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Abstract. Trie randomly pinned planar flux bne array is supposed to show
a

phase transition

to a vortex glass phase at low temperatures. This transition bas been examined by using a

mapping onto a
2D XY-mortel with random anisotropy but without vortices and applying

a

renormalization group treatment to trie replicated Hamiltonian based
on

trie mapping to a

Coulomb gas of vector charges. This renormalization group approach is extended by deriving
renormalization group flow equations which take into account the possibility of a one-step repbca

symmetry breaking. It is shown that trie renormalization group flow is uustable with respect

to replica asymmetric perturbations and new fixed points with
a

broken replica symmetry are

obtained. Approaching these fixed points trie system con optimize its free euergy contributions

from fluctuations
on

large length scales;
an

optimal block size parameter m cou
be found.

Correlatiou fuuctious for the case of a brokeu replica symmetry con be calculated. We obtaiu

both correlations diverging as
Inr and In~

r depending on the choice of
m.

1. Introduction

The technological aspects of high-Tc superconductors in strong magnetic fields and especially
of their ability to preserve superconductivity by flux pinning iii have led to intense theoretical

studies of the properties of a flux line array in a type-II superconductor with random point-like
pinning centers [2, 5,8-10,12,14,16]. It has been conjectured [2-4] that the flux lines in a

superconductor with point disorder form a new thermodynamic phase, the vortex glass phase.
It is supposed that in this phase the flux lines are collectively pinned by the point defects and

energy barriers between different metastable states of the flux line array occur which diverge
with increasing length scale L leading to a glassy dynamics and zero linear resistivity [12,15,16].
But there is still too little condusive evidence to confirm this scenario by analytic means.

Due to the absence of topological defects ils,16] in 1+1 dimensions, the planar 1+1-

dimensional flux line array can be well treated analytically in an elastic approach. Actually,
the system of flux lines in a type-II superconducting plane with parallel magnetic field and

point disorder is the only system for which the existence of
a vortex glass phase has been shown

analytically [2,5,9,10,12] by applying various different methods.
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On the other hard, the predictions for important physical features of the disordered 1+1

dimensional flux line array obtained by the diiferent analytical methods differ significantly.
In particular, there are still many competing conjectures conceming the correlations in the

vortex glass phase. Moreover, the results of numerical simulations confirm neither of the

analytical predictions [14]. Essentially three analytic approaches have been applied to the

problem: ii) After using the replica trick and mapping onto a 2D XY-model with random

anisotropy but without vortices [2, Si, a renormalization group (RG) calculation [6, 7] has

been carried out with the replicated Harniltonian not taking into account the possibility of

replica symmetry breaking (RSB). (ii) The replicated Hamiltonian has also been studied by a

variational treatment admitting of continuous RSB finding that a one-step breaking is realized

[9, loi. (iii) Without making use of the replica trick, the corresponding kinetic equation has

been treated by a dynarnical RG analysis iii,12].
In the present paper we want to study how the concept of RSB could enter into a RG

analysis. For this purpose we map the disordered planar flux line array onto the 2D XY-model

with random anisotropy and perform a RG calculation with trie replicated Hamiltonian where

we generalize the set of coupling constants such that we can take into account a one-step RSB.

Dur atm is to show that an instability with respect to one-step RSB con also be found in the

RG treatment. This leads to a more unified view of the approaches ii) and iii), and results

obtained by the variational approach can partly be reproduced in our calculation.

On scales larger than the flux line distance the planar flux line array is described by an

elastic model with the positions of the flux lines given by a scalar transverse displacement
field ç§(r)1/7r. The field ç§(r) itself can be regarded as a phase field giving the phase shift of

the superconducting phase caused by the flux line displacements, because an increase in the

flux line displacement by induces a shift of
7r in trie field ç§(r). On large length scales, the

planar flux line array interacting with the random pmning centers can then be described by
the Hamiltonian [2, 4, 5, 17]

jRjçij =

/ d~r jKii7çi)~ + Vi jr) sin12çiir)) + V2 (r) cos12çiir)) il)

The second term containing the random potential V(r) with zero average and short range
correlations ii, j

=
1, 2)

tir)( (r')
=

2g ô~(r r')ô~j (2)

models the interaction of the flux lines with the point disorder m the continuum description
(g indudes a factor 1/T~). The function ô~ is a delta-like function of the small width ( given
by the maximum of the flux line core radius and the impurity size. A crucial feature of this

term is to respect the periodicity of the lattice, 1-e- it is invanant under a uniform shift 7r
of

the field ç§(r). By rescaling of one coordinate the isotropic first term for the elastic energy is

obtained with one elastic constant K (induding
a factor 1/T).

Each of the three approaches sketched above [2,5-7,9-12]
as well as the numencal simulation

[14], yield a phase transition at K
=

1/7r or r =
0 with

~ 7rK' ~~~

which serves as a small pararneter measuring the distance from the transition and controlling
expansions around the transition. For r < 0 the system is m a high-temperature phase,
disorder is not relevant and does not alter the correlations induced by thermal fluctuations on

large length scales ((j(r) ç§(0))~)
=

(lnr)/(7rK).
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However, the results concerning the correlations for
r > 0 in the glassy phase diifer signif-

icantly. The RG analysis carried out on the replica Harniltonian in a replica symmetric way
yields correlations ((j(r) ç§(0))2) oc

r~ In~
r at large length scales

r [6-8). The same result

is obtained in the dynarnical RG calculation iii,12]. Besides, correlations diverging like the

square of the logarithm follow from a real-space RG procedure 13 On the other hard, in the

variational approach with one-step RSB, correlations ((ç§(r) ç§(0))2)
=

(lu r)/(7rK(1 r)))
are found [9] to diverge logarithmically but with a prefactor increasing with decreasing tem-

perature. Logarithmically diverging correlations have also been found in the numerical simu-

lation [14] but the prefactor of the logarithm does not accord with the analytical prediction
in [9]. Dur calculation mduding one-step RSB in the RG analysis of the replicated Hamiltonian

can reproduce both correlations diverging with a simple logarithm and correlations diverging
with the square of the logarithm depending

on the choice of the block size pararneter m in the

one-step RSB scheme.

2. RG Analysis

Introducing n replicas and averaging over the disorder gives the effective replicated Hamiltonian

(with replica indices a, fl running from 1 to n)

jRRÎ4«1 "

/ d~r
)

~j K«pVç§« Vç§p ~j
g«p cos (2(ç§« ç§p (4)

OP OP

with matrices K«p and g~p taking on their bare values

Kap,o
=

Kô~p (5)

9«P,o " 9. (6)

This Harniltonian is equivalent to the replica Hamiltonian of a 2D XY-model with random

anisotropy but without vortices [6]. The variational studies allowing for continuous RSB per-

formed so far on this Hamiltonian [9, loi have shown that in the 2-dimensional model considered

here a one-step RSB is realized. Dur calculation is restricted so far to a one-step RSB scheme

but the results from the variational approach suggest that our results may stay valid even if it

is possible to extend the calculation to higher steps of RSB or a continuous RSB scheme.

Introducing one-step RSB and following the resulting RG flow, it is necessary to admit

matrices Kap and g«p of the form K«p
=

Aô«p + Bô~p + C and g«p =
giô«p + g2(1 à«p);

the elements of the matrix ôap are 1 if a and fl belong to the same block of size m and 0

otherwise. Because of (5), (6) we have initially Ao
"

K, Bo
"

Go
=

o and gi,o " g2,o = g.

To denvate the full RG flow equations, we perform an analysis technically similar to that of

Cardy and Ostlund [6] but with significant extensions to take into account the one-step RSB.

The calculation is based on the mapping onto a coupled Coulomb gas. We want to consider

only weak disorder, so initially the disorder strength g will be small; also throughout the RG

procedure the matrix elements of g~p stay sufliciently small to use standard methods [6,18] to

transform the cos-couplings m
the partition sum and to integrate out the fields ç§a (r) in favour

of integer charges na p(r) (a < fl) with fugacity gap. The replicated disorder averaged partition

sum
% factors then into %

=
ZejZc where the factor Zei represents the purely elastic part of

the partition sum; this factor plays a role only in deriving the RG equation for the free energy

density and will be considered later on m detail. In the Coulomb gas factor Zc of the partition

sum, it has to be summed over all spatial configurations of interacting charges, which can take

on any integer value, but because the charge fugacities gap are sufliciently small, only positive
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and negative unit charges have to be considered, which obey in addition a neutrality condition.

Switching from the continuum description with a short wavelength cutoif ( to a description on

a square lattice with lattice constant ( and lattice vectors R for easier notation, one obtains

the following expression for the replicated disorder averaged partition sum:

1

W
#

zelzc
"

zel X
fl fl ~

eXp (-RC) (7)

R a<P n~p(R)=-1

-RC
=

~ ~ naw(R) (K-~)wô n~ô(R') G'(R R')

R#R' OE,#,~,ô

+
~ ~ l'lOE#(R) )~ i~ g0E4 (8)

R OP

where G'(R)
=

In ((R( If) and np« .= -n«p (o < fl). The matrix (K~~)«p
=

aô«p + bô«p + c

has the same block form as K«p with a =
1IA, b

=
-B/A(A + mB) in the limit n -

0.

The block form of the matrix g~p implies that two kinds of charges exist diifering in their

fugacities and, moreover, in their interactions with other charges due to the block form of the

matrix (K~~)«p.
Taking this into account, a RG calculation in the style of Cardy and Ostlund (CO) [6] can

be performed, which yields the following RG recursions in the limit n -
0 upon a change of

scale by a factor e~ (Henceforth we always mdude a factor 2/7r m a, b and c and a factor 47r(~

Ill ~l, ~2.)~

da/di
=

-Î a~
m

(gÎ gÎ)
~~~

db/di
=

a~ (gÎ gl) ~~°~

~~/~i
=

1 aj gj (11)
8

dgi/di
=

(2 a)gi )(2 m)gÎ Îmgl (12)

dg2/dÎ
"

(2 a b)g2 RI~Î (~ ~~~l~2 ~~~~

The parameter m is a free parameter in these equations with 0 < m < 1 in the limit n -
0;

possible choices for m will be discussed later on. (9), (10) show that

a+mb=ao=2-2r (14)

is not renormalized; this result is exact to ail orders in the g~ (1 =
1, 2) due to a statistical

invariance under tilt [6, 8].
In the special replica symmetric cases m =

1 and m =
0, we get back the flow equations

of CO: In the RG equations for m =
1 (m

=
0), g2 (gi) Plays the role of the single disorder

strength parameter in [6], the diagonal matrix elements a + b (a) of Kj)
are not renormalized,

and also the off-diagonal matrix elements c (b + c) and the fugacity g2 (gi) renormalize as

m [6]. The system exhibits the known CO fixed points g(
=

0 (g(
=

o) and g]
=

2r (g(
=

2r).
For m =

1 the RG flow is sketched in Figure la. gi (g2) does not feed back into the RG flow

of the other quantities and does therefore not enter physical results like correlation functions

(see below). For this reason the introduction of a small initial rephca asymmetric perturbation

Ag~
= gi o g2,o has no eifect on physical results if m =

1 (m
=

o), although Ag tums out to

be a
relelant perturbation under RG (see below).
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Fig. I. RG flow trajectones for
r =

0.05 and dioEerent values of
m with an initial replica asymmetry

Ago
= gi,0 g2,0 "

r~; a)
m =1, b)

m =
il + m")/2, c) m =

m", d)
m =

1- ST. The dashed fine

is
trie bne gi = g2 of rephca symmetric values. Trie trivial fixed point and trie CO fixed point

on
this

fine as well
as

trie RSB fixed points il?), (18)
are

plotted.

Starting as in (6) with replica symmetric initial conditions gi,o " g2,o, replica symmetry is

preserved throughout the RG procedure independently of m, and a, are not renormalized;
therefore the CO scenario with the trivial fixed point g(

=
g]

=
o and the non-trivial CO fixed

point g(
=

g]
=

2r is reproduced if replica symmetry holds initially.
However, introducing a small initial replica asymmetry Ago

= gi,o g2,o # o contrary to

(6), the RG flow develops for r > o an instability with respect to RSB. The system flows for

Ag~ > o to a regime with gi > g2 and for Ago < o to a regime gi < g2 (entering on large length
scales the unphysical regime of negative fugacities gi ). In particular trie replica symmetric CO

fixed point g(
=

g(
=

2r, a"
= ao is unstable against small replica asymmetric perturbations.

A linear stability analysis of the CO fixed point yields (Aa
= ao a)

dAa/dl
=

jma(rAg (15)

dAg/dl
=

2 r
Aa. (16)

These equations describe an instability with eigenvalue 2(1 r)r of the CO fixed point with

respect to perturbations Ag. To avoid entenng the unphysical regime of negative fugacities, we

consider only perturbations Ago > o. As it is seen from (15), (16), such a perturbation causes

the charge interaction strength pararneter a to decrease and the asymmetry Ag to increase;

finally, a renormalizes to o following (9). This flow towards the fixed point a*
=

o implies

that one non-mteracting type of unit charge with fugacity gi appear on large length scales.
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Furthermore, we can
find from (12), (13) two additional non-trivial RSB fixed points (17) and

(18) with a"
=

0, b"
=

ao/m for each of them:

g(
=

2 '~~ao + ao (1
~

+
~

)~/~,
m m ao

g]
=

2
~

'~~ao ~

ao Il
~

+
~

)~/~ (17)
m m m ao

°~~~~ ~~
2

~m
'

~~ ~ ~~~~

~~ ~ ~~~~°~~

m"
=

1 r/3 + O(r~) ~~~~

trie fixed points (17) and (18) fall exactly together. Only for m" < m < 1 the fixed point (17)
is in trie physical regime g] > 0 of non-negative fugacities. Moreover, trie fixed point (17) is in

this range of m stable with respect to perturbations in gi and g2 (getting marginal with respect

to perturbations in g2 at m =
m" where it coincides with (18)), whereas the fixed point (18)

is unstable with respect to perturbations g2 > 0. Therefore the fixed point (17) is attractive

for all RG trajectories starting with gi,o > g2,o > 0 las illustrated in Fig. lb) while the fixed

point (18) is attractive only for RG trajectories with gi,o > g2,o =
0. For 0 < m < m" (18) is

the only RSB fixed point in the physical regime of non-negative fugacities g2 > 0. It is in this

range of m the attractive fixed point for ail RG trajectories with gi,o > g2,o > 0 (sec Figs. lc,
Id) furthermore, it is stable with respect to perturbations in gi and g2.

As pointed out in (5), (6), the proper initial values K«p,o
=

Kô«p and g«p,o = g are replica
symmetric with Ago

=
0. It remains undear in this approach how the initial asymmetry

Ago > 0 necessary for the development of an instability with respect to RSB can be obtained

from physical reasons. One hint is given in the next section where it is shown by comparison
with the replica symmetric CO flow for Ago

=
0 that contributions to the free energy from

large scale fluctuations can be optimized (which
means maximized in the limit n -

0) if a

small perturbation Ago > 0 is introduced.

In the high-temperature phase for
r < 0 the system flows to the stable trivial replica sym-

metric fixed point g(
=

g]
=

0 regardless of an initial asymmetry Ago # 0. In this phase
the trivial replica fixed point is stable with respect to the RSB perturbation Ago so that RSB

cannot occur in the high-temperature phase as it is expected. For r =
0 the trivial fixed point

stays marginally stable.

3. Free Energy and RSB

We want to proceed with a discussion of energetic aspects of the instability in the RG flow upon
introducing a replica asymmetric perturbation Ago > 0 in the low-temperature phase. This

enables us to fix the so far undetermined block size parameter m if Ago > 0 and to compare
the free energy in the RSB case with Ago > 0 with the free energy in the replica symmetric
CO case Ago

=
0. Trie standard procedure to determine m is to maximize the free energy

density per replica in the limit n -
0 with respect to the additional free parameter m.

In trie RG approach it is possible to derive the RG flow equation for the free energy density
and calculate the free energy by integrating the flow equation; moreover, one con separate the

contributions to the free energy from fluctuations on diiferent length scales examimng the flow
of the free energy. In the RG procedure of'increasing the cutoif ( to (e~~ in the partition sum

and rescaling the scale, one collects contributions not renormalizing the coupling constants;
these contributions enter the renormalization of the free energy. Such terms are generated both
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in the factor Zc by contributions from integrating out the charge configurations as described
above and in the factor

zei
= exp iL/27ri)2 /~ /~ 2q(n

in i12q2/27r)
-~ -~

+ ni jjj~ lui )a) j
in i)ao) +

(
cari )) 120)

(in the limit n -
0 and with L denoting the linear dimension of the system) by contributions

from increasing the cutoif ( and adjusting the couplings a, c according to the flow equations
(9), il1). Finally, one obtains in the limit n -

0 for the free energy density per replica (apart
from an additive constant independent of m) the RG recursion relation

df/di
=

2f+jdZ/di

=
2 f

~
(mg( + il m)g) ~ ([- ~~~ '~~~ lu (aria) 2 In ~ao)

~~
aoc]

167r( 2( m 2 2

~~ m~ Î~ ~ ~~~° ÎÎ~~' ~~~~

From this recursion relation the initial free energy density fo con be obtained by following the

flow:
~

fo
=

/
dl e-~~ jdZ/di (22)

o

Using (21), (22) we want to study the contributions to the free energy from fluctuations on

diiferent length scales in the low-temperature phase for the flow to the RSB fixed points (17),
(18) induced by a small initial perturbation Ago > 0 and, m comparison, for the replica
symmetric flow to the CO fixed point starting with Ago

=
0. To keep calculations tractable,

we choose initial conditions in the vicimty of the CO fixed point, 1-e- gi,o "
2r+Ago, g2,o =

2r,
when exarnining the RSB case. For general initial conditions with Ago > 0 there is initially

a flow towards the CO fixed point slightly perturbed by the small asymmetry Ago > 0; for

the study of the energetic eifects of the RSB instability in the flow, this essentially replica
symmetric part of the RG flow should be negligible.

As a consequence of the factor e~~~ appearing in the integrand of (22), the main contribution

to fo comes from the short scales. Starting at gi,o "
2r + Ago, g2,o "

2r and evaluating (22)
straightforwardly to the leading order in Ago, one obtains a maximum of fo at the replica
symmetric m =

0. This is because the main contribution to -(dZ/dl)/nL~
comes on short

scales from the term [-7r~aoc/2] /2(~. The m-dependent part of [-7r~aoc/2] /2(~
cari be approx-

imated by means of a linear stability analysis of the flow equations (9)-(13) at the CO fixed

point enlarging on (15), (16) as [Ago(7r~a( /16) il m)(exp (2rl) 1)] /2(~ with a maximum at

m =
0.

On the other hand, the maximization of the asymptotic large scale contributions leads to

a quite diiferent result. Examining the large scale contributions, one has to investigate the

asymptotics of the integrand in (22) and to maximize -(dZ/dl)/nL~ in the limit of1
- cc.

For this purpose it is necessary to denve the asymptotics of c which is determined by the flow

equation II ). From il1) follows that for m < m" < c is asymptotically linear divergent with

an asymptotics cil)
~J

g(~(l r)~/2 where g( is taken in the stable RSB fixed point (17),
which is g( cf

6(m m* to a good approximation. However, we find in the regime 0 < m < m*

from (Il)
a saturation of

c to a
value c* because the stable RSB fixed point is in

this regime
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given by (18) with g(
=

0. To obtain an estimate for c* one has to determine the characteristic

scale 1* on which g2 renormalizes towards 0; a linear stability analysis of the flow equations (9),
(12), (13) at the CO fixed point extending ils), (16) reveals that 1" can be approximated as

1" ci (In (4r/(1- m)Ago))/2r. From Ill) it follows c" ci rIn (4r/(1- m)Ago) for the leading
order contribution in r. Moreover, it is seen from the flow equation (9) that a(1)

~J

Ill
on large

scales. Using these results for c and a, one can verify easily from (21) that trie most divergent
contributions to -(dZ/dl)/nL~

come from [-21n (aola)(1 m)/m 7r~aoc/2]/2(~ for large 1.

Maximization of these terms yields

m =
m"

=
1 r/3 + O(r~), (23)

because the maximization of the second term restricts m to values 0 < m < m" to avoid the

occurrence of the linear divergence in the regime m" < m < 1 and the maximization of the

only logarithmically diverging first term singles out the greatest value m =
m" of the interval

0 < m < m". (23) is m
fairly good agreement with [9].

RSB is a large scale eifect associated with the existence of diverging energy barriers generat-

mg metastable states. Therefore it seems to be more reasonable to consider only the large scale

contributions to the free energy in (22) although the expression (22) for fo is dominated by its

short scale part. This is equivalent to considering the free energy of the renormalized but not

rescaled Hamiltonian on large scales but discarding a constant energy shift depending on m

which comes from short scales. This energy shift, which is essentially replica symmetric, may

describe the free energy of single metastable states. In the presence of an initial asymmetric
perturbation Ago > 0, maximization of the large scale contributions to the free energy yields

then a maximum at m =
m" as derivated above.

Companson of these large scale contributions for the flow to the RSB fixed point when

(Ago > 0) and for the replica symmetric flow to the CO fixed point Ago
=

0) shows that

this part of the free energy is greater in the RSB case. This is because the most divergent
contribution to -(dZ/dl)/nL~ is in the replica symmetric case as in the RSB case given by

[-7r~aoc/2]/2(~ with cil)
+~

g]~(l T)~/2 but the replica symmetric CO fixed point value

2r for g] is always greater than or equal to (m
=

1) trie RSB fixed point values given by
il 7), (18). Therefore it is energetically favorable on large scales to break trie replica symmetry
by introducing a perturbation Ago > 0. This energy gain can occur on scales larger than

L~
"

f ~XP li~ lm=m°
"

f(4~/(1 ~~)Ag0)~/~~
"

f(12/Ag0)~/~~.
In the high-temperature phase the trivial fixed point is stable with respect to the introduction

of a perturbation Ago # 0. For this reason the large scale contributions to the free energy are

the same as in the replica symmetric case. For the short scale contributions to the free energy
the same argumentation applies as in the low-temperature phase leading to a maximum at

the replica symmetric m =
1 if Ago # 0. So RSB is energetically not favorable in the high-

temperature phase as it is expected.

4. Correlations

The RG flow and fixed point structure changes significantly upon introducing an energetically
favorable, replica asymmetric perturbation Ago > 0 in trie low-temperature phase as outlined

above. As well trie behaviour of the (ç§ç§)-correlations changes drastically depending on the

value of m. Trie Fourier transformed correlations between replicas on large scales can be

calculated by using a Gaussian approximation to trie renormahzed but not rescaled replica
Hamiltonian, which yields for small q +~

e~~ If [8]

14«(q)4p(-q))
=

) lK-i)«p(i= in((/q)), (24)
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so that trie large scale correlations depend essentially only on the asymptotic RG flow of the

matrix elements a, b and c.

From expression (24) one can venfy that the connected correlation function

14(q)4(-q)) 14(q))14(-q))
=

]%1/n j~(4«lq)4pl-q))
=

Ii r)~r/q2 j25)

«,w

does not change its form at the transition, independently from the introduction of a nonzero

Ago due to the non-renormalization of
a + mb

= ao, contrary to the (ç§ç§)-correlations [9].
For the (çiçi)-correlations (24) yields

iii~)ii~~)i
"

iiai~)iai~~))
"

fi i~li~)+bi~) +CjÎ))jl=In(f/q). (~6)

In the high-temperature phase no RSB takes place, even if Ag > 0, and there is essentially

no renormalization of a, b and c the connected ii çi)(çi)-correlation function and the

(çiçi)-correlation function coincide then and ((i(r) çi(0))2)
=

il r) In (r If).
In the low-temperature phase the asymptotics of c, which is determined by the flow equa-

tion (II),
is of special interest because in the replica symmetric case, 1-e- without a replica

asymmetric perturbation Ago
=

0), the asymptotics c +~

2(1- r)~r~ diverging linearly gives
correlations ((i(r) çi(0))~)

+~
((l r)~r~/2) In~ (r/() diverging with In~

r [8].
In the RSB case with an initial Ago > 0, c has also a linear divergent asymptotics cil)

+~

g]~(l r)~/2 for m* < m < 1 (see above), where g( ci 6(m m") is taken in the stable

RSB fixed point (17). This entails (çiçi)-correlations diverging also with In~
r for this_range

of m but with a prefactor reduced by a factor 9(m m")~/r~ < 1 compared to the replica
symmetric case; in particular, we get back the replica symmetric CO result choosing m =

1.

The situation changes significantly in the regime 0 < m < m" because the stable RSB fixed

point is in this regime given by (18) with g]
=

0. Therefore c saturates on large scales to a value

c" ci rIn (4r/(1 m)Ago) for the leading order contribution in r
(see above) and we obtain

from (26) only loganthmically divergent (çiçi)-correlations with a prefactor ao/2m +c" /2 which

is greater thon in the high-temperature phase. To the leading order in r this yields correlations

((i(r) çi(0) )~ cf ((1-
r m + r In (4r/(1 m)Ago /2) In (r If with our above choice (23)

of m ci 1- r/3
we get ((çi(r) çi(0) )2 ci ii1- 2r/3) + r(In (12/Ago /2) In (r If ). This implies

that the prefactor of the logarithm increases with r in the low-temperature phase.
Our results for the low-temperature phase show that within the one-step RSB RG approach

with a small initial rephca asymmetry Ago > 0, it is possible to obtain the known replica
symmetric result for the (çiçi)-correlations diverging like In~

r [8] if m =
1 as well as

iii)-
correlations diverging in the same way but with a smaller prefactor if m" < m < 1 and

loganthmically divergent (çiçi)-correlations with a prefactor increasing with decreasing tem-

perature if 0 < m < m". The latter possibilities are of interest with regard to the numerical

simulations [14] and the results of the variational approaches [9, loi.

5. Conclusion

To summarize we have shown an instability in the RG flow of the disordered planar flux line

array, which is equivalent to the 2D XY-model with random anisotropy but without vortices,

with respect ta a one-step RSB. The flow approaches new RSB fixed points if an initial rephca

asymmetric perturbation is introduced. The system con optimize its free energy contributions

from large length scale (> L" fluctuations by breaking the replica symmetry and approaching
the RSB fixed point where the energetical optimal choice of m is m =

m" ci 1-r/3. Introducing
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the initial perturbation, the (çiçi)-correlations show a
In~ r-divergence on large length scales in

the range m" < m < 1 retuming to the replica symmetric result at m =
1; for 0 < m < m"

the correlations diverge only as lnr, which is especially for m =
m" the case.

During completion of this work P. Le Doussal and T. Giamarchi have submitted a letter [19]

in
which they find independently from our results an instability with respect to RSB in the 2D

XY-model in a random field.
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