltonian

Hel[µ̃] with an harmonic inter-layer coupling Vj,el[µ̃] = 1
2
µ̃φ2, where µ̃ is proportional to

the shear modulus of the FL array. [Henceforth, we will set

p ≡ 1 (4.31)

for simplicity.] To calculate an optimal shear modulus µ̃ with respect to the original

Hamiltonian H[µ] with the cos-coupling Vj[µ] = −µ cos (φ) derived above (4.6), we use the
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Jensen-inequality for the disorder-averaged free energies

F [µ] ≤ Fvar := F [µ̃] + 〈H[µ] −Hel[µ̃]〉
eµ (4.32)

[where 〈. . .〉
eµ means an average with the elastic trial Hamiltonian Hel[µ̃]]. Minimizing the

variational free energy Fvar with respect to µ̃ gives the following self-consistency equation

for µ̃, which establishes a relation µ̃ = µ̃(µ) between the effective shear modulus µ̃ and the

“bare” inter-layer coupling parameter µ:

0 =
∂Fvar

∂µ̃
= −1

2

∑

j

∫

r‖

〈
(H[µ] −Hel[µ̃])

(
(φj+1 − φj)|2r‖

)〉
eµ,conn

≈ 1

2

∑

j,i

∫

r‖

∫

r̃‖

〈
µ̃ − µ cos (φj+1 − φj)|r‖

〉
eµ
×

×
〈(

(φj+1 − φj)|2r‖
)(

(φi+1 − φi)|2r̃‖
)〉

eµ,conn

⇒ µ̃ ≈ µ〈cos (φj+1 − φj)〉eµ ≈ µ exp

(
−1

2
〈(φj+1 − φj)2〉

eµ

)
.

(4.33)

In deriving the self-consistency equation we treated the combined disorder and thermal

averages 〈. . .〉
eµ as approximately Gaussian and applied the Wick-theorem. Similarly, we

employed in (4.33) a cumulant expansion on the cos-average and neglected higher-order

cumulants. These approximations will be justified below.

The form of the elastic trial Hamiltonian induces some peculiarities for the mechanism

of dislocation proliferation, which we have to comment on. To keep the following calcula-

tions tractable, we used a single variational parameter µ̃ characterizing the effective shear

modulus. In particular, this means that the effective shear modulus in Vj,el[µ̃] is layer-

independent. This has the important consequence that a possible decoupling transition

where µ̃ vanishes corresponds to a proliferation of dislocation loops in between every pair

of neighbouring layers. Thus, at the transition, the distance between the unbound disloca-

tions is the FL spacing l⊥ perpendicular to the layers, and the variational Ansatz envisions

a first-order “melting” scenario on the shortest scale l⊥.

Let us now address the basis of our above assumption in deriving the self-consistency

equation (4.33), namely that averages 〈. . .〉
eµ are to a good approximation Gaussian aver-

ages. To this end, we have to investigate in detail the behaviour of the connected correla-

tions 〈(φj+1 − φj)2m〉
eµ,conn, i.e., thermodynamic averages in the disordered elastic layered

FL array with a shear modulus given by µ̃. For the purpose of solving (4.33), we are

interested in m = 1; to show that averages 〈. . .〉
eµ are to a good approximation Gaussian,

we have to show that correlations with m > 1 are sufficiently small. Essentially, we expect



54 Part I. Topological Order in the Vortex Glass Phase

contributions from three sorts of fluctuations, which are closely related to the elastic and

decoupled limits discussed in the previous section 4.2 [henceforth, we refer to the Larkin

lengths of the elastic trial system depending on µ̃ as R̃l,3D := Rl,3D[µ̃]; note that Rl,2D is

independent of µ̃]:

(i) For large shear moduli µ̃, the system is on large length scales R‖ > R̃l,3D,‖ well

described as a discretized version of the elastic uniaxial Bragg glass model in d = 3,

discussed above as the elastic limit.

(ii) However, for small enough shear moduli, quasi-two-dimensional fluctuations start

to dominate the averages. These fluctuations become available on scales R⊥ ∼
(µ̃l2⊥/K)1/2R‖ . l⊥ and are for R‖ > Rl,2D(τ) essentially the large scale, disorder-

induced fluctuations of the single layer Bragg glass in d = 2, i.e., the 2D RFXY

model, which has been analyzed above as the decoupled limit µ̃ = 0.

(iii) On length scales smaller than the Larkin lengths R̃l,3D, Rl,2D, the disorder can be

treated as perturbation, and thermal fluctuations dominate [for T > 0, at T = 0

we get only disorder contributions, which can, however, be neglected on small scales

beyond the Larkin length].

Note that we refer here always to the Larkin lengths of the elastic trial system with shear

modulus µ̃. When studying equation (4.19), we discussed already in detail the validity

of the Gaussian approximation for the averages contributing in (ii) when the layers can

be regarded as decoupled. Furthermore, it is clear that the averages over the thermal

fluctuations (iii) are Gaussian. For the elastic limit of the 3D Bragg glass encountered in

(i), the combined disorder and thermal averages in (4.33) can be treated as approximately

Gaussian in the variational treatment with an RSB Ansatz for the propagator because the

propagator is approximated by a set of harmonic propagators leading directly to Gaussian

averages. In the framework of an FRG in 4 − ε dimensions for the 3D Bragg glass, the

system is dominated by a T = 0 fixed point, where the fixed point disorder correlator is

perturbative in ε = 4−d. The correlations 〈(φj+1 − φj)2m〉 can be calculated by integrating

their RG flow equation and evaluating them at the fixed point perturbatively, as done in

Ref. [9] for m = 1. At the fixed point, the disorder correlator is perturbatively quadratic in

φ, which leads immediately to an asymptotically Gaussian field theory, and the averages

are approximately Gaussian also in the FRG treatment of the contributions (i). This result

can be supplemented by a second argument based on the observation that at a T =0 fixed

point only diagrams with #internal lines = #vertices contribute because vertices in the

FRG formalism are the disorder correlators carrying a factor T−2, and each bare propagator

carries a factor T 1. One can derive for the asymptotic fixed point form of the vertex, as

obtained in Ref. [9], and for connected diagrams contributing to higher order (m > 1)

correlations 〈(φj+1 − φj)2m〉 the rule: #vertices > m. Thus, the higher order correlations
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are of the order . O(εm), i.e., can be neglected in a controlled manner in the framework

of the FRG based on the ε-expansion.

To evaluate the right hand side of equation (4.33), we have to use the proper general-

ization of the 3D elastic trial Bragg glass propagator ((4.17) with µ̃) taking correctly into

account the crossover to the decoupled limit (4.27 with µ̃) as µ̃ ↓ 0. In the framework of

the variational RSB approach to the 3D Bragg glass [9], we obtain the following propagator

for the correct interpolation to the decoupled limit:

G(k‖, k⊥) ≈ 1

G−1
0 (k‖, k⊥)

(
1 +

τ + y/2

1 − τ
f2D

[
Rl,2D(τ)k‖

2π

]
+

+
2π2Kµ̃1/2

(
G−1

0 (k‖, k⊥

)1/2
)

g3D

[
R̃l,3D,‖

2π

(
G−1

0 (k‖, k⊥)

K

)1/2
])

(4.34)

G−1
0 (k‖, k⊥) = Kk2

‖ + 2µ̃ (1 − cos (l⊥k⊥)) ,

where the functions f2D (A.33) and g3D (A.34) control the crossover from the asymptotic

behaviour on scales exceeding the Larkin lengths to the perturbative regime on small scales.

They are normalized to give f2D[x], g3D[x] ' 1 for x � 1 and essentially produce a cutoff

at small length scales, where f2D[x], g3D[x] ' 0 for x � 1. The first term in the sum (4.34)

represents contributions from thermal fluctuations (iii), the second term from the quasi-2D

fluctuations of the disordered system (ii), described by the 2D RFXY model, and the third

term from the elastic fluctuations of the 3D Bragg glass (i).

Using the expression (4.34), we have to solve the following self-consistency equation

according to (4.33) to obtain the effective shear modulus µ̃(µ) as a function of the inter-

layer coupling µ:

0 =
∂Fvar

∂µ̃
∝ µ̃ − µ exp

(
−I[µ̃]

2

)

with

I[µ̃] =

∫ π

−π

dϕ

2π
2(1 − cos (ϕ))

∫ 2π/l‖

0

k dk

2π
G
(
|k‖| = k, k⊥l⊥ = ϕ

)
.

(4.35)

It is clear that the integral I[µ̃] splits into three contributions from the corresponding terms

in the propagator (4.34),

I[µ̃] = I th[µ̃] + Idis
2D [µ̃] + Idis

3D [µ̃] . (4.36)

As shown in the Appendix A.2, equation (4.35) has for µ̃ ↑ ∞ the strong coupling solution

µ̃ ≈ µ, where the FL array is dislocation-free and described by elasticity theory as discussed
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above, section 4.2. Furthermore, µ̃ = 0 is always a solution of the self-consistency equation,

which is essentially mirroring the perturbative result presented in 4.2. Hence, the point of

interest is whether coupled solutions of (4.35), similar to µ̃ ≈ µ ↑ ∞, can persist for finite

inter-layer couplings µ, i.e., whether extrema of Fvar [µ̃] can be found, which have a smaller

free energy ∆Fvar [µ̃] = Fvar [µ̃] − Fvar[0] < 0 than the decoupled solution µ̃ = 0. When no

other solutions of (4.35) exist, µ̃ = 0 is the global minimum, and the system is effectively

decoupled.

Whereas the details of the quite lengthy calculation for the solution of (4.35) are pre-

sented in Appendix A.2, let us comment here on the most important features and results.

In (4.34), we used in the decoupled 2D limit the propagator (4.27) as it is obtained in

the variational RSB approach for consistency, because the propagator used in the elastic

3D limit is the result of the same approach. However, quantitatively similar results are

obtained when we use in the 2D limit the propagator (4.25) from the RG calculation.

Thus, the lack of a consensus regarding the properties of the 2D RFXY model influences

only weakly the outcome of our calculation. Before presenting the results derived in the

Appendix A.2, let us give a more heuristic argument, which nevertheless captures the main

features of the calculation and gives a qualitatively correct estimate of the critical value

µc, below which the layers decouple.

From the self-consistency equation (4.33), it is clear that the effective shear modulus

µ̃ is reduced most strongly by fluctuations with φj+1 − φj ∼ O(1), i.e., quasi-2D fluc-

tuations on scales R⊥ . l⊥ from the decoupled regime (ii), where neighbouring layers

fluctuate independently. This is essentially due to the fact that the inter-layer coupling

(4.5) is a “nearest-layer” interaction. Furthermore, we know from the work by Mikheev

and Kolomeisky [65], that the disorder-free system is always unstable with respect to a

small inter-layer coupling for τ > 0 or K > Kc [which is the physical parameter range of

interest for a layered HTSC in a parallel field (see 4.15, 4.16)]: It exists a second order

phase transition at µc = 0 producing a scaling relation
(

µl2‖
4π2K

)
' Cdis

3De−1+τ

(
µ̃l2‖

4π2K

)τ

(4.37)

giving µ̃ = µ̃(µ). For the disorder-free system, Cdis
3D = 1. Inclusion of 3D disorder fluctu-

ations from the Bragg glass regime (i) does not change the phase transition qualitatively

because the fluctuations between neighbouring layers φj+1 − φj are finite. Hence, the only

modification compared to the disorder-free case is the finite factor Cdis
3D = exp (−Idis

3D/2). It

can be easily checked that 0 ≤ Idis
3D ≤ Idis

3D [µ̃ ↓ 0] = 4, see (A.48), such that 1 ≤ Cdis
3D ≤ e2.

Therefore, only quasi-2D disorder fluctuations can change this picture qualitatively. As

the perturbative calculation indicates (4.26, 4.30), they can indeed lead to a vanishing

effective shear modulus µ̃ = 0 for small µ (which is explicitly checked in the detailed

calculation in the Appendix A.2), and the phase transition becomes first order. Below a
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non-zero µc > 0, the layers decouple, and the effective shear modulus drops from µ̃(µc) =

∆µ̃ to zero. To obtain an upper bound for the jump ∆µ̃, let us consider for a moment

exclusively quasi-2D fluctuations on the shortest scale perpendicular to the layers. For

these fluctuations, the main effect of the elastic coupling to the neighbouring layer in the

trial Hamiltonian is to produce effectively a mass-term µ̃φ2
j for the single layer fluctuations

described by the 2D RFXY model. This mass-term allows only for quasi-2D fluctuations on

scales R‖ . 2π
√

K/µ̃. On the other hand, it is clear that on scales R‖ . Rl,2D(τ) smaller

than the Larkin length, thermal fluctuations dominate and the disorder can be treated

as perturbation; the 2D fluctuations are effectively disorder-free. However, as explained

above (4.37), the disorder-free system is always coupled. It follows that a decoupling is

possible only for couplings µ̃ . K(2π/Rl,2D(τ))2 such that disordered quasi-2D fluctuation

regime becomes accessible on scales Rl,2D(τ) . R‖ . 2π
√

K/µ̃. Thus, we obtain as upper

bound for the jump ∆µ̃

∆µ̃ . K

(
2π

Rl,2D(τ)

)2

. (4.38)

The first order transition occurs at a critical inter-layer coupling µc > 0. Because for

µ̃ ≥ ∆µ̃, the system behaves effectively disorder-free regarding the quasi-2D fluctuations,

we can essentially apply the above relation (4.37) for the disorder-free case to µ = µc and

µ̃(µc) = ∆µ̃. With Cdis
3D ≤ e2 in (4.37), this yields the following estimate for an upper

bound for the critical inter-layer coupling in our variational approach:

µc . eK

(
2π

l‖(Rl,2D(τ)/l‖)τ

)2
(4.29)' eK

(
2π

Rl,2D(T =0)

)2

. (4.39)

As it is shown in the Appendix A.2, where the variational calculation, i.e., the solution of

the self-consistency equation (4.35) is performed, one finds indeed a first order transition

at a critical interlayer coupling µc, below which the layers decouple. The decoupling

manifests in a jump of the effective shear modulus µ̃(µ), that drops from the finite value

∆µ̃ = µ̃(µc) > 0 to zero at the transition. In the Appendix A.2, µc and the jump ∆µ̃ in

the effective shear modulus are calculated in detail for the two limiting cases T = 0 (or

τ = 1) and τ ' 0 (see the above discussion and (4.16, 4.15)), which describe the dense

and dilute limit, respectively, in the physical realization of a HTSC in a parallel field. In

summary, the following results are found:

• The phase transition is turned into a first order transition by the inclusion of the

quasi-2D disorder-induced fluctuations. This further supports the above outlined

scenario that unbound dislocation loops with a distance l⊥ of the layer spacing prolif-

erate at the decoupling transition. The first order “melting” by unbound dislocations

happens on the shortest scale l⊥ in the direction perpendicular to the layers.
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• The critical inter-layer coupling µc is found to be of the form

µc ≈ αK

(
2π

Rl,2D(T =0)

)2

4.28≈ αc

2π

g

K
. (4.40)

both for T = 0 and τ ' 0. The numerical factor α is only weakly temperature-

dependent due to the fact that the decoupling is essentially disorder-driven. The

slight increase of α with temperature mirrors the tendency of thermal fluctuations

to decrease the effective shear modulus. The analytical and numerical results for α

from (A.55, A.59) can be summarized to

α(µc) α(µc2)

T = 0 0.7–1.0 0.8–1.1

τ ' 0 2.7

(4.41)

µc2 > µc is the critical inter-layer coupling where the solution of the self-consistency

equation (4.35), which gives only the zeros of ∂Fvar/∂µ̃, becomes a thermodynam-

ically stable, absolute minimum of the free energy. Note that all given values are

in accordance with the upper bound (4.39) obtained above. Furthermore, α is only

weakly temperature dependent.

• The jump ∆µ̃ in the effective shear modulus is strongly depending on the tempera-

ture. Whereas we find for T = 0 that ∆µ̃ ∼ K/R2
l,2D(T =0), the first order transition

is much weaker for τ ' 0, where ∆µ̃ ∼ K/τR2
l,2D(τ), which is several orders of

magnitude smaller than the T = 0 value (remember that Rl,2D(τ)/l‖ ' (Rl,2D(T =

0)/l‖)
1/τ ∼ (K2/gl2‖)

1/2τ ). For τ ↓ 0, ∆µ̃ vanishes, and the phase transition becomes

second order: The phase boundary in the low-temperature phase terminates in a

critical point at

µc = eK

(
2π

Rl,2D(T =0)

)2

= (e/2π)g/K , τ = 0 (4.42)

[Figure 4.2].

• For completeness, we remark that upon entering the high-temperature phase τ < 0

or K < Kc of the model, which is, however, not accessible in the physical realization

under consideration, we also find a first order decoupling, that is induced by thermal

fluctuations and happens below a much higher critical coupling µc ≈ eK(2π/l‖)
2

[Figure 4.2]. It exhibits a jump ∆µ̃ ∼ |τ |K/l2‖.
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Since variational calculations tend to underestimate fluctuations, we expect the actual

value for α to be larger than the results (4.41) or the upper bound (4.39) gained from the

variational calculation. This is connected to the above mentioned problem that we have

only one variational parameter µ̃ in our Ansatz for the elastic trial Hamiltonian. Hence,

it is impossible to capture features connected to fluctuations on more than one length

scale, which are, however, typical for critical phenomena. Such systems are handled best

by an RG approach, where a successive integration of fluctuations from the shortest to

the largest scale is performed, and the interplay of fluctuations on different length scales

is accounted for in the RG flow of the coupling constants of the Hamiltonian. The first

order phase transition that we find in the variational calculation may be an artefact of our

one-parameter approximation.

However, it is indeed possible to do an RG calculation along the line of the work of

Cardy and Ostlund [18] for a model of two interacting planar FL arrays. The Hamiltonian

is again given by (4.9), but with the layer-index running over j = 1, 2 only. The two-

layer system is studied in detail in part II, chapter 11, where we find for small τ > 0 a

Kosterlitz-Thouless-like second order phase transition at an inter-layer coupling

µc ≈ 1

8π

g

K
. (4.43)

In the variational calculation, the disorder strength g enters essentially in form of the

Larkin lengths, see Appendix A.2. To compare (4.43) to the results of the variational

calculation, one has to use the results (A.20, A.21, A.18) of Appendix A.1.1, and finds

µc ≈ (π2/2)K (2π/Rl,2D(T =0))2 corresponding to

α ≈ π2

2
≈ 4.9 , (4.44)

which is considerably higher than the values given in (4.41). Taking into account the

discrepancies in the results (4.41, 4.44), it is reasonable (and sufficient) to work with the

rough estimate α ≈ O(4) in the following.

These findings can be summarized in a criterion for the stability of the elastically

coupled (µ̃ > 0) Bragg glass phase in the layered geometry with uniaxial displacements,

which takes on the form

µ

K
> α

(
2π

Rl,2D(T =0)

)2
4.28' α

4π2

c̄2
d=2

g

K2
(4.45)

with

α ≈ O(4) . (4.46)

The criterion (4.45) gives immediately a phase diagram in the µ/K-1/K-plane, as shown

in Figure 4.2. The inverse elastic constant 1/K ∝ T measures the temperature in units
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of the elastic energy; remembering that g ∝ 1/T 2 and µ ∝ 1/T , it is useful to consider

the temperature independent coupling strength µ/K and to choose a fixed temperature

independent disorder strength g/K2, or equivalently a fixed Larkin length Rl,2D(T = 0).

In Figure 4.2, we also show the phase diagram in the temperature independent quantities

µ/K and g/K2.

KC1/

/Kµ
/Kµ

1+

Bragg glass
elastic

decoupled
thermally
non-glassy

/Kµ

g/K2

decoupled
glassy

Bragg glass
elastic

*1

0
1/K

*
glassy decoupled

Figure 4.2: Left: Phase diagram in the µ/K-1/K-plane for fixed temperature independent

disorder strength g/K2, as obtained from the variational calculation; the arrows indicate

the perturbative results from section 4.2 and the T = 0 fixed point found in the FRG

calculation, see chapter 3. The solid line µc/K represents first order transitions from the

glassy decoupled to the elastic Bragg glass phase in the low-temperature phase K > Kc

and terminates in a critical point (4.42) with a second order transition at K−1
c . According

to the results (4.41), the line µc/K slightly increases with temperature. The dashed line

gives the first order decoupling transitions by thermal fluctuations in the high-temperature

phase K < Kc. The nature of the transition from the glassy decoupled or Bragg glass phase

to the thermally decoupled phase at K = Kc (dotted line) has not been determined. Right:

Phase diagram in the temperature independent quantities µ/K and g/K2 (for K > Kc).

However, in the above form (4.45), this criterion is not very meaningful because it is

formulated in terms of the in-plane Larkin length, and we know already that in the layered,

uniaxial system the in-plane topological order is always preserved, and only the topological

order perpendicular to the layers is destroyed in the decoupling transition. Hence, it is more

meaningful to formulate (4.45) as

Rl,3D,⊥

(4.18)' c̄d=3
Kµ

g
l⊥

> c · l⊥ (4.47)



Chapter 4. A Variational Calculation 61

with

c ≈ α(4π2c̄d=3/c̄
2
d=2) ' 4πα

≈ O(50) . (4.48)

This criterion can be viewed as a disordered analog of the Lindemann-criterion [38], because

it compares the positional correlation length Rl characterizing the strength of the disorder-

induced fluctuations with the length scale of the FL spacing set by the ordered state of the

lattice. c is a number playing a similar role as the Lindemann-number in the conventional

Lindemann-criterion.

The Lindemann-like criterion (4.47) is the main result of the variational calculation in

this chapter, which was devoted exclusively to a layered, uniaxial geometry realized in a

HTSC in a parallel field. In the above form, the criterion can be readily generalized in a

naive way to the experimentally more interesting situation of a HTSC in a field perpen-

dicular to the layers where displacements have two components. However, the underlying

variational calculation cannot be generalized, mainly due to the fact that one has to al-

low for dislocations with three possible orientations (or Burgers vectors) compared to one

for uniaxial displacements (see (4.10)). The next chapter is devoted to scaling arguments

which will give a criterion of the same form (4.47) (however, it is not possible to fix the

numerical factor α in a scaling argument), but which can indeed be formulated for both

uniaxial and “biaxial” displacements.
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Chapter 5

Scaling Arguments

In this chapter, we explore the stability of the Bragg glass phase with respect to a spon-

taneous formation of large dislocation loops on scales exceeding the positional correlation

length Rl by Imry-Ma-type scaling arguments. In a functional renormalization group

(FRG) treatment, the Bragg glass phase is characterized by a T =0 fixed point, indicating

that thermal fluctuations are irrelevant for the large scale properties. This means that

the free energy is equal to the energy of a large dislocation loop, and the entropy gain of

the dislocation loop by meandering does not lead to a free energy gain in the disordered

system. In many disordered systems described by T = 0 fixed points, Imry-Ma-type [71]

arguments, in which the energy cost of a perturbation is compared to the energy gain

from advantageous disorder fluctuations, have proven a powerful tool to test the stability

of ordered phases. In this chapter we want to check the stability of the Bragg glass with

respect to the formation of large unbound dislocation loops. Therefore, our “ordered”

phase is the elastic dislocation-free Bragg glass phase, which is highly non-trivial in it-

self. It exhibits the typical features of a disordered, glassy system, characterized in the

literature by catchwords like the existence of “many metastable states” [52] or “droplet

excitations” [8], depending on the analytical approach to the problem. Both terms indi-

cate that the behaviour of the disordered system is dominated by the low-lying excitations

above a complex ground state and involves large scale fluctuations which are accompanied

by diverging energy fluctuations. We expect large dislocations to enable such large scale

fluctuations. This mechanism allows the dislocations to gain disorder energy because the

FL array can adapt a more optimal configuration on scales exceeding the positional corre-

lation length Rl. If the gain in disorder energy can compensate for the elastic energy cost,

that is accumulated on the small scales . Rl due to the elastic deformation around the

core of the dislocation, unbound dislocations will proliferate. The difficulty of the issue

is caused by the limited knowledge about the statistics of the low-lying excitations of the

Bragg glass and the existence of non-trivial pre-asymptotic regimes, the random force (RF)

regime and the random manifold (RM) regime, which have to be taken into account in a

63
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realistic model as we have seen in chapter 3.

We will consider only single large dislocations or allow for dislocations only in a single

plane of the FL array. This should be sufficient to detect the onset of an instability

or the locus of a second order phase transition. However, it may be possible (as it is

seen for example in the variational calculation presented in the preceding chapter 4 or

for the disorder-free case discussed in chapter 2) that a first order transition is favorable,

where we have to consider many dislocation loops at the transition point. Such first order

transition scenarios will not be considered in this chapter though the results turn out

to be in agreement with our findings from the variational calculation. In particular, the

stability condition for the Bragg glass can be casted again in the form of a Lindemann-like

criterion (4.47) obtained already by the variational calculation. In the last part of this

chapter we show again by a scaling argument that this Lindemann-like criterion is in fact

equivalent to the Lindemann criterion in its conventional form u2(l) < c2
Ll2, where u2(l) is

the (disorder-averaged) mean square displacement of the FLs on the shortest scale, and cL

is the Lindemann-number. This will provide us with a possibility to check “a posteriori”

the value for c (4.48) obtained in the variational calculation.

5.1 The Layered, Uniaxial Model

Before discussing the experimentally more common situation of a HTSC in a perpendicular

field with two-component displacements of the FLs, we want to begin with a scaling ar-

gument for the uniaxial system introduced in the preceding chapter with the Hamiltonian

(4.9). We want to investigate the possibility of a spontaneous formation of dislocation

loops in a single plane. For this purpose, we cut the system into two halves, within which

the system is elastically coupled, and allow dislocation loops to form in the contact plane,

say between the jth
0 and (j0 + 1)th FL layer. Analytically, this can be implemented by

considering in the Hamiltonian (4.9) an inter-layer coupling

Vj[φ] =

{
1
2
µφ2 j 6= j0

−µ′ cos (φ) j = j0 ,
(5.1)

which is elastic except for the one layer. We are interested in the behaviour for finite

µ ≈ µ′, however it is useful to discuss arbitrary values of µ′ first.

If the two halves of the system are decoupled for µ′ = 0, the configuration of the flux

array in each half is individually optimized, and each of them forms a Bragg glass because

couplings for j 6= j0 are elastic. The properties of the Bragg glass have been discussed

in some detail in chapter 3, and for this particular layered geometry in 4.2, where we

considered an elastic coupling (4.11), exactly of the above form (5.1) with j 6= j0, that

applies to each of the half-systems. Let us shortly recapitulate these results and consider
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in addition free energy fluctuations, which will be particularly important for the Imry-Ma

argument. For the following, it is useful to rescale the perpendicular coordinate and to go

over to the standard continuum description to obtain a three-dimensional isotropic elastic

part of the Hamiltonian. This is achieved by the transformation

r′⊥ = r⊥(µ/K)1/2 = (j · l⊥)(µ/K)1/2 , (5.2)

leading to a Hamiltonian1

βH[{φj}] =

∫
d3r

{
1

2
γ(∇φ)2 + W [r, φ(r)]

}
(5.3)

with an effective isotropic elastic constant γ = (µK)1/2 and a random potential

W [r, φ]W [r′, φ′] = 2g3D cos (φ − φ′) δ3(r − r′) (5.4)

with

g3D = g(µ/K)1/2 . (5.5)

Note that under this rescaling also the positional correlation lengths (or Larkin lengths)

become isotropic (see (4.18))

Rl = Rξ := Rl,3D,‖ = R′
l,3D,⊥ ∼ Kµ

g3D
∼ K3/2µ1/2

g
. (5.6)

As discussed already in chapter 3, the three-dimensional uniaxial isotropic Bragg glass

(5.3) has logarithmic correlations (3.40)

〈(φ(r) − φ(r′))2〉 = 2A ln

( |r−r′|
Rl

)
, (5.7)

where A is a numerical constant of order unity. A variational calculation with RSB yields

a value A = 1, slightly smaller than the result from the FRG, A = π2/9 [9], due to the

fact that variational calculations tend to underestimate fluctuations. In Fourier-space, the

logarithmic divergence corresponds to a k−d-divergence of the propagator, and in d = 3 we

have (see also (4.17))

〈φ(k)φ(k′)〉 = (2π)3δ3(k + k′) G3D(k)

G3D(k) ' 2π2 A
1

k3
. (5.8)

1The additional random bond term associated with the random field w is irrelevant in 3 dimensions [9].
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The logarithmic fluctuation in displacement causes an anomalously large elastic energy

cost of the order
∫

L

d3r
γ

2
〈(∇φ)2〉 ' γ

2

∑

k

k2G3D(k)

∼ γAL (5.9)

in an (isotropic) volume of the order L3. This energy is compensated by the disorder energy

gained from the anomalous displacement of the flux array. Thus

∆E ∼ γL (5.10)

gives the order of variation in free energy for configurations of the field phi which differ

by O(
√

log(L/Rl)). Note that this expression is independent of the disorder strength g.

However, one has to be careful in identifying this as the order of the sample-to-sample free

energy fluctuation of the Bragg glass, as one would naively do following standard scaling

arguments in the theory of elastic manifolds [52]. These arguments are based on the as-

sumption that the manifold “sees” a completely different, statistically independent disorder

configuration when it undergoes at a given point larger fluctuations in the displacement

than the typical ones, that are logarithmic in our case. But this cannot be the case for the

Bragg glass due to the discrete translational symmetry under φ 7→ φ + 2π of the Hamil-

tonian (5.3) with (5.4), which is just the defining property of the Bragg glass, where the

symmetry of the FL lattice is retained, see chapter 3. Rather (5.10) gives the typical free

energy fluctuations within a sample. The fluctuations between different samples should

be much larger, probably scaling with the square-root of the volume, i.e., an exponent

θ = 3/2.

So far we have considered the limit µ′ = 0, where the two half-systems are decoupled,

each of them individually optimized and in a Bragg glass phase. Now, let us compare

the free energy difference between the completely coupled and completely decoupled limit.

When we tie the two halves together by letting µ′ ↑ ∞, then the constraint across the

contact plane forces a complete re-optimization of the flux array, resulting in a higher

free energy for each half. The constraint effectively leads to a change in the boundary

condition φj0(r‖) of the half-systems by an amount which is given by the typical size

of the displacement fluctuation in the unconstrained system. According to (5.7), this

is O(
√

log(L/Rl)). Therefore, the typical free energy increase in each half due to the

constraint is given by ∆E ∼ γL (5.10).

The scaling argument is based on the observation that the process of the re-optimization

upon lifting the constraint at the contact plane, i.e., decoupling the two half-systems is

closely related to the formation of dislocation loops. This relation can be made clear

in a very pictorial way: The change in the optimal configuration of each half system
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resulting from the removal of the constraint at j0 can be described by a collection of

“vortex sheets”, such as the one depicted in Figure 5.1. A dislocation loop, which describes

phase mismatches across the contact plane, is just the boundary of a vortex sheet at the

contact plane. It is possible to estimate the number of generated “sheets” Nsheet in a

typical rearrangement of the half system. Since the order of the difference in the boundary

condition φj0(r‖) is O(
√

log(L/Rl)), i.e., logarithmically growing with the system size, a

likely scenario for the vortex sheet structure is to have at the contact plane one statistically

independent vortex sheet terminating at each scale Rl, 2Rl, 4Rl, . . . up to L. This yields

Nsheet = log2 (L/Rl), which is only logarithmically growing with system size.

L

L

Figure 5.1: Left: The elastic rearrangement of each planar flux array can be represented

by a number of vortex loops (shaded region). Right: Aligned vortex loops in successive

layers form a vortex sheet. The boundary of the sheet (dark loop on top) is a dislocation

loop.

The argument above thus shows that the disorder energy gained from the proliferation

of dislocations loops at the contact plane, resulting in a complete decoupling, is ∆E. The

disorder energy gained from the formation of a single dislocation loop of size Lloop is just

the energy gained from the formation of a vortex sheet Esheet, resulting from the elastic

deformation of the half-system [Figure 5.1]. Esheet clearly cannot exceed ∆E ∼ γLloop,

which is the disorder energy gained from complete optimal elastic rearrangement of the

half-system at the scale Lloop. Consequently, the disorder energy gained from the formation
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of a single dislocation loop is Edis . ∆E. Assuming scaling of this energy,

Edis ∼ γ′Lω
loop , (5.11)

it follows that ω ≤ 1.

On the other hand, the creation of dislocation loops at the contact plane is associated

with an interaction energy cost for finite µ′ due to the resulting phase mismatch. For the

moment, let us start from the decoupled situation, where many dislocations are present at

the contact plane. To find whether or not the two half systems actually couple for a given

finite µ′, it is necessary to balance the cost in disorder energy due to coupling with the

reduction in interaction energy ∆Eint due to phase matching. The latter can be readily

computed for small µ′ perturbatively using (5.7). One finds for the contact plane of size

L2

∆Eint = µ′

∫

L

d2r‖〈cos (φj0+1 − φj0)〉

' µ′

∫

L

d2r‖ exp
(
〈(φj0+1 − φj0)

2〉µ′=0

)

∼ µ′RA
l L2−A , (5.12)

where we used in the cumulant expansion again the property that the combined disorder

and thermal averages with the Bragg glass Hamiltonian are approximately Gaussian (see

the discussion in section 4.3). Since A ≥ 1 [9], we obtain ∆Eint . L. As the disorder

energy cost due to coupling, ∆E ∼ γL (5.10), exceeds the interaction energy to be gained

at small µ′ and large L, the two half systems will remain decoupled.

In the large (but finite) µ′ limit of interest, the perturbative result is no longer valid.

Since the energy cost of phase mismatch is large there, we consider the stability of a single

optimally-configured dislocation loop of extent Lloop � Rl at the contact plane of the two

half systems that are otherwise elastically coupled . The energy cost of the core of the

dislocation loop due to the inter-layer interaction is extensive. For a stretched circular loop

of linear size Lloop, we expect

Ecore ∼ µ′RlLloop . (5.13)

Here, the Larkin length Rl appears as “thickness” of the loop because the flux array is

elastically coupled at smaller scales. The distortions of order l‖/2 or phase-mismatches of

order π in the very core of the dislocation cannot be screened on scales smaller than Rl,

since this is the length scale upon which typical displacement differences become of the

order l‖: 〈(u(Rl) − u(0))2〉 ∼ l2‖ (3.33).

More generally, if we allow the dislocation loop to take on fractal shapes, say with the

total loop length scaling as LD
loop for Lloop � Rl (D ≥ 1 being the fractal dimension), then

the core energy becomes

Ecore ∼ µ′R2−D
l LD

loop . (5.14)
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[This expression has a similar structure as the result (5.12), but a quite different meaning:

(5.14) is the cost in interaction energy due to the phase-mismatch of a single dislocation

loop with respect to the situation, where both halves are tied together (µ′ ↑ ∞), whereas

(5.12) is the gain in interaction energy due to phase-matching with respect to the decoupled

situation (µ′ = 0) when many dislocations are present.]

The existence or not of dislocation loops can now be determined by comparing the core

energy (5.14) with the gain in disorder energy (5.11), Edis ∼ γ′Lω
loop. The value of the

exponent ω depends on the structure of the dislocation loop that we allow, i.e., on the

fractal dimension D: ω = ω(D). We expect that the upper bound ω(D) ≤ 1, set by the

disorder energy gain in a complete rearrangement at the contact plane when the coupling

at the contact plane is changed from µ′ ↑ ∞ to µ′ = 0, may only be reached if the structure

of the associated vortex sheet is similar to those that arise in a complete rearrangement.

This amounts to assuming that ω(D) is monotonously increasing with D. As explained

above, we expect also in a complete rearrangement only one loop to form at each scale

Rl, 2Rl, 4Rl, . . . up to L; assuming that the largest loop of size Lloop ∼ L dominates the

large scale properties, it is plausible that it is not so much the number of loops (as one

could naively expect) as rather the structure of the loops that may cause ω < 1 to be

smaller than the upper bound. The structure of the loop for a complete rearrangement

can be deduced as follows: Denote the difference in the configuration before and after

the change in µ′ by ϕ(r). The vortex sheets are then the equal-ϕ contours of ϕ(r), and

the associated dislocation loops are the contours of ϕ(r‖, r⊥ = j0l⊥) at the contact plane.

The relationship between a rough “landscape” and the fractal geometry of its contours has

recently been examined [72]. The ϕ-landscape is expected to be logarithmically rough since

the typical size of the displacement fluctuation in the unconstrained system is logarithmic

according to (5.7). For such a logarithmically rough ϕ-landscape an exact calculation yields

D = 3/2 [73, 72]. Thus we have ω(D = 3/2) = 1. Let us summarize our knowledge about

the exponent ω:

ω = ω(D) ≤ 1

ω(D) monotonously increasing with D

ω(D = 3/2) = 1 (5.15)

This leads to the conclusions

ω(D) < D for D > 1

ω(D = 1) ≤ D = 1 for D = 1 (5.16)

about ω(D). The total energy of the dislocation loop [remember that the system is at a

T =0 fixed point and the free energy equal to the energy]

Floop = Eloop = Ecore − Edis ∼ µ′R2−D
l LD

loop − γ′L
ω(D)
loop (5.17)
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does not admit a stable solution with Lloop � Rl for large µ′ ≈ µ for D > 1 due to

the results (5.16). Hence the Bragg glass is stable to the spontaneous formation and

proliferation of large fractal dislocation loops due to the anomalously large core energies.

However, though from the above analysis it is tempting to assume that also ω(D = 1) < 1,

we find that for a stretched dislocation (i.e., D = 1) we may well be in a marginal situation

with ω = D = 1 and both energies scaling in the same way ∼ Lloop. It follows that

dislocation loops will be non-fractal if they occur, and stretched loops with ω = D = 1 are

the preferred “channel” of any instability to dislocation loop formation. In investigating

the stability of the Bragg glass with respect to large non-fractal, stretched dislocation loops,

we consider this “worst case” with ω = D = 1 in the following, which is the marginal case

so that the behaviour of the prefactors has to be studied further.

Assuming µ′ ≈ µ and γ′ ≈ γ for ω(D = 1) = D = 1, we obtain from the prefactors

(which can be specified up to numerical factors) in Floop (5.17) the stability criterion

Ecore > Edis

µRl > c · γ (5.18)

for the Bragg glass, where c is a numerical prefactor, the determination of which is beyond

the scope of the scaling argument. Using (4.18, 5.6), this can again be reformulated in

terms of the more meaningful length scales perpendicular to the layers as

Rl,3D,⊥ ∼ Kµ

g
l⊥ > c · l⊥ . (5.19)

This criterion is exactly of the same form as the Lindemann-like criterion (4.47) found by

means of the variational calculation in the previous chapter, where we were able to give an

estimate c ≈ O(50) (4.48) for the numerical prefactor.

Though the underlying picture for the topological transition is quite different, we obtain

a Lindemann-like criterion of the same form. In the scaling approach for a single large

dislocation loop we have a second order transition in mind whereas in the variational

calculation the decrease of the effective shear modulus is dominated by fluctuations on the

shortest scale l⊥ perpendicular to the layers such that many loops with a perpendicular

distance ∼ l⊥ are expected to proliferate in a first order transition. At this point, we cannot

give a definite answer which scenario is more likely. For the applications, i.e., the calculation

of a phase diagram in the next chapter 6, the question of the nature of the topological

transition is important but not necessary to know. The situation is somewhat analogous

to the role the usual phenomenological Lindemann criterion plays in describing the melting

transition of the disorder-free FL lattice: It is a a powerful and simple phenomenological

tool to determine the melting line but can give no information about the order of the

melting transition. But it has to be emphasized that the Lindemann-like criterium (4.47,

5.19) has been derived by two different approaches whereas there exists no underlying

theory for the usual phenomenological Lindemann criterion.
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5.2 Scaling Approach to Realistic Models

So far we considered only the model (4.9) for the layered geometry of a HTSC in a parallel

field. Clearly, this model has the two main limitations

• displacements are uniaxial,

• dislocation loops occur only in planes parallel to the vortex layers,

in comparison to the usual experimental situation of the magnetic field perpendicular to

the layers leading to a two-component system, where dislocation loops can occur with

three different orientations in the hexagonal Abrikosov lattice. In addition, the existence

of a RM regime has so far not been considered in our model based on the Bragg glass

approximation (see the discussion in chapter 3).

As for the first point, we expect the difference between one- and two-component

displacements to be analogous to the difference between scalar and vector charges in a

Coulomb gas representation of the dislocations. This is the three-dimensional analog to

the the well-known difference in two dimensions between vortices in the XY-model (one-

component spin-angle) and dislocations in a two-dimensional crystal (two-component dis-

placements), where both of the systems can be mapped onto Coulomb gases; the XY model

is described by scalar charges and a two-dimensional crystal with hexagonal symmetry by

vector charges with the three possible orientations of the elementary Burgers vectors of

the dislocations [35]. For the two-dimensional analog, we know that the critical behaviour

is the same for scalar and vector charges. Thus, we expect also the scaling of the relevant

energy scales of a dislocation loop, Edis and Ecore, to be unchanged for two-component

displacements.

Regarding the second point, also for two-component displacements, a dislocation loop

always has to lie within a single plane spanned by its Burgers vector and the applied

field [31], see (2.1) and the discussion in chapter 2, if we exclude vacancies and intersti-

tials [32].

Therefore, the scaling argument we presented for the layered system can essentially

also be applied to study the stability of the Bragg glass in the more common experimental

situation of flux lines perpendicular to the CuO planes. A naive generalization of our

results to the isotropic system yields Rl > c · l, where we expect a larger numerical factor c

compared to the uniaxial case, since the two-component system is less stable: c ' O(50).

Nevertheless, it is useful to reformulate a few aspects of the scaling argument for the

uniaxial system to allow also the inclusion of the RM regime in our argumentation. This

turns out to be crucial to make contact to experiments as we want to in the next chapter

6. The scaling relations for the energy gain Edis from the disorder and the core energy cost

Ecore in the most relevant case of a large stretched, non-fractal (i.e. D = 1) dislocation
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loop of size Lloop � Rl are: Edis ∼ γLloop (5.11) and Ecore ∼ µRlLloop (5.13), where we

consider again the most favorable case ω = D = 1 for dislocation loop formation, and

µ′ ≈ µ, γ′ ≈ γ. We gained these relations by inspecting a rearrangement of the FL array

induced by the removal of the elastic coupling between a single pair of layers. On the

other hand, we can interpret them also in the following slightly different way, not making

explicitly use of the layered geometry.

Consider a typical configuration of the dislocation-free elastic Bragg glass phase, and

add a large, stretched dislocation loop of extent Lloop. In the Bragg glass regime on scales

R > Rl, the dislocation loop allows to gain disorder energy by a partial re-optimization

of the configuration of the FL array. If the formation of a single loop leads to the full

energy gain comparable to the fluctuations in the free energy for changes in displacements

by O(
√

log(Lloop/Rl)) as in a typical rearrangement, we obtain Edis ∼ ∆E ∼ γLloop (5.11).

These anomalously large energy fluctuations are only possible in the Bragg glass regime

on scales R > Rl. On the other hand, taking a configuration optimal with respect to

variations on scales R > Rl leads to a non-optimal configuration on scales R < Rl and

hence an energy cost in a dislocation-core of extent Rl. On these length scales, the FL

array is described by the RF regime in the Bragg glass model as discussed in chapter 3.

Displacements scale with a roughness exponent ζRF = 1/2 (3.24) in d = 3. The core of

the dislocation forms around the actual topological defect with displacement-gradients of

order unity. We denote the radial coordinate in the direction transversal to the dislocation

line with ρ and take the topological defect to be at ρ = 0 with u(ρ = l‖) ∼ b = l‖. Now, we

assume that the distortion in the core of the dislocation, at ρ = 0, “propagates” with the

k−4-divergent propagator of the RF regime up to ρ = Rl. This amounts to applying the

scaling relation for displacements in the RF regime 〈(u(r) − u(0))2〉 ∼ r2ζRF to the core

region ρ < Rl, and we obtain

〈u2(ρ < Rl)〉 ' b2

(
R

l‖

)2ζRF

. (5.20)

Then, we can evaluate Ecore for ζRF = 1/2 in d = 3:

Ecore ∼ γ

(
2π

l‖

)2 ∫ Lloop

0

ds

∫ Rl

0

d2ρ〈(∇u)2〉 ∼ γRlLloop , (5.21)

which is just (5.13). Via (5.18), we obtain again the criterion (5.19).

In this form, the scaling argument can be readily generalized to the usual two-com-

ponent system with the magnetic field perpendicular to the layers and described by a

Hamiltonian H[u] = H3D
el [u]+H3D

d [u] as discussed in chapter 3 with the elastic Hamiltonian
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(3.7)

H3D
el [u] ≈ 1

2

∫

BZ

d2K

(2π)2

∫
dkz

2π

{
c66

[
K2|uT (K, kz)|2

]
+

ĉ44(1 + K2λ̃2
c)

−1
[
k2

z |uT (K, kz)|2
]}

(5.22)

and a disorder part (3.16)

H3D
d [u] =

∑

ν

∫
dz v(Rν + uν(z), z) , (5.23)

modeling the interaction of the FLs with the pinning potential v(r) generated by the

point defects. The typical “aspect ratio” of a large dislocation loop of longitudinal length

Lloop � Ll and transversal length Rloop � Rl is given by Lloop ∼ (ĉ44/c66)
1/2Rloop in the non-

dispersive long-wavelength limit, see (3.8). The longitudinal pieces of the dislocations are

edge dislocations, the elastic energy of which is determined essentially by the tilt modulus

c44, and the transversal parts are screw dislocations, which couple to the shear modulus

c66. Again, it is convenient to go over to an isotropic Bragg glass by a rescaling

k′
z = kz(ĉ44/c66)

1/2

L′ = L(ĉ44/c66)
−1/2 ∼ R . (5.24)

Typical dislocation loops are isotropic then and of size Rloop, and the elastic part of the

Hamiltonian is characterized again by one elastic constant γ, which is γ = (ĉ44c66)
1/2 in

the long-wavelength limit. Also for two-component displacements, we find logarithmic

correlations (3.40) for the three-dimensional isotropic Bragg glass

〈(u(r) − u(r′))2〉 =
4A

K2
0

ln

( |r−r′|
Rl

)
(5.25)

or a k−d-divergence of the propagator in Fourier-space. By arguments analogous to the

ones presented above, this leads to the result

Edis ∼ ∆E ∼ γl2Rloop ∼ (ĉ44c66)
1/2l2Rloop (5.26)

for the scaling of the gain in disorder energy of the dislocation loops of size L′, which

can be achieved by a more optimal adjustment to the disorder on scales exceeding Rl.

Following exactly the above given argumentation, we argue that this leads to non-optimal

configurations on small scales R < Rl and hence an energy cost in the core region. To

tackle realistic models of superconductors with the scaling argument, we have to take into

account the existence of the RM regime on scales R < Rl, as it was discussed in chapter 3

in detail. In evaluating the cost, we concentrate on the case of single vortex pinning in the
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RF regime, where the pinning is strong such that the single vortex Larkin length Ls
ξ . L∗

is smaller than the FL-interaction-induced length scale L∗. This is the generic situation in

extreme high-Tc materials like the Bi-compounds, as we will see in the next chapter 6. For

single vortex pinning, we have a “collective RM regime” with d = 3 and n = 2 on scales

l . R . Rl, i.e., on the relevant scales for fluctuations in the dislocation core. Therefore,

in order to estimate the core energy, we have to use the scaling relation (3.31)

〈u2〉(R) ∼
(
R2 + λ̃2

c

)ζ

(5.27)

for displacements in the collective RM regime with the roughness exponent (3.32)

ζ := ζ(d = 3, n = 2) ≈ 1/5 . (5.28)

In (5.27), the additional scale λ̃c (3.5) for the onset of non-local effects occurs due to the

dispersion of the tilt modulus c44 = c44[K] (3.4). Using the scaling relation (5.27) together

with u(ρ = l) ∼ b = l, we obtain for the typical displacements in the core region ρ < Rl

and the core energy Ecore analogously to the results (5.20, 5.21):

〈u2(ρ < Rl)〉 ' b2

(
ρ2 + λ̃2

c

l2 + λ̃2
c

)ζ

(5.29)

Ecore ∼ γb2

∫ Rloop

0

ds

∫ Rl

0

d2ρ〈(∇u)2〉

∼ (ĉ44c66)
1/2l2

(
R2

l

l2 + λ̃2
c

)ζ

Rloop , (5.30)

where we anticipated that Rl � λ̃c (see chapter 6). We find thus a reduction in the

dislocation loop core energy due to the existence of the collective RM regime with the

smaller roughness exponent ζ ≈ 1/5 (3.32) compared to the RF regime. Comparing Ecore

(5.30) and Edis (5.26), we obtain a stability criterion

Ecore ∼ (ĉ44c66)
1/2l2Rloop

(
R2

l

l2 + λ̃2
c

)ζ

> Edis ∼ (ĉ44c66)
1/2l2Rloop

Rl > c1/2ζ · (l2 + λ̃2
c)

1/2 . (5.31)

with a numerical constant c. The criterion (5.31) is again a Lindemann-like criterion very

similar to the criteria (4.47, 5.19) for the uniaxial, layered model. We can regain the

previous results (4.47, 5.19) when we go over to the local limit, i.e., with the scale for

the onset of dispersion λ̃c � l much smaller than the FL spacing, and replace ζ by its

value ζRF = 1/2 in the RF regime. This is in accordance with our modeling leading to

(4.47, 5.19), where we used the Bragg glass approximation, i.e., let the disorder vary on
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the scale of the FL spacing and thereby lost the intermediate RM regime and where we

excluded dispersion. But in principle, the results (4.47, 5.19) naively generalize to the

realistic model.

By comparison with the result (4.47) from the variational calculation, we estimate

c ≈ O(50) (4.48), but notice that the determination of the numerical c is beyond the

scope of the scaling argument. We expect c ' O(50) for two-component displacements,

because fluctuations should be stronger and the topologically ordered Bragg glass less stable

compared to the uniaxial model. The increased numerical factor c1/2ζ ≈ c5/2 indicates a

reduced stability regime for the Bragg glass, resulting from the reduced core energy when we

take into account the RM regime properly. Below, we derive the relation c ≈ c−2
L between

c and the Lindemann-number cL, which will allow us to confirm the value c ≈ O(50) (4.48)

found by the variational calculation.

In the dense limit λ̃c � l, the FL spacing l is replaced by the range of the magnetic

interaction λ̃c. This leads to a further reduction of Ecore by a factor (l/λ̃c)
2ζ . The Bragg

glass cannot be stable in the limit λ̃c ↑ ∞ [or at scales below λ̃c for finite λ̃c’s; note that

λ̃c ↑ ∞ for B ↑ Bc2, see (3.5)] since the long-ranged magnetic interaction gives rise to a

much stronger disorder energy, ∆E ∼ Lloop
2 [9], which always exceeds Ecore.

5.3 Lindemann Criteria

We can summarize the findings accumulated so far in the previous chapters in the Linde-

mann-like criterion for the stability of the Bragg glass

Rl > c1/2ζ ·
(
l2 + λ̃2

c

)1/2

' c1/2ζ max
{

l, λ̃c

}
(5.32)

c ' O(50) . (5.33)

When this criterion is violated, dislocations proliferate in a topological transition, the order

of which could not be determined unambiguously.

Let us demonstrate now that the criterion (5.32) is equivalent to the Lindemann crite-

rion in its conventional phenomenological form [38]

2〈u2(R = l)〉 < c2
Ll2 , (5.34)

where 2〈u2(R = l)〉 = 〈(u(R + l) − u(R))2〉 is the (disorder-averaged) mean square dis-

placement of the FLs on the shortest scale (l is a primitive lattice vector of the Abrikosov

lattice). cL is the Lindemann-number of the FL lattice, which is only phenomenologically

known; for thermal melting, values cL ≈ 0.1−0.2 are used in the literature. The Lindemann

criterion has been proven as a very efficient phenomenological tool to obtain the thermal

melting curves of lattices, e.g. the disorder-free FL lattice. In writing down (5.34), we
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have generalized to a disordered system by complementing the average over the quenched

randomness hoping that (5.34) gives the stability range of the topologically ordered phase

in the disordered system in a similar way as the conventional Lindemann-criterion gives

the ordered phase in a thermally fluctuating system. The derivation of the criterion (5.32)

based on the variational calculation demonstrates, that unbound dislocations proliferate

indeed on the shortest scale at the topological transition described by (5.32), i.e., in be-

tween every layer and thus with a distance l. This suggests that the use of the conventional

phenomenological Lindemann criterion in the form (5.34) might be one possibility to obtain

the topological transition line, thereby interpreting the proliferation of dislocation loops as

disorder-induced “melting”. An approach very similar to this, has actually be taken in a

recent work by Ertaş and Nelson [34]. They use a “cage model” to mimic the interactions

between FLs, which yields an effective theory for a single FL in a random potential. To

this single FL, they apply the Lindemann criterion directly in its phenomenological form

(5.34). As we will see, the quantity u(l) is equivalent to the mean square displacement of

the “effective” FL studied in their cage model. However, let us stress that the conventional

Lindemann-criterion (5.34) is purely phenomenological, whereas the criterium (5.32) was

derived on the basis of a variational calculation and detailed scaling arguments.

The equivalence of (5.32) and (5.34) can be shown by employing the scaling properties

in the RM regime on scales l . R . Rl. Here we consider again a pinning strong enough

that we have single vortex pinning in the RF regime (Ls
ξ . L∗), the generic situation in

extreme high-Tc materials so that we have a “collective RM regime” with d = 3 and n = 2

on scales l . R . Rl and the scaling (5.27) of displacements,

〈u2〉(R) ∼
(
R2 + λ̃2

c

)ζ

. (5.35)

Applying this relation on the scales R = l and R = Rl, where per definitionem (3.33) of

the positional correlation length Rl

2〈u2〉(Rl) ' l2 , (5.36)

yields the relation

2〈u2〉(Rl) ' l2 ' 2〈u2(R = l)〉
(

R2
l + λ̃2

c

l2 + λ̃2
c

)ζ

. (5.37)

Using Rl � λ̃c (which will be shown in the following chapter 6), our Lindemann-like

criterion (5.32) can be written as

2〈u2(R = l)〉 < c−1l2 , (5.38)



Chapter 5. Scaling Arguments 77

and it becomes immediately clear that (5.32) is the analog of the Lindemann criterion

(5.34), formulated in terms of the underlying transversal scales rather than the corre-

sponding displacements. Furthermore, we can identify

c ≈ c−2
L . (5.39)

We see that the equivalence of the criterion (5.32) to the phenomenological Lindemann

criterion (5.34) includes the agreement of the appearing numerical factors. The value for

the Lindemann-number cL ≈ 0.15, widely used in the literature, produces a good agreement

in (5.39) with the value c ≈ O(50) obtained by the variational calculation. This equivalence

to a scenario where disorder-induced fluctuations on the shortest scale “melt” the FL array

favours a first order transition scenario for the topological transition, which could not be

excluded in the experiments [30].

Using (5.39) and ζ ≈ 1/5 (3.32), we can rewrite the Lindemann-like criterion (5.32) as

Rl > c−5
L · max (l, λ̃c) . (5.40)

As the very concept of collective pinning in the Bragg glass breaks down when Rl is

decreased to the order of the FL spacing l or the range of the magnetic interaction λ̃c, (5.40)

reaches only within a large factor c−5
L ≈ O(105) of the maximally possible stability regime

for the Bragg glass. So the Bragg glass is only weakly stable with respect to dislocation

formation.

The remainder of this part of the work is devoted to the experimental consequences

of the Lindemann-like criterion (5.32, 5.40), i.e., to the calculation of a phase diagram in

the B-T plane for a typical HTSC such as BSCCO, displaying the phase boundaries of the

Bragg glass. This requires an explicit evaluation of the positional correlation length Rl in

terms of the microscopic parameters of the HTSC and the disorder strength.
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Chapter 6

Phase Diagram for a Typical HTSC

The main result of part II is the Lindemann criterion (5.32, 5.40) for the stability of the

Bragg glass with respect to dislocation loop formation. It has been derived by a variational

calculation and detailed scaling arguments in the preceding chapters. Here, we want to

explore essentially the experimental consequences of this criterion for the phase diagram of

a typical HTSC, such as Bi2Sr2CaCu2O8+x (BSCCO), in the usual experimental situation

H||c of a magnetic field perpendicular to the CuO-planes of the HTSC.

The purpose of this chapter is twofold. Firstly, we express Rl in terms of the microscopic

parameters of the HTSC and the disorder strength, and obtain its dependence on magnetic

induction B and temperature T . To this end, we consider in detail the crossovers between

the different pre-asymptotic regimes of the FL array subject to point disorder on scales

smaller than the positional correlation length Rl, as they were introduced in chapter 3.

Secondly, and most importantly from the experimental point of view, we calculate the

region of the phase diagram in the B-T plane [Figure 6.1] where the Bragg glass phase is

stable and should be observable experimentally or numerically according to the Lindemann-

like criterion (5.40). We find good agreement with the experiments [25, 30]. The upper

phase boundary of the Bragg glass, which we obtain using (5.40), turns out to be identical to

the one obtained by Ertaş and Nelson [34]. They apply the conventional phenomenological

Lindemann criterion to a single “effective” FL in a random potential within a “cage model”

which mimics the interaction between FLs.

6.1 Experimental Facts

Let us begin with reviewing the known experimental and numerical results regarding the

stability of the topological order in the Bragg glass phase. The algebraically decaying

79
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Bragg peaks with a structure factor (3.44)

S(k) ∼ 1

|k − K|d−j2·A(4−d)
(6.1)

at the jth reciprocal lattice vector k ≈ K = j · K0 have been observed in the neutron

diffraction experiments on BSCCO of Cubitt et al. [25] up to the second order peak at

low magnetic fields. However, upon increasing the magnetic field, the Bragg peaks vanish,

indicating an instability of the Bragg glass phase. For this transition they find a midpoint

of B ∼ 650G. As opposed to Cubitt et al.}, who assigned this transition to a decomposition

of the flux lines into pancake vortices, we want to explain their data by the existence of the

topological phase transition and the proliferation of dislocation loops when the criterion

(5.40) is violated.

Critical current measurements of Khaykovich et al. [30] show a sharp drop in the (local)

critical current jc upon decreasing the magnetic induction below a critical value. This

critical value is shown to decrease with increasing anisotropy of the material. The observed

transition, the order of which could not determined unambiguously, happens around B ∼
400G. It can be attributed to the “disentanglement” of FLs in the absence of dislocations

when topological order is regained, and dislocation loops vanish upon lowering the magnetic

field.

The existence of such a transition has also been demonstrated in recent numerical

studies [28, 29]. In the closely related 3D XY model in a random field, Gingras and

Huse [28] find that vortex loops occur in a topological phase transition at a critical strength

of the random field.

A direct simulation of a model flux line lattice of Ryu et al. [29] demonstrated explicitly

the existence of a “topological glass transition”, where unbound large dislocations prolif-

erate. In addition, the existence of Bragg peaks and their vanishing upon increasing the

magnetic field could be confirmed numerically in good agreement with the experimental

results of Cubitt et al. [25].

6.2 Positional Correlation Length Rl

To find the phase boundaries of the Bragg glass in the B-T plane as given by the criterion

(5.40), we have to relate Rl to experimentally accessible quantities, i.e., the microscopic

parameters of the superconductor (the magnetic penetration depths λab and λc and the

coherence lengths ξab and ξc), the disorder strength, the magnetic induction B (or the FL

spacing l), and the temperature T . To this end, we have to take into account the crossover

between the different pre-asymptotic regimes of the dislocation-free disordered FL array

preceding the asymptotic Bragg glass phase, and the associated crossover length scales,
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which have been introduced in chapter 3 and have to be expressed in experimentally acces-

sible quantities, too. As discussed in detail in chapter 3, we have essentially two different

pre-asymptotic regimes: The random force (RF) regime of Larkin and Ovchinnikov [6, 48],

which crosses over to the so-called random manifold (RM) regime at the Larkin length,

before the asymptotic Bragg glass behaviour sets in on the largest scales exceeding the

positional correlation length. In between this sequence of crossovers, the FL interaction

sets a length scale L∗, which describes a crossover from a “single vortex” behaviour to

a “collective” behaviour. The relations between these length scales are visualized for an

extreme HTSC as BSCCO in Figure 3.3 (a)&(c).

For the following, it turns out to be convenient to use the reduced induction b ≡
B/Bc2(T ) = 2πξ2

ab/l
2 to measure the strength of the magnetic field.

6.2.1 Interaction-Induced Length Scale L∗

In chapter 3, it has been argued that the three-dimensional elastic theory is valid only on

scales R & l or

L & L∗ '
(

cs
44

c66

)1/2

, (6.2)

see (3.9). When we consider fluctuations on scales L . L∗, the FL array breaks up into sin-

gle FLs described by 1-dimensional elasticity, and the effects of FL interaction become irrel-

evant. The interaction-induced length scale L∗ separates a regime of “collective” behaviour

described by 3D elasticity from a “single vortex” behaviour described by 1D elasticity. L∗

starts to increase exponentially for l/λab = (b/2π)−1/2/κ � 1 in the dilute limit, (with

κ = λab/ξab ≈ 100 for BSCCO [4]) due to the exponential decay of c66 ∝ exp (−l/λab). The

length scale L∗, given by (6.2), can be calculated with the expressions given in Appendix

A.3 for cs
44 and c66. This yields the following useful interpolation formula:

L∗ ≈ εl fκ

(
b

2π

)
(6.3)

fκ(x) =

{
x < κ−2 : 1

x > κ−2 : (xκ2)3/8 exp
(

(xκ2)−1/2−1
2

)
,

(6.4)

where ε = λab/λc is the anisotropy ratio of the HTSC and ε ≈ 1/100 for BSCCO [4].

6.2.2 Larkin Length Lξ

The Larkin length Lξ is the crossover length between the RF and the RM regime and has

been discussed in detail in chapter 3. When considering an extreme HTSC as BSCCO, it is

important to note, and will be checked explicitly below, that the pinning by point disorder
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is typically such strong that we have single vortex pinning in the RF regime. This means

that

Lξ = Ls
ξ . L∗ . (6.5)

The Larkin length is smaller than L∗, and each FL is pinned independently in the RF

regime so that the Larkin length is equal to the single vortex Larkin length Ls
ξ.

The single vortex Larkin length Ls
ξ is at low temperatures given by (3.28):

Ls
ξ ∼ ξab

(
cs
44

2ξ2
ab

∆2
pin

)1/3

. (6.6)

As proposed in Ref. [4], it is convenient for what follows to introduce the basic energy (per

length) scale

ε0 = (φ0/4πλab)
2 (6.7)

and the dimensionless disorder strength δ as

δ =
∆2

pin

(ε0ξab)2
. (6.8)

In terms of these parameters and using results from the Appendix A.3 for cs
44, we find

for the Larkin length Lξ at low temperatures [4]

Lξ(0) ' εξab

(
(εε0ξab)

2

ε∆2
pin

)1/3

' εξab

(
δ

ε

)−1/3

. (6.9)

This result holds as long as the range of the single vortex pinning potential v(r) (3.14),

is given by the core-diameter ξab of a single FL. However, at higher temperatures thermal

fluctuations start to weaken the pinning by effectively broadening the cores of the FLs such

that the effective range rT of the single vortex pinning potential becomes

rT ≈ max
{
ξab, 〈u2〉1/2

th (Lξ)
}

. (6.10)

As opposed to its definition (3.25) at low temperatures, Lξ is at higher temperatures

properly defined as the crossover scale, at which the average FL displacement becomes of

order of the effective range rT of the point disorder:

u(Lξ) ' rT ≈ max
{

ξab, 〈u2〉1/2
th (Lξ)

}
. (6.11)

Here, we introduced the notation

u(R, L) ≡ 〈(u(r + (R, L)) − u(r))2〉1/2
(6.12)

for displacement correlations (and 〈. . .〉th for a purely thermal average).
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The low-temperature result (6.9) holds as long as rT ' ξab. However, above the depin-

ning temperature Tdp of the single vortex, rT grows beyond ξab [4]:

r2
T ' ξ2

ab exp
(
(T/Tdp)

3) , (6.13)

where the depinning temperature Tdp is given by [4]

Tdp ' εε0ξab
εξab

Lξ(0)
' εε0ξab

(
δ

ε

)1/3

. (6.14)

Above Tdp, Lξ(T ) increases exponentially with temperature due to the fact that random

forces are only marginally relevant for a single FL with two-component displacements [4]:

Lξ(T ) ' Lξ(0)

{
T � Tdp : 1

T > Tdp : (T/Tdp)
−1 exp

(
(T/Tdp)

3) (6.15)

Let us discuss estimates of the quantities Lξ and Tdp at this point, which provide alternative

measures of the disorder strength for BSCCO. As estimates in BSCCO, we use ξab ≈ 20Å,

ε0ξab ≈ 1000K, ε ≈ 1/100, which is in accordance with Refs. [4, 34]. In Ref. [34], the

disorder strength is given by Tdp ≈ 10K, which leads to δ/ε ≈ 1 with (6.14). This estimate

is considerably higher than typical values given in Ref. [4] for weak pinning. We will adopt

these estimates of Ref. [34], that may apply for a relatively strong intrinsic disorder and

thus strong pinning in BSCCO. This yields a small (longitudinal) Larkin length of the

order of Lξ(0) ≈ εξab in BSCCO such that Lξ(0) ≈ εξab � εl . L∗. Thus the condition

(6.5) is fulfilled, and single vortex pinning in the RF regime is realized in BSCCO.

6.2.3 Positional Correlation Length Rl

On scales exceeding the Larkin length Lξ, we enter the RM regime (for a detailed discussion

see again chapter 3). Because we consider the case of single vortex pinning in the RF

regime, we have two RM regimes with somewhat different scaling properties. On scales

Lξ . L . L∗, we find a single vortex RM regime, where the FLs are described as 1-

dimensional elastic manifolds, i.e., d = 1 and n = 2. In this regime, the scaling behaviour

of the 〈uu〉-correlations is (3.31)

u(L) ∼ Lζ(1,2) . (6.16)

In the collective RM regime on scales L∗ . L . Ll (or transversal scales l . R . Rl), the

scaling relation (6.16) gets slightly modified by the dispersion of c44 to (3.31, A.26)

u2(R) ∼
(
λ̃2

c + R2
)ζ(3,2)

. (6.17)

The best available estimates for the roughness exponents are [7] (3.32)

ζ(1, 2) ≈ 5/8 and ζ := ζ(3, 2) ≈ 1/5 . (6.18)
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The scaling relations (6.16, 6.17) enable us to obtain the relation between the (transver-

sal) positional correlation length Rl and the (longitudinal) Larkin length Lξ, which will

allow us to express Rl in terms of microscopic parameters. Applying the scaling relation

(6.16) for the 〈uu〉-correlations to the single vortex RM regime on the longitudinal scales

L = Lξ and L = L∗, we obtain with (6.11)

u∗ := u(R= l, L=L∗) ' rT

(
L∗

Lξ(T )

)ζ(1,2)

. (6.19)

In the same manner, we can use (6.17) in the collective RM regime on transversal scales

R = Rl:

l2 ' u2(R=Rl) ' u2
∗

(
λ̃2

c + R2
l

λ̃2
c + l2

)ζ(3,2)

. (6.20)

Using (6.19, 6.20), Rl can be expressed as

Rl(T ) ' (λ̃2
c + l2)1/2

(
l

rT

)1/ζ(3,2) (
Lξ(T )

L∗

)ζ(1,2)/ζ(3,2)

. (6.21)

With the results (6.13) for rT , (6.3) for L∗, and (6.15) for Lξ(T ), together with ζ(3, 2) ≈ 1/5

and ζ(1, 2) ≈ 5/8 (6.18), this yields the desired expression for Rl:

Rl(0) ≈
(
λ̃2

c + l2
) 1

2

(
b

2π

)−15/16(
fκ

(
b

2π

))−25/8(
δ

ε

)−25/24

Rl(T ) ≈ Rl(0)

{
T � Tdp : 1

T > Tdp : (T/Tdp)
−25/8 exp

(
5
8
(T/Tdp)

3)

(6.22)

For inductions b = 10−4 . . . 10−1 in the dense limit b & 2π/κ2, we obtain with δ/ε ≈ 1

and λc ≈ 2 · 105Å (transversal) positional correlation lengths Rl(0) ≈ (105 . . . 102) · λc ≈
2 · (1 . . . 10−3)cm, which is extremely large and indicates that over a wide range of length

scales the pre-asymptotic RM regimes should be observable rather than the asymptotic

Bragg glass regime.

6.3 Phase Diagram

Let us now address the issue of phase boundaries of the topologically ordered Bragg glass

in the B-T plane as they follow from the Lindemann-like criterion (5.40). The results are

summarized in Figure 6.1. The boundary of the regime given by (5.40) defines a topological

transition line Bt(T ), where dislocations proliferate and the topological order of the Bragg
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glass phase is lost. The upper branch bt,u(T ) of this line can be obtained by applying the

expression (6.22) for the positional correlation length Rl in the dense limit b & 2π/κ2 (i.e.

fκ ≡ 1 in (6.22)) to the criterion (5.40), which finally yields a condition b < bt,u(T ) in the

b-T plane with

bt,u(0) ≈ 2π

(
δ

ε

)−10/9

c
16/3
L ≈ 2π

(
εε0ξab

Tdp

)10/3

c
16/3
L

bt,u(T ) ≈ bB,u(0)

{
T � Tdp : 1

T > Tdp : (T/Tdp)
−10/3 exp

(
2
3
(T/Tdp)

3).
(6.23)

Note that the transition line (6.23) is identical to the one obtained by Ertaş and Nelson [34]

by applying the conventional phenomenological Lindemann criterion to a “cage model” for

a single FL. The estimates cL ≈ 0.17 and δ/ε ≈ 1 lead to bt,u(0) ≈ 5 · 10−4 or Bt,u(0) ≈
400G [34], which is in good agreement with the experiments [25, 30]. Good agreement is also

obtained for the overall transition line shape [Figure 6.1] [30]. For stronger anisotropy or

effectively larger disorder strength δ/ε, the transition line bt,u decreases in magnetic field,

and the stability region of the topologically ordered Bragg glass shrinks in accordance

with the experimental findings in Ref. [30]. For temperatures T < Tdp, the transition

line is essentially temperature-independent because the mechanism for the proliferation

of dislocation loops is purely disorder-driven at low temperatures as we have seen in the

preceding chapters. For T > Tdp, it increases exponentially due to the very effective

weakening of the pinning effects by thermal fluctuations in the single vortex regime, and at

some temperature slightly above Tdp, the transition line will terminate in the upper branch

of the melting curve bm,u(T ), which is

bm,u(T ) ≈ 30
(εε0ξab)

2cL
4

T 2
(6.24)

in this regime [4]. Beyond the melting curve bm,u(T ), the FL array melts into a disordered

FL liquid, and the Bragg glass order is destroyed by the thermal fluctuations, whereas

above the transition line bt,u(T ) the Bragg glass “melts” by disorder-induced fluctuations,

when unbound dislocation loops proliferate. As noted in [34], bt,u(T ) is well below the

so-called “decoupling field”, beyond which the layered structure of the HTSC requires a

discrete description in the c-direction.

At low inductions in the dilute limit b � 2π/κ2, the criterion (5.40) will be violated due

to the exponential decrease of the shear modulus c66, or increase of the interaction-induced

length scale L∗ (6.3) encoded in the function fκ (6.4). At low temperatures T . Tdp, the

temperature independent lower branch of the topological transition line bt,l(T ) ≈ bt,l(0)
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can be determined as the smaller of the two solutions of

(
fκ

(
bt,l(0)

2π

))10/3
bt,l(0)

2π
≈
(

δ

ε

)−10/9

c
16/3
L . (6.25)

At temperatures T � Tdp well above the depinning temperature, the asymptotics

bt,l(T ) ∼ 25π

2κ2

(
T

Tdp

)−6

(6.26)

is obtained. Thus, bt,l(T ) will terminate in the lower branch of the melting curve bm,l(T ),

which increases logarithmically with temperature [4]

bm,l(T ) ≈ 2π

κ2
ln−2

(
(εε0ξab)

2cL
4κ2

T 2

)
. (6.27)

Beyond the lower branch of the melting curve bm,l(T ), the vortex array is essentially well-

described as a collection of independently fluctuating single FLs, which may be individually

pinned and form a glassy phase in the presence of point disorder. However, for virtually

single vortices, the issue of dislocations is not of primarily interest. With cL ≈ 0.17 and

δ/ε ≈ 1, we can obtain from (6.25) numerically bt,l(0) ≈ 0.03(2π/κ2) ≈ 2 · 10−5, which is

by a factor of 25 smaller than bt,u(0) and experimentally hard to verify due to the small

inductions Bt,u(0) ≈ 16G. From (6.25), it is clear that the transition line bt,u(T ) increases

with the disorder strength so that the stability region of the topologically ordered Bragg

glass shrinks.

In conclusion, we have obtained the region in the phase diagram of BSCCO in the B-T

plane, where the topologically ordered vortex glass should be observable according to the

Lindemann-criterion (5.32, 5.40) derived in the preceding chapters, and the topological

transition lines Bt,u(T ) and Bt,l(T ), where dislocation loops proliferate. The resulting

phase diagram, as given by the formulae (6.23, 6.25, 6.26) and depicted in Figure 6.1, is in

reasonable agreement with the experimental data of Refs. [25, 30] as well as the simulation

data of Ref. [29]. Our results for the upper branch of the topological transition line Bt,u(T )

agree with Ref. [34], where the conventional phenomenological Lindemann-criterion was

applied to the disorder-induced “melting” in the framework of a “cage model”.
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bm,l

dpT

b=B/B c2

b (0)t,u

b (0)t,l

bt,u

bt,l

bm,u

Bragg Glass
(topologically ordered)

(dislocations)
VG

(dislocations)

T

liquid

Figure 6.1: Schematic phase diagram in the b-T plane (b ≡ B/Bc2(T )) showing the sta-

bility regime of the topologically ordered Bragg glass phase (hatched region). Its phase

boundaries are given by the upper and lower branch bt,u(T ) and bt,l(T ) (solid lines) of

a topological transition line, where dislocations proliferate. They terminate in the two

branches bm,u(T ) and bm,l(T ) (dashed lines) of the melting curve, where the FL array

melts into a (disordered) FL liquid.
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Chapter 7

Conclusion

In this first part of the work we tried to shed some light on the issue of topological defects,

in particular dislocations, in a disordered FL array. The main result of this part is the

simple Lindemann-like criterion (5.32, 5.40) comparing the positional correlation length to

the FL spacing (in the dilute limit) or magnetic penetration depth (in the dense limit),

which has been derived by a variational calculation (chapter 4) and detailed scaling ar-

guments (chapter 5). In chapter 6, it was transformed into the phase diagram 6.1 for a

typical extreme high-Tc material such as the Bi-compound, which is in agreement with ex-

isting experiments [25, 30] and numerical simulations [29] but should be subject of further

verification. We stress once again that the Lindemann-like criterion (5.32, 5.40) has been

derived on the basis of a variational calculation and detailed scaling arguments as opposed

to the conventional Lindemann criterion [38] which is purely phenomenological.

Let us comment at this point on the limitations of the employed methods in deriving

the Lindemann-like criterion. Essentially, all of them are due to the fact that already the

dislocation-free FL array is a highly non-trivial disordered system as the short overview

in chapter 3 demonstrated: The physics of the dislocation-free FL array (at low enough

inductions to be the positional degrees of freedom of the vortices the only relevant degrees

of freedom) subject to point disorder can be mapped onto elastic manifolds in d = 3

(FL lattice) or d = 1 (single FL) dimensions with n = 2 (two-component displacements)

codimensions in various types of random media, differing in their modeling of the point

disorder in the cospace of the displacement components: These types ranges from random

forces, over “classical” random manifolds with short-range point disorder, to CDW-like

periodic disorder-potentials.

A rigorous analysis for an ensemble of dislocations with fixed coordinates would re-

quire to optimize the FL configurations, i.e., redo the analysis for the dislocation-free

elastic FL array, in the presence of the topological constraints imposed by the ensemble of

dislocations which is certainly an unsolvable problem for complicated enough dislocation

configurations but has been studied for a single dislocation and random-bond-like disorder

89
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in Ref. [74]. Such an analysis should end up with an effective partition sum for the ensem-

ble of dislocations in the disordered medium, i.e., a many-”particle” path integral summing

up the statistical weights of the many-dislocation configurations, which is in principle the

disordered analog of the transfer-matrix procedure of Ref. [37]. Due to disorder-induced

long-range interactions between dislocations and additional interactions between disloca-

tions and quenched randomness [74], such a calculation is probably impossible to perform.

To be able to do a statistical mechanics calculation, we have taken in chapter 4 a much

simpler approach in limiting ourselves to only one possible orientation of dislocation loops

with only one possible Burgers vector by studying a layered uniaxial model, which can

indeed be realized in layered HTSCs in a parallel field. We derived an inter-layer coupling

going beyond the elastic theory, which allows for dislocations on the one hand and is simple

enough to make analytic progress (even without specifying certain dislocation configura-

tions) on the other hand. This has enabled us to perform a variational calculation for an

effective shear modulus, the vanishing of which is a manifestation of proliferating unbound

dislocations. As we will see in the next part II of the work, the layered geometry can also

be studied by an RG approach, which takes fluctuation effects from many scales correctly

into account, and we are able to analyze the RG-flow for a “toy”-model consisting of only

2 layers in detail. The findings in the RG-approach agree with the results of the varia-

tional calculation and give further evidence for the Lindemann-like criterion (5.32, 5.40).

The main shortcoming of the variational calculation of chapter 4 is the use of a single

variational parameter, namely an effective shear modulus. Such an approximation cannot

account for phenomena where an optimization on more than one length scale is necessary.

By our “one-parameter” Ansatz for the shear modulus, dislocations occur simultaneously

in between all layers because it is not dependent on the length scale perpendicular to the

layers, i.e., the layer index. The first order transition found in such a calculation may be

an artefact of such an approximation; on the other hand, we explored the opposite extreme

in the scaling argument by considering a single dislocation and obtained a criterion of the

same form. Potentially, this difficulty can be overcome in the RG calculation for many

layers [75], where it is in principle also possible to go beyond the “nearest layer” approxi-

mation of chapter 4. However, as we will get a flavor when considering the two-layer model

in part II, chapter 11, it is very hard to analyze the resulting RG flows. For future work

on an improvement of the variational calculation one could perform similar calculations

for inter-layer couplings which allow for dislocations every nth layer for comparison.

The approach in chapter 5 was based on scaling arguments. In considering large dis-

locations of size L in an elastic manifold in a random medium, one induces a large scale

re-optimization of the FL configurations on a scale L, simply due to the fact that topologi-

cal defects have a long-range, non-local effect on the deformation of the lattice and cannot

be annihilated by simple elastic deformation. For this reason, one is left with a similar task

as if an additional interaction is introduced which requires a large scale re-optimization



Chapter 7. Conclusion 91

of the pinned elastic manifold. Examples for such interactions are additional long-range

interactions within the manifold or with “replicas” of the manifold and the presence of

additional, random or non-random, quenched defect types apart from the point disorder,

e.g. defect planes or columnar defects in a superconductor. These types of problems have

been successfully approached over the last years in a more rigorous analytical manner,

and at least in the case of single elastic lines (d = 1) in a random medium containing

point disorder, the problems of depinning from a single columnar defect [44, 45] or two

interacting lines [76] could be solved analytically by applying RG or scaling concepts to

the additional interaction at the T =0 fixed point of the interaction-free, point-disordered

system. In principle, our scaling argument follows the same avenue as these approaches,

balancing the disorder energy gained in the large re-optimization against the cost imposed

by the additional interaction. However, due to the fact that for the FL array in d = 3

much less is known about the dislocation-free disordered system as in d = 1 about directed

paths in a random medium and that the existence of the nontrivial pre-asymptotic random

manifold and random force regimes further complicate the analysis, it is hard to formulate

an analytically more rigorous RG treatment, which would put the scaling-concepts used

in chapter 5 on a more “solid” basis. Furthermore, it is likely that for a stretched dislo-

cation we are in the marginal case where the prefactors of the involved energies determine

whether unbound dislocations occur, which makes the scaling-analysis sensitive to possi-

ble logarithmic corrections. In the present formulation, such corrections do not seem to

emerge, but a detailed RG approach would be desirable also to clarify this point.

Despite these potential points of criticism, the presented Lindemann-criterion (5.32,

5.40) produces good agreement with experiments and seems to capture the physics involved

in the instability of the topologically ordered Bragg glass phase with respect to dislocation

loop formation sufficiently well.
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Planar Arrays of

Steps and Lines

in Random Media:

The 2D Random Field XY Model
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Chapter 8

Introduction

In part I we have introduced one prominent example of a “planar array of lines”, namely the

planar array of flux lines (FL) in a superconductor with point impurities which was realized

in form of a planar array of Josephson-like vortices confined between the superconducting

CuO-planes of a high-Tc superconductor (HTSC) in a parallel field. This system can be

modeled in the Bragg glass regime on scales exceeding the positional correlation length by

the Hamiltonian of the two-dimensional XY model in a random symmetry breaking field

(2D RFXY model) in the absence of vortices. The mapping has been discussed in detail

in chapter 3, but let us shortly recapitulate the main points. Displacements of the lines in

the planar geometry are uniaxial and described by the scalar field u(r) defined over two

dimensions (r ∈ R
2), which can be reinterpreted as a phase field φ(r) = 2πu(r)/l, where

l is the line spacing. Single lines are elastic with a given stiffness (due to the core energy

cost proportional to their length) and interactions between lines are modeled within the

framework of elasticity theory, such that we arrive at an elastic Hamiltonian describing

the disorder-free array of interacting lines, which can be chosen isotropic with one elastic

constant K1, see (3.48):

βHel[φ] =
1

2

∫
d2r

{
K(∇φ)2

}
(8.1)

The lines interact with point impurities, which generate the short-ranged disorder potential

v(r), assumed to be Gaussian distributed with mean zero and correlations v(r)v(r′) =

g0 δ2(r − r′), see (3.14). In terms of the line density ρ(r) (with average ρ0 = 1/l) the

interaction of the lines with the randomness is described by

Hd[φ] =

∫
d2rv(r)ρ[r, φ(r)] . (8.2)

In the asymptotic regime on scales beyond the positional correlation length, where the av-

erage displacement exceeds the FL spacing l, we want to preserve the discrete translational

1As opposed to chapter 3, we want to start directly from an isotropic elastic Hamiltonian for simplicity.
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symmetry of the line lattice under u(r) 7→ u(r) + l. In the periodic line array, this is vital

to take the competition of different lines for the same minima of the disorder potential v(r)

correctly into account [11]. Therefore, the Poisson formula is used to take the continuum

limit. As can be checked by “power counting”, the first harmonic of the line density fluctu-

ations is most relevant [9]. Keeping only the first harmonic and a gradient term describing

the long-wavelength fluctuations in the density ρ, we obtain the approximation (see (3.49))

ρ[r, φ(r)] ≈ ρ0

(
1 − (∂xφ(r))/(2πρ0) + 2 cos (2πρ0x − φ(r))

)
. (8.3)

Finally, we arrive at the following Hamiltonian, the disorder part of which is periodic in

the phase field φ, see (3.50-3.52),

H[φ] = Hel[φ] + Hd[φ] (8.4)

=

∫
d2r

{
1

2
K(∇φ)2 − w[r] · ∇φ + W [r, φ(r)]

}
(8.5)

with

W [r, φ]W [r′, φ′] = 2g cos (φ − φ′) δ2(r − r′) (8.6)

wi[r]wj[r′] = ∆ δijδ
2(r − r′) , (8.7)

where W and w are Gaussian distributed with mean zero, uncorrelated wW = 0, and have

a (bare) strength proportional to g0:

g = g0ρ
2
0

1

T 2
(8.8)

∆ = g0
1

8π2

1

T 2
. (8.9)

The Hamiltonian (8.5) defines the 2D XY model in a random symmetry breaking field of

strength g. In the literature, it is often represented as the 2D random phase sine-Gordon

model in writing the disorder part of the Hamiltonian as

βHd[φ] =

∫
d2r2

√
g cos (φ(r) − α(r)) (8.10)

with a quenched random phase α(r), uncorrelated between different points α(r)α(r′) ∝
δ2(r − r′) and uniformly distributed at each point. For FLs, we study this model in the

absence of vortices in the φ-field, which correspond to lines ending in the plane and which

are excluded for energetical reasons as argued in chapter 4.

Clearly, the derivation of the Hamiltonian (8.5) applies not only to flux lines but in

general to arrays of elastic lines with the additional ingredients of an inter-line interaction,
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a periodic lattice in the ground state and a random medium containing point disorder. Such

arrays of lines occur in a variety of physical contexts. In the field of superconductivity

alone, one can think also of a thin superconducting type-II film in a parallel field [53, 77]

or Josephson vortices between two planar Josephson junctions in an artificially grown SNS

(“superconducting-normal-superconducting”) sandwich structure [78]. In the first example,

point disorder is generated by point-like defects, in the second by inhomogeneities in the

thickness of the normal-conducting middle layer.

Another prominent example of elastic lines are steps on crystal surfaces. These steps

possess a stiffness because they cost a certain energy per length which can be related to

the number of broken bonds in the crystal lattice. These steps occur either on a miscut

or vicinal surface, usually cut along a “high-index” crystal plane slightly misoriented with

respect to a closed packed plane, where steps occur to accommodate the misorientation

[Figure 8.1]. Point disorder can originate from crystalline defects in the underlying sub-

strate, as shown for example in Figure 8.1 due to pinning of the steps by a randomly

distributed ensemble of quenched screw dislocations threading the bulk of the crystal. Be-

cause double-steps are energetically costly, steps are forbidden to cross and interact via a

hard-core repulsion. Along the steps of the mapping for flux lines described above, also

this system can be mapped onto a 2D RFXY model. However, for steps on crystal sur-

faces, vortices in the φ-field correspond to terminating steps and are principally allowed,

but require the presence of unpaired, single screw dislocations in the bulk as one can easily

convince oneself with Figure 8.1.

b

z

x
-b

Figure 8.1: Vicinal surface (along the “high index” crystal plane [16̄0]) with steps due

to the slight misorientation with respect to a close packed crystal plane. The two circle

show a pair of quenched screw dislocations (with Burgers vectors b and −b) threading the

crystal-bulk and terminating at the surface that try to “pin” the step.
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Let us mention another important application of the 2D RFXY model, though not

directly related to steps or lines, which is the description of the roughening of a surface

due to the presence of quenched bulk disorder in the crystal. Here, the φ-field corresponds

to the height of the surface [61, 79] and the 2D RFXY model describes a (2+1)-dimensional

elastic manifold which is pinned by a periodic random potential generated by the crystal

planes of the disordered bulk. Because the φ-field is a height-field, vortices correspond to

screw dislocations in the crystal.

The inclusion of vortices into the 2D RFXY model is crucial, when it is applied to

disordered XY magnets, Josephson junction arrays with positional disorder, or the melting

in disordered two-dimensional crystals. Only recently, interest has renewed due to new

findings regarding the stability of the disordered system with respect to free vortices [80, 81]

for a related model, the 2D XY model with random phase shifts, which can be obtained

from the Hamiltonian given above for W ≡ 0, i.e., only with the random bond term

coupling to the random field w.

As should be clear by now, the 2D RFXY model is one of the basic models for disordered

systems in two dimensions, and of particular interest due to its applications to vortex glass

phases of disordered FL arrays. So far the two-dimensional FL array is the only FL system

for which the existence of a vortex glass (VG) phase has been proven analytically, namely in

form of the glassy, low-temperature phase of the vortex-free 2D RFXY model [5, 53]. This

is because topological imperfections are excluded in 1+1 dimensions where the labeling of

the lines, and therefore also the displacement field, is always unambiguously defined such

that the elastic description in the 2D RFXY model is fully justified.

Despite all its applications, its relatively long history going back until the early 80s [18,

19, 82], and numerous analytical and numerical approaches, important features of the

vortex-free 2D RFXY model are still under debate. To motivate some of the work in

chapters 9 and 10, it is helpful to take a closer look into the history of this model.

All approaches are based in one or the other way on the replica method, in order to

perform the average over the disorder by writing for the disorder-averaged logarithm of the

partition sum

ln Z = lim
n→0

Zn − 1

n
. (8.11)

Zn is the disorder-averaged partition sum of the n-times replicated system. This partition

sum Zn = ZR corresponds to a translationally invariant replica Hamiltonian HR[{φα}]
depending on the fields φα in each replica (labeled by α ∈ {1, . . . , n}), where the averaging

over the disorder induces an interaction between the replicas: Instead with a system cou-

pling to a disorder potential, we have to deal now with a translationally invariant system

consisting of n interacting replicas of the original system in the peculiar limit n ↓ 0.

The first works [18, 19, 82] on this model use renormalization group (RG) approaches on

the replica Hamiltonian HR. Goldschmidt and Houghton (GH) [19] employ a diagrammatic
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field theoretic framework developed by Amit, Goldschmidt, and Grinstein [83] for the pure

2D sine-Gordon model, whereas Cardy and Ostlund (CO) [18] map the system onto a

Coulomb gas with n(n − 1)/2 types of (n − 1)-dimensional vector charges, and use the

formalism introduced by Kosterlitz [84] for vortices in the pure XY model. Both approaches

yield the same RG equations and establish the existence of a glassy low-temperature phase

for K > Kc = 1/4π [18, 19]. In the low-temperature phase fluctuations in the φ-field

are enhanced because the manifold can gain disorder energy in making anomalously large

excursions: Toner and DiVincenzo [61] later worked out the result 〈(φ(r) − φ(r′))2〉 ∝
ln2 |r − r′| by integrating the RG flow of the correlations as it follows from the results

of CO and GH. For this log2-divergence, as compared to the log-divergence of the high-

temperature phase, the glassy phase has also been termed “super-rough” phase, with regard

to the above mentioned application to the roughening of a crystal surface in the presence

of bulk disorder. The findings of CO and GH have been confirmed in a positional space

RG in Ref. [20], and by dynamical RG treatments of a corresponding Langevin equation

in Refs. [22, 23], where in addition to the super-roughness a vanishing mobility and an

increased dynamical exponent z > 2 have been found in the low-temperature phase, further

establishing the picture of a glassy phase.

In the RG treatment by CO and GH, the peculiar limit n ↓ 0 of the replica method (8.11)

can easily be taken in the RG recursion relations after having performed a renormalization

of the divergences that occur in the perturbation theory in the thermodynamic limit. On

the other hand, we know from the theory of spin glasses [85] that the procedure of the

limit n ↓ 0 requires some care and may involve a breaking of the replica symmetry which

was tacitly assumed to be preserved in the renormalization scheme by CO and GH when

performing the limit n ↓ 0 in the RG equations. As we know, for example from the mean-

field theory of spin glasses, this might cause an insufficient treatment of the large scale

optimization that is required when many metastable or nearly degenerate minima exist in

a disordered system separated in phase space by large scale excitations. Such a scenario has

been further explored by applying the work of Mézard and Parisi [52] on elastic manifolds in

random media to the 2D RFXY model, which provides a mean-field-like treatment where

a breaking of the replica symmetry might occur to accommodate to the rough energy

landscape exhibited by the model. Mézard and Parisi developed a variational approach

with a replica symmetry breaking (RSB) Ansatz for the propagator of the random manifold.

This method applies a Hartree-Fock like approximation to the replicated Hamiltonian HR

(which becomes exact in the limit of an infinite number of components of the field φ), to

determine self-consistently a constant self-energy contribution in the propagator of HR.

Their Ansatz for the propagator is harmonic, however they allow for a breaking of the

replica symmetry which is originally present in the Hamiltonian HR in their Ansatz for the

self-energy. Such spontaneous breaking of the replica symmetry is known from the theory

of spin glasses [85] where it correctly describes the mean-field theory of spin glasses. In



100 Part II. Planar Arrays of Lines in Random Media

the variational approach, it amounts to approximating the full propagator of the random

manifold by a hierarchically organized set of Gaussian propagators, i.e., describing the

large scale energy landscape as a hierarchically organized set of parabolas. For random

manifolds, The variational method reproduces the Flory-results for the roughness and

free-energy fluctuations (see the discussion in chapter 3). Though it can be doubted that

it gives the right scaling behaviour for a manifold with a low-dimensional cospace, such

as the 2D RFXY model with the one-component field φ [for the paradigm of such a low-

dimensional manifold, namely a single 1+1-dimensional directed line in a random medium,

the Flory-results are wrong], this method can be applied to the 2D RFXY model [9, 17,

21]. At low temperatures for K > Kc, an instability of the replica symmetric solution is

found [9, 17]. Instead, Korshunov (K) [21] and Giamarchi and Le Doussal (GL) [9, 17]

obtain, for K > Kc, a glassy low-temperature phase, the signature of which is the stability

of a one-step RSB solution. The 〈φφ〉-fluctuations are also found to be enhanced in the

low-temperature regime, but still a divergence 〈(φ(r) − φ(r′))2〉 ∝ ln |r− r′| is found as

in the high-temperature phase; however, the prefactor of the logarithm starts to increase

slightly upon lowering the temperature further in the low-temperature phase. Also in

the framework of the self-consistent Hartree-approximation, the dynamics of the model

has been studied [54], and the log-divergence of the correlations has been confirmed; in

addition, a violation of the fluctuation-dissipation theorem indicates non-ergodic behaviour

on large time scales, another characteristic of a glassy phase.

Although for many applications, as one can see for example in chapter 4, differences

in the results of CO/GH and K/GL may be qualitatively irrelevant, this contradiction

remains a puzzling theoretical problem of broad interest. Its solution, which is yet to be

found, may throw some light on the validity of one or the other method: The RG approach,

where replica symmetry is preserved throughout the whole calculation, and the variational

approach with RSB in the low-temperature phase. In particular, it would provide a test of

the concept of RSB that has still to be shown to describe correctly realistic, non-mean-field,

low-dimensional glassy systems.

The difference in the results of CO/GH and K/GL for the 〈φφ〉-correlation has also led

to a strong interest in a numerical testing of the contradictory analytical predictions [57,

58, 59, 60]. But so far no decisive answer could be given, mainly due to problems in

accessing the asymptotic limit. We expect the asymptotics to be seen on scales exceeding

the positional correlation length Rl ∼ (K2/g)K/2(K−Kc) (see (3.59)), which can be extremely

large for K close to Kc and weak disorder. Note that the analytic results of CO/GH and

K/GL are all derived for weak disorder.

Let us give an outline of the results in this part of the work regarding these open

questions in the theory of the 2D RFXY model and some novel applications. Before

investigating the differences between the RG approach and the self-consistent Hartree-

approximation of the variational approach to the vortex-free 2D RFXY model, it will
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be useful to start in the next chapter 9 with the derivation of a set of RG equations

for a generalized form of the replica Hamiltonian HR, as suggested in Ref. [55]. This is

done using a diagrammatic method similar to that of GH. This method has the advantage

that we can find also a systematic expansion of the free energy in terms of renormalized

quantities, which may cause problems in the Coulomb gas representation of CO where

only contributions from bound vector charge pairs can be taken into account [86]. The RG

equations can be used to include various RSB schemes in the RG treatment [55], of which

we discuss a one-step scheme (as found in the variational approach) in chapter 10 and to

study a system consisting of two coupled 2D RFXY models, the applications of which are

the subject of chapter 11.

In chapter 10, we present two calculations, which serve to get a better understanding

of the differences between the RG approach and the self-consistent Hartree-approximation

of the variational approach to the vortex-free 2D RFXY model. Firstly in section 10.1,

we extend the replica symmetric RG calculation of CO/GH by allowing for a one-step

RSB, as it is found by K/GL in the self-consistent variational calculation, and check the

stability of the RG flow with respect to RSB. This is also of interest conceptually, because

it opens up the possibility to study the viability of the idea of RSB in a system exhibiting

strong fluctuation effects which are not describable by a mean-field-like theory. Rather the

strong disorder and thermal fluctuations of the vortex-free 2D RFXY model can be cor-

rectly described only by a RG treatment and lead to “phases of critical points” already in

the pure system [35, 87]. Similar ideas have been applied to random ferromagnets [88, 89].

We find that the renormalization group flow is unstable with respect to replica asymmetric

perturbations, and new fixed points with a broken replica symmetry are obtained. It is

possible to calculate the 〈φφ〉-correlation functions for the case of a broken replica symme-

try. Interestingly, the one-step RSB scheme opens up the possibility of both correlations

diverging as ln r and ln2 r, depending on the choice of the block size parameter m of the

one-step RSB scheme. However, we are not able to identify a physical mechanism for the

generation of the replica asymmetric perturbations which are necessary to evoke the in-

stability. In the physical models where RSB has been found so far, such as the mean-field

theory of spin glasses or the variational approach to random manifolds, the RSB parameter

m is determined by extremizing the free energy. In both of these theories a detailed study

of the fluctuations around the extremal solutions [52, 85] reveals that the stable solution

maximizes the free energy. However, in the RG treatment of the problem, where m occurs

as a free parameter initially, it is not clear a priori whether similar mechanisms are at work

which sort out an “optimal” RSB parameter m by an extremization of the free energy.

Nevertheless, it is possible to study the free energy of the system in the RG framework,

and we obtain block size parameters m for the one-step RSB scheme, which extremize the

free energy. Finally, it is possible to identify the approximations needed within the one-

step RSB RG treatment to reproduce the results of the variational approach using RSB.
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Secondly in section 10.2, we extend the self-consistent Hartree-approximation of the vari-

ational approach by accounting also for higher order vertex- and propagator-corrections,

as they occur in the diagrammatic RG calculation by GH. This leads to an improved set

of self-consistency equations consisting of a Dyson equation for the propagator and for a

dressed vertex. In the replica symmetric case, the solution of the two self-consistency equa-

tions gives results identical to the RG treatment. In particular, it reproduces the phase

transition to a low-temperature phase for K > Kc which could not be obtained within the

replica symmetric Hartree-approximation. For the one-step RSB case it is found that the

solution obtained by K/GL no longer fulfills the extended set of self-consistency equations

and has to be modified strongly with a result being similar to the RG treatment with a

one-step RSB. In particular, the result hints to a log2-divergence in the 〈φφ〉-correlations.

The investigation of two coupled 2D RFXY models in chapter 11 is also of interest re-

garding the glassy low-temperature phase of a single 2D RFXY model. In other disordered

systems, it is already known that the introduction of two interacting physical replicas of a

system allows to gain some knowledge about important properties of the glassy phase of

the system itself, for example the properties of low-lying excitations [90, 91]. This becomes

clear if one considers the system at T = 0, where a repulsive interaction prevents both

replicas from occupying independently the ground state of the system; rather both replicas

have to re-optimize and explore other low-lying states.

Furthermore, in view of the discussion of dislocations in part I, such a system represents

the “toy”-model of two magnetically coupled FL layers, where we can study an instability

with respect to dislocation formation leading to a decoupling on large scales by RG meth-

ods. We find good agreement with the results elaborated in chapters 4 and 5. While it

is in principle possible to study also many layers by means of the RG equations derived

in chapter 9, the RG flow of two layers can still be analyzed by analytical methods and a

complete picture of the topology of fixed points, sinks and separatrices can be obtained.

Another application of such a system consisting of two coupled 2D RFXY models is the

investigation of anisotropically reconstructed surfaces, in particular a (2×1) reconstructed

gold (110) surface [92, 93]. There, we study the interplay between the roughening and

deconstruction of the surface in the presence of point disorder which may again originate

from crystal defects in the underlying substrate. Steps occur in this system in form of

(3 × 1) microfacets, which can be regarded as “defects” in the (2 × 1) reconstruction, in

terms of which the deconstruction can be described [92, 93, 94, 95] as depicted in Figure

11.1. However, two sorts of microfacets can occur, which will lead to a modeling by two

interacting 2D RFXY models. By a detailed analysis of the RG flow derived in chapter

9, we can obtain the phase diagram of the surface. Among the findings are the stability

of a flat anisotropically reconstructed surface, a novel second-order phase transition with

continuously varying critical exponents, and the generic disappearance of the glassy, super-

rough phase which is found for a system with a single species of steps or two non-interacting
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sorts of steps as discussed above. The results are also relevant to the issue of RSB in the 2D

RFXY model because they demonstrate that the glassy low-temperature phase is extremely

“fragile”, since already a small interaction with a second “physical” replica changes the

nature of the glassy phase drastically (it can even lead to a loss of the “glassiness”). Vortices

cannot be excluded here as opposed to the corresponding flux line system and correspond,

on the surface, to loops of steps. We will discuss also the stability of the surface with

respect to the formation of such vortices or loops.
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Chapter 9

Renormalization

of a Generalized

Replica Hamiltonian of the

Vortex-Free 2D RFXY Model

The goal of this chapter is to derive a set of RG equations for the replica Hamiltonian

of the vortex-free 2D RFXY (or, synonymously, 2D random phase sine-Gordon) model.

In view of the subsequent chapters 10 and 11, it will turn out to be advantageous to

study a somewhat generalized version of the replicated Hamiltonian. Conditioned by the

subject, this chapter is rather technical; nevertheless, the RG equations (9.24, 9.25) for the

coupling constants of the replicated vortex-free 2D RFXY model, the RG results (9.28) for

the propagator and (9.34) for the free energy, which are provided in this chapter, are vital

for the further analysis of the physical problems in chapters 10 and 11.

9.1 Replica Hamiltonian

The replica Hamiltonian HR of the 2D RFXY model is obtained by writing the disorder

averaged partition sum of the n-times replicated model Zn as

Zn =

n∏

α=1

∫
Dφα(r) exp (−HR[{φα}]) . (9.1)

Henceforth Greek indices are running from 1 to n and are replica indices. For the 2D RFXY

model with the Hamiltonian (8.5), this yields in the absence of vortices in the φ-field

HR[{φα}] =

∫
d2r

n∑

α,β=1

{
1

2
Kαβ∇φα · ∇φβ + gαβ cos (φα − φβ)

}
. (9.2)

105



106 Part II. Planar Arrays of Lines in Random Media

Using the definitions of the random potential W (8.6) and the random field w (8.7), we

obtain for the matrices of the coupling constants the specific (replica symmetric) forms

Kαβ = Kδαβ − ∆ and gαβ = g(1 − δαβ). However, as suggested in Ref. [55], we want to

consider the replica Hamiltonian in its most general form as it is given by (9.2) and derive

the renormalization group equations for virtually arbitrary matrices Kαβ and gαβ, only

requiring that the matrices are symmetric with gαα ≡ 0 and K11 ≡ . . . ≡ Knn. [The two

special cases of the RG equations relevant for the analysis in chapters 10 and 11 have been

obtained in Refs. [77, 86, 96].] Such a generalization will prove useful for what follows in

the subsequent chapters 10 and 11.

9.2 Renormalization

In deriving the RG equations, we follow a diagrammatic approach similar to that of GH

[19], which is on its part based on the RG approach to the pure 2D sine-Gordon model

worked out by Amit, Goldschmidt, and Grinstein [83]. We start with the diagrammatic

perturbation theory for the 2-point vertex function Γαβ(k) by expanding in the parameters

gαβ, and isolate the divergent diagrams. The divergences can be absorbed into renormal-

ized parameters KR
αβ, gR

αβ, which are properly defined on the basis of a suitably chosen

renormalization condition for a renormalized 2-point vertex ΓR
αβ(k). The divergences can

be systematically classified by expanding in the small parameters

εα6=β := 2 − 1

4π

(
K−1

αα + K−1
ββ − 2K−1

αβ

)
(α 6= β) . (9.3)

Figure 9.1: Graph-

ical representation

of the vertex.

The εαβ are the analog of the ε = 4 − d in the φ4-theory [but note

that opposed to the φ4-theory, εαβ may change here under the RG

transformation together with the Kαβ]. Thus, to set up a renormal-

ized theory, we perform a double-expansion in the εαβ and gαβ. The

renormalized quantities KR
αβ, gR

αβ are defined with respect to some

arbitrarily chosen length scale serving as IR-cutoff. Usually in field

theory this cutoff is provided by an arbitrarily chosen mass. In the

field theory for 2D sine-Gordon models, diagrams are evaluated in po-

sition space, and we implement the IR-cutoff for simplicity by putting

the system into a box of size L cutting off all real-space integrations

at L. The UV-cutoff is given by the lattice constant l. Following the

flow of the renormalized quantities KR
αβ, gR

αβ upon a change of the

scale L by a factor e`, finally gives the RG equations of the model (9.2). Pursuing this

program, we start with the diagrammatic perturbation theory for the 2-point vertex func-

tion Γαβ(k) in the parameters gαβ. The peculiarity of sine-Gordon models is the form of

the vertex in the diagrammar, which is given by the whole power series gαβ cos (φα − φβ),
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i.e., it contains all powers of the field φα (which makes the treatment considerably different

from a φ4-theory, for example). Graphically, we represent this vertex as shown in Figure

9.1. The bare 2-point vertex function can be read off from (9.2)

Γ
(0)
αβ(k) = Kαβk2 = KαβG−1

0 (k) , (9.4)

where we introduced the bare propagator G0(k) = 1/k2.

As already mentioned, we will mainly work in real space, and use a simple cutoff

procedure in putting the system into a box of size L. The cutoff procedure introduces a

geometry-dependent non-universal factor c, giving the volume of the box as A = cL2. The

standard choice is a circular “box” of radius L, which corresponds to c = π. Implementing

the UV cutoff by the lattice with spacing l, we obtain for the Fourier-transformed G0(r)

[87]

G0(k) = k−2 (9.5)

G0(r = 0) ' 1

2π
ln (L/Cl) (9.6)

G0(0) − G0(r) ' 1

2π
ln (r/Cl) , (9.7)

where C is a non-universal constant1 depending on the cutoff procedure. It is convenient

for the following to switch to dimensionless quantities in the Hamiltonian (9.2) by setting

l̃ := Cl ≡ 1 or absorbing factors of l̃ into

gαβ l̃2 7→ gαβ

r/l̃, L/l̃ 7→ r, L . (9.8)

The corrections to the bare result (9.4) are the one-particle irreducible self-energy con-

tributions Σαβ(k) from the Dyson equation

Γαβ(k) = Γ
(0)
αβ(k) − Σαβ(k) . (9.9)

Due to a “statistical tilt symmetry” of the problem [19, 69, 70], Γαβ obeys the exact relation

1

n

∑

αβ

Γαβ ≡ 1

n

∑

αβ

Γ
(0)
αβ , (9.10)

and it is sufficient to consider the case α 6= β in (9.9); Γαα(k) can be determined by (9.10).

The symmetry (9.10), or the non-renormalization of the combination (1/n)
∑

αβ Γαβ,

emerges in the replica language because the mode φ1 ≡ . . . ≡ φn does not couple to

the vertex gαβ cos (φα − φβ), and thus the “replica center of mass” Φ = n−1/2
∑

α φα is a

free field [19].

1C ≈ e−γ/
√

8, where γ is Euler’s constant [87].
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k=0

k= -
-1 -1

- -
r’ rr r’ r   =   r’ r r’

r   =   r’

k k

Figure 9.2: Graphical representation of the Dyson equation (9.9) up to second order in

the vertex drawn in Figure 9.1. Thin lines are bare propagators (Γ(0))−1, the thick line

the full propagator, a line−1 denotes the corresponding 2-point vertex function Γ(0) or Γ,

respectively. The two diagrams with r = r′ are independent of k; the diagram in the middle

is k-dependent.

Up to second order in the vertex, the Dyson equation (9.9) can be graphically repre-

sented as in Figure 9.2. The corresponding analytic expressions can be derived by using

the following theorem for Gaussian averages of an arbitrary function F [{φγ}] of the fields

φγ, of which φα(r) and φβ(r′) are connected to the rest of the diagram:

〈. . . F [{φγ}]〉conn[φα(r),φβ(r′)] =

∑

α,β

∫

r

∫

r′

〈
. . . φα(r)φβ(r

′)

〉〈
δ2

δφα(r)δφβ(r′)
F [{φγ}]

〉
(9.11)

or in words: If a “φα-leg” is “pulled” out of the function (or vertex) F [{φγ}] in a diagram,

the corresponding functional derivative of F [{φγ}] is “left over”. By using this theorem,

we can derive the first order contribution Σ
(1)
αβ(k) to the self-energy corresponding to the

first, k-independent diagram in Figure 9.2:

Σ
(1)
α6=β(k) = 2gαβ 〈cos (φα(0) − φβ(0))〉0

= L−2 2gαβLεαβ , (9.12)

where 〈. . .〉0 is an average with the bare propagator obtained from (9.4). The factor

Lεαβ in (9.12) yields an additional power-law divergence in the propagator Gαβ in the

thermodynamic limit and will be absorbed into the renormalized gR
αβ. Since the first order

contribution (9.12) is k-independent, corrections to the εαβ are of second order in the gαβ

such that we can use the bare εαβ given by (9.3) in setting up the perturbation theory up to
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second order. The second order contribution Σ
(2)
αβ(k) corresponds to the last two diagrams

in Figure 9.2 and is most conveniently derived first in real space (again using the theorem

(9.11)) and then Fourier-transformed yielding

Σ
(2)
α6=β(k) = 4

∫

(r−r′)

eik·(r−r′)×

×
{∑

γ,δ

gαγgβδ 〈sin (φγ(r) − φα(r)) sin (φδ(r
′) − φβ(r′))〉0,1PI

}

+ 2

∫

r′

{∑

γ,δ

gαβgγδ 〈cos (φα(r) − φβ(r)) cos (φγ(r
′) − φδ(r

′))〉0,1PI

}
.

(9.13)

[〈. . .〉0,1PI shall be defined as the one-particle irreducible (1PI) contribution to the average.]

While the second term is k-independent, the first term depends on k. In what follows, we

split off the (k = 0)-part Σ
(2)
α6=β(k = 0) containing the k-independent second term and the

(k = 0)-part of the first term of (9.13). Together with the k-independent Σ
(1)
α6=β (9.12), the

k-independent contribution Σ
(1)
α6=β(k = 0) + Σ

(2)
α6=β(k = 0) to Σα6=β renormalizes the vertex

coupling constant gαβ. The k-dependent part Σ
(2)
α6=β(k) − Σ

(2)
α6=β(k = 0) can be expanded in

k, and the leading term ∝ k2 renormalizes the propagator coupling constant Kαβ. Before

performing the renormalization, we have to isolate the singular 1/ε-divergences of these

terms. After a lengthy but straightforward calculation, one finds that the only singular

contribution to Σ
(2)
α6=β(k = 0) that does not cancel is

Σ
(2)
α6=β(k = 0) ' L−2 4c

∑

γ,(α6=γ 6=β)

gαγgγβLεαγ + εγβ
1

εγβ + εαγ − εαβ

. (9.14)

Expanding Σ
(2)
α6=β(k) − Σ

(2)
α6=β(k = 0), the only divergent contribution proportional to k2 is

found to be

Σ
(2)
α6=β(k) − Σ

(2)
α6=β(k = 0) = k2 ∂

∂k2

∣∣∣∣
k=0

Σ
(2)
α6=β(k) + O(k4)

' k2 cg2
αβL2εαβ

1

2εαβ
+ O(k4) .

(9.15)

These divergences can be absorbed into renormalized coupling constants KR
αβ and gR

αβ, in

terms of which all diagrams should be free of divergences if the theory is renormalizable.

The renormalized quantities are defined properly by imposing the following conditions on
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the renormalized 2-point vertex ΓR
αβ(k) warranting its analycity:

ΓR
α6=β(k = 0, L) = −ΣR

α6=β(k = 0, L) = −2gR
αβL−2

(9.16)

∂

∂k2

∣∣∣∣
k=0

ΓR
α6=β(k, L ↑ ∞) = − ∂

∂k2

∣∣∣∣
k=0

ΣR
α6=β(k, L ↑ ∞) = KR

αβ (9.17)

Essentially, the conditions ensure that the prefactor of the “mass” L−2 (in a more refined

treatment of the IR-cutoff, one would introduce a mass-term with m2 ∼ L−2 [19]) and

the elastic term stay finite. It follows from our perturbative calculation of the divergent

contributions (9.12, 9.14, 9.15) that these conditions can be met by defining

gR
α6=β = gαβLεαβ + 2c

∑

γ,(α6=γ 6=β)

(
gαγL

εαγ
) (

gγβLεγβ
) 1

εγβ + εαγ − εαβ

(9.18)

KR
α6=β = Kαβ − c

(
gαβLεαβ

)2 1

2εαβ
. (9.19)

We define analogously to (9.3) renormalized εR
αβ using KR

α6=β. Equations (9.18) and (9.19)

yield immediately the following β-functions:

βg
α6=β

({
gR

σρ, KR
σρ

})
≡

dgR
αβ

d ln L

= εR
αβgR

αβ + 2c
∑

γ,(α6=γ 6=β)

gR
αγg

R
γβ + O

((
gR
)3

, εR
(
gR
)2)

(9.20)

βK
α6=β

({
gR

σρ, KR
σρ

})
≡

dKR
αβ

d ln L

= −c
(
gR

αβ

)2
+ O

((
gR
)3

, εR
(
gR
)2)

(9.21)

The β-functions give the RG equations of the coupling constants under a change of scale

L 7→ Le`. It is convenient to define (remember that we included the factor l̃2 into gαβ

already in (9.8))

g̃αβ := 4c(l̃2gαβ)

K̃αβ := 8cKαβ . (9.22)

Furthermore, the tilt symmetry (9.10) yields (to all orders) the exact result

βK
αα ≡ − 1

n

∑

γ 6=δ

βK
γδ , (9.23)
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and we obtain finally the following set of RG equations

dg̃α6=β

d`
= 4cβg

α6=β

({
g̃σρ/4c, K̃σρ/8c

})

= εαβ g̃αβ +
1

2

∑

γ,(α6=γ 6=β)

g̃αγ g̃γβ (9.24)

dK̃αβ

d`
= 8cβK

α6=β ({g̃σρ/4c})

=





−1

2
(g̃αβ)2 (α 6= β)

1

2n

∑

γ 6=δ

(g̃γδ)
2 (α = β) .

(9.25)

Notice that the εαβ depend on Kαβ by (9.3) and feed back into the RG equation for g̃αβ

in general. These RG equations are valid as long as εαβ(`) � 1 and g̃αβ(`) � 1 so that

our double-expansion in these parameters is justified. In Refs. [77, 86, 96], the same RG

equations (9.24, 9.25) have been derived for various sub-cases by means of a Coulomb gas

representation of the cos-coupling in (9.2) in terms of n(n−1)/2 types of interacting vector

charges.

9.3 Correlation Functions

With the above results, we can calculate the asymptotic behaviour of the 〈φφ〉-correlation

function

〈φα(k)φβ(k′)〉 = (2π)2δ2(k + k′) Gαβ(k) (9.26)

with the propagator Gαβ(k) = Γ−1
αβ(k). Solving the RG (Callan-Symanzik) equation of the

2-point vertex function Γαβ(k) yields

Γαβ (k, {gσρ, Kσρ}) ' e−2`ΓR
(
ke`, {gσρ(`), Kσρ(`)}

)

and in the asymptotic limit with `=ln (1/kl)

' (kl)2ΓR

(
1

l
,
{
gσρ

(
`=ln 1

kl

)
, Kσρ

(
`=ln 1

kl

)})

' k2Kαβ

(
`=ln

1

kl

)
. (9.27)
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The large scale behaviour of the propagator is obtained by inverting the 2-point vertex

function:

Gαβ(k) ' k−2 K−1
αβ

(
`=ln

1

kl

)
. (9.28)

Apart from this RG relation, the statistical tilt symmetry of the problem [19, 69, 70] gives

an additional exact result for the propagator of the free “replica center of mass” field Φ,

1

n

∑

αβ

Gαβ(k) =
1

n

∑

αβ

G
(0)
αβ(k) =

1

n

∑

αβ

K−1
αβ (` = 0)

k2
, (9.29)

which follows directly from (9.10).

9.4 Free Energy

One advantage of the diagrammatic approach to the RG presented here over the Coulomb

gas representation of the cos-coupling in terms of vector charges is to enable a more sys-

tematic expansion of the free energy. This aspect of the problem becomes important in the

next chapter 10 in the context of RSB, where it is generally believed that the extremum

of the free energy determines the choice for the RSB-scheme. In the Coulomb gas picture

only the renormalization of the free energy from contributions due to bound vector charge

pairs can be considered [86]. The leading order contributions from such pairs are of the

order O(g2
αβ), whereas free unbound charges may give already a contribution O(gαβ) as it

occurs also in the variational approach to leading order [21]. This potential drawback of

the Coulomb gas representation is circumvented in the diagrammatic RG approach where

we can expand the free energy systematically in powers of gαβ, and re-sum the resulting

perturbation series in terms of the renormalized gR
αβ.

The perturbation theory for the free energy F = − log Zn2 of the replicated system up

to second order in the vertex can be graphically represented by Figure 9.3. The diagrams

correspond to the expression

F = F (0) −
∫

r

{∑

αβ

gαβ 〈cos (φα(r) − φβ(r))〉0
}

− 1

2

∫

r

∫

r′

{∑

αβ

∑

γδ

gαβgγδ 〈cos (φα(r) − φβ(r)) cos (φγ(r
′) − φδ(r

′))〉0,conn

}
,

(9.30)

where F (0) is he bare Gaussian free energy of the disorder-free model.

2Strictly speaking, this is the free energy divided by T.
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= -F -

Figure 9.3: Graphical representation of the perturbation series (9.30) for the free energy

up to second order in the vertex. The circle (closed bare propagator) represents the bare

Gaussian free energy of the disorder-free model.

The divergent terms of the series for the free energy difference ∆F = F − F (0) with

respect to the disorder-free Gaussian model can be re-summed similarly to the (k = 0)-part

of the 2-point vertex function. Using our above choice (9.18) for the renormalized gR
αβ, we

obtain

∆F = F − F (0)

' −
∑

α6=β

cgαβLεαβ

− 4c2
∑

α6=β

∑

γ,(α6=γ 6=β)

gαβgαγL
εαβ + εαγ

1

εαβ + εαγ − εγβ

' F (0) −
∑

α6=β

cgR
αβ . (9.31)

We recognize that the free energy is renormalized already by the same partial re-summation

of diagrams leading to the expression (9.18) for the renormalized gR
αβ except for the diver-

gence stemming from the bare Gaussian contribution F (0).

This leads to the following RG equation for the free energy density f of a system with

UV-cutoff l

∆f
(
l, {g̃σρ, K̃σρ}

)
= (9.32)

' ∆f
(
le`, {g̃σρ(`), K̃σρ(`)}

)
−
(
le`
)−2 1

4

∑

α6=β

g̃αβ(`) (9.33)
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and in the thermodynamic limit with `=ln (L/l) ↑ ∞ to

' const + L−2 1
2
ln

(
det
αβ

K̃αβ

(
`=ln L

l

))
−

− L−2 1
4

∑

α6=β

g̃αβ

(
`=ln L

l

)
. (9.34)

Thus, ∆f is determined solely by the RG asymptotics, i.e., the RG fixed points if they

exist, of g̃αβ(` ↑ ∞) and K̃αβ(` ↑ ∞).

The main goal of this chapter has been to provide the above RG equations (9.24, 9.25)

and the relations (9.28, 9.34). In the subsequent chapters 10 and 11, we will perform a

thorough analysis of the RG flow for two sub-cases of (9.24, 9.25) [these two special cases

of the RG equations have been obtained in Refs. [77, 86, 96]]. For potential applications

of these equations, it is important to note that the structure of the matrix gαβ has been

left entirely unspecified apart from requiring symmetry (and gαα ≡ 0, K11 ≡ . . . ≡ Knn).

In particular, it will be possible to generalize from the “auxiliary” replicas of the replica

trick (8.11) to “physical” replicas of the model in chapter 11.



Chapter 10

Replica Symmetry Breaking

and

Renormalization of the

Vortex-Free 2D RFXY Model

In the two parts of this chapter we present in each an approach, which aims at clarifying

the differences between the two basic approaches to the vortex-free 2D RFXY model, the

RG approach of CO/GH [18, 19] and the self-consistent variational approach with RSB

of K/GL [9, 17, 21]. In the first part of this chapter, we extend the replica symmetric

RG calculation of CO/GH by allowing for a one-step RSB, as it is found by K/GL in the

self-consistent variational calculation and check the stability of the RG flow with respect

to RSB. In the second part, we develop a self-consistent diagrammatic approach to the

problem, which goes beyond the self-consistent Hartree-approximation of the variational

approach by accounting also for vertex-corrections, as they occur in the diagrammatic RG

calculation presented in the previous chapter 9.

10.1 Replica Symmetry Breaking in

Renormalization

In this section, we study how the concept of RSB could enter into the RG analysis of

the vortex-free 2D RFXY model. Equipped with the flow equations for the generalized

replica Hamiltonian (9.2) derived in the previous chapter 9, we can analyze the behaviour

of different RSB schemes under the RG treatment by choosing an appropriate Ansatz for

the couplings gαβ, Kαβ before performing the subtle limit n ↓ 0 of the replica method

(8.11). However, it is important to note that the bare unrenormalized couplings gαβ(`=0)

115
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and Kαβ(`=0), as they are obtained from the very definition of the vortex-free 2D RFXY

model, (8.5, 8.6, 8.7) are replica symmetric and of the form

Kαβ = Kδαβ − ∆ (10.1)

gαβ =

{
g (α 6= β)

0 (α = β) .
(10.2)

Therefore, this represents also the natural replica symmetric Ansatz for the coupling ma-

trices in the RG analysis as it was used by CO/GH. Furthermore, replica symmetry is

conserved under the RG flow as can be checked with the general RG equations (9.24, 9.25).

Exploiting the statistical tilt symmetry (9.29) [69, 70] of the 2D RFXY model, one finds

that K is unrenormalized. Because of K ∝ 1/T ,

τ0 := 1 − Kc

K
with Kc =

1

4π
(10.3)

defines a negative reduced temperature, which is not renormalized. 2τ0 is the the expansion

parameter 2τ0 = εα6=β (9.3) of the renormalization scheme as introduced in the last chapter

9 and classifies the divergences of the corresponding field theory. Employing the RG

equations (9.24, 9.25), we reproduce for the set of dimensionless parameters (9.22) ∆̃ :=

8c∆ (similarly we define K̃c := 8cKc), g̃ := 4cl̃2g and τ0 the RG equations of CO/GH, for

which we can perform easily the peculiar limit n ↓ 0 of the replica trick (8.11) [see also

part I, (4.20), CO/GH use c = π corresponding to a circular IR-cutoff]:

dg̃

d`
= 2τ0g̃ +

n − 2

2
g̃2 n↓0→ 2τ0g̃ − g̃2 (10.4)

d∆̃

d`
=

1

2
g̃2 (10.5)

dτ0

d`
=

n

2K̃c

(1 − τ0)
2g̃2 n↓0→ 0 . (10.6)

These flow equations are valid as long as τ0 � 1 and g̃(`) � 1.

The physical properties of the vortex-free 2D RFXY model are essentially encoded

in the RG flow of the disorder strength g [Figure 10.1] and change at a critical value

K = Kc or at the temperature τ0 = 0. It is interesting to note that ∆̃ does not feed

back into the RG flow of g̃. This is due to the fact that the random bond field w in

the Hamiltonian (8.5) can be shifted away by the transformation φ′(r) = φ(r) − σ(r)

with K∇2σ = ∇ · w [70]. For τ0 < 0 or K < Kc, the model is in a high-temperature

phase, where the disorder strength g̃ is irrelevant on large scales and the Gaussian fixed

point g̃∗ = 0 stable. Therefore, properties of the model in the high-temperature phase

are essentially identical to those of the disorder-free Gaussian model in 2D. However, for

τ0 > 0 or K > Kc in the low-temperature phase, a line of disorder-dominated fixed points
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g (   )* τ0

τ =00
−τ0
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* * * *

Figure 10.1: Replica symmetric RG flow as found by CO.

g̃∗(τ0) = 2τ0 becomes attractive, which can be interpreted as fixed points characterizing a

glassy phase, and ∆̃ exhibits asymptotically the characteristic “runaway-flow” ∆̃(`) ∼ 2τ 2
0 `

[which does not affect the flow of the other parameters as discussed above]. Right at τ0 = 0,

the disorder is marginally irrelevant and g̃(`) ∝ 1/`.

Using the RG result (9.28) for the propagator in the low-temperature phase τ0 > 0 (in

the limit n ↓ 0),

Gαβ(k) ' δαβ
1

Kk2
+

∆(`=ln ( 1
kl

))

K2k2
∝ τ 2

0

ln (1/kl)

k2
, (10.7)

a direct consequence of the “runaway-flow” of ∆̃(`) is the “super-roughness” [61]

〈(φ(r) − φ(0))2〉 =

∫
d2k 2(1 − cos (k · r))Gαα(k) ∝ τ 2

0 ln2 (r/l) (10.8)

in the phase- or displacement-correlations. Although ∆ does not feed back into the RG

flow of the other parameters, it determines the divergence of the 〈φφ〉-correlations. On the

other hand, due to the statistical tilt symmetry (9.29), the thermal fluctuations of φ given

by the connected correlations

〈(φ(r) − φ(0))2〉conn =

=

∫
d2k 2(1 − cos (k · r))

(
lim
n→0

1

n

∑

α,β

Gα6=β(k)

)

= 4(1 − τ0) ln (r/l) (10.9)

are unrenormalized by the disorder and identical to the 〈φφ〉-correlations of the disorder-

free Gaussian model, which diverge as ln r. In the high-temperature phase τ0 < 0,

disorder is irrelevant, and we obtain as in the disorder-free system 〈(φ(r) − φ(0))2〉 '
〈(φ(r) − φ(0))2〉conn ∝ ln r.
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So far we recapitulated the RG analysis of CO with a replica symmetric Ansatz for

the couplings gαβ and Kαβ. Armed with the powerful tool of the general RG equations

(9.24, 9.25), it is now possible to explore various RSB schemes within the RG analysis.

Whereas it was demonstrated in Ref. [55] that even continuous RSB can be included, we

want to analyze in this section in detail the case of a one-step RSB, as it occurs also

in the variational approach by K/GL as stable solution for a harmonic RSB propagator.

Technically speaking, the origin of a RSB may be connected to a proper treatment of

the subtleties involved in taking the limit n ↓ 0. In particular, the classification of the

divergences in the RG calculation, which is done in the thermodynamic limit, is performed

before the limit n ↓ 0. However, it is difficult to sketch a “physical picture” underlying the

RSB. Let us compare the situation with the theory of random ferromagnets, where similar

ideas regarding RSB in a RG analysis have been applied to the RG in 4 − ε dimensions

[88, 89]. For such systems, it has been argued [88, 89] that RSB effects come from the

multiple local minima solutions of the mean-field equations; the RG treats fluctuations in

an expansion around these minima and thus “inherits” RSB in the initial values of the

RG flow from the mean-field solution. It is an important difference of those approaches

compared to the situation in the 2D RFXY model that due to the pronounced fluctuations

typical for a two-dimensional system, even a “local” description by a mean-field theory is

impossible in the 2D RFXY model. Therefore, the energy landscape is rather “smeared

out” by thermal fluctuations, and it is unclear what physical mechanism can be responsible

for a breaking of the replica symmetry in the initial couplings gαβ(`=0) and Kαβ(`=0). We

will further discuss this question below along with an analysis of the large scale behaviour

of the free energy. We start our discussion of RSB in the RG approach with a discussion

of the consequences of a replica asymmetric perturbation, that is put into the bare values

of the couplings gαβ(`=0) “by hand”.

10.1.1 RG Analysis of a One-Step RSB

In order to investigate a one-step RSB scheme within the RG analysis, we generalize to

Parisi-type [85] coupling matrices of the form

Kαβ = Kδαβ + Kmδ̃αβ − ∆ (10.10)

gαβ =

{
g1δ̃αβ + g2

(
1 − δ̃αβ

)
(α 6= β)

0 (α = β) .
(10.11)

The matrix δ̃αβ is specified by the RSB parameter m determining the block size of the

one-step RSB matrices. Elements of the matrix δ̃αβ are 1 if α and β belong to the same

block of size m and 0 otherwise:

δ̃αβ :=

{
1 α = β (mod m)

0 α 6= β (mod m) .
(10.12)
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Applying the general RG equations (9.24, 9.25), one can check that the one-step Parisi-

type form of the couplings is conserved under the RG flow. The statistical tilt symmetry

(9.29) [69, 70] yields the invariant quantity

τm := 1 − Kc

K + mKm

with Kc =
1

4π
, (10.13)

which defines analogously to τ0 in the replica symmetric case a negative reduced temper-

ature. Similarly, we define a reduced elasticity parameter

κ := 1 − Kc

K
. (10.14)

κ and τm are the expansion parameters εα6=β (9.3) in the RG calculation of chapter 9. The

RG equations (9.24, 9.25) derived in chapter 9, take on the following form for the coupling

constants κ, τm, ∆̃ = 8c∆ (K̃c := 8cKc), g̃i := 4cl̃2gi (i = 1, 2), and the limit n ↓ 0 is

performed straightforwardly [the same set of equations has been obtained in Ref. [86] by a

mapping onto a Coulomb gas of vector charges]:

dg̃1

d`
= 2κg̃1 −

2 − m

2
g̃2

1 −
m

2
g̃2

2 (10.15)

dg̃2

d`
=

2

m
(τm − (1 − m)κ) g̃2 − mg̃2

2 − (1 − m)g̃1g̃2 (10.16)

dκ

d`
=

1

2K̃c

(1 − κ)2m
(
g̃2

1 − g̃2
2

)
(10.17)

d∆̃

d`
=

1

2
g̃2

2 (10.18)

dτm

d`
= 0 . (10.19)

These flow equations are valid for τm, κ(`) � 1 and g̃i(`) � 1. As already discussed for

the replica symmetric case and for the same reasons given above, ∆̃ does not feed back

into the RG flow of the other quantities. For the moment, m is a free parameter in the

RG equations with 0 ≤ m ≤ 1 in the limit n → 0. In the mean-field theory of spin

glasses [85] or the variational approach to random manifolds [52], the stable solution of the

self-consistency equations turns out to maximize the free energy of the system. A naive

adaption of these results would suggest that m can be determined by maximizing the free

energy. Possible choices for m, based on an analysis of the free energy, will be discussed

below.

The replica symmetric RG flow (10.4-10.6) is reproduced for m = 1 and m = n ↓ 0 if

the invariant negative reduced temperatures are identical τm = τ0 [note that at m = 0 also

κ = τm is invariant]. In the RG equations for m = 1 [m = 0], g̃2 [g̃1] plays the role of the

single disorder strength parameter g̃ of the replica symmetric flow. Also the off-diagonal
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matrix elements ∆ [Km + ∆] and g̃2 [g̃1] renormalize as in in the replica symmetric case.

The system exhibits the known fixed points g̃∗
2 = 0 [g̃∗

1 = 0] and g̃∗
2 = 2τm [g̃∗

1 = 2τm]. For

m = 1, the RG flow is sketched in Figure 10.2a. g̃1 [g̃2] does not feed back into the RG

flow of the other quantities and does therefore not enter physical results like correlation

functions (see below). For this reason the introduction of a small replica asymmetric

perturbation

∆g = g1 − g2 (10.20)

has no effect on physical results if m = 1 [m = 0], although ∆g turns out to be a relevant

perturbation under RG as we will see.

Let us also stress once again that, independently of the value of m, the replica symmetric

subspace given by g̃1 ≡ g̃2 ≡ g̃ and κ ≡ τm is closed also under the one-step RSB RG flow

(10.15-10.19). Within this subspace one finds the trivial fixed point g̃∗
1 = g̃∗

2 = 0 and the

replica symmetric CO fixed point

g̃∗
1 = g̃∗

2 = 2τm , κ∗ = τm (CO)

However, what happens to the RG flow when we introduce a small RSB perturbation

∆g(` = 0) 6= 0 of the bare parameters gαβ(` = 0) if 0 < m < 1 ? Then, the RG flow

(10.15-10.19) develops for τm > 0 an instability with respect to RSB. The system flows for

∆g̃(0) > 0 to a regime with g̃1 > g̃2 and for ∆g̃(0) < 0 to a regime g̃1 < g̃2, entering on

large length scales the unphysical regime of negative disorder strengths g̃1. In particular,

the replica symmetric CO fixed point (CO) is unstable against small replica asymmetric

perturbations. A linear stability analysis of the CO fixed point yields (∆κ = κ − τm)

d∆κ

d`
= m

2

K̃c

(1 − τm)2τm ∆g̃ (10.21)

d∆g̃

d`
= 2

1

m
4τm ∆κ . (10.22)

These equations describe an instability of the CO fixed point with respect to perturbations

∆g̃ with a positive crossover exponent λm

λm =

√
8/K̃c(1 − τm)τm > 0 . (10.23)

Note that λm vanishes upon approaching the transition τm ↓ 0 indicating that such an

RSB instability is absent in the high-temperature phase τm < 0. To avoid entering the

unphysical regime of negative g̃1, we consider only perturbations ∆g̃(0) > 0. As it is seen

from (10.21, 10.22), such a perturbation causes the reduced elasticity parameter κ and the

replica asymmetry ∆g̃ to increase. As we will see below, κ is renormalized towards κ∗ = 1

following (10.17) and ∆g̃ ∼ O(κ∗) following (10.15, 10.16). This demonstrates that upon
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Figure 10.2: RG flow trajectories for τm = 0.05 and different values of m with an initial

replica asymmetry ∆g̃(0) = g̃1(0)− g̃2(0) = τ 2
m; a) m = 1, b) m = (1 + m∗)/2, c) m = m∗,

d) m = 1 − 5τm. The dashed line is the line g̃1 = g̃2 of replica symmetric values. The

trivial fixed point and the replica symmetric fixed point (CO) are located on this line. The

RSB fixed points (RSB1) (upper right fixed point) and (RSB2) (lower right fixed point)

are plotted as well.

the instability the RG flow is attracted by a novel RG sink characterized by a strong RSB

with κ∗ = 1, which implies a strongly enhanced stiffness K ↑ ∞.

We can find from (10.15, 10.16) two additional non-trivial RSB fixed points (RSB1)

and (RSB2) with κ∗ = 1 in the physical regime g̃2 > 0:

g̃∗
1 = 2κ∗ − 2(1 − m)

m
(κ∗ − τm) + 2(κ∗ − τm)

(
1− 2

m
+

2

κ∗ − τm

)1/2

g̃∗
2 = 2κ∗ − 2(2 − m)

m
(κ∗ − τm) − 2(1 − m)

m
(κ∗ − τm)

(
1− 2

m
+

2

κ∗ − τm

)1/2

κ∗ = 1 (RSB1)
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and

g̃∗
1 =

4κ∗

2 − m

g̃∗
2 = 0

κ∗ = 1 . (RSB2)

At a certain

m∗ = 1 − τm/3 + O(τ 2
m) , (10.24)

the fixed points (RSB1) and (RSB2) fall exactly together. These fixed points are still

perturbative in κ and τm, but due to the flow of κ(`) ↑ κ∗ = 1, the fixed point g̃∗
1 becomes

of order unity and we obtain a strong RSB ∆g̃ ∼ O(κ) ↑ O(1). Though the RG flow

is strictly speaking valid only for κ � 1, we assume for the following that it mirrors

the qualitative features, i.e., the topology of the RG sinks, correctly also in the limit of

κ ↑ κ∗ = 1.

Only for m∗ ≤ m ≤ 1, the RSB fixed point (RSB1) is in the physical regime g̃∗
2 ≥ 0

of non-negative g̃2. Moreover, the fixed point (RSB1) is in this range of m stable with

respect to perturbations in g̃1 and g̃2 (becoming marginal with respect to perturbations in

g̃2 at m = m∗ where it coincides with (RSB2)), whereas the fixed point (RSB2) is unstable

with respect to perturbations g̃2 > 0. Thus, for m∗ ≤ m ≤ 1, the fixed point (RSB1)

represents the RSB RG sink for all RG trajectories with bare parameters g̃1(0) > g̃2(0) > 0

[Figure 10.2b] while the fixed point (RSB2) is attractive only for RG trajectories with

g̃1(0) > g̃2(0) = 0.

For 0 < m ≤ m∗, (RSB2) is the only RSB fixed point in the physical regime of

non-negative g̃2 ≥ 0. It is in this range of m the RSB RG sink for all RG trajectories

with g̃1(0) > g̃2(0) ≥ 0 [Figures 10.2c, 10.2d]; furthermore, it is stable with respect to

perturbations in g̃1 and g̃2.

In the high-temperature phase for τm < 0, the system flows to the stable trivial replica

symmetric fixed point g̃∗
1 = g̃∗

2 = 0 regardless of an initial asymmetry ∆g̃(0) 6= 0. In this

phase the trivial replica fixed point is stable with respect to the RSB perturbation ∆g̃ so

that RSB cannot occur in the high-temperature phase as it is expected. For τm = 0 the

trivial fixed point stays marginally stable.

10.1.2 Correlations

The analysis of the RG sinks can directly be used to calculate the 〈φφ〉-correlations follow-

ing the procedure outlined in the preceding chapter 9 and using the RG result (9.28) for the

propagator. We have seen that the RG flow and fixed point structure change significantly
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upon introducing a replica asymmetric perturbation ∆g̃(0) > 0 in the low-temperature

phase. As well the behaviour of the 〈φφ〉-correlations changes depending on the value

of the fixed point g̃∗
2 and thus m. Using the result (9.28) for the Fourier transformed

propagator, we obtain

Gαβ(k) ' k−2 K−1
αβ

(
`=ln

1

kl

)

' 4π

k2

(
δαβ

(
1 − κ

(
`=ln 1

kl

))
+ δ̃αβ

κ
(
`=ln 1

kl

)
− τm

m
+

+
(1 − τm)2

K̃c

∆̃
(
`=ln 1

kl

))
(10.25)

so that the large scale correlations depend essentially only on the asymptotic RG flow of

the reduced elasticity parameter κ(`) and ∆̃(`).

As in the replica symmetric RG (compare (10.9)), the connected correlations are un-

renormalized by the disorder and identical to the 〈φφ〉-correlations of the disorder-free

Gaussian model due to the statistical tilt symmetry (9.29):

〈(φ(r) − φ(0))2〉conn =

=

∫
d2k 2(1 − cos (k · r))

(
lim
n→0

1

n

∑

α,β

Gα6=β(k)

)

= 4(1 − τm) ln (r/l) . (10.26)

This result holds for all m and independently of the introduction of a ∆g̃(0) > 0.

In the high-temperature phase, no RSB instability occurs, even if ∆g̃(0) > 0, and

the renormalization of κ, ∆̃ can essentially be neglected; the connected (〈φφ〉 − 〈φ〉〈φ〉)-
correlation function and the 〈φφ〉-correlation function coincide, and 〈(φ(r) − φ(0))2〉 '
4(1 − τm) ln (r/l).

In the low-temperature phase the asymptotics of ∆̃(`), which is determined by the flow

equation (10.18), is of special interest because in the replica symmetric case, i.e., without

a replica asymmetric perturbation (∆g̃(0) = 0), the “runaway-flow” ∆̃(`) ∼ τ 2
m` diverg-

ing linearly is the reason for the super-roughness in the correlations 〈(φ(r) − φ(0))2〉 ∼
τ 2
m ln2 (r/l), see (10.8).

With an induced RSB instability by a small replica asymmetry ∆g̃(0) > 0 in the bare

parameters (and g̃2(0) > 0), ∆̃(`) has also a linearly divergent asymptotics ∆̃(`) ∼ (g̃∗
2)

2`/2

for m∗ < m ≤ 1 because the stable RSB fixed point (RSB1) has g̃∗
2 > 0. For the RSB RG

sink (RSB1), we obtain to a good approximation g̃∗
2 ' 6(m − m∗) such that

∆̃(`) ∼ 1

2
(g̃∗

2)
2` ∼ 18(m − m∗)2` . (10.27)
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Using (10.25), this entails 〈φφ〉-correlations

〈(φ(r) − φ(0))2〉 ∝ (g̃∗
2)

2 ln2 (r/l) ∝ (m − m∗)2 ln2 (r/l) (10.28)

with a log2-divergence for this range of m but with the prefactor reduced by a factor

9(m − m∗)2/τ 2
m < 1 compared to the replica symmetric case. In particular, we get back

the replica symmetric CO result (10.7, 10.8) upon choosing m = 1 (and τm = τ0).

The situation changes significantly in the regime 0 < m ≤ m∗, where the stable RSB

fixed point is given by (RSB2) with g̃∗
2 = 0. Therefore, ∆̃(`) saturates on large scales to

a value ∆̃∗. From a linear stability analysis around the replica symmetric CO fixed point

extending (10.21, 10.22) [and neglecting the pre-asymptotic RG-flow towards the replica

symmetric CO fixed point], one finds that g̃2(`) renormalizes to 0 on a scale

`∗ ∼ 1

λm

ln

(
4τm

(1 − m)∆g̃(0)

)
, (10.29)

which leads by equation (10.18) and (10.23) to

∆̃∗ ∼ 4τ 2
m`∗ ∼

√
2K̃cτm ln

(
4τm

(1 − m)∆g̃(0)

)
(10.30)

for the leading order contribution in τm. Hence, we obtain from (10.25), with κ(`) ↑ κ∗ = 1,

only logarithmically divergent 〈φφ〉-correlations

〈(φ(r) − φ(0))2〉 '
(

4(1 − κ∗)
4(κ∗ − τm)

m
+

4(1 − τm)2

K̃c

∆̃∗

)
ln (r/l)

∼
(

4(1 − τm)

m
+

4
√

2√
K̃c

τm ln

(
4τm

(1 − m)∆g̃(0)

))
ln (r/l) (10.31)

with a prefactor greater than in the high-temperature phase and increasing upon lowering

the temperature.

Our results for the low-temperature phase show that within the one-step RSB RG

approach with a small initial replica asymmetry ∆g̃(0) > 0, it is possible to obtain 〈φφ〉-
correlations with a log2-divergence as well as only log-divergent 〈φφ〉-correlations. For

m = 1, we reproduce the known super-rough replica symmetric RG result of Ref. [61] for

the 〈φφ〉-correlations; similarly, we find a log2-divergence with a reduced prefactor for the

regime m∗ < m ≤ 1 such that g̃∗
2 > 0. And finally, we obtain only log-divergent 〈φφ〉-

correlations with a prefactor increasing with decreasing temperature if 0 < m ≤ m∗ and

g̃∗
2 = 0. The latter possibility is of interest with regard to the results of the variational

approach of K/GL which produces qualitatively the same behaviour.
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10.1.3 Free Energy

As mentioned already, the proper initial values Kαβ(0) = Kδαβ −∆ (10.1) and gα 6=β(0) = g

(10.2) are replica symmetric with ∆g(0) = 0. It remains unclear in this approach how the

initial asymmetry ∆g(0) > 0 necessary for the development of an instability with respect to

RSB can be obtained for physical reasons. So far, we have put in this asymmetry “by hand”

thereby explicitly breaking the replica symmetry. However, to be of physical relevance, the

RSB should happen spontaneously. For random ferromagnets in 4 − ε dimensions, it has

been argued in Refs. [88, 89] that a spontaneous RSB arises from an “underlying” rugged

energy landscape, which requires an expansion around multiple local minima solutions of

the mean-field equations, whereas in the original Hamiltonian an expansion around φ ≡ 0

is tacitly assumed. The existence of multiple local minima requires a description by RSB,

which is essentially “passed” to the initial values of the RG flow, that describes the physics

of fluctuations around these minima. However, such an argumentation is not possible

in two dimensions where a mean-field description is inapplicable due to the pronounced

fluctuation effects.

The lack of a clearcut physical picture of the generation of the RSB instability makes

it also a difficult task to comment on possible choices of the RSB parameter m. In this

context it is useful to remind what determines an “optimal” RSB parameter in physical

systems where RSB has been found so far, such as the mean-field theory of spin glasses or

the variational approach to random manifolds. In both of these systems, the solutions of

the self-consistency equations extremize the free energy. They have been tested in detail for

their thermodynamic stability [52, 85], which is properly done by considering fluctuations

around the solutions to quadratic order and calculate the eigenvalues of the corresponding

excitation-modes in replica space. For the 2D RFXY model in the variational approach,

the RSB solution of the self-consistency equations in the low-temperature regime turns

out to be stable with respect to fluctuations and to maximize the free energy [9]. This

is similar to the situation in the mean-field theory of spin glasses where the stable RSB

mean-field solution also maximizes the free energy. Such behaviour is usually assigned to

the fact that the number of parameters describing the fluctuations around the solution

becomes negative in the limit n ↓ 0, thereby transforming the free energy maximums

into stable thermodynamic states. At first sight, this result suggests to determine an

optimal parameter m by calculating the free energy in the RG framework and to maximize

the free energy with respect to m. However, one should be careful with such a naive

adaption of these results from mean-field or variational calculations to a RG analysis. It is

plausible from general thermodynamic considerations to seek for an extremum of the free

energy if internal free parameters are present; for a minimum in the standard case of a

positive number of free parameters and presumably for a maximum if the number of free

parameters is negative, as it happens in the mentioned glassy systems. In our RG analysis,
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the RSB parameter m remains the only free parameter of the model in replica space

so that it is tempting to conclude that the proper physical choice of m corresponds to a

minimum of the free energy rather than a maximum as it is suggested by the corresponding

variational calculation. However, the final answer to this problem has to be left open to

future investigation along with the problem of the physical origin of a possible spontaneous

RSB. In the following, we will determine maximum and minimum of the free energy in

dependence of m. This amounts to the plausible assumption that one of the discussed

thermodynamic extremum-principles (maximum or minimum) should be applicable to the

internal RSB degree of freedom represented by m.

As demonstrated in the previous chapter 9, it is possible to calculate the free energy

difference ∆F = F − F (0) to the disorder-free Gaussian model in the RG framework in

terms of the renormalized gαβ and Kαβ. In the thermodynamic limit L/l ↑ ∞ of an infinite

system size L, the RG equation (9.34) yields for the free energy difference ∆F per replica

with the one-step RSB scheme in the limit n ↓ 0 (apart from a constant independent of m)

1

n
∆F ' 1

2n
ln

(
det
αβ

K̃αβ

(
`=ln

L

l

))
− 1

4n

∑

α6=β

g̃∗
αβ

=
1 − m

2m
ln
(
1 − κ

(
`=ln L

l

))
− 1

2m
ln (1 − τm) −

−1

2
(1 − τm)∆̃

(
`=ln L

l

)
+

1

4
((1 − m)g̃∗

1 + mg̃∗
2) . (10.32)

For the replica symmetric case, the free-energy in the low-temperature phase is deter-

mined by the CO fixed point disorder strengths g̃∗
1 = g̃∗

2 = 2τm and dominated by the

“runaway-flow” of ∆̃ with the linearly divergent asymptotics ∆̃(`) ∼ 2τ 2
m`, which yields in

(10.32)

1

n
∆F RS ∼ −(1 − τm)τ 2

m ln (L/l) . (10.33)

Upon inducing a one-step RSB by introducing a bare replica asymmetric perturbation

∆g̃(0) > 0, the RG sink becomes one of the RSB fixed points (RSB1) and (RSB2) depend-

ing on our choice of m. For both sinks we obtain from 10.17 the asymptotics

1 − κ(`) ∝ 1

`
↓ 1 − κ∗ = 0 . (10.34)

For m∗ < m ≤ 1 (and g̃2(0) > 0), the RSB fixed point (RSB1) represents the RG sink

of the model, and we have g̃∗
2 > 0 giving again a “runaway-flow” of ∆̃(`) with a linearly

divergent asymptotics (10.27). The corresponding term in (10.32) gives as in the replica
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symmetric case the dominant contribution to the free energy in the thermodynamic limit

1

n
∆F RSB(m∗ < m ≤ 1) ∼ −1

4
(1 − τm)(g̃∗

2)
2 ln (L/l)

' − 9(1 − τm)(m − m∗)2 ln (L/l) . (10.35)

For 0 < m ≤ m∗, (RSB2) is the RSB RG sink with g̃∗
2 = 0. This changes not only

the behaviour of the 〈φφ〉-correlations drastically, as discussed above, but has similar con-

sequences for the free energy. In this regime ∆̃(`) saturates on large scales, see (10.30),

and the dominant contribution in the free energy (10.32) comes from the weak logarithmic

divergence stemming from the asymptotics of κ(`), see (10.34):

1

n
∆F RSB(0 < m ≤ m∗) ∼ −1 − m

2m
ln (ln (L/l)) . (10.36)

Interestingly, the results (10.35, 10.36) with ∆F (L) ∼ (ln L)θ for the free energy and

(10.28, 10.31) with 〈φ2〉(L) ∼ (ln L)ζ obey the simple scaling law θ = 2ζ−1 in terms of the

logarithm (ln L) of the system size L for all m. This could have been naively guessed by

equating ∆F (L) with the average elastic energy though a “power” counting in logarithms

is certainly a delicate issue.

From the results (10.35, 10.36) for 1
n
∆F RSB(m) in the thermodynamic limit, we

find that 1
n
∆F RSB(m) is monotonously increasing in the interval 0 < m ≤ m∗ and

monotonously decreasing in m∗ < m ≤ 1. Thus the maximum of 1
n
∆F RSB(m) is reached

for m = m∗. It is also obvious that 1
n
∆F RSB(m) takes its absolute minimum for the replica

symmetric m = 1. If the optimal RSB parameter m is given by a maximal free energy, i.e.,

m = m∗, only log-divergent 〈φφ〉-correlations (10.31) should be found. If, on the other,

hand simple thermodynamics still holds in the disordered system and m is obtained from

minimizing the free energy, we would recover the replica symmetric result m = 1, that

means the log2-divergence and hence super-roughness in the 〈φφ〉-correlations.

However, without a clear picture of the underlying physical mechanism for a sponta-

neous RSB in the RG treatment, i.e., the generation of the replica asymmetric perturbation,

it is not clear which of the two extrema represents the physical one.

10.1.4 Comparison with Variational RSB Approach

It sheds some light onto the approximations underlying the variational approach of K/GL

with a RSB Ansatz for the propagator [9, 17, 21] to examine what has to be neglected and

how ∆g̃(0) has to be chosen to reproduce its results by the RSB RG treatment presented

before.

One can re-derive the results given by K/GL for the free energy and the correlations

using: (i) Truncated RG equations, i.e., only the first order terms O(g̃1
1, g̃1

2) in (10.15-

10.19) and (ii) for the disorder strengths replica asymmetric bare values g̃2(0) = 0, g1(0) =
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∆g(0) = g > 0. Due to the truncation of the RG equations, one has in particular κ ≡ τm.

It follows immediately that g2 ≡ 0 and g̃1(`) = g̃ exp (2τm`). Due to the neglect of second

order terms, fixed points are absent in such a treatment. Therefore, the renormalization

of g̃1 has to be stopped at some scale `∗, which we want to fix by g̃ exp (2τm`∗) ∼ K2

and L∗/l ∼ (K2/g)/2τm, where we apply a Debye-Hückel approximation and replace the

cos-term in the Hamiltonian (9.2) by a mass term

−g1(`
∗) cos (φα − φβ)δ̃αβ 7→ g1(`

∗)
(
−mδαβ + δ̃αβ

)
φαφβ . (10.37)

By applying the RG equations for the 2-point vertex function (9.27) and the free energy

(9.34) derived in the previous chapter 9 with g̃2 ≡ 0

Γαβ (k, {g̃1, K}) ∼ (
l

L∗
)2ΓDH

(
k
L∗

l
,
{
g̃1 ∼ K2, K

})
(10.38)

∆F (L/l, {g̃1, K}) ∼ (L/L∗)2(1 − m)g̃1(`
∗) + ∆F DH

(
L/L∗,

{
K2, K

})
,

(10.39)

one obtains the correlations and the free energy. The quantities with a superscript “DH”

are evaluated within the Debye-Hückel approximation with a mass term (10.37).

Such a procedure reproduces the results of the variational approach for the correlations

and the free energy. Thus maximization of the free energy yields also the same value

m ' 1−τm [9, 17, 21]. However, it should be stressed that all terms occuring in the second

order O(g2
1, g1g2, g2

2) have been neglected, which give in the perturbation theory serious

1/τm- and 1/κ-singularities as we have seen in the previous chapter 9; in the next section

10.2 we will further clarify this point. As another remarkable result of the demonstrated

equivalence, one recognizes that in the variational calculation, being equivalent to a RSB

RG approach with ∆g(0) = g1(0) > 0, the replica symmetry seems to be effectively broken

“by hand”. On the other hand, we have seen in this section that it is not at all clear for

which physical reason the replica asymmetry ∆g(0) should occur within the RG framework.

This casts in turn doubt on the applicability of a widening of the Ansatz for the propagator

in the variational approach by using RSB. It may be an effect of this “mathematical tool”

to break the replica symmetry explicitly and to induce a RG flow to a different fixed point

with strongly different physical properties, which would be fixed point (RSB2) if the RG

flow had not been truncated. Thus the drastic change in the physical behaviour, with fixed

point (RSB2) exhibiting strong RSB and κ∗ = 1, as opposed to the replica symmetric CO

fixed point, and with accordant consequences for the 〈φφ〉-correlations as discussed earlier,

may be a result of subtle interactions induced by the widening of the variational Ansatz.

Such a view will be further supported in chapter 11, where we study two interacting

physical replicas of the 2D RFXY model. There, it is also found that RSB results are

consistent with the physics obtained if a small repulsion between the physical replicas is
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introduced, which corresponds to a small replica asymmetric perturbation in a single 2D

RFXY model. Although we expect similar physical properties of the RG sink for the two

weakly interacting physical replicas, we will find in chapter 11, similar to our findings here,

pronounced instabilities in the RG flow leading to RG sinks with very different physical

properties.
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10.2 Self-Consistent

Diagrammatic Approach

Whereas we tried in the last section 10.1 to widen the replica symmetric RG treatment of

CO/GH [18, 19], the remainder of this chapter is devoted to an extension of the variational

approach with RSB used by K/GL [9, 17, 21], both aiming at a more unified view of the

subject. In the previous section we were able to reproduce the results of the variational

approach within the RSB RG treatment using certain approximations. Vice versa our goal

in this section is to obtain the RG results by an extended self-consistent calculation.

In the form it has been developed in Ref. [52], we want to interpret the variational

approach as a tool to derive in a controled manner [the approach can be shown to be exact

in the limit of infinite number of components N of the field φ] a set of self-consistency

equations for the propagator in replica space, which are essentially equivalent to a self-

consistent Hartree-approximation. Though exact in the limit N ↑ ∞, it is clear that in

the case N = 1 under consideration in the vortex-free 2D RFXY model important classes

of diagrams (we use throughout this section essentially the diagrammatic “language” of

chapter 9) have been neglected. In particular, no 1/τ -singularities arise, where the negative

reduced temperature

τ := 1 − Kc

K
with Kc =

1

4π
(10.40)

is the small expansion parameter of the renormalization classifying the divergences of the

diagrams [as defined here, τ coincides in the replica symmetric RG with τ0 (10.3) and in the

one-step RSB RG with κ (10.14)]. The 1/τ -singularities stem from higher order diagrams

in the vertex g cos(φα − φβ). Therefore, the self-consistent Hartree-approximation does

not give a self-consistency equation for the vertex, which arises naturally, as we will see,

if the higher order vertex-corrections are taken into account. Including such corrections,

one is able to partly reconcile an extended self-consistent approach and the RG treatment

presented in chapter 9. A similar idea has been followed in Ref. [56], where it is shown that

for a N -component vortex-free 2D RFXY model the log2-divergence of the RG equations

derived by CO/GH for N = 1 is suppressed by a factor 1/N 3 for large N . This indicates

that upon inclusion of more classes of diagrams into the self-consistent approach, which

can in fact be interpreted as a 1/N -expansion as shown in Ref. [52], the corresponding

term should emerge in higher orders in the vertex.

We want to start, as in chapter 9, from the most general form (9.2) of the replica

Hamiltonian. The self-consistent diagrammatic approach presented here, is based on an

extension of the theorem (9.11) used already in the diagrammar in chapter 9. The essence

of this theorem applied to the vertex gαβ cos (φα − φβ) is the following: “Pulling” a “φα-

leg” out of the vertex in any diagram leaves behind the functional derivative of the vertex.

The vertex gαβ cos (φα − φβ) [Figure (9.1)] is peculiar since it is a cos(φ)-vertex, i.e., a
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whole power series, and every functional derivative leaves (apart from the sign) a sin(φ)-

or cos(φ)-vertex behind in the diagram. Therefore, one can formulate a self-consistency

equation for a dressed vertex or vertex part gV
αβ cos (φα − φβ) by summing up sub-classes of

diagrams but conserving the cos-form of the vertex at the same time. The dressed vertex is

calculated using the full propagator, for which in turn a Dyson equation can be formulated

in terms of the dressed vertex. Thereby, we obtain a closed set of two diagrammatic

equations that should be self-consistently solved for the full propagator, which encodes the

physical properties we are interested in.

We represent the bare vertex gαβ cos (φα − φβ) graphically as in chapter 9 by Figure

(9.1) with a white circle for the gαβ whereas we choose in the dressed vertex for gV
αβ a filled

black circle. Bare propagators G
(0)
αβ(k) are represented by thin lines and full propagators

Gαβ(k) by thick ones. Graphically, we can write the Dyson equation and the vertex part

as shown in Figure 10.3. The analytic expression for the vertex part equation of Figure

10.3 is

gV
α6=β cos (φα − φβ) =

=gαβ cos (φα − φβ) exp
(
− 1

2

(
Gαα(0) + Gββ(0) − 2Gαβ(0)

))
+

+ gαβ cos (φα − φβ)

{∑

µ6=ν

∫

r

exp
(
− 1

2

(
Gαα(0) + Gββ(0) − 2Gαβ(0)

))
×

× gV
µν

[
cosh∗

(
Gαµ(r) + Gβν(r) − Gαν(r) − Gβµ(r)

)]}
−

− 2
∑

µ(6=β),ν(6=α)

∫

r

gV
ανgµβ exp

(
− 1

2

(
Gµµ(0) + Gββ(0) − 2Gµβ(0)

))
×

×
[
sinh∗

(
Gαµ(r) + Gβν(r) − Gνµ(r) − Gαβ(r)

)]
, (V)

where cosh∗ x = (cosh x− 1) and sinh∗ x = (sinh x− x) count only one-particle irreducible

graphs.

In order not to overcount graphs we have to subtract the (k = 0)-part in the second

order contribution to the self-energy in the Dyson equation (Σ̃(k) := Σ(k) − Σ(k = 0),

which is taken into account already in the vertex part equation. The analytic expression for

the Dyson equation of Figure 10.3 is [note the similarities to equations (9.13) and (9.12)]

G−1
αβ(k) =

(
G(0)

)−1

αβ
− Σ

(1)
αβ − Σ̃

(2)
αβ(k)
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(k=0)-(k=0)

= -
-1 -1

-
r’ rr r’

k k

r r’

= + +

Vertex part:

Dyson:

r  =  r’

(k=0)

r           =           r’  
Hartree

Figure 10.3: Graphical representation of the Dyson equation and the vertex part

gV
αβ cos (φα − φβ). Thin lines are bare propagators G(0), thick lines full propagators G,

a line−1 denotes the corresponding 2-point vertex function Γ(0) or Γ, respectively.

with

Σ
(1)
α6=β = 2gV

αβ

Σ̃
(2)
α6=β =

∫

r

(
eik·r − 1

)
Σ

(2)
αβ(r)

Σ
(2)
α6=β(r) = 4

∑

γ(6=α),ν(6=β)

gV
αγg

V
νβ ×

×
[
sinh∗

(
Gαβ(r) + Gγν(r) − Gαν(r) − Gγβ(r)

)]
(D)

The bare propagator G(0) can be read off from (9.2)

G
(0)
αβ = K−1

αβ k−2 . (10.41)

Due to the “statistical tilt symmetry” (9.10) [19, 69, 70], Σαα obeys (for Parisi-type ma-

trices) to all orders the exact relation

Σαα ≡
∑

β(6=α)

Σαβ . (10.42)
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Though not very handy at first sight, the two equations (V) and (D) provide a closed

set of equations for the full propagator Gαβ(k). The self-consistent variational approach

as used by K/GL is contained in these equations when we set Σ(2) ≡ 0 and only the

first term in equation (V) is considered in the determination of gV
αβ. Then, the only dia-

gram contributing to the self-energy is the Hartree-diagram [see Figure 10.3] contributing

to Σ(1) and giving the variational approach the alternative name self-consistent Hartree-

approximation. However, as should have become clear in the diagrammatic approach to the

RG treatment the second order contribution Σ(2) bears essential singularities which cannot

be taken into account in a Hartree-approximation. In the RG equations, these additional

terms are responsible for the existence of non-trivial fixed points. Though the work of

Bauer and Bernard [56] suggests that it should be possible to derive the above scheme (V)

and (D) in a controled manner in a 1/N -expansion (N being the number of components

of φ), this has not been achieved so far. In the form presented here, the extensions with

respect to the Hartree-approximation are not based on a systematic expansion (though

the results of Ref. [56] indicate that they are 1/N 3-corrections to the leading order 1/N of

the Hartree-approximation) but rather incorporate a novel class of diagrams into the self-

consistent scheme, which has proven to be essential in the RG calculation. In considering

more diagrams than before, (V) and (D) should improve the self-consistent approach.

10.2.1 Replica Symmetric Solution

For the following, we want to specialize to the proper bare replica symmetric vertex gαβ =

g(δαβ − 1) (10.2) as obtained from replicating the Hamiltonian (8.5). That means we do

not break the replica symmetry “by hand” as in the RG approach.

First, we use (V) and (D) to re-examine the replica symmetric solution within the

self-consistent framework. We make a replica symmetric Ansatz for the propagator:

G−1
αβ =

(
G(0)

)−1

αβ
(k) − Σ(k) = KG−1

0 (k)δαβ − Σ(k) , (10.43)

where [83]

G0(k) = (k2 + µ2)−1 (10.44)

G0(r) =

∫
d2k

(2π)2
G0(k)eik·y

∣∣∣∣
y2=r2+l2

µr�1→ − 1

4π
ln
(
Cµ2(r2 + l2)

)
(10.45)

with µ2 ∼ 1/L2 as a regularizing mass serving as IR-cutoff (as opposed to the hard cutoff

L in real space used in chapter 9) and an UV-cutoff l. C is a non-universal constant1

introduced by the UV-cutoff procedure [for similar reasons a constant C (with a different

1C = 1

4
e2γ , where γ is Euler’s constant [83].
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value) occurs in the RG calculation in chapter 9]. Henceforth, we absorb factors of the UV-

cutoff l to obtain dimensionless quantities, analogously to the RG calculation (see (9.8)),

such that l ≡ 1.

The Hartree-approximation of K/GL fails to find a phase transition to a low-tempe-

rature phase [9, 17, 21] for τ > 0 with the above replica symmetric Ansatz. Using the

extended self-consistency equations (V) and (D), we find that Σ(k) drops out of equation

(V) [which is analogous to ∆̃ not feeding back in the replica symmetric RG equations

(10.4-10.6)] and keeping only the most divergent terms for µ, µ̄ ↓ 0 and τ � 1, we obtain

gV
α6=β = gV

gV [µ̄] ' g(Cµ2)1−τ + g gV [µ̄] (n − 2)Iτ [µ̄] (10.46)

Σ
(1)
α6=β ' 2gV [µ] (10.47)

Σ̃
(2)
α6=β(k) ' k2 π

2
(Cµ2)−2(1−τ)

∫ 1/µ2

dr2r2(r2 + 1)−2(1−τ)(gV [µ̄])2 . (10.48)

with

Iτ [µ] :=
π

τ

(
µ−2τ − 1

)
.

The similarity with corresponding expressions (9.18) and (9.19) in the RG treatment is

already obvious. Note particularly the 1/τ -singularity contained in Iτ , which is neglected in

the Hartree-approximation but included and renormalized in the RG treatment of chapter

9. On the other hand, also an inherent shortcoming of the self-consistent approach as

compared to a RG calculation becomes apparent, which is the reason for the distinction

between the two masses µ, µ̄: When µ = µ̄, the self-consistency equations (V) and (D) are

evaluated at one large length scale 1/µ, whereas the RG is based on the idea to consider

the interaction between many length scales by integrating out successively fluctuations on

smaller scales. The self-consistency equations with a single µ = µ̄ can be regarded as a RG

treatment, where the successive integrations of the RG steps are implemented in a single

step.

Nevertheless, already with µ = µ̄, we get the result

gV (Cµ2)−1 ' g(Cµ2)−τ

g (n−2)π
τ

(µ−2τ − 1)

µ↓0→ τ
C−τ

(2 − n)π
, (10.49)

which is identical to the renormalized gR(L ∼ 1/µ) or the solution g(` = ln 1/µ) of the RG

equation (10.4) in the RG calculation for the replica symmetric case [apart from factors C

due to the different cutoff procedures used in the two calculations]. In the limit n ↓ 0 of the

replica trick, it gives the known replica symmetric CO fixed point for τ > 0. In particular,
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we find the existence of a transition from gV = 0 in the high-temperature phase τ < 0

to (gV µ−2) ∼ τ in the low-temperature phase. Using (10.47), equation (10.49) yields also

the result Σ(1) ∼ gV ∼ µ2, which is nothing else then the renormalization condition (9.16),

keeping the renormalization of the mass finite. Therefore, the contribution Σ(1) leaves the

asymptotic behaviour of the propagator unchanged in the thermodynamic limit µ ↓ 0, and

it remains to investigate effects coming from the next order Σ̃(2)(k).

For µ = µ̄, the self-consistency equations (V) and (D) fail to reproduce the replica

symmetric RG result for the renormalized propagator (10.7), which exhibits the character-

istic additional log k-divergence leading to the super-roughness. This is due to the above

mentioned problem that the RG is effectively performed in a single step and can be cured

by introducing the auxiliary mass µ̄ > µ, which allows interaction between two kinds of

fluctuations in the calculation of the propagator, fluctuations on scales l . r . 1/µ̄ and

on scales 1/µ̄ . r . 1/µ: Following the RG philosophy, it is reasonable to set µ̄ ∼ 1/r in

the integral in (10.48), which yields in the limit n ↓ 0

Σ̃
(2)
α6=β(k) ∝ τ 2 k2 ln (1/k) , (10.50)

in accordance with (10.7).

Thus it is possible to reconcile the self-consistent approach with the RG calculation

in the replica symmetric case if the extended set of equations (V) and (D) is used. In-

terestingly, this is possible just by considering a new class of diagrams, which give essen-

tial singularities in the RG treatment and have not been considered in the self-consistent

Hartree-approximation used by K/GL.

10.2.2 One-Step RSB Solution

Due to the technical difficulties involved in solving the equations (V) and (D) for a one-step

RSB Ansatz for the propagator Gαβ(k), we do not aim at a full solution but rather check

the viability of the solution found by K/GL with the Hartree-approximation within the

extended set of equations (V) and (D). Therefore, we start with an one-step RSB Ansatz

for the 2-point vertex function containing only a k-independent self-energy [21]

G−1
αβ = KG−1

0 (k)δαβ − K
[
σ2 + (σ1 − σ2)δ̃αβ − ∆1δαβ

]
(10.51)

∆1 = (nσ2 + m(σ1 − σ2)) (10.52)

with G0(k) from (10.44). In the limit n ↓ 0, this yields a propagator

Gαβ(k) =
1

K

{
1

(k2 + µ2) + ∆1

δαβ+

+
1

m

(
1

k2 + µ2
− 1

(k2 + µ2) + ∆1

)
δ̃αβ + A(k)

}
. (10.53)
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Inserting this into the equations (V) and (D), one finds that the last term A(k), which

has not been explicitly displayed above, drops out of equation (V). Collecting only the

most divergent terms for µ ↓ 0 and τ � 1, and using only a single mass as opposed to the

replica symmetric calculation we obtain from (V) after some lengthy algebra the following

equations for the dressed vertex in the limit n ↓ 0 of the replica trick:

gV
α6=β = gV

1 δ̃αβ + gV
2

(
1 − δ̃αβ

)

gV
1 ' gDτ − ((2 − m) − mMτ ) Iτ g gV

1 −
(

m

Mτ
+ m

)
Iτ g gV

2 (10.54)

gV
2 ' gDτMτ − 2(1 − m)Mτ Iτ g gV

1 − 2mIτ g gV
2 (10.55)

with

Dτ = Dτ [µ, ∆1] := (C(µ2 + ∆1))
1−τ

Mτ = Mτ [∆1/µ] :=

(
1 +

∆1

µ

)−(1−τ)/m

≤ 1 (10.56)

Iτ = Iτ [µ] :=
π

τ

(
µ−2τ − 1

)
.

Note again the similarities with the corresponding RG equations (10.15) and (10.16).

With these equations, one finds for τ < 0 in the high-temperature phase that gV
1 =

gV
2 = 0, whereas we obtain in the low-temperature phase for τ > 0

gV
1 (Cµ2)−1 ' τ

C−τ

2π
M−m

τ

gV
2 (Cµ2)−1 ' τ

C−τ

2π
M1−m

τ . (10.57)

Simultaneously with (10.57), we have to fulfill the equation (D), where we neglect for the

moment the second order contribution Σ̃(2)(k) to stay consistent with our Ansatz of a

k-independent self-energy. This yields in the limit n ↓ 0 using (10.51, 10.52)

Kσi = 2gV
i (i = 1, 2)

∆1 =
σ1 − σ2

m

and finally with (10.56, 10.57)

M−m/(1−τ)
τ ' 1 +

4τ(1 − τ)

m
C1−τM−m

τ (1 − Mτ ) . (10.58)

From the last equation we can determine Mτ [∆1/µ] ≤ 1 and thus the vertices gV
i and

self-energies σi (i = 1, 2).
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The above replica symmetric result (10.49) for gV
1 = gV

2 is recovered with the solution

Mτ = 1 of (10.58). A RSB solution of (10.58), i.e., a solution with Mτ < 1 can exist only

for a RSB-parameter m < mc smaller than a critical value

mc := 2C(2−τ)/2(1 − τ)
√

τ . (10.59)

This indicates a possible RSB instability for a certain parameter regime m < mc of the

RSB parameter m though the RSB solution found here exhibits striking differences to the

solution found by K/GL, and the failure of the Hartree-approximation becomes apparent.

The major difference are vanishing RSB masses σi ∼ gV
i ∼ µ2 in the thermodynamic limit

µ2 ∼ 1/L2 ↓ 0, such that they leave the asymptotic behaviour of the propagator and hence

the 〈φφ〉-correlation unchanged as compared to the high-temperature phase. Thus we have

to consider contributions from the k-dependent next order Σ̃(2)(k). K/GL, however, find a

finite σ1 for µ ↓ 0 such that the leading order of the self-energy is k-independent resulting

in a log-divergence (in position space) of the 〈φφ〉-correlation. The RSB solution described

by (10.58) has gV
1 (Cµ2)−1 > gV

2 (Cµ2)−1 > 0, and it is tempting to assume in the light of

our replica symmetric calculation regarding the behaviour at the fixed point (RSB1) that

one finds an additional log k-divergence in the propagator if Σ̃(2)(k) is considered in the

self-consistency equations, which should lead to super-roughness in the 〈φφ〉-correlations.

This is suggested by the results from the RSB RG calculation because gV
2 (Cµ2)−1 > 0

corresponds to g̃∗
2 > 0 there, which produces a log2-divergence in the 〈φφ〉-correlations,

see (10.28). This point certainly needs further verification. It is well possible that the

self-consistent approach can be reconciled with the RSB RG approach as in the replica

symmetric case, which requires however a detailed knowledge of the solution for Σ̃(2)(k)

to reproduce results associated with a renormalization of τ in the RSB RG analysis. One

important difference to the RG calculation is yet to be emphasized: It seems not to be

necessary to break the replica symmetry of the bare vertex “by hand” to obtain a self-

consistent RSB solution. This is contrary to the RG analysis where the instability in the

RG flow is only obtained with a small replica asymmetric perturbation of the bare vertex.

But also to answer this question with certainty, a complete solution of the Dyson equation

(D) including the second order contribution Σ̃(2)(k) has to be found.

The scenario which is suggested by the results obtained so far in the self-consistent

approach in this section as well as with the RG calculation with one-step RSB in the

previous section 10.1 is the following:

• RSB instabilities, which have been examined for a one-step RSB, are present in

both treatments. RSB-unstable RG trajectories require a small replica asymmetric

perturbation of the bare couplings. However, the physical mechanism underlying

the occurrence of such perturbations and thus the existence of a spontaneous RSB is

unclear so far. On the other side, the self-consistent approach yields a RSB solution

for the dressed vertex even for a replica symmetric bare vertex.
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• In the RG approach, the replica symmetric RG flow for m = 1 is associated with the

minimum of the free energy in the free RSB parameter m in the limit n ↓ 0 of the

replica trick.

• The extended set of two self-consistency equations (V) and (D) and the renormal-

ization include the same classes of divergent diagrams and should yield identical

results, which has been explicitly shown for the replica symmetric case. The self-con-

sistent Hartree-approximation of K/GL is recovered when second order diagrams in

the Dyson equation and the equation for the dressed vertex are neglected [and hence

1/τ -singularities], which can also be demonstrated within the RG analysis.

• In the low-temperature phase τ > 0, the asymptotic propagator acquires no k-

independent mass to leading order in the vertex such that higher order self-energy

contributions have to be considered and additional log k-divergences likely occur as

in the replica symmetric RG result. The same result can be obtained by the one-step

RSB RG approach in a certain parameter range. This is in contradiction to results

from the self-consistent Hartree-approximation of K/GL and favors the existence of

a super-rough low-temperature phase in the vortex-free 2D RFXY model.



Chapter 11

Two Interacting Arrays

of Lines and Steps

in Random Media

Planar arrays of lines and steps in a random medium containing point impurities can be

mapped onto the 2D RFXY model with a Hamiltonian (8.5) as discussed already in the

introductory chapter 8. So far in this second part, we have mainly addressed theoretical

aspects of the vortex-free 2D RFXY model regarding the possibility of RSB in the glassy,

low-temperature phase of the model. In this chapter we come back to the issue of planar

line-arrays and consider a novel application regarding planar arrays of directed lines, which

is the effect of point disorder on two interacting species of lines in a plane.

This problem arises in the study of the interplay between the roughening and decon-

struction of anisotropically (2 × 1) reconstructed (110) surfaces of gold [92], or other fcc

crystals. It has been argued that both the deconstruction and the roughening of the (110)

facet can be described in terms of steps on the crystal surface, which occur in form of two

kinds of (3×1) microfacets corresponding to upward and downward steps and representing

“defects” in the (2 × 1) reconstruction [92, 93, 94, 95]. These defects separate different

domains of (2 × 1) reconstruction, which have a choice of four different sublattices on the

surface [Figure 11.1]. To define an order parameter of the reconstruction, it is useful to

introduce a domain phase ϕ(r), that counts the number n(r) = 1, . . . , 4 of the sublattice

at point r in multiples of π/2:

ϕ(r) := n(r)
π

2
. (11.1)

An order parameter capturing the ordering of the domains is R(r) = eiϕ(r), which decays

algebraically in the disorder-free system when the domain phase starts to fluctuate at the

deconstruction transition. On the other hand, the (3 × 1) microfacets induce upward and

downward steps of the surface and thus height fluctuations, which can lead to a roughening

139
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transition. To explain the possibility of a simultaneous deconstruction and roughening, it is

important to realize that on a (110) reconstructed facet of a fcc crystal (like gold) the steps

affect both the order parameter of the roughening transition, i.e., the height of the surface

and the order parameter of the deconstruction, i.e., the domain phase [92, 93, 94, 95]

(as opposed to steps on a reconstructed sc crystal surface, which do not couple to the

reconstruction degrees of freedom [94, 95]). This is illustrated in Figure 11.1, where upon

advancing to the right, the domain phase changes by +π/2 at each (3 × 1) microfacet,

regardless whether an up or down step, whereas the height changes by +1 at an upward

step and -1 at a downward step.
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Figure 11.1: Two kinds of (3x1) microfacets on a (2x1) reconstructed crystal surface. The

background (2x1) facets can be on four possible sublattices (marked “a”–“d”). Each (3x1)

facet shifts the phase by one sublattice.

Previous studies of the pure system have revealed a rich phase diagram with a variety of

possible phases as a function of the interaction parameters [92, 93, 94, 95]. In this chapter,

we study the system in the presence of point disorder, which can originate from crystalline

defects on a disordered underlying substrate. These point defects induce deformations in

the trajectories of the microfacets. As we will show the two interacting arrays of steps in

the presence of point disorder can be described by two coupled 2D RFXY models.

The investigation of two coupled 2D RFXY models is also of interest for a number of

other issues. As already pointed out in chapter 4 in part I, a stack of many coupled 2D

RFXY models describes the physics of the FL array in a strongly layered impure HTSC in

a magnetic field parallel to the superconducting CuO-planes, H ‖ ab [Figure 11.2]. This

model has been studied by a variational calculation in chapter 4 though it is desirable to

perform a RG analysis, which is more suited to describe fluctuations effects on many length

scales. In this chapter we perform a detailed RG analysis for the corresponding two-layer

model, which can be regarded as a “toy”-model of the many-layer system [Figure 11.2]. Due
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to the fact that quasi-2D fluctuations play a prominent role also in the many-layer model as

demonstrated in chapter 4, two layers should already capture much of the physics contained

in the full many-layer system. But the model has also other applications in the field of

vortices in superconductors: Josephson vortices in between planar Josephson junctions in

an artificial grown SNSNS sandwich structure [Figure 11.2] are another realization, where

point disorder is generated by randomly distributed inhomogeneities in the thickness of

the middle layer.

S
N

x

zS
SN2

1

φ1

φ2

Figure 11.2: Left: Two magnetically interacting arrays of FLs in an impure superconductor.

Right: Josephson vortices in an artificial SNSNS sandwich structure with inhomogeneities

in the thickness of the middle layer.

It is also of interest for the subject of RSB in a single vortex array, that we discussed

already in the previous chapter 10, to consider two physical replicas of the system coupled

by a small interaction.

We model a single species of directed lines confined in a plane containing quenched

point disorder by the 2D RFXY model given by the Hamiltonian (8.5) as discussed already

in chapters 3 and 8 in detail. The interaction between the two species of lines is taken

to be short-ranged so that we can write in terms of the line density ρ[ri, φi(ri)] in layer i

(i = 1, 2):

βHint[φ1, φ2] =

∫

r1

∫

r2

Vint(r1 − r2)ρ[r1, φ1(r1)]ρ[r1, φ1(r1)] , (11.2)

with a short-ranged potential Vint. Using expression (8.3) for the line density and neglecting
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fast oscillating terms, this leads to

βHint[φ1, φ2] ≈
∫

r

{
2µρ2

0 cos (φ1 − φ2) + Kµ∇φ1 · ∇φ2

}
(11.3)

with

µ =

∫

r

Vint(r) (11.4)

Kµ = µ/8π2 . (11.5)

Here we have anticipated that the elastic term becomes isotropic in the thermodynamic

limit. We assume the disorder potentials vi(r) (see (8.2) and (3.14)) acting on species

i to be statistically identical, i.e., vi(r)vi(r′) = g0 δ2(r − r′), with cross-correlations

v1(r)v2(r′) = gµ,0δ(r − r′) to be specified below. The full Hamiltonian of our system,

H[φ1, φ2] =
∑2

i=1 H[φi]+Hint[φ1, φ2], can then be written in a succinct form [after neglect-

ing fast oscillating terms and anticipating isotropy of the elastic terms],

βH[φ1, φ2] =

∫

r

{
1

2
Kij∇φi · ∇φj − wi[r] · ∇φi

+ Wi[r, φi] + 2µ cos (φ1 − φ2)

}
, (11.6)

with random potentials Wi and wi, whose correlators are

Wi[r, φ]Wj[r′, φ′] = 2gij cos (φ − φ′) δ2(r − r′)wi[r]wj[r′] (11.7)

= ∆ijδ
2(r − r′) . (11.8)

The parameters of the theory are contained in the 2x2-matrices

∆ij =

{
∆ (i = j)

∆µ (i 6= j)
(11.9)

gij =

{
g (i = j)

gµ (i 6= j)
(11.10)

and have bare values

g = g0ρ
2
0

1

T 2
(11.11)

gµ = gµ,0ρ
2
0

1

T 2
(11.12)

∆ij = gij/(8π2) . (11.13)
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Notice that all cosine couplings appearing in (11.6) reflect the discrete translational symme-

try of the line arrays. The derivation of the above Hamiltonian is analogous to the deriva-

tion of the interaction Hamiltonian (4.5, 4.6) for the many-layer system of FLs apart from

the additional parameter gµ, which allows to consider different types of cross-correlation

besides the uncorrelated disorder gµ ≡ 0 considered in chapter 4.

A physical observable of interest for the crystal surface is the height profile h(r) of the

surface. It is given by

h(r) = [φ1(r) − φ2(r)] /2π (11.14)

since lines from species 1 and 2 represent upward and downward (3 × 1) microfacets re-

spectively [Figure 11.1], and it is the difference of the two that determines the height

profile [93]. The other quantity of interest characterizing the domain order is the domain

phase ϕ, which can also be expressed in terms of the fields φi as

ϕ(r) = [φ1(r) + φ2(r)] /4 . (11.15)

Because the domain phase changes in the same way when crossing an upward or downward

microfacet [Figure 11.1], it is the sum of the number of steps of species 1 and 2 that

determines the domain phase ϕ and thus the domain order parameter R = eiϕ.

In the following analysis, we shall characterize the system by excluding all forms of

topological defects in φ1 and φ2. This approximation is reasonable for FLs and vortices in

Josephson junctions, where it describes the complete confinement of vortex lines between

the junctions, and is easily realized experimentally. For FLs in a HTSC, it is the generic

situations due to the large energy cost of vortex kinks across the superconducting CuO-

planes as discussed in chapter 4. However, it is not always valid for the reconstructed

surfaces where vortices in the phase field ϕ can play an important role [92, 93, 94]. For

the latter case, the results of our analysis will be used to determine the relevancy of the

vortices in the presence of quenched disorders.

To find the large scale behaviors of the system in the absence of topological defects,

we use the replica method and apply the RG equations (9.24, 9.25) derived in chapter 9

for the generalized replicated Hamiltonian of a single vortex-free 2D RFXY model. This

Hamiltonian is applicable because we have not specified the form of the coupling matrices

in the RG calculation in chapter 9, and we are thus free to interpret the n-times replicated

system consisting of two layers as a 2n-times replicated single layer with a specific form of

the couplings among the replicas given by the parameters gij and µ. We are not considering

the possibility of RSB here and perform a replica symmetric RG analysis. For the two-

layer Hamiltonian (11.6), the RG equations (9.24, 9.25) take on the following form (to

bilinear order) [the same set of equations has been derived in Ref. [86] by a mapping onto
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a Coulomb gas of vector charges]:

dg

d`
= (κ − τ)g − g2 − gµµ (11.16)

dgµ

d`
= (κ − τ − δ)gµ − ggµ − gµ (11.17)

dµ

d`
= (2κ − δ)µ − (τ + κ)gµ − gµ (11.18)

dκ

d`
= µ(µ − 2gµ)/2 (11.19)

dδ

d`
= (g2 − g2

µ)/2 (11.20)

dδ

d`
= (g2 + g2

µ)/2 . (11.21)

We absorbed a factor 4π/ρ2
0 into g, µ and gµ, where π is a non-universal numerical factor

appropriate for a circular IR-cutoff as discussed in chapter 9. τ is a positive reduced

temperature

τ :=
1

4π(K + Kµ)
− 1 (11.22)

and

κ := 1 − 1

4π(K − Kµ)
(11.23)

a reduced elasticity parameter1. The parameters

δ := 8π(∆ − ∆µ) (11.24)

δ := 8π(∆ + ∆µ) (11.25)

are a measure of the effect of disorder on the elastic properties of the arrays. While δ

does not feedback into (11.16-11.20), its flow controls the scaling of the phase field ϕ and

will be crucial in determining the relevancy of vortices in ϕ. The RG flow is controlled by

the reduced temperature τ , which is not renormalized due to the statistical tilt symmetry

(9.29) [69, 70]. The parameter δ characterizes the effects of the disorder on the height

profile h(r), whereas δ describes the effect of the disorder on the domain phase ϕ or the

order parameter R = eiϕ.

1As defined above in (11.22), τ has to be distinguished from the τ (10.40) used in the previous chapter

10. Note the difference in the sign in the definition of the positive reduced temperature τ as compared to

the negative reduced temperatures τ0 (10.3), τm (10.13), τ (10.40) used previously in this part.
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At this point, the relation between the system of two coupled physical replicas of the

2D RFXY model in identical disorder for the two species (gµ ≡ g, δ ≡ 0) and the replica

Hamiltonian with a one-step RSB of a single 2D RFXY model can be made explicit on a

formal level: The one-step RSB equations (10.15-10.19) with an RSB parameter m = 2

corresponding to two species yield with g = g̃1 and µ = g̃2 − g̃1 RG equations identical to

(11.16-11.20) in the limit n ↓ 0.
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Figure 11.3: RG-flow for identical disorder (gµ = g, ∆ = ∆µ). Inlets (a) and (b) describe

the flow for the sub-case with no inter-species coupling (µ = 0) and no disorders (g = 0),

respectively.

Before delving into the structure of the RG flow, we first mention two limiting sub-

problems which have been studied previously. In the limit µ, gµ = 0, the elasticity parame-

ter κ is also not renormalized, and the RG equation has the same structure as that obtained

for a single species of lines by CO [18], with an effective temperature τ − κ. As shown in

Figure 11.3 (inlet (a)), the disorder (g) is irrelevant at high temperatures (τ > κ), yield-

ing the usual logarithmic roughness for 2D surfaces, accompanied by a quasi-long-ranged

domain order, i.e., algebraically decaying correlations of R = eiϕ. We refer to this as the

decoupled line (DL) phase. At τ = κ, the marginal irrelevance of g yields a marginally-

coupled line phase (ML), which again has logarithmic roughness and quasi-long-ranged

domain ordering. At low temperatures (τ < κ), the disorder is relevant. The resulting

glass phases are described by the line of fixed points g∗(κ) = κ−τ , which are perturbatively

accessible for |κ| , |τ | � 1. Since complete decoupling implies also [see equation (11.3)] that
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Kµ = 0, or κ + τ = 0, only the point g∗ = 2 |τ | (and µ∗ = 0, κ∗ = |τ |) along the line

g∗(κ) is the physical fixed point; it describes a decoupled glass (DG) phase. The surface is

super-rough [61] in the DG phase, with 〈h2〉 ∼ log2 L on large scales L. The glassiness is

also reflected by a disordered (short-ranged) domain order, due to the anomalous scaling

of the domain phase 〈ϕ2〉 ∼ log2 L. The logarithmic singularities in 〈h2〉 and 〈ϕ2〉 both

result from the divergence of δ when g∗ is finite.

Another well known limit of our problem is that of vanishing disorder (g, gµ = 0), where

a Kosterlitz-Thouless (KT) transition occurs independent of τ [see Figure 11.3 inlet (b)].

For large coupling |µ|, the two species become locked together, forming elastically-coupled

line (EL) phases with |µ∗| , κ∗ → O(1). Since the up and down steps are now paired, in

phase (φ1 = φ2) for µ > 0 or out of phase (φ1 = φ2 + π) for µ < 0, the surface is flat, with

quasi-long-ranged domain order.

The issue of vortices in the phase field ϕ has been addressed in Ref. [93]. The vortices

are equivalent to loops involving the intersection of the four types of domain walls. The

relevance of the vortices is controlled by the scaling of 〈ϕϕ〉, which depends only on τ in the

pure problem. Simple power counting along the line of Ref. [93] indicates that the vortices

are relevant if τ > 0 and irrelevant if τ < 0. In the presence of quenched disorders, it

naively appears that the vortices might be relevant in the low temperature regime (τ < 0)

as well, due to the anomalous variations in ϕ induced by the disorders. This is however

not quite the case as the following analysis will show.

We shall focus on two choices of disorder which are of particular interest: (i) Identical

disorder for the two species (gµ ≡ g, δ ≡ 0), and (ii) completely uncorrelated disorder

(gµ ≡ 0). Case (i) is the generic situation for steps on the anisotropically reconstructed

surfaces with disorder. It can also be specifically constructed for the two layers of Josephson

vortex lines. In the case of Josephson junctions [Figure 11.2, right] inhomogeneities in

the middle layer will lead naturally to identical disorder, whereas for FLs in a layered

superconductor in a parallel field, identical disorder can be generated by ion irradiation

perpendicular to the layers.

The most striking feature of the RG flow in the low temperature (τ < 0) regime

[Figure 11.3] is the strong instability of the DG fixed point with respect to inter-species

interaction µ 6= 0. An attractive interaction (µ < 0) favors the two species to lock into

the same configuration, i.e. φ1 = φ2, or h = 0 (flat). Once locked, the system acts

effectively as a single species with a doubled elastic constant K, or equivalently a lower

effective temperature, so that the effective single species problem is in the glass phase.

Correspondingly, (11.16-11.20) yields (for all τ < 0) a RG flow away from the unstable DG

fixed point to a sink with strong inter-species coupling and strong disorder [g∗, κ∗,−µ∗ →
O(1)]. We refer to this as the elastically-coupled glass (EG) phase.

Because fluctuation in ϕ is large for both τ > 0 (entropy driven) and τ < 0 (dis-

order driven), vortices in ϕ are always relevant for attractive inter-species interactions.
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Proliferation of vortices (or loops of domain walls) restores the isotropy of the surface at

large scales, rendering the anisotropic treatment meaningless. In the asymptotic isotropic

phase, coupling to bulk disorder is likely to roughen the surface as investigated in Ref. [61].

However, a detailed description in that regime is beyond the scope of this work.

A repulsive interaction (µ > 0) competes with fluctuations in the random potential,

which still attempts to lock the two species into the same configuration. At low tempera-

tures (τ < 0) [by “low temperatures”, we mean T . Tc or |τ | � 1, where the perturbative

RG calculation is valid. At much lower temperatures, coupling of the random potential to

higher harmonics become relevant and the surface eventually become dominated by disor-

ders], this competition leads to two RG sinks separated by a second-order phase transition:

If the repulsive interaction dominates, the two species avoid each other by locking into a

configuration with φ1 = φ2 + π, i.e., with one species displaced by half a line spacing with

respect to the other. Such a configuration can be interpreted again as a single species,

but now with a doubled line density. This leads to a higher effective temperature, such

that the effective single species system is not glassy, with g∗ = 0. Corresponding to this

scenario, we find for weak bare disorder a RG-flow away from DG towards the fixed point

EL, and the RG trajectories approach their pendants in the disorder-free sub-problem.

For stronger disorders, however, we obtain a RG flow from DG towards the fixed point

ML, since the disorder weakens the inter-species coupling µ and κ, while the coupling µ

in turn weakens the disorder g. Note that both the EL and ML phases are stable to the

formation of dislocations in the phase field ϕ at low temperatures, since δ̄∗ is finite when

g∗ = 0. The phase transition separating the EL-phase and the ML-phase is governed by

an unstable fixed point (T) at (κ∗, g∗, µ∗) = (−1, 2, 4) |τ | /7, which is the attractor of the

plane of separatrix g ' µ + 2κ. The phase transition is second order for τ < 0, with an

algebraically diverging correlation length (characterized by an exponent ν = 2 |τ | /7) upon

crossing the separatrix. It is a remarkable feature of this system that while both RG sinks

are (at least marginally) disorder-free, the unstable fixed point governing the transition is

disorder-dominated.

The phases can be characterized quantitatively by examining the linear response of the

line density to changes of the line density in the other layer, i.e., the mutual magnetic

susceptibility, similarly to the “self”-susceptibility of a layer, which is studied in Ref. [70].

For density changes δρ on scales exceeding the line spacing, only the gradient part of the

expression for ρ[ri, φi(ri)] (8.3) is relevant: δρi = −∂xφi/2π. Adding a generating term

βHh = βH−
2∑

i=1

∫

r

hiδρi (11.26)

to the Hamiltonian (11.6) [for Josephson vortices, hi = δHiΦ0/4π is related to the change

δHi in the applied magnetic field in layer i], we define the mutual susceptibility as χ =
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(∂/∂h1)(
∫
r
〈δρ2〉/L2) for a system of linear dimension L. χ =

∫
r
〈δρ1(0)δρ2(r)〉c is re-

lated to the (connected) density correlations and can be calculated to lowest order in the

renormalized theory as

χ = π
(κ∗ + τ) − 2µ∗(1 + τ)(1 − κ∗)

1 − 2µ∗(1 − κ∗)
, (11.27)

where the coupling constants X take on their asymptotic values X∗ in the various RG-sinks.

Using the above results from our RG analysis for the low temperature (τ < 0) regime, one

obtains for the two phases EL and EG the single layer result [70] χEL,EG = 1/2Keff with

an effectively doubled Keff = 2(K + Kµ), demonstrating again a locking in these phases.

For the ML-phase (χML = 2πτ) and the transition point T (χT = χML · 8/7), we obtain

small negative values ∼ −τ for the susceptibility indicating a small tendency of the lines

in layer 2 to avoid places of high line-density in layer 1 and vice versa. At the unstable

DG fixed point, one finds χDG = 0 corresponding to a decoupling of the layers.
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Figure 11.4: Phase diagram for two species of lines in (a) identical and (b) uncorrelated

random media.

The above analysis of the RG flow can be straightforwardly turned into a phase diagram.

We define an inter-species interaction energy U = µT , and present the phase diagram in

the (U, T ) space, at a fixed disorder strength g [see Figure 11.4]. The super-rough DG

phases exist at U = 0 below a critical temperature Tc given by Kc = 1/(4π). These phases

are marked by the thick wavy line in Figure 11.4(a) and are unstable to dislocations in ϕ.

For U > 0, a separatrix g = µ + 2κ separates the flat, pure phase (EL) at low temperature

and large repulsion from the two high temperature phases. At very high temperatures

(T � Tc), the system is in the pure decoupled phase (DL), which is unstable to dislocations

in ϕ. (For surfaces, this phase belongs to the Ising universality class [93].) Upon lowering

the temperature beyond the line τ = 0 (thin solid line), the system settles into the stable
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ML phase for weak repulsive interaction (compared to the strength of disorders). Further

lowering the temperature beyond the separatrix (the thick solid line), the system makes

a second-order transition from the ML to the EL phase which is also stable with respect

to dislocations. Note that because the critical properties there are controlled by the fixed

point T which depends on τ , the critical exponents governing this transition actually vary

continuously along the thick solid line. The second-order transition terminates at a point

where the separatrix intersects the line τ = 0 (the open circle in Figure 11.4(a). The

transition between DL and EL at higher temperatures is expected to be the same as that

of the disorder-free case.

Perhaps the most striking result of the above analysis is the suppression of glass order

below Tc by applying a small repulsion between the two species of lines. This induces always

a RG flow away from the glassy DG phase with the signature of the super-roughness to

one of the disorder-free RG sinks EL or ML. This effect stabilizes the anisotropy of the

reconstruction and the flatness of the surface. The generic suppression of glass order by the

repulsive interaction is also quite interesting from a more general theoretical perspective

of the discussion of RSB in a single array of lines, i.e., the 2D RFXY model: Whereas the

super-rough DG phase is identical to the fixed point found by CO in the replica symmetric

RG analysis [18, 19, 61], the variational method with RSB [9, 17, 21] seem to find the ML

phase instead, which appears naively to be consistent with our findings here. However,

our result can in fact be used to question the internal consistency of the RSB scheme: As

described in Refs. [90, 91], a physical way of probing the existence of RSB is to take two

physical replicas of a system in identical random potentials, and monitor the response to

a small repulsion between the replicas. If there is a degeneracy of low free energy states

(which the RSB scheme attempts to describe), then an infinitesimal repulsion between the

replicas will force the two to occupy different states which have similar glassy properties

and little overlap. The system we have analyzed so far can be interpreted as two physical

replicas in the same random potential. In our case, we note that a small repulsion has

a much stronger effect in that it gives rise to qualitatively different behaviors, i.e., from

DG to ML. This indicates that the glass order of a single line array is extremely fragile,

making it quite different from the usual scenario expected of stable (zero-temperature)

glass phases. Thus from the view point of the replica symmetric RG analysis, the absence

of glass order from the solution of the variational treatment is not surprising, as it may be

the result of subtle interactions introduced by the RSB scheme itself. This is in accordance

with our findings in chapter 10 where we could reproduce the results of the variational

treatment in a RG analysis with RSB if a small initial replica asymmetry was introduced.

We continue with a short discussion of the case where the disorder potentials acting on

the two species are uncorrelated, i.e. with the bare gµ = 0. This is the generic case for two

layers of Josephson vortex lines in planar Josephson junctions containing point impurities.

Uncorrelated disorder tends to decouple the two species of lines and competes with the
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locking effect of the inter-species interaction. (Here attractive and repulsive interactions

are qualitatively similar, up to a relative π-phase shift between the two species.) The

RG analysis is more complicated than before, because one has to consider the full set of

equations (11.16-11.21) [note that gµ is generated by µ and g]. The basic features of the

phase diagram can be obtained by observing that the RG-flow is dominated by two KT

transitions which can be found in two sub-problems of the RG equations (11.16-11.21):

(i) The KT transition of the disorder-free sub-problem. (ii) The KT transition which

occurs in the space (gµ, δ), when g = µ = κ + τ = 0. The latter has a critical separatrix

gµ/
√

2 = δ + 2τ which isolates two regions of flow to a sink with gµ = 0 and δ > 0, and

another sink where gµ grows. The first sink is consistent with a decoupled glass (DG)

phase as the eigenvalue for the flow of µ becomes negative there, while the second sink is

consistent with the elastically-coupled glass (EG) phase where |gµ| → g. It is difficult to

find analytically a continuation of this separatrix to the regime of physical initial conditions

(e.g., g, µ � gµ) in a controled approximation. However, we determined it numerically to

be well described by the form

µ ' α̃
gKc

K
=

α̃

4π

g

K
(11.28)

with the numerical constant α̃ ≈ 0.5. This condition, combined with sub-problem (i) leads

to the phase diagram depicted in Figure 11.4(b). The condition (11.28) separating the

decoupled and coupled glass phases is of the same form as the criterion (4.40) found by a

variational calculation for the system consisting of many layers in chapter 4. This similarity

includes the numerical value α̃ as we have shown there. In view of the very general RG

equations (9.24, 9.25) provided in chapter 9, it is tempting to attack such a many layer

system [say with N layers, where also more realistic non-local layer-interactions can be

considered in principal] by an analogous RG treatment as performed here for two layers;

such a calculation was proposed in Ref. [75]. Though the formulation of RG equations is

straightforward, starting from (9.24, 9.25) with the correct choices for the coupling matrices

for a replicated system containing nN coupled layers, the RG analysis will be very difficult

as this example of two layers already demonstrates.

In conclusion, we have presented a detailed RG analysis for a model of two interacting

planar line arrays in random media. Among the findings are a novel second-order phase

transition with continuously varying critical exponents, the stability of the anisotropic flat

phase for repulsive interactions, and the replacement of the super-rough glass phase by a

marginally-coupled phase. These findings along with the structure of the proposed phase

diagrams should be accessible by experimental or numerical investigations.
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Conclusion

From a theoretical point of view, our interest in this part of the work has been focused on

the development of a more consistent picture regarding the two main analytic approaches

to the vortex-free 2D RFXY or random phase sine-Gordon model: The replica symmetric

RG analysis of CO/GH [18, 19] and the variational approach using RSB of K/GL [9, 17, 21]

that results in a self-consistent Hartree-approximation. In chapter 10, this aim could be

met to a certain extent by clarifying the approximations and extensions needed in each of

the approaches to reproduce the results of the other. In section 10.1, we generalized the

replica symmetric RG analysis to a one-step RSB scheme and found in the low-temperature,

glassy phase of the model an instability with respect to RSB similar to the findings of

the variational calculation of K/GL, who find the thermodynamically stable solution of

the self-consistency equations to have a broken replica symmetry with a one-step RSB

scheme. In fact, their results can be reproduced by choosing appropriate bare values for

the disorder correlator in replica space. On the other hand, we demonstrated that the RG

calculation considers higher order terms in the disorder strength, which can give essential

singularities and are neglected in the self-consistent Hartree-approximation. In section

10.2, these contributions are identified in a diagrammatic “language” and included into an

extended set of self-consistency equations, the main features of which are the appearance

of an equation for a dressed vertex and a momentum-dependent higher order correction

to the propagator. This extended set of equations can reproduce the RG results for the

replica symmetric case. For a one-step RSB scheme we have shown that the solution of the

Hartree-approximation is at least strongly modified such that the appearance of a super-

rough low-temperature phase, which is the characteristic result of the replica symmetric

RG approach [61], cannot be excluded any more.

This may be important in the light of very recent numerical results on the ground

state of solid-on-solid models on disordered substrates [97, 98], where clear evidence for

the existence of a super-rough low-temperature has been found. These models are believed

to be in the same universality class as the random-phase sine-Gordon model if one is

151



152 Part II. Planar Arrays of Lines in Random Media

close enough to the transition point (K ' Kc) that higher harmonics in the density [such

as in (3.34)] are irrelevant. Though this is not evident for the ground-state at T = 0

(K/Kc ↑ ∞), the numerical results of Refs. [97, 98] are more conclusive than previous

studies because the asymptotic behaviour can be easier accessed at T = 0. This is mainly

because the crossover length set by the positional correlation length Rl ∼ (K2/g)K/2(K−Kc)

(see (3.59)) is much smaller for T = 0 or K/Kc ↑ ∞ than in the regime close to the

transition K ' Kc. In addition, a fast algorithm determining the exact ground state of a

given sample enables averaging over over many realizations of larger systems.

However, from the analytic point of view, the question of an eventual super-roughness

of the low-temperature phase of the vortex-free 2D RFXY model is far from a final answer

at the present stage. It would certainly be useful to continue the investigations performed

in this work to a study of continuous RSB schemes. For the RG analysis, the corresponding

RG recursion relations for a continuous RSB have already been derived in Ref. [55] but

a thorough analysis of the RG sinks is yet to be performed. Due to technical difficulties,

it is not clear whether a generalization of the extended self-consistency equations given

in section 10.2 for the replica symmetric case and a one-step RSB scheme to continuous

Parisi-type matrices is possible and amenable to further analysis. It would also be very

useful to obtain the extended self-consistency equations given in section 10.2 in a systematic

expansion, probably a 1/N -expansion in the number of components N of the phase field

φ. That such a derivation might be possible is suggested by the RG calculation for the

N -component vortex-free 2D RFXY model in Ref. [56]. Another question arises naturally

in view of the RSB instability in the RG treatment of the equilibrium system: Can similar

instabilities be found in the dynamical RG treatment of Refs. [22, 23] and if so, how are

they related to the findings in Ref. [54] regarding a possible violation of the fluctuation-

dissipation theorem in the low-temperature regime?

We considered here mainly the vortex-free version of the 2D RFXY model. A further

complication occurs if one allows for vortices. It has not yet been investigated in detail

how possible RSB instabilities affect the Kosterlitz-Thouless transition describing the pro-

liferation of vortices. This synthesis is of special interest regarding novel findings about

the Kosterlitz-Thouless transition in the 2D XY model with random phase shifts [80]. Pre-

sumably, the work of CO who discussed the full 2D RFXY model including vortices needs

further modifications regarding these points.

Regarding possible applications, chapter 11 is certainly most interesting, where an array

of two interacting species of lines in a random medium has been considered. Such a model

has important applications in describing simultaneous roughening and deconstruction of

reconstructed fcc crystal surfaces in the presence of randomness due to an underlying

disordered substrate. We could obtain for this system a phase diagram based on the

results of a detailed RG analysis. Moreover, this model represents the link between both

parts of the thesis because it can be regarded also as simplified version of an FL array
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in a layered superconductor in a parallel field. In this simplified model, we can confirm

the Lindemann-criterion (5.32, 5.40) derived in part I for the stability of a topologically

ordered Bragg glass phase in superconductors containing point defects.
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Appendix A

Part I

A.1 Random Force, Bragg Glass

and Random Manifold Regime

A.1.1 Correlations and Larkin Lengths in the

Random Force and Bragg Glass Regime

In this Appendix we first calculate the 〈uu〉-correlations in the RF regime, and deduce

the Larkin lengths Lξ and Rξ for low temperatures and a dispersion-free tilt modulus

c44[K] = ĉ44 in the cases n ≥ 2 and n = 1. Afterwards, we discuss the Larkin lengths and

RF regime in the single-harmonic Bragg glass model defined by (3.35, 3.36).

n ≥ 2

We consider first the case n ≥ 2, and use the elastic Hamiltonian H(d,n≥2)
el from (3.11) with

an inverse elastic propagator

G−1
el (K, kz) = c66K

2 + ĉ44k
2
z . (A.1)

From the scaling relation (3.8) between longitudinal scales L and transversal scales R

follows Lξ ' (ĉ44/c66)
1/2Rξ. The Larkin lengths are defined as the crossover length scales

where

〈(u(Rξ, Lξ) − u(0))2〉 ' 2〈u2〉(Rξ, Lξ) ' ξ2
ab (A.2)

at low temperatures (i.e., below the depinning temperature such that ξ2
ab & 〈u2〉T (Rξ, Lξ),

where 〈. . .〉T denotes the thermal average).

We start with the Hamiltonian

H(d,n)[u] = H(d,n)
el [u] + H(d,n)

d,RF [u] (A.3)
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with H(d,n)
d,RF in the approximation (3.21) appropriate for the RF regime.

Using the replica method (8.11), we introduce m replicas of the system (with indices

α, β = 1, . . . , m) and perform the (Gaussian) disorder average with the random force

distribution (3.23) characterized by the mean-square random force strength f 2
0 . This leads

to a replica Hamiltonian HR,RF [{uα}] quadratic in the displacements uα:

HR,RF [{uα}] =

m∑

α,β=1

∫

BZ

dd−1K

(2π)d−1

∫
dkz

2π

1

2

{
δαβG−1

el (K, kz) −
f 2

0

nT

}
uα(K, kz) · uβ(−K,−kz)

(A.4)

The quantity of interest is the replica-diagonal part of the propagator in the limit m ↓ 0,

which is obtained straightforward as

〈u(k) · u(k′)〉 = 〈uα(k) · uα(k′)〉R

= (2π)dδd(k + k′)

(
nT

G−1
el (K, kz)

+
f 2

0(
G−1

el (K, kz)
)2

)
,

(A.5)

where 〈. . .〉R denotes an average with the replica-Hamiltonian HR[uα]. At temperatures

below the depinning temperature, we can neglect the first term. To calculate 2〈u2〉(R, L)

(L ∼ (ĉ44/c66)
1/2R), we introduce an appropriate IR-regularization in the denominator of

(A.5) by using G−1
el (K, kz) + α with

α := ĉ44 (2π/L)2 , (A.6)

and obtain after substituting K → K(c66/ĉ44)
1/2 and extending the integration over K to

infinity

2〈u2〉(R, L) = 2

∫
dd−1K

(2π)d−1

∫
kz

2π

f 2
0(

G−1
el (K, kz) + α

)2

= L4−d

(
f 2

0

ĉ
(5−d)/2
44 c

(d−1)/2
66

)
(
2cd(2π)d−4)

)
, (A.7)

where

cd =

∫
ddk

(2π)d

1

(1 + k2)2
= (2π)−dπd/2Γ(2 − d/2) (A.8)
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with cd=3 = 1/8π, cd=2 = 1/4π and cd=1 = 1/4. In particular, we can read off from (A.7)

the roughness exponent

ζRF =
4 − d

2
, (A.9)

which is independent of n for low temperatures.

We obtain from their definition (A.2) the Larkin lengths

Lξ ' c̄d ξab

(
ĉ
(5−d)/2
44 c

(d−1)/2
66 ξd

ab

f 2
0 ξ2

ab

)1/(4−d)

Rξ ' Lξ (c66/ĉ44)
1/2 ,

(A.10)

where

c̄d = 2π(2cd)
−1/(4−d) (A.11)

with c̄d=2 = (2π)3/2 and c̄d=3 = 8π2.

For d = 1, Rξ is not defined properly, and using f 2
0 ξ2

ab = n∆2
gξ

−1
ab (3.23), we obtain the

single vortex Larkin length

Ls
ξ ' c̄d=1 ξab

(
cs
44

2ξ2
ab

n∆2
g

)1/3

. (A.12)

n = 1

For n = 1, i.e., uniaxial displacements u = u·x̂, we have to include longitudinal compression

modes (in the local limit c11[K] = ĉ11), and use the elastic Hamiltonian H(d,n=1)
el from (3.12)

with

G−1
el (K‖,K⊥, kz) = ĉ11K

2
‖ + c66K

2
⊥ + ĉ44k

2
z . (A.13)

Following the same steps as above, we obtain Larkin lengths

Lξ ' c̄d ξab

(
ĉ
(5−d)/2
44 c

(d−2)/2
66 ĉ

1/2
11 ξd

ab

f 2
0 ξ2

ab

)1/(4−d)

Rξ,⊥ ' Lξ (c66/ĉ44)
1/2

Rξ,‖ ' Rξ,⊥ (ĉ11/c66)
1/2

(A.14)
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Larkin Lengths of Bragg Glass Model and 2D RFXY Model

Let us discuss the RF regime in the Bragg glass model defined by an elastic Hamiltonian

H(d,n≥2)
el (3.11) or H(d,n=1)

el (3.12) and a disorder part H(d,n)
d,B with (3.35, 3.36). For the

m-times replicated disorder-averaged system, the Bragg glass Hamiltonian reads

HR,B [{uα}] =

m∑

α,β=1

{∫

BZ

dd−1K

(2π)d−1

∫
dkz

2π

1

2

{
δαβG−1

el (K, kz)
}
uα(K, kz) · uβ(−K,−kz) −

−
∫

dd−1R

∫
dz

z∑

i=1

gB cos (K0i · (uα(R, z) − uβ(R, z)))

}

(A.15)

After expanding for small uα

gB cos (K0i · (uα − uβ)) ≈ 1 − 1

2
gB (K0i · (uα − uβ))2 (A.16)

the Bragg glass Hamiltonian (A.15) is found to give the same propagator (A.5) as the RF

Hamiltonian (A.4) (in the limit m ↓ 0, for all n ≥ 1) with an effective coherence length

ξab,B ' l and an effective random force strength f0,B

f 2
0,Bξ2

ab,B = f 2
0,Bl2 = cB ngB, (A.17)

where

cB = 8π2z/n (A.18)

is a number. Except for the additional factor cB, this is just the definition of gB (3.37) when

the effective coherence length ξab,B ' l is used instead of ξab. Thus, the naive expansion of

the cos-term, which is correct on the shortest scales L � Lξ = Ll, yields Larkin lengths

exactly as calculated above in formulae (A.10, A.14), however, with ξab replaced by ξab,B ' l

and f0 replaced by f0,B .

On the other hand, in Ref. [9], the asymptotic solution on large scales of this Bragg

glass model for n = 1 has been worked out by a variational approach with RSB, and the

crossover length scale, where the asymptotic logarithmic roughness sets in, was determined.

This produces again formulae exactly of the form (A.10, A.14) and with f 2
0 replaced by an

effective random force strength as in (A.17). They find

cB = (2π)4z/n2. (A.19)

In d = 2 with n = 1 (and z = 1) the Bragg glass model is equivalent to the the 2D

RFXY model defined in (3.45-3.54), after the transformation pφ = u(2π/l). The transversal
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Larkin length Rξ = Rl at T = 0 can now be expressed in terms of KT = (ĉ11ĉ44)
1/2(pl/2π)2

(see 3.53) and gT 2 = (ĉ44/ĉ11)
1/2gB (see 3.54) instead of the 2D elastic moduli c11 and c44

(see (A.14) as

Rl(T =0) = Rξ(T =0) ' c̄d=2c̄
1/2
B

K

g1/2
with (A.20)

c̄B :=
(2π)4

p4cB
(A.21)

with cB from perturbation theory (A.18) or from the variational calculation (A.19). Be-

cause disorder is only marginally relevant in d = 2, we obtain for 0 < T < Tg in the

low-temperature phase a strongly increased Larkin length. This is obtained both in the

variational calculation and in perturbation theory by applying the RG-equations (4.20) to

include the renormalization of the disorder in the correlation function as in (4.23). One

finds

Rl(τ) = Rξ(τ) ' l

(
Rl(T =0)

l

)1/τ

. (A.22)

The continuum version of the layered model of section 4 is equivalent to the Bragg

glass model with d = 3 and n = 1 (also z = 1), again by means of a transformation

pφ = u(2π/l‖). In terms of the isotropic elastic constant K and the disorder strength g

of a single layer together with µT = c66(ĉ44/ĉ11)
1/2(l‖/2π)2/l⊥ (in terms of the 3D elastic

moduli), the transversal Larkin lengths Rξ,‖ = Rl,‖ (parallel to the layers) and Rξ,⊥ = Rl,⊥

(perpendicular to the layers) are (see (A.14))

Rl,‖ = Rξ,‖ = c̄d=3c̄B
K3/2µ1/2

g

Rl,⊥ = Rξ,⊥ = c̄d=3c̄B
Kµ

g
l⊥ . (A.23)

Throughout section 4, we use the result from the variational calculation (A.19) for cB

in the expressions for the Larkin lengths along with the correlator from the variational

calculation as well as p = 1 for simplicity; this corresponds to c̄B = 1. However, note that

the result for the “Lindemann-number” c (4.48) is independent of c̄B.

A.1.2 Correlations in the Random Manifold Regime

We want to obtain the scaling form of the 〈uu〉-correlations in the RM regime (3.31) for

the Hamiltonian

H(d,n)[u] = H(d,n)
el [u] + H(d,n)

d,RM [u] , (A.24)

where the elastic part (3.11) contains a tilt modulus exhibiting a dispersion (3.4) c44[K] '
ĉ44/(1 + K2λ̃2

c). The disorder part is given by the RM approximation (3.29).
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We use here only the simplest possible scaling argument, a so-called “Flory-argument”

[52]. Nevertheless, it reproduces the roughness-exponents obtained with the variational

calculation using a RSB Ansatz and allows to include the dispersion (3.4) of the tilt modulus

in the elastic Hamiltonian (3.11) in the treatment. In a Flory-type argument, we assume

that the scaling of the elastic energy 〈H(d,n)
el 〉 and the energy from fluctuations in the

disorder energy (〈(H(d,n)
d,RM)2〉)1/2 is determined by one dominant large length scale L with

(3.8, 3.4) giving the scaling between longitudinal scales L and transversal scales R. This

yields the relations [u2 := 〈u2〉(R, L)]

L ∼
(

ĉ44

c66

)1/2
(

1 +
λ̃2

c

R2

)−1/2

R

〈H(d,n)
el 〉(R, L) ∼ u2 Rd−3 L ∼

(
1 +

λ̃2
c

R2

)−1

u2 Rd−1 L−1

(〈(H(d,n)
d,RM)2〉)1/2(R, L) ∼ u−n/2

(
Rd−1L

)1/2
. (A.25)

Requiring that elastic and disorder energy scale in the same way, it follows

u2 Rd−3 L ∼ u−n/2
(
Rd−1L

)1/2

u2 ∼ R2ζ

(
1 +

λ̃2
c

R2

)ζ/(4−d)

∼ L2ζ

(
1 +

λ̃2
c

R2

)ζ(5−d)/(4−d)

. (A.26)

This is the scaling form of the 〈uu〉-correlations in the RM regime (3.31) with the Flory-

result

ζ = ζF lory(d, n) =
4 − d

4 + n
(A.27)

for the roughness-exponent ζ.
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A.2 Details of the Variational Calculation

The propagator (4.34) consists of 3 parts

G ≈ Gth + Gdis
2D + Gdis

3D , (A.28)

Gth from thermal fluctuations, Gdis
2D from quasi-2D fluctuations of the disordered system,

described by the low-temperature phase (we have always τ > 0 for the physical realization

of a HTSC in a parallel field, see (4.15, 4.16)) of the corresponding 2D RFXY model, and

Gdis
3D from the elastic fluctuations of the 3D Bragg glass. In detail, we have

Gth(k‖, k⊥) =
1

G−1
0 (k‖, k⊥)

with (A.29)

G−1
0 (k‖, k⊥) = Kk2

‖ + 2µ̃ (1 − cos (l⊥k⊥)) , (A.30)

Gdis
2D(k‖, k⊥) ' 1

G−1
0 (k‖, k⊥)

τ + y/2

1 − τ
f2D

[
Rl,2D(τ)k‖

2π

]
(A.31)

Gdis
3D(k‖, k⊥) ' 2π2Kµ̃1/2

(
G−1

0 (k‖, k⊥

)3/2
)

g3D

[
R̃l,3D,‖

2π

(
G−1

0 (k‖, k⊥)

K

)1/2
]

(A.32)

[for the definition of y, see (A.39)]. The functions f2D and g3D control the crossover from

the asymptotic behaviour on scales exceeding the Larkin lengths to the perturbative regime

on small scales. In the variational RSB approach of Ref. [9], they are

f2D[x] ' 1

1 + x2
(A.33)

g3D[x] ' 2

π
arctan

(
2π

x

)
, (A.34)

with f2D[x], g3D[x] ' 1 for x � 1. At small length scales, they produce essentially a cutoff

due to f2D[x], g3D[x] ' 0 for x � 1.

Note that for µ̃ ↓ 0also Gdis
3D ↓ 0, and we have only contributions from 2D thermal and

disorder fluctuations.

A.2.1 Self-Consistency Equation

Using the propagator (A.28-A.32), we rewrite the self-consistency equation (4.33), which

determines µ̃(µ) as function of µ, in the form (4.35):

0 =
∂Fvar

∂µ̃
∝ µ̃ − µ exp

(
−I[µ̃]

2

)



162 Appendix A.

with

I[µ̃] =

∫ π

−π

dϕ

2π
2(1 − cos (ϕ))

∫ 2π/l‖

0

k dk

2π
G
(
|k‖| = k, k⊥l⊥ = ϕ

)
,

(A.35)

where I[µ̃] consists of three contributions corresponding to (A.28):

I[µ̃] = I th[µ̃] + Idis
2D [µ̃] + Idis

3D [µ̃] . (A.36)

The evaluation of the three contributions is tedious but straightforward. It is convenient

to use the following dimensionless quantities

{
m

m̃

}
:=

{
µ

µ̃

}
1

K

(
l‖
2π

)2

(A.37)

y0 :=

(
l‖

Rl,2D(T =0)

)2

' g

K2

l2‖
c̄d=2

(A.38)

y = y(τ) :=

(
l‖

Rl,2D(τ)

)2

= y
1/τ
0 ∝ g1/τ . (A.39)

m̃ and m measure the inter-layer coupling and y the disorder-strength in units of K (energy)

and l‖ (length); note that y is independent of the inter-layer coupling. We study weak

disorder, i.e., y0 � 1.

For I th, we obtain

I th = (1 − τ)ith[m̃]

=

∫ π

−π

dϕ

2π
2(1 − cos (ϕ))

∫ 2π/l‖

0

k dk

2π

1

G−1
0 (k, ϕ/l⊥)

ith[m̃] = 2L[m̃] (A.40)

with

L[x] = −
√

1 + 4x − 1

2x
+ ln

(
1 +

2√
1 + 4x − 1

)

≈
{

x � 1 : −1 + ln
(

1
x

)

x � 1 : 1
2x

(A.41)

Note that ith = 2L[m̃] is a function of m̃ only; a plot of L[x] is shown in Figure A.1.

The crossover functions f2D[x] and g3D[x] in Idis
2D and Idis

3D are analytically untractable;

therefore, we switch from “soft” IR-cutoffs implemented by f2D[x] and g3D[x] to “hard”
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IR-cutoffs, i.e., f2D[x], g3D[x] ≈ Θ[x − 1]. This yields

Idis
2D = (τ +

y

2
)idis

2D

≈
∫ π

−π

dϕ

2π
2(1 − cos (ϕ))

∫ 2π/Rl,2D

0

k dk

2π

τ + y/2

1 − τ

1

G−1
0 (k, ϕ/l⊥)

idis
2D ≈ 2L[m̃/y] (A.42)

with L[x] from (A.41) [Figure A.1]. Note that for y � 1, i2D
dis is a function of m̃/y(τ) only.

This becomes explicit when the “hard” IR-cutoff is used yielding (A.42).

In Idis
3D , we use again the “hard” IR-cutoff g3D[x] ≈ Θ[x − 1], and obtain

Idis
3D ≈

∫ 2πa[ em]

0

dϕ

2π
2(1 − cos (ϕ))

∫ b[ em]

0

k dk

2π

2π2m̃1/2

(k2 + 2m̃(1 − cos ϕ))3/2

(A.43)

with

a[m̃] := min

{
1,

l⊥

R̃l,3D,⊥

}
= min

{
1,

y0

4πm̃

}
(A.44)

b[m̃] := min

{
1,

l‖

R̃l,3D,‖

}
= min

{
1,

y0

2m̃1/2

}
, (A.45)

where the boundaries of the integrals a[m̃] and b[m̃] depend on m̃ or µ̃ via the IR-cutoff

set by the Larkin lengths R̃l,3D

R̃l,3D,⊥

l⊥
= c̄d=3

µ̃K

g
=

4π2c̄d=3

c̄2
d=2

m̃

y0
= 4π

m̃

y0

R̃l,3D,‖

l‖
= c̄d=3

µ̃1/2K3/2

g

1

l‖
=

2πc̄d=3

c̄2
d=2

m̃1/2

y0

= 2
m̃1/2

y0

. (A.46)

Performing the k-integration, we obtain

Idis
3D ≈

∫ 2πa[ em]

0

dϕ

{
(1 − cos (ϕ))1/2

√
2

− (1 − cos (ϕ))

((b2[m̃]/m̃) + 2(1 − cos (ϕ)))1/2

}
.

(A.47)

A closed expression for this integral can only be given in terms of elliptic integrals, but a

good approximation is

Idis
3D [m̃] ≈

{
m̃ ≤ y2

0/4 : 4 − 2π m̃1/2

y2
0/4 ≤ m̃ : F3D[m̃/y0]

(A.48)
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with

F3D[x] ≈






x ≤ 1/4π : 4 − 4π x

x > 1/4π : const 1
x2

with const ≈ 1 −
√

5 − 4Arsinh(1/2) ≈ 0.0215

(A.49)

It is important to note that, except for very small m̃ ≤ y2
0/4, Idis

3D ≈ F3D[m̃/y0] depends

only on the ratio m̃/y0. Idis
3D [m̃] is shown in Figure A.1.
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Figure A.1: Left: Function L[x] (solid line) plotted logarithmically. Numerical integration

of the integral idis
2D[xy]/2 (x = m̃/y) with the “soft” IR-cutoff function f2D[x] gives the

dashed curve in a logarithmic plot (for y = 0.1), whereas the “hard” cutoff gives L[x].

Right: Logarithmic plot of a numerical integration of Idis
3D [xy0] (x = m̃/y0) using the

“hard” IR-cutoff for y0 = 0.1 (solid line) and y0 = 0.01 (dashed line). The two kinks (see

arrows) are artefacts of the “hard” cutoff. Except for x ≤ y0/4, Idis
3D [xy0] depends on x only.

For y0 = 0.1, the dotted curve shows the approximation (A.48), i.e., F3D[x] for x > y0/4.

Before moving on to a more detailed analysis of the self-consistency equation (A.35), it

is instructive to consider the limiting cases m̃ ↓ 0 and m̃ ↑ ∞. For m̃ ↑ ∞, I[m̃] ↓ 0, and

we obtain the strong coupling limit with m̃ ≈ m, where the FL array is dislocation-free

and described by elasticity theory as discussed in 4.2. However, in the limit m̃ ↓ 0, we

obtain

0 =
∂Fvar

∂µ̃
∝ m̃

(
1 − me−1+y/2m̃−τ

(
m̃

y

)τ+y/2
)

, (A.50)

where the factor m̃−τ comes from purely thermal fluctuations and the factor (m̃/y)τ+y/2

from quasi-2D disorder fluctuations (the disorder-induced fluctuations of the 3D elastic

Bragg glass give only a constant e−2 for m̃ ↓ 0). Note that we obtain from (A.50) that

m̃ = 0 is always a solution of the self-consistency equation (4.35). The question is whether
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there are other solutions of (4.35), i.e., extrema of Fvar [m̃], which have a smaller free energy

∆Fvar [m̃] = Fvar[m̃] − Fvar[0] < 0. When no other solutions of (4.35) exist, m̃ = 0 is the

global minimum and the system is effectively decoupled.

In the disorder-free case, (A.50) reduces for m̃ > 0 to 0 = 1 − me−1m̃−τ , and one can

always find a second non-zero solution for small m, namely m̃(m) ∼ mτ with m̃(m) ↓ 0 for

m ↓ 0 (for τ > 0). Thus we have a second order phase transition to an elastically coupled

phase at mc = 0. The effective shear modulus m̃ plays the role of an order parameter

fulfilling the scaling law m̃ ∝ (m − mc)
τ at the critical point.

This is no longer possible if quasi-2D disorder fluctuations are included. Then, (A.50)

reduces to

m = e1−y/2m̃τ

(
m̃

y

)−τ−y/2

∝ m̃−y/2 , (A.51)

and the right hand side is diverging for m̃ ↓ 0. In addition, we know already that due to

I[m̃] ↓ 0 for m̃ ↑ ∞, the right hand side is asymptotically ∝ m̃ and, hence, also diverging

for m̃ ↑ ∞. Therefore, it has a minimum and for a small but finite m (below the minimum

of the right hand side) no solution of the self-consistency equation can be found. As we

will see, we can nevertheless find solutions m̃(m) > 0 of the self-consistency equation

(A.35) for m > mc > 0 above some critical, non-zero mc. At m = mc, this solution has

m̃(mc) = ∆m̃ > 0, and we obtain a first order phase transition accompanied by finite jump

∆m̃ > 0 in the effective shear modulus µ̃. Thus it is the inclusion of quasi-2D disorder

fluctuations which changes the nature of the phase transition to first order.

It is interesting to note that in the framework of a variational calculation of an effective

shear modulus also the high-temperature phase τ < 0 of the disorder-free model exhibits

a first order phase transition. Below a critical coupling strength mc ≈ e−1, the layers

decouple due to thermal fluctuations, and the effective shear modulus drops to zero with

a jump ∆m̃ ≈ |τ |/3, which vanishes upon approaching τ ↓ 0. For τ < 0 in the high-

temperature phase of the corresponding single layer system, quasi-2D disorder fluctuations

are absent on large scales, Idis
2D ' 0. The effect of the disorder-induced fluctuations of the

3D elastic Bragg glass is to increase mc for |τ | ↓ 0 up to mc ≈ e.

A.2.2 Quantitative Analysis of the Self-Consistency Equation

for T = 0 and τ ' 0

Next, we want to discuss the self-consistency equation (A.35) in detail for the two limiting

cases T = 0 (or τ = 1) (4.15) and τ ' 0 (4.16), which are possible for the physical

realization of an HTSC in a parallel field.

For τ = 1 or T = 0, thermal fluctuations are absent and I th = 0. Using y = y0 for
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τ = 1, the self-consistency equation (A.35) yields (for m̃ > 0)

ln

(
m

y0

)
= ln

(
m̃

y0

)
+

1 + y0/2

2
idis
2D[m̃] +

1

2
Idis
3D [m̃] , (A.52)

see (A.42, A.48). Except for very small m̃ ≤ y2
0/4, Idis

3D [m̃] ≈ F3D[m̃/y0] (A.48, A.49) is a

function of the ratio m̃/y0 only. Because y0 � 1, (1+y0/2)idis
2D[m̃] ≈ 2L[m̃/y0] (A.42, A.41)

and the equation (A.52) depends only on m̃/y0 and m/y0 for a wide range of parameters.

Reparametrization by

m = xy0 and m̃ = x̃y0 (A.53)

(for x̃ > y0/4, and with only weakly y0-dependent x, x̃) yields the parameter-free equation

ln x ≈ ln x̃ + L[x̃] +
1

2
F3D[x̃] . (A.54)

If quasi-2D fluctuations are neglected, we have L ≡ 0 in (A.54) and find solutions x̃ ↓ 0

for arbitrary small x ↓ 0 [Figure A.2], i.e., a second order transition with xc = 0. Only

inclusion of the quasi-2D fluctuations changes this transition into first order: (A.54) has

solutions x̃(x) only for x > xc [Figure A.2].

One finds analytically and numerically (for y0 ' 0):

analytically numerically

hard cutoff soft cutoff

xc ≈ 0.76 0.75 1.01

x̃(xc) ≈ (const/3)1/3
(
1 + (const/3)1/3

)
0.23 0.22

≈ 0.23

(A.55)

(with const ≈ 0.0215 (A.49)), where the first numerical result is calculated with the “hard”

IR-cutoff in idis
2D used in (A.54), and the second starting from (A.52) with the “soft” IR-

cutoff by the cutoff-function f2D[x] in idis
2D (for Idis

3D we used for simplicity always the “hard”

cutoff but expect a similar upward-correction for xc as caused by the use of the “soft”

cutoff in idis
2D). This means that at T = 0 the self-consistency equation (A.35) has non-zero

solutions m̃(m) > 0 only for m > mc = xcy0 above the critical coupling strength mc. At

m = mc, we expect a first order phase transition with a jump in the effective shear modulus

∆m̃ = m̃(mc) = x̃(xc)y0. However, solutions of the self-consistency equation (A.35) give

only zeros of ∂Fvar

∂eµ
, and we have to check whether ∆Fvar [m̃] = Fvar [m̃]−Fvar [0] < 0 for these

solutions to be absolute minima. Indeed, we expect at the critical value mc determined

above that a saddle point occurs in the free energy profile Fvar[m̃]. For higher values of m,

a minimum develops and only for m > mc2 > mc the minimum is a global one. The value
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of mc2 = xc2y0 can be determined only numerically together with the corrected value for

the jump in the effective shear modulus ∆m̃ = m̃(mc2) = x̃(xc2)y0. One finds (for y0 ' 0):

numerically

hard cutoff soft cutoff

xc2 ≈ 0.82 1.11

x̃(xc2) ≈ 0.36 0.37

(A.56)
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Figure A.2: Left: Logarithmic plot of the right hand side of equation (A.54) for T = 0 and

y0 = 0.01 (solid line). The left hand side of equation (A.54) gives a horizontal line at lnx.

Below the horizontal line ln xc ≈ −0.28 (A.55) no solution of (A.54) can be found. Using

the “soft” IR-cutoff in idis
2D we obtain the dashed curve and a corresponding horizontal line

of ln xc ≈ 0.01. The dotted curve shows the right hand side of (A.54) when quasi-2D

disorder fluctuations are neglected, L[x̃] = 0: The transition becomes second order with

xc = 0. Right: Logarithmic plots of the right hand side of equation (A.57) as function of

m̃/y0 for y0 = 0.05 and τ = 0.05 (solid line), τ = 0.1 (dashed line) and τ = 0.3 (lower

dashed line). The left hand side of equation (A.57) gives a horizontal line at ln (m/y0). No

solution can be found below the horizontal line ln (m/y0) = 1 and up to three solutions for

sufficiently high inter-layer couplings m. At low enough temperatures the solution with

higher m̃ becomes thermodynamically stable. The dotted curves demonstrate again the

absence of the first order transition when quasi-2D disorder fluctuations are neglected,

idis
2D = 0.

In the other limiting case of interest τ ' 0, thermal fluctuations occur explicitly in

(A.35) as contribution I th, but also implicitly by weakening the 2D disorder fluctuations

in Idis
2D , which are now depending on the effectively smaller disorder strength y = y(τ) =
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y
1/tau
0 � y0 � 1. The self-consistency equation (A.35) yields (for m̃ > 0)

ln

(
m

y0

)
= ln

(
m̃

y0

)
+

1 − τ

2
ith[m̃]

τ + y/2

2
idis
2D[m̃] +

1

2
Idis
3D [m̃] . (A.57)

In this equation there are basically three characteristic values for m̃: y, y0 and 1. The

quasi-2D disorder fluctuations idis
2D ≈ 2L[m̃/y] (A.42) vanish for m̃ & y, the 3D disorder

fluctuations Idis
3D [m̃] ≈ F3D[m̃/y0] (A.48) from the elastic Bragg glass vanish for m̃ & y0 �

y, and the thermal fluctuations ith[m̃] = 2L[m̃] (A.40) vanish for m̃ & 1 � y0 � y.

This allows for the existence of up to 3 solutions of (A.57) in general, two of which are

minima of the free energy, as the plot for the right hand side of (A.57) shows in Figure

A.2. As we have seen already, the quasi-2D disorder fluctuations are responsible for the

transformation of the second order phase transition in the disorder-free system into a first

order transition in the presence of weak point disorder. For τ ' 0, their interplay with the

thermal fluctuations determines the nature of the decoupling transition [Figure A.2]. We

find the minimum with the lowest free energy at µ̃ � y, where we can approximate (A.57)

by (see (A.41, A.49))

ln

(
m

y0

)
≈ −(1 − τ) + τ ln

(
m̃

y

)
+ (τ +

y

2
)L

[
m̃

y

]
+

+

(
2 − πy1/2

(
m̃

y

)1/2
)

(A.58)

This equation has solutions m̃(m) only for m > mc. Analytically, one finds for the critical

coupling strength mc, at which a first order phase transition occurs, and the accompanying

jump ∆m̃ = m̃(mc) in the effective shear modulus (for τ, y0 � y)

mc ≈ ey0 ≈ 2.7y0 (A.59)

m̃(mc) ≈ y2

6τ
. (A.60)

For completeness, let us mention that the other minimum corresponding to a second

solution of (A.58) [Figure A.2] occurs above a considerably higher inter-layer coupling

m̄c ∼ (y0/2)τ/2e � y0 compared to (A.59). Therefore, it corresponds also to a higher free

energy.

For intermediate temperatures, 1 > τ > 0, the minimum with the higher free energy

found for τ ' 0 becomes the thermodynamically stable, global minimum at some interme-

diate temperature, and crosses over to the T = 0 result [Figure A.2].
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A.3 Elastic Moduli

We shortly recapitulate the results in the literature for the relevant moduli c44[k] and c66

in (3.2, 3.7) for H ‖ ĉ (with the z-coordinate ‖ ĉ).

To a good approximation for all induction 0 < b = B/Bc2 < 1, the tilt modulus c44 is

given by [68]

c44[k] =
B2

c2

4π
b2 1 − b

1 − b + K2λ2
c + k2

zλ
2
ab

+ c̃s
44(kz), (A.61)

c̃s
44[kz] =

B2
c2

4π

ε2

κ2

b

2π
ln

(
κ̃(kz) +

(1 − b)

2

)
, (A.62)

κ̃(kz) :=

(
1 + κ2/ε2 + k2

zλ
2
ab

1 + bκ2/ε2 + k2
zλ

2
ab

)1/2

, (A.63)

where ε := λab/λc = ξc/ξab and κ := λab/ξab and

cs
44 = l2 c̃s

44 (A.64)

is the tilt modulus of an isolated FL.

As opposed to c44, the shear modulus c66 is always dispersion-free. In the dilute limit l &

λab (b/2π . 1/κ2), the interaction between FLs decays exponentially and one obtains [4, 6]:

c66 =
B2

c2

4π

π3/261/2

4
κ−7/2(

b

2π
)1/4 exp (−1

κ
(

b

2π
)−1/2) (A.65)

∝ exp (−l/λab).

Crossing over to the the dense limit l . λab (b/2π & 1/κ2) the following expression for c66

holds [47]:

c66 =
B2

c2

4π

1

8κ2
b(1 − b)2c(b), (A.66)

c(b) ' 1 − 0.6b + 0.3b2.

The dilute limit is realized only at very low fields a few Gauss above Hc1, so that (A.66)

is valid in a wide range of inductions b.

The bulk part of (A.61) yields a dispersive c44:

c44[k] = ĉ44
1 − b

1 − b + K2λ2
c + k2

zλ
2
ab

, (A.67)

ĉ44 := c44(0) =
B2

c2

4π
b2. (A.68)
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The dispersion of c44 sets in for Kλ̃c & 1 with

λ̃c :=
λc√
1 − b

, (A.69)

i.e., on scales R ∼ 1/K . λ̃c. When dispersion dominates, (A.67) becomes approximately

c44[K] ' ĉ44
1

1 + K2λ̃2
c

. (A.70)

On the shortest scales R ∼ 1/K . l this result crosses over to the single vortex contribution

in (A.61), which is for b � 1:

c̃s
44 ' B2

c2

4π

b

2π

ε2

κ2
ln

(
1

kzξc

)
' B2

c2

4π

b

2π

ε2

κ2
. (A.71)

When we are considering fluctuations on the shortest scales in the dense limit with K ∼ 1/l,

kz ∼ 1/εl, the neglected logarithmic term becomes of the order ln (1/kzξc) ' ln (1/b).
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Zusammenfassung

Die Entdeckung der Hochtemperatursupraleitung im Jahr 1986 durch Bednorz und Müller

[2] hat prinzipiell die Möglichkeit eines dissipationsfreien Stromtransports bei Temperatu-

ren bis zu 125K eröffnet. Allerdings zeichnen sich die von Bednorz und Müller entdeckten

Materialien neben den hohen Sprungtemperaturen (∼ 100K) durch große magnetische Ein-

dringtiefen und kleine Kohärenzlängen aus. Das Zusammenwirken dieser Charakteristika

führt dazu, daß diese Substanzen extreme Typ-II Supraleiter sind. Bei für Anwendungen

relevanten Magnetfeldern und Temperaturen befinden sie sich in der gemischten Phase und

bilden ein Flußliniengitter aus.

Als Konsequenz des Auftretens von Flußlinien ergibt sich der Zusammenbruch des dis-

sipationsfreien Stromtransports in einer ideal reinen Substanz. Im stromdurchflossenen Su-

praleiter wirkt auf die Flußlinien, die ein magnetisches Flußquant Φ0 tragen, eine Lorentz-

kraft, unter deren Einfluß sie in Bewegung gesetzt werden. Die sich bewegenden Flußlinien

generieren ihrerseits ein elektrisches Feld parallel zum angewandten Strom und erzeugen

damit einen Widerstand. Auf der anderen Seite ist in Hochtemperaturleitern intrinsisch

(bedingt durch die Stöchiometrie der Verbindungen) Unordnung in Form von punktförmi-

gen Defekten vorhanden. Der technologisch bei weitem relevanteste Effekt der Unordnung

besteht nun in der Fähigkeit, Flußlinien zu
”
pinnen“, das heißt der Lorentzkraft eine Pin-

ningkraft entgegenzusetzen, die die Flußlinie
”
festhält“: Überwiegt die Pinning-Kraft, ist

wieder dissipationsfreier Stromtransport möglich. Die Gleichgewichtseigenschaften der ge-

pinnten Phase des Flußliniengitters können im Rahmen der Theorie ungeordneter Systeme

durchaus als
”
glasartig“ charakterisiert werden und führten zu der Bezeichnung

”
Vortex-

Glas-Phase“ für den thermodynamischen Zustand des gepinnten Flußliniengitters [5].

Das technologisch relevante Pinning von Flußlinien ist nur möglich, weil die bereits

erwähneten Materialeigenschaften, große magnetische Eindringtiefen, kleine Kohärenzlän-

gen, eine starke Anisotropie in der Kristallstruktur und die hohen Sprungtemperaturen

im Hinblick auf Fluktuationseffekte konspirieren. Sie bewirken, daß in weiten Teilen des

Phasendiagramms unordnungsinduzierte und thermische Fluktuationen des Flußliniengit-

ters die physikalischen Eigenschaften dominieren. Die durch Unordnung hervorgerufenen

Fluktuationseffekte sind im weiteren Sinne auch Thema dieser Arbeit.

Vom phänomenologisch-theoretischen Standpunkt, den wir in dieser Arbeit einnehmen

I



II Zusammenfassung

möchten, hat es sich als sehr fruchtbar erwiesen, daß Flußliniengitter durch eine Elasti-

zitätstheorie zu beschreiben, wie sie auch zur Beschreibung der Deformationen üblicher

kristalliner Materialien verwendet wird. Solch eine Beschreibung kann für große Parame-

terbereiche gerechtfertigt werden, und die Elastizitätsmoduln des Flußliniengitters können

im Rahmen der Ginzburg-Landau-Theorie [3] für Supraleiter berechnet werden [4].

In Gegenwart von Punktdefekten führt die elastische Beschreibung auf die Theorie der

gepinnten elastischen Mannigfaltigkeiten. Deren asymptotisches Verhalten ist im wesentli-

chen bestimmt durch (i) die Dimension d der Mannigfaltigkeit, (ii) die Kodimension, d.h.

die Zahl n der Komponenten des Verschiebungsfeldes und (iii) die Art der Kopplung an

die Unordnung. Durch Flußliniengitter in Supraleitern mit Punktdefekten können verschie-

denste Kombinationen dieser Parameter realisiert sein, von denen einige in dieser Arbeit

untersucht werden. Unterhalb von d = 4 Dimensionen, ist die elastische Mannigfaltigkeit

instabil bezüglich einer schwachen Punktunordnung [6], wie sie typischerweise von den int-

rinsisch vorhandenen Punktdefekten erzeugt wird. Die elastische Mannigfaltigkeit befindet

sich dann in einer gepinnten glasartigen Phase, der bereits erwähnten Vortex-Glas-Phase.

Das Flußliniengitter in Supraleitern wird durch die Parameter d = 3 und n = 2 beschrie-

ben. Auf großen Längenskalen führt die Periodizität des Flußliniengitters dazu, daß auf die

elastische Mannigfaltigkeit ein periodisches Unordnungspotential wirkt. Die entsprechende

Vortex-Glas-Phase wird auch als
”
Bragg-Glas“ bezeichnet.

Nach einem einführenden 1. Kapitel befaßt sich Teil I der Arbeit eingehend mit der

Frage der Konsistenz der elastischen Beschreibung in einem Supraleiter mit Punktunord-

nung. Eine elastische Beschreibung setzt ein topologisch geordnetes Flußliniengitter voraus.

Jedoch kann die topologische Ordnung durch das Auftreten von topologischen Defekten,

insbesondere Dislokationsschleifen, zerstört werden. Damit das elastische Bragg-Glas eine

thermodynamisch stabile Phase darstellt, muß das Flußliniengitter stabil gegenüber einer

spontanen Bildung von Dislokationsschleifen sein.

Kapitel 2 dient der Einführung in die Thematik der topologischen Defekte; insbesondere

werden Dislokationen und ihre Terminologie eingeführt. Die entropischen Mechanismen,

die zum Auftreten von Dislokationen und damit zum Schmelzen im reinen Flußliniengitter

führen, werden den rein energetischen Betrachtungen im Flußliniengitter mit Unordnung

gegenübergestellt.

In Kapitel 3 werden die verschiedenen Regimes des dislokationsfreien, rein elasti-

schen Flußliniengitters zusammen mit den jeweiligen Crossover-Skalen charakterisiert: Das

störungstheoretische Larkin-Regime auf kleinsten Skalen unterhalb der Larkin-Länge, das

”
Random-Manifold“-Regime auf Skalen bis zur positionellen Korrelationslänge und das

asymptotische Bragg-Glas-Regime. Dieses Kapitel dient der Einführung der verschiedenen

Modelle gepinnter elastischer Mannigfaltigkeiten, die im weiteren relevant sind.

In Kapitel 4 wird für ein uniaxiales Flußliniengitter der Parameterbereich berechnet,

in dem die Bragg-Glas-Phase stabil gegenüber Dislokationen ist. Dazu wird in einer Varia-



Zusammenfassung III

tionsrechnung der effektive Schermodul des Gitters selbstkonsistent bestimmt. Uniaxialen

Flußliniengitter treten in einem geschichteten Supraleiter im parallelen Feld auf, wo die

Auslenkungen der Flußlinien nur in einer Richtung erfolgen können. Der Stabilitätsbereich

kann mit Hilfe eines einfachen Kriteriums, ähnlich dem Lindemann-Kriterium für thermi-

sches Schmelzen, quantifiziert werden.

In Kapitel 5 wird mit Hilfe von Scaling-Argumenten eine alternative Herleitung des

Lindemann-artigen Kriteriums für das uniaxiale Flußliniengitter gegeben und anschließend

auf die im Experiment übliche Situation von zwei-komponentigen Flußlinienauslenkungen

verallgemeinert.

In Kapitel 6 wird das Lindemann-Kriterium für die Stabilität der elastischen Bragg-Glas

Phase gegenüber spontaner Dislokationsbildung für einen typischen Hochtemperatursupra-

leiter (Bi2Sr2CaCu2O8+x) ausgewertet und der Bereich im Phasendiagramm berechnet, in

dem das Bragg-Glas experimentell beobachtbar sein sollte. Das so gewonnene Phasendia-

gramm wird mit Experimenten verglichen.

Kapitel 7 faßt den ersten Teil zusammen, präsentiert die Schlußfolgerungen und einen

Ausblick.

Teil II der Arbeit ist den gepinnten elastischen Mannigfaltigkeiten in d = 2 Dimen-

sionen mit uniaxialen (n = 1) Auslenkungen in einem periodischen Unordnungspotential

gewidmet. Diese sind realisiert in planaren Gittern von elastischen Linien in ungeord-

neten Medien, wie sie zum Beispiel in den bereits erwähnten geschichteten Supraleitern

im parallelen Feld auftreten, aber auch in Form von Stufen auf Kristalloberflächen, die

beim Aufrauhen oder Dekonstruieren einer rekonstruierten Oberfläche gebildet werden.

Das entsprechende Modell wird auch als zweidimensionales XY-Modell im Zufallsfeld be-

zeichnet. Weil in planaren Flußliniengittern keine Dislokationen auftreten können, ist die

topologische Ordnung perfekt. Es ist somit das einzige System, für das die Existenz einer

glasartigen Tieftemperaturphase analytisch gezeigt werden kann. Die Eigenschaften dieser

Tieftemperaturphase haben wesentlich zu ersten Vermutungen bezüglich der Existenz einer

Vortex-Glas-Phase beigetragen [5]. Jedoch sind trotz zahlreicher analytischer und nume-

rischer Arbeiten zu diesem Modell grundlegende Eigenschaften der Tieftemperaturphase,

wie das Verhalten der Verschiebungs-Paarkorrelationen, immer noch unklar. Der zweite

Teil der Arbeit beschäftigt sich zu einem großen Teil mit diesen glasartigen Eigenschaften.

In Kapitel 8 wird das zweidimensionale XY-Modell im Zufallsfeld eingeführt und eini-

ge seiner Realisierungen vorgestellt. Die bisher erfolgreichsten analytischen Zugänge, eine

Variationsrechnung mit Replika-Symmetrie-Bruch und eine Replika-symmetrische Renor-

mierungsgruppenrechnung, werden kurz erläutert. Beide verwenden die Replika-Methode,

um die Mittelung über die eingefrorene Unordnung durchzuführen.

In Kapitel 9 wird eine Renormierungsgruppenrechnung für einen verallgemeinerten

Replika-Hamiltonian durchgeführt, die die technische Grundlage für die Kapitel 10 und

11 bildet.



IV Zusammenfassung

In Kapitel 10 wird versucht, die beiden oben genannten Zugänge, die in mehrerer Hin-

sicht widersprüchliche Resultate liefern, zu erweitern und zu verallgemeinern. Das Ziel da-

bei ist ein besseres Verständnis der Unterschiede beider Zugänge, die teilweise miteinander

vereinbart werden können. Um dies zu zeigen, wird in der Renormierungsgruppenrechnung

eine 1-Schritt Replika-Symmetriebrechung zugelassen und die Selbstkonsistenzgleichung

der Variationsrechnung verbessert, indem zusätzliche Diagramm-Klassen mitberücksich-

tigt werden. Die Möglichkeit eines Replika-Symmetrie-Bruches wird eingehend untersucht.

Dieses hauptsächlich aus der Spin-Glas-Theorie bekannte Phänomen [85] ist von Bedeutung

für die glasartigen Eigenschaften der Tieftemperaturphase.

In Kapitel 11 wird das Aufrauhen und Dekonstruieren einer defektbehafteten Kristallo-

berfläche untersucht, das durch das Auftreten von zwei Arten von Kristallstufen und damit

zwei wechselwirkende planare XY-Modelle im Zufallsfeld beschrieben werden kann. Mit Hil-

fe einer Renormierungsgruppenrechnung wird ein Phasendiagramm berechnet. Außerdem

erlaubt das Studium zweier gekoppelter Modelle weitere Rückschlüsse auf die Glaseigen-

schaften des Ausgangsmodells.

In Kapitel 12 werden die Ergebnisse von Teil II zusammengefaßt und ein Ausblick

gegeben.
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1979 - 1988 Freiherr-vom-Stein Gymnasium, Leverkusen

Juni 1988 Abitur

Hochschulstudium

Sept. 1988 Immatrikulation an der Universität zu Köln
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Errata

1. In chapter 3, eq. (3.15), a factor ξ2
ab is missing on the r.h.s.:

∆2
pin := (npinf

2
pinξ2

ab)ξ
3
ab = g0ξ

−1
ab (A.72)

2. In chapter 3, eq. (3.40) a prime is missing:

〈(u(R, L) − u(R′, L′))2〉 = 2An(4 − d)
1

K2
0

ln

( |R−R′|2
R2

l

+
(L−L′)2

L2
l

)1/2

,

3. In chapter 4, eq. (4.25), a factor p2/4cK2
c = p2/4πK2

c = 4π/p2 (c = π, Kc = p2/4π)

is missing:

G2D(k) ' 1

Kk2
+ τ 2 4π

p2

ln
(

2π
kl‖

)

k2

G2D(r‖ = 0) ' 1

2πK
ln

(
R‖

l‖

)
+

τ 2

p2
ln2

(
R‖

l‖

)

4. In chapter 4, in the paragraph before eq. (4.34), a factor 2 is missing when determining

the diagrams that contribute:

. . . This result can be supplemented by a second argument based on the observation

that at a T =0 fixed point only diagrams with #internal lines = 2#vertices contribute

because vertices in the FRG formalism are the disorder correlators carrying a factor

T−2, and each bare propagator carries a factor T 1. . . .

5. The argument presented before this sentence is erroneous because the disorder cor-

relator at the fixed point has a cusp which has to be taken into account. It cannot

be treated as quadratic. However there exists the following improved argument due

to Thorsten Emig [private communication] which shows indeed that the averages in

eq. (4.33) in the regime (i) can be treated as Gaussian:

Starting from a replicated Hamiltonian (n = number of replicas)

Hn/T = γ

∫
ddx

{
1

2T

n∑

α=1

(∇φα)2 − γ

2T 2

n∑

α,β=1

R(φα − φβ)

}
. (A.73)

IX



X Errata

we can calculate the correlations 〈Ψ(x1)Ψ(x2)〉 of the order parameter Ψ(x) =

exp(iφ(x)). In the RG approach, the glassy phase is described by a T = 0 fixed

point where the disorder correlator R(φ) is uniformly of the order ε = 4 − d. This

suggests to calculate the Ψ correlations perturbatively in ε. In the following we do not

assume that the field φ(x) is Gaussian distributed, i.e. we make no direct use of the

Wick theorem. Therefore we have to expand the disorder correlator R(φ) in terms

which can be averaged easily with the free Hamiltonian. Since R(φ) develops a non

analyticity at φ = 0 ( with R(4)(0) = ∞ ) on length scales beyond the Fukuyama-Lee

(or Larkin) length L∆, a power series expansion is not available. Instead, we make

use of the Fourier expansion

R(φ) =

∞∑

m=1

Rm cos(mφ) =
1

2

∞∑

m=1

Rm

(
eimφ + e−imφ

)
(A.74)

which works also in the non analytic case. To obtain the correlations 〈Ψ(x1)Ψ(x2)〉
to first order in ε, we have to calculate only averages of powers of exp(iφ), i.e. terms

of the form

〈exp [iφα(x1) − iφβ(x2) ± imφµ(y) ∓ imφν(y)]〉
0

(A.75)

where 〈. . .〉
0

denotes the average with respect to the free Hamiltonian with the pure

elastic part. Since the free Hamiltonian is Gaussian we can now use Wick’s theo-

rem with the bare propagator ∆(x) = T
γ

∫
ddqeiqx/q2 and obtain for the correlation

function

〈ei(φα(x1)−φβ(x2))〉 = 〈ei(φα(x1)−φβ(x2))〉
0

+
γ2

2T 2
e−∆(0)+∆(x1−x2)δαβ

n∑

µ,ν=1

∞∑

m=1

Rme−m2∆(0)(1−δµν )

×
∫

ddy cosh [m∆(x1 − y)(δαµ − δαν) − m∆(x2 − y)(δβµ − δβν)] .

= 〈ei(φα(x1)−φβ(x2))〉
0

(
1 +

γ2

2T 2

n∑

µ,ν=1

∞∑

m=1

Rme−m2∆(0)(1−δµν )

×
∫

ddy cosh [m∆(x1 − y)(δαµ − δαν) − m∆(x2 − y)(δβµ − δβν)] .

)
(A.76)

Now we can make use of the fact that the phase of interest is described by a T = 0

fixed point. Since ∆(x) ∼ T , we have to expand the exponentials and the cosh only

up to second order in the propagator ∆(x). Since we have to take the limit n → 0



Errata XI

we can neglect all terms of the order n. Thus we obtain

〈ei(φα(x1)−φα(x2))〉 = 〈ei(φα(x1)−φα(x2))〉
0
− γ2

2T 2

∞∑

m=1

m2Rm

×
∫

ddy
[
∆2(x1 − y) − 2∆(x1 − y)∆(x2 − y) + ∆2(x2 − y)

]
(A.77)

Due to 〈ei(φα(x1)−φα(x2))〉
0

= 1 + O(T ) we end up with

〈Ψ(x1)Ψ(x2)〉 = 1 +

∫
ddq

R′′(0)eiq(x1−x2)

q4
(A.78)

Finally we have to take into account the renormalization of the disorder correlator

by using the effective correlator near the fixed point, i.e. replace R(φ) by R̃q(φ) =

e−εl∗Rl∗(φ) = (Λ/q)d−4R∗(φ) where l∗ = ln(Λ/q) corresponds to the length scale

(Fukuyama-Lee length) at which R(φ) has approximatively approached its fixed point

value. With R∗′′(0) = −επ2

9
Λ4−d/Kd we obtain

〈Ψ(x1)Ψ(x2)〉 = 1 − ε
π2

9
ln

( |x1 − x2|
L∆

)
for |x1 − x2| > L∆. (A.79)

This result agrees to first order in ε with the expression

〈Ψ(x1)Ψ(x2)〉 =

( |x1 − x2|
L∆

)−επ2/9

(A.80)

which follows from the assumption of a Gaussian distributed phase φ(x) by direct

use of Wick’s theorem. Therefore, to calculate correlations of the order parameter to

first order in ε it is justified to assume a Gaussian phase field.

6. In chapter 5 after eq. (5.10):

. . . for configurations of the field φ . . .


