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Single-vortex fluctuations in layered superconductors:
Electromagnetic coupling and crossover to strong pinning

Jan Kierfeld
Max-Planck-Institut fu¨r Kolloid- und Grenzfla¨chenforschung, 14424 Potsdam, Germany

~Received 14 March 2003; revised manuscript received 29 January 2004; published 16 April 2004!

Positional fluctuations of single vortices induced by thermal fluctuations and random point pinning are
considered in detail for all length scales fully taking into account the competing effects of Josephson and
electromagnetic coupling between vortex elements. The electromagnetic coupling gives rise to a pronounced
dispersion of the line stiffness and soft short-wavelength modes which modify the displacement fluctuations of
the pinned vortex over a wide range of length scales. Furthermore, we present a detailed analysis of strongly
pinned individual pancake vortices in a layered superconductor and study the crossover to the collectively
pinned single-vortex line. The line stiffness dispersion leads to sharp increases in the pinning length at char-
acteristic temperatures both for weak and strong pinning and two crossover scales. We calculate as well the
corresponding increase in the characteristic pinning energy and the pronounced drop of the critical current at
these characteristic temperatures. We predict distinct features in the current-voltage characteristics due to the
effects of strong pinning and vortex line tension dispersion.
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I. INTRODUCTION

The physics of single vortices pinned by point defects i
type-II superconductor is one of the best studied problem
the context of vortex physics as well as the statistical phy
of disordered systems.1–3 Nevertheless, there are still som
important aspects, which have been neglected in earlier
oretical studies but deserve further consideration. One
these aspects is the influence of the nonlocal electromag
interaction along the vortex line on the statistical physics
larger scales, in particular, regarding the positional fluct
tions of the vortex line induced by quenched point disor
and its dynamic behavior in the presence of external curre
In a layered type-II superconductor, another aspect is
crossover from collectively pinned long vortex line segme
containing many pancake segments for small point de
concentrations to strongly pinned single-pancake segmen
high point defect concentrations.

The electromagnetic coupling of segments along a vo
line leads to strongly nonlocal elastic properties of a vor
line below the magnetic penetration depthlab , which sets
the range of the electromagnetic coupling. Furthermore,
interplay between electromagnetic coupling and Joseph
coupling sets a preferred length scale«lab for short-
wavelength fluctuations of the vortex line, where«
5lab /lc is the anisotropy ratio of the type-II superco
ductor. For high-temperature superconductors~HTSC! such
as YBa2Cu3O72d ~YBCO! or Bi2Sr2CaCu2O81d ~BSCCO!
this leads to particularly interesting crossover phenomena
cause the layered structure with layer distanced sets a com-
peting shortest length scale for vortex line fluctuatio
These two length scales govern much of the statistical ph
ics of purely thermal fluctuations of single vortex lines.

Pinning by point defects introduces yet another relev
length scale, the collective pinning lengthLc of a weakly
pinned vortex line. Moreover, thermal fluctuations lead to
effective weakening of the pinning strength which can g
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rise to a thermal depinning and a pronounced tempera
dependence of the pinning length. Much of the present pa
is devoted to the detailed study of the various crossover p
nomena that arise due to the presence of up to four rele
length scaleslab , «lab , d, andLc which can become com
parable in size for HTSC materials depending on anisotr
and pinning strength. Depending on the size ofLc as com-
pared to the length scales«lab and d there is a crossove
from collectively pinned long vortex line segments for we
pinning potentials ~small point defect concentration! to
strongly pinned short segments at higher disorder stren
~high point defect concentration!. Therefore, the electromag
netic coupling also has a strong effect on the pinning
single vortices. If in a layered HTSCLc becomes smaller
than the layer spacingd we enter a qualitatively differen
regime of strong pinning, where the perturbative treatmen
pinning forces breaks down even for single-pancake s
ments.

Whereas there is extensive literature on the weak col
tive pinning theory since the pioneering work of Larkin an
Ovchinnikov,4 the crossover to strong pinning of single pa
cakes and the implications of the electromagnetic coup
for pinning are much less studied although they are tech
logically relevant for HTSC.5 For the layered HTSC materi
als we will discuss in detail the crossover from fluctuatio
of linelike one-dimensional vortex segments to fluctuatio
of pointlike pancake vortices upon increasing the pinn
strength. For BSCCO there have been a number of exp
mental studies6–8 of this crossover behavior. Theoretic
investigations9 have focused as well on the BSCCO com
pound and treated the limit of a vanishing Josephson c
pling of superconducting layers, i.e.,«50. In this decoupled
limit pancake vortices in different layers interact only ele
tromagnetically. In Ref. 9 it has been shown that in the
coupled limit the crossover between pointlike and lineli
pinning leads to a sharp drop of the critical current if te
perature is increased which can also give rise to a two-s
©2004 The American Physical Society13-1
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JAN KIERFELD PHYSICAL REVIEW B69, 144513 ~2004!
behavior in the current-voltage characteristics at fixed te
perature.

In this paper, we present a more detailed theoretical an
sis of the effects of the nonlocal electromagnetic coupling
the pinning of single vortices and of strongly pinned sing
vortices which also extends to the more realistic situation
a finite Josephson coupling between the layers. This allo
one to apply our results to the strongly layered BSCCO co
pound where«lab!d as well as to the YBCO compoun
where the Josephson coupling is much larger such that«lab
becomes comparable to the layer spacingd. Qualitative dif-
ferences between these materials are worked out by
analysis. Our results are also valid in the limit of small lay
spacingd!«lab . Then the layer spacing drops out as
relevant length scale, and we cross over to a descriptio
anisotropic type-II superconductors.

We give a complete account of crossover phenomena
lated to the interplay between Josephson coupling and e
tromagnetic coupling in the vortex line tension on the o
hand, and the interplay of pinning by point defects and th
mal motion of the vortex elements on the other hand.
study these crossover phenomena in the positional fluc
tions of the vortex line, the pinning length, the associa
critical currents, and the current-voltage characteristics.
present a detailed and complete calculation of the me
square vortex displacements due to quenched point diso
and thermal fluctuations for single-vortex segments of a
trary lengthL. The electromagnetic coupling gives rise to
pronounced dispersion of the line stiffness which leads to
appearance of soft short-wavelength modes on scales w
modify the displacement fluctuations of the pinned vor
over a wide range of length scales. Thermal as well
disorder-induced positional fluctuations exhibit a rich cro
over behavior as the vortex lengthL passes through the fou
relevant length scales«lab , d, lab , and Lc . Furthermore
the dispersion leads to a breakdown of self-affine scaling
vortex displacements and the emergence of two additio
crossover scales.

Using our results for the positional fluctuations of vort
segments we demonstrate that sharp increases in the pin
length and drops in the critical current upon increasing
temperature should be observable also in the presence
finite Josephson coupling as for YBCO, and even in ani
tropic type-II superconductors in the low-field regime. W
also predict distinct jumplike features in the current-volta
characteristics in these materials at sufficiently high impu
concentration. Moreover, positional fluctuations of sing
vortices are of great interest for estimates based on the
demann criterion regarding the stability of a topologica
ordered vortexlattice with respect to thermal fluctuations10

or random point pinning.11 In particular, results presented i
this paper will be of further use in obtaining a correct pictu
of the low-field part of the vortex phase diagram of layer
type-II superconductors.

The paper is organized as follows. In Sec. II we introdu
the nonlocal elasticity of single vortices due to the elect
magnetic coupling. These results can be employed to dis
purely thermal fluctuations in Sec. III and fluctuations due
quenched point disorder atT50 in Sec. IV. Weak collective
14451
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pinning of vortex lines atT50 is discussed in Sec. IV A and
the crossover to strong pinning of individual pancake vo
ces in Sec. IV B before we consider the pinning of lo
vortex segments in Sec. IV C. For finite temperatures th
mal fluctuations start to smear out the pinning energy la
scape giving finally rise to thermal depinning of the vort
line, which is discussed in Sec. V. Also in this section, w
first discuss the thermal depinning of a weakly pinned vor
line in Sec. V A, afterwards the thermal depinning fro
strong pinning in Sec. V B, and finally the thermal depinni
of long vortex segments in Sec. V C. These results can
applied to calculate energy barriers for the motion of sin
vortices in the presence of an external currentj. This allows
one to calculate single-vortex critical currents in Sec. VI a
discuss features of the current-voltage characteristics in
VII. A list of symbols is provided in Table I.

II. ELECTROMAGNETIC COUPLING AND NONLOCAL
STIFFNESS

A single vortex can be described as a line under tens
with a stiffness« l . The exact form of the line stiffness de
pends not only on material parameters such as the mag
penetration depthlab , the anisotropy ratio«5lab /lc , or
the Ginzburg-Landau parameterk5lab /jab but also on the
wavelength of the fluctuations that are considered. This
because the electromagnetic interaction is nonlocal and
tends over a rangelab for the usual geometryHuuc also
considered in this paper. Therefore, the elastic tilt energy
the vortex line becomes nonlocal. In the presence of an
ternal pinning potential the Hamiltonian of the single vort
line of lengthL is

H5E
0

L

dzE
0

L

dz8H 1

2
« l~z2z8!]zu~z!•]zu~z8!

1d~z2z8!V„z,u~z!…J . ~1!

The vortex line configurations are parametrized by a tw
component displacement fieldu(z) ~when commenting on
the general case we will denote the number of compone
by n), wherez is the coordinate along the equilibrium dire
tion of the vortex line which is parallel toHuuc. Pinning
potentialsV are specified later on.« l(z) is the nonlocal vor-
tex stiffness, and after Fourier transforming« l(q)
5*dz« l(z)eiqz we obtain the dispersion relation of the lin
stiffness. In the limit of an isolated vortex line the dispersi
line tension is2

« l~q!'
«0

2 F «2 lnS 1

jc
2q2D 1

1

q2lab
2

lnS 11
q2lab

2

11q2u2D G ,

~2!

where«05(F0/4plab)
2 is the characteristic line energy of

vortex. The first term stems from the Josephson coup
3-2
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TABLE I. List of symbols. Our notation is mostly adapted from Ref. 1.

a Vortex lattice spacing
g Pinning strength parameter Eq.~13!

d Layer spacing
E0 Pancake ground-state energy Eq.~29!

d Pinning strength parameter Eq.~14!

dd Layered pinning strength parameter Eq.~16!

«5lab /lc Anisotropy ratio
«d Layered anisotropy Eq.~5!

« l(q) ~Dispersive! single-vortex line tension Eqs.~2! and ~3!

«05(F0/4plab)
2 Line energy

j c Critical current Eqs.~77!–~80!, ~83!, and~86!

j d Strong pinning current strength Eq.~81!

j * Pancake barrier current Eqs.~82! and ~86!

L̃ Thermal plateau length Eq.~11!

L̃c
Pinning plateau length Eqs.~21! and ~36!

Lc Collective pinning or Larkin length Eqs.~22!, ~23!, ~46!, and~51!

Ld Dispersion length scale Eq.~4!

L0 Single-vortex length Eq.~8!

Tdp,« Anisotropic depinning temperature Eq.~47!

Tdp,«l Depinning temperature for the scales«lab , L̃ Eq. ~49!

Tdp,i Isotropic depinning temperature Eqs.~50! and ~54!

Tdp,d Depinning temperature for weakly pinned pancake
vortices

Eq. ~52!

T«l Temperature whereLc(T)5«lab Eq. ~48!

Td Temperature whereLc(T)5d from weak collective
pinning

Eq. ~53!

Td,J Crossover temperature to strong Josephson
coupling

Eq. ~6!

T* 5U* Pancake thermal activation temperature Eq.~61!

Uc Pinning energy variation Eqs.~75!, ~84!, and~85!

Up Pancake pinning energy Eq.~15!

U* Pancake energy barrier Eq.~30!
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between the line elements and is local whereas the se
term originates from the electromagnetic interaction of l
elements, and is strongly nonlocal.u is a typical displace-
ment, and the corresponding correction term in the exp
sion ~2! is due to nonlinear elastic effects. In the local lim
~for wave vectorsq,1/lab), the electromagnetic part dom
nates, and the stiffness is nondispersive« l.«0 (. is used if
numerical prefactors or small logarithmic corrections are
glected!. On the smallest scales (q.1/«lab), the Josephson
contribution dominates and we find an essentially nondisp
sive but anisotropic stiffness« l.«0«2, which is reduced by
a factor«2 as compared to the electromagnetic large-sc
result@we neglect the small logarithmic correction due to t
weakly dispersive factor ln(1/jc

2q2) in the following#. On
intermediate scales 1/lab,q,1/«lab the electromagnetic
coupling dominates but it is reduced by dispersion until it
finally cut off by the Josephson contribution atq'1/«lab .
In this regime we find« l.«0 /q2lab

2 . In the following we
will therefore use these simplified expression
14451
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q,

1

lab
: «0

1

lab
,q,

1

«lab
:

«0

q2lab
2

q.
1

«lab
: «0«2,

~3!

which is justified if prefactors and logarithmic correction
can be neglected. In the limit of a very weak Josephs
coupling«→0 the dispersion of the electromagnetic cont
bution persists down to the shortest length scale, which
set by the layer distanced. For the fluctuation behavio
the largest possible wave vector showingq22 dispersion
is important. In a layered material this isqd
.1/max$d,«lab% and we introduce a correspondingdisper-
sion length scale

Ld5max$d,«lab%5lab max$«d ,«%, ~4!
3-3
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where

«d5
d

lab
~5!

is an effectivelayered anisotropyof the material. For the
short-scale fluctuations it is important to distinguish betwe
two classes of type-II superconductors depending on
strength of the Josephson coupling or the size of«. Layered
superconductors with astrong Josephson coupling«.«d
have Ld.«lab . One prominent example of this class
YBCO. Formally, we can also treat anisotropic type-II s
perconductors which have no layered structure~and thus
there is no Josephson coupling! within this class of materials
if we set d50. On the other hand, superconductors with
weakJosephson coupling«,«d haveLd.d. But it has to be
noted that even if«,«d at T50 the Josephson couplin
becomes strong above a reduced temperature

td,J512~«/«d!2 ~6!

because«d}(12t)1/2. For typical parameters for BSCCO
«'1/200,d'15 Å, lab'2000 Å, andTc'100 K one finds
that BSCCO has a weak Josephson coupling at low temp
tures but the Josephson coupling becomes strong a
Td,J'55 K. An estimate for the stiffness on the short sc
Ld is « l(qd).«0Ld

2/lab
2 .«0 max$«d

2 ,«2% from Eq. ~3! or
somewhat more accurate« l(qd).«0(«21max$«d

2 ,«2%) from
Eq. ~2!.

Considering only fluctuations with wave vectors 1/lab
,q,qd in the Fourier transform the elastic part of th
Hamiltonian~1! can be written as

H.E
0

labdz

Ld
H 1

2

«0

lab
2

u~z!2J , ~7!

i.e., due to the predominantly electromagnetic coupling e
vortex segment of lengthlab effectively decouplesinto
small segments of lengthLd that fluctuate independently in
harmonic potential.12 Therefore, the vortex line become
very soft with respect to fluctuations on the short scaleLd .
This holds for thermal fluctuations as well as for fluctuatio
due to pinning by point defects.

In this paper we consider the pinning ofisolatedvortices
of lengthL. Also in a vortexlattice vortices fluctuate essen
tially as isolated vortex lines ifL is sufficiently small that
they are not yet limited in their fluctuations by the interacti
with the neighboring lines. This happens as the shear en
c66u

2L becomes comparable to the tilt energy« l(1/L)u2/L.
For a vortex lattice constanta, the shear modulus is give
by c66.«0 /a2 in the dense regimea,lab and c66
.(«0 /a2)(a/lab)

3/2exp(2a/lab) in the dilute limit a
.lab . Therefore, we find single-vortex behavior also in
vortex lattice on scales smaller than thesingle-vortex length

L0.aS « l~1/L0!

c66
D 1/2

.H a,lab : «a

a.lab : a~lab /a!3/4exp~a/2lab!.

~8!
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Note that even in the dense limit where vortices already h
a considerable magnetic interaction we still find sing
vortex physics on sufficiently small scalesL,L0 which de-
fines the range of applicability of our results. Thus the effe
of the dispersion in the line stiffness~3! of a single vortex
will become relevant ifLd,L0. For a layered HTSC with
strong Josephson coupling such as YBCO or for anisotro
type-II superconductors whereLd5«lab dispersion effects
are thus relevant in the low-field regimea.lab or B
,F0 /lab

2 . For YBCO with lab'1500 Å this low-field
range isB,900 G. For strongly layered HTSC’s with
weak Josephson coupling such as BSCCO we haveLd5d
~for t,td) and effects from the dispersion become importa
in the regimeL0.d, which is again approximately the low
field regimeB,F0 /lab

2 due to the exponential increase
L0 in this regime.14 For BSCCO withlab'2000 Å this low-
field regime isB,500 G. Within these low-field ranges th
effects from the electromagnetic coupling within a sing
vortex, which we will present in the remainder of the pap
should be experimentally observable.

III. THERMAL FLUCTUATIONS

It is instructive to consider first how the electromagne
softening affects thermal fluctuations@i.e., V50 in Eq. ~1!#
of a vortex line of lengthL. Using the expression~3! for the
stiffness one finds up to irrelevant corrections

^u2&T~L !.2E
1/L

1/d dq

2p

T

« l~q!q2

.5
d,L,«lab :

TL

«0«2

Ld,L,lab : ^u2&T~Ld!.
TLd

« l~qd!

L.lab :
TL

«0
1

TLd

« l~qd!
,

~9!

where ^•••&T is the purely thermal average settingV50.
@The relative displacement^@u(L)2u(0)#2&T along an infi-
nite line is larger than the mean-square displacem
^u2&T(L) of a finite segment of lengthL with fixed center of
mass by a numerical prefactor, but the parameter depend
is identical#. Apart from numerical prefactors the formula~9!
holds for generaln-component fieldsu(z). If the electromag-
netic stiffness contribution dominates, the thermal displa
ments^u2&T(L) are approximatelyindependentof L for Ld
,L,lab due to the effective decoupling. The result is
plateauin the thermal displacements^u2&T(L) over a certain
range of scalesL. On scalesL.Ld , the thermally fluctuating
vortex line is therefore no longer self-affine with a roughne
exponentzT51/2 but, instead, we have to explicitly includ
soft short-scale fluctuations on the scaleLd as we did in the
last line of Eq.~9!. It is easy to check that all dispersio
relations« l(q)}q2v with v.1 would formally lead to a
3-4
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negativezT5(12v)/2,0 such that self-affinity is lost. As a
consequence we can write the last line of Eq.~9! for L
.lab as

^u2&T~L !.^u2&T,q,l~L !1^u2&T~Ld!.^u2&T~Ld!S L

L̃
11D ,

~10!
where the subscript ‘‘q,l ’’ implies that only small wave
vectorsq,lab are integrated over and thus the average
performed using the isotropic stiffness« l(q).«0 according
to Eq. ~2!. From formula~10! we read off that short-scal
fluctuations actually dominate for all scalesLd,L,L̃ with

L̃.Ld

«0

« l~qd!
.

lab
2

Ld
.

lab

max$«d ,«%
. ~11!

Therefore,Ld,L,L̃ gives the extent of the plateau in th
thermal displacements and thethermal plateau length L˜ is
the crossover length scale where self-affinity breaks do
and both contributions in Eq.~10! are equal. We will encoun
ter a similar breakdown of self-affinity also in the case
fluctuations induced by point disorder.

Let us briefly comment on implications for the therm
melting of the vortex lattice in order to demonstrate the i
portance of the plateau length scaleL̃ also for vortex lattice
properties. Using the single-vortex lengthL0, we can refor-
mulate the Lindemann criterion for thermal melting in
single-vortex form13,14

^u2&T~L0!5cL
2a2, ~12!

with the Lindemann numbercL'0.1– 0.2. In the dilute limit
L0@lab and we actually have to use the last line of Eq.~9!
to calculate the left-hand side of Eq.~12!. Due to the soft
electromagnetic coupling both contributions fromL.L0 and
L.Ld can melt the lattice which leads to the existence
two branches of the melting line in the dilute regime, t
upper branch due to fluctuations on the short scaleL.Ld
and the lower branch due to fluctuations on the large s
L.L0. A detailed analysis of the resulting melting curves14

reproduces the results of Ref. 15. Moreover, the thermal
teau scaleL̃ is intimately related to the location of the ‘‘tip’
of the melting curve: IfL0 equals the thermal plateau leng
L̃, i.e.,L0.L̃ both contributions are equal and thus this co
dition determines the location of the tip of the melting curv
This makes clear that much of the phase behavior of
vortex lattice is already encoded in the single-vortex prop
ties and that it is the nonlocal electromagnetic coupling alo
a single vortex line which gives rise to the complex pha
behavior in the low-field regime. Calculations regarding t
resulting phase diagrams for vortex lattices are prese
elsewhere,14 in this work we focus on single-vortex prope
ties.

IV. VORTEX PINNING AT TÄ0

Now, we consider fluctuations of a single vortex lin
caused by quenched point defects at low temperatureT
14451
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'0 such that we can neglect thermal fluctuations. The ef
of point defects can be modeled by a quenched disorder
tential V(z,u) with a Gaussian distribution, zero mean, a
short-range correlations in all directions,3

V~z,u!V~z8,u8!5gjab
4 d~z2z8!djab

~u2u8!

5gjab
4 d~z2z8!E d2K

~2p!2
e2K2jab

2

3eiK•(u2u8). ~13!

The parameterg gives the strength of the quenched d
order and is temperature dependent.1 As indicated in Eq.~13!
thed function is smeared out to a rangejab given by the size
of the vortex cores, which can be modeled using the Fou
representation of a Gaussian in the second line. A conven
pinning strength parameterd ~see Ref. 1! is defined by the
ratio of the mean-square pinning energy for a small line
ement of lengthL.jc and with typical displacementu
.jab , Epin

2 (jc).gjab
2 jc , and the square of the correspon

ing tilt energyEtilt (jc).«0«2jab
2 /jc.«0jc ,

d

«
5

gjab
2 jc

~«0jc!
2

. ~14!

In a layered material one can consider the analogous ene
for a segment of lengthL.d, i.e., the mean-square pinnin
energyEpin

2 (d).Up
2 with the pancake pinning energy

Up5~gjab
2 d!1/2 ~15!

and the square of the corresponding tilt energyEtilt (d)
.« l(1/d)jab

2 /d.«0(«21«d
2)jab

2 /d, see Eq.~2!. Using this
we define an analogouslayered pinning strength paramete
dd as

dd5
Up

2

@«0~«21«d
2!jab

2 /d#2
. ~16!

From the definitions it is clear that collective pinning theo
applies to weak pinningd/«!1 and dd!1. Whereas the
former condition is usually fulfilled in anisotropic HTSC’
such as YBCO the latter is violated in layered HTSC’s w
strong disorder such as BSCCO. We call pinning withdd
.1 strong pinning, which we will discuss in detail in Sec
IV B.

A. Weak collective pinning

First we want to focus on the pinning of vortexlines at
low temperatures. This required to consider segments
lengthL.d. Segments with a length comparable tod have
to be treated as pointlike pancake vortices, the disord
induced fluctuations of which will be discussed in Sec. IV
The physics of a single vortex line in point disorder exhib
two different scaling regimes depending on the typical s
of the disorder-induced mean-square displacement^u&2(L)
of a vortex segment of lengthL. For short vortex lengths
3-5
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displacements are small^u&2(L),jab
2 , perturbation theory

is valid, and we can work with Larkin’s random forces4

Fluctuations around the ground state of the line areGaussian
in this random force~RF! regime and we find a roughnes
exponentzRF53/2, i.e.,^u&2(L)}L3 for all n. This regime is
valid up to thecollective pinningor Larkin length Lc which
is defined by the condition̂u&2(Lc)5jab

2 . Longer segments
explore many almost degenerate minima of the pinning
ergy landscape such that fluctuations are non-Gaussian
this so-calledrandom manifold~RM! regime the roughnes
exponent is known exactly only forn51 wherezRM52/3.16

The currently most reliable estimate for generaln is zRM
5(31n)/2(21n) ~Ref. 17 and 18! giving zRM55/8 for the
vortex line in the bulk superconductor. Therefore we fi
^u&2(L)}L5/4 as the asymptotic limit for largeL. However,
these results were derived for a dispersion-free stiffness
apply in this form only to length scalesL,«lab where we
can neglect the dispersive electromagnetic coupling or
very large scalesL@lab where the local limit of the electro
magnetic coupling dominates. In this section we want to
plore the consequences of the electromagnetic coupling
the scaling properties ofu(L) for line pinning withL.d. In
particular, we consider onlyLc.d, as Lc5d marks the
boundary to the regime of pancake vortex pinning. From
definition of dd @see Eq.~16!# and Lc it becomes clear tha
Lc5d is equivalent todd51 and thus also marks the ons
of strong pinning.

On small scalesL,Lc , where^u&2(L),jab
2 , we expand

V(z,u) about u50 to find Gaussian distributed rando
forcesf(z) with

V~z,u!'f~z!•u, ~17!

f i~z! f j~z8!5gd~z2z8!d i j . ~18!

The right-hand side of Eq.~17! being linear inu this leads to
a Gaussian distribution of the displacementsu. Together
with the dispersive elastic part we obtain at low tempe
tures,

^u&2~L !.2E
1/L

1/d dq

2p

g

« l~q!2q4

.5
d,L,«lab :

g

~«0«2!2
L3

Ld,L,lab : ^u&2~Ld!.
g

« l~qd!2
Ld

3

L.lab :
g

«0
2

L31
g

« l~qd!2
Ld

3 .

~19!

Up to numerical prefactors this result holds for alln. For L
5d, only the Fourier mode with the largest wave vectorq
51/d contributes, and we cross over to the pinning of poi
like pancake vortices with only one degree of freedo
which will be discussed in Sec. IV B in detail. As for therm
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fluctuations, we find that̂u&2(L) is essentiallyindependent
of L for scalesLd,L,lab where the weak electromagnet
coupling dominates resulting in a plateau in the pinnin
induced fluctuationŝu&2(L) over a certain range of lengt
scales. The roughness exponent for dispersion relat
« l(q)}q2v is zRF5(322v)/2 and thus negative forv
.3/2 such as the electromagnetic coupling withv52.
Again, one concludes that self-affinity is lost forv.3/2,
which manifests itself in the last line of Eq.~19! that can be
written as

^u&2~L !.^u&q,l
2 ~L !1^u&2~Ld!.^u&2~Ld!F S L

L̃c
D 3

11G
~20!

in complete analogy to formula~10!. The short-scale fluctua
tions are bigger on scalesLd,L,L̃c where

L̃c.LdS «0

« l~qd! D
2/3

.
lab

4/3

Ld
1/3

.
lab

max$«d
1/3,«1/3%

. ~21!

Analogously to thermal fluctuations,Ld,L,L̃c thus speci-
fies the extent of the plateau in the quenched displaceme
The pinning plateau length L˜

c also plays the role of an ef
fective collective pinning length as long asLc,L̃c as we will
see below, cf. Eq.~36!.

From Eq.~19! we can obtain the low-temperature colle
tive pinning length for the case of a strong Josephson c
pling «lab.d using its definition̂ u&2(Lc)5jab

2 :

Lc.5
dd51: d

d.d«l , 1.dd : Lc,«5«jabS d

« D 21/3

d5d«l
1 : «lab

d5d«l
2 : L̃c.

lab

«1/3

d!d«l : Lc,i5jabd
21/35«24/3Lc,«

~22!

@note that« l(qd).« l(1/d).«0«2 for «lab.d such thatdd
5(d/«)(d/«jab)

3]. d5d«l5«k23 is the characteristic dis
order strength at whichLc5«lab and dd51 or d
5«4(jab /d)35d«l(«/«d)3 the required ~higher! disorder
strength forLc5d. Within weak collective pinning theory
we have to restrict ourselves to the regimedd,1 in order to
have Lc.d; at larger disorders pointlike pancake vortic
are strongly pinned, which requires a different descripti
see Sec. IV B.

Lc,« is the usual result for the collective pinning length
an anisotropic superconductor as we find it if the Joseph
coupling dominates on small scales, whereasLc,i is the iso-
tropic result which we recover in the local limit on larg
scales due to the electromagnetic coupling. Because the
placements^u&2 are essentially constant over the ran
«lab,L,L̃c up to the pinning plateau lengthL̃c , the pin-
3-6
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FIG. 1. Schematic plot of the disorder dependence of the collective pinning lengthLc ~a! for strong Josephson coupling«lab.d
according to Eq.~22! and~b! for weak Josephson couplingd.«lab according to Eq.~23!. For Lc,d or dd.1 strong pinning of pointlike
pancake vortices sets in.
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ning length jumps atd5d«l from Lc5«lab to Lc.L̃c upon
weakening the disorder slightly. These results are illustra
in Fig. 1~a!.

For a weak Josephson couplingd.«lab it is more con-
venient to use the parameterdd for the disorder strength
Again restricting ourselves todd,1 we find in analogy to
formula ~22!,

Lc.5
dd51: d

dd512: L̃c.
lab

«d
1/3

dd!1: Lc,i 5jabd
21/3

.d«d
24/3dd

21/3.L̃cdd
21/3

~23!

@note that« l(qd)5« l(1/d).«0«d
2 for d.«lab]. In particu-

lar, we also have a jump fromLc5d at dd51 to the pinning
plateau lengthLc.L̃c upon weakening the disorder slightl
because the displacements^u&2 are constant over the rang
d,L,L̃c , see Fig. 1~b!.

For weak collective pinning whenLc.d the result~19!
for the mean-square vortex displacements remains v
down to the shortest scaleL5d where it crosses over to
correspondingperturbativeresults for the pinning of single
pancake vortices@see Eq.~31!#. For Lc,d, on the other
hand, we have to consider strong pinning of single-panc
vortices which requires a nonperturbative treatment.

B. Strong pinning of pancake vortices

On the smallest scale in a layered superconductorL5d
we can no longer discuss deformations of an elastic vo
line of length L. Rather we have to consider the relati
displacements u5u@( l 11)d#2u( ld) between single-
pancake segmentsof the vortex line in two neighboring lay
ers l 11 and l and discuss the pinning of single-panca
vortices.9,19,20 This becomes particularly interesting as so
asdd.1 where we formally findLc,d and enter a regime
14451
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where pinning is no longer a small perturbation but pointli
pancake vortices are strongly pinned at low temperature

The problem of pancake vortex pinning is equivalent
that of a single-point particle~i.e., a short line segment with
L5d) with n-component displacementu in a disorder poten-
tial Vd(u)5dV(0,u) and a harmonic potential due to th
coupling to the pancakes in adjacent layers. The Hamilton
~1! for the relative pancake displacements becomes

Hd5
1

2d
« l~1/d!u21Vd~u!, ~24!

with « l(1/d).«0(«21«d
2) from Eq. ~2!. Note that we have

neglected some logarithmic corrections in the Hamilton
~24! which come from the additionalu dependence of« l in
the electromagnetic part in Eq.~2!. Corrections due to thes
terms are generally small,9,19,20and they will be neglected in
the following. The disorder potentialVd(u) has a Gaussian
distribution, zero mean, and short-range correlations:

Vd~u!Vd~u8!5
Up

2

A2pn
expS 2

~u2u8!2

2jab
2 D

'Up
2jab

n djab
~u2u8!. ~25!

Then the distribution of realizationsVd(u) is a product
P@Vd(u)#5)up„Vd(u)… over independent distributions

p~E!5
1

A2pUp

expS 2
1

2

E2

Up
2D . ~26!

The strong pinning (dd.1) problem has been studied fo
n51 by Imry-Ma arguments and a replica variation
calculation.21 Imry-Ma arguments have also been used
the casen52 in Refs. 9, 19, and 20. At low temperatures
vortex with displacementu can exploreN5u2/jab

2 pinning
sites with statistically independent disorder configuratio
see Fig. 2. Doing so it can gain a pinning energyEpin(u)
.2Up ln1/2(u2/j2) that can be determined from the cond
tion N*

2`
Epin(u)dEp(E);1. In the Imry-Ma argument the tota
3-7
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JAN KIERFELD PHYSICAL REVIEW B69, 144513 ~2004!
energyE(u)5Epin(u)1(1/2d)« l(1/d)u2 is minimized. The
optimal disorder-induced displacement fluctuationu in the
ground state is

u2.
dUp

« l~1/d!
ln21/2S u

j D . ~27!

Solving the last equation iteratively yields

^u&2.jab
2 dd

1/2 ln21/2dd . ~28!

The corresponding ground-state energyE0.Epin(u) is

E0.2Up ln1/2dd , ~29!

whereas the typical elastic energy sets an energy scaleU*
.(1/2d)« l(1/d)u2

U* .Up ln21/2dd , ~30!

which is the typical size of elastic energy barriers betwe
different metastable states as shown in Fig. 2.

Equation~28! is a nonperturbative result which holds fo
^u&2.jab

2 , which is exactly the conditiondd.1 for strong
pinning. Otherwise perturbation theory applies and we
expand the random potentialVd(u) to linear order inu to
obtain random forces acting on the pancake vortex. Then
finds

^u&2
RF.jab

2 dd ~31!

which is the RF result for weakly pinned pancake vortic
for L5d, the results~31! and ~19! coincide. ^u&2

RF,jab
2

implies thatLc.d such that we cross over to the weak co
lective pinning of lines. From Eqs.~28! and ~31! it follows
that the crossover happens atdd51 where we thus haveLc
.d. This is consistent with our findings~22! and ~23!.

In the RF treatment we neglect the competition of diffe
ent energy barriers with almost degenerate pinning ener
for the vortex position and consider only one valley the p
sition of which is fluctuating from sample to sample. T
typical pinning force isUp /jab from the variation of the
pinning energyUp over the distancejab of disorder correla-
tions.

FIG. 2. Schematic plot of the energy~24!, the sum of a har-
monic potential and the disorder energy. The ground-state ener
E0, typical elastic barriers are of sizeU* .
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C. Pinning in the random manifold regime

So far we have not considered the pinning-induced de
mations of the vortex segment of lengthL on scales exceed
ing the Larkin length, i.e.,L.Lc for weak pinning or scales
exceeding the layer spacing, i.e.,L.d for strong pinning.
On these length scales, where displacements fulfill^u&2(L)
.jab

2 , an expansion of the disorder potential in the displa
ments resulting in random forces does no longer hold,
we have to take into account the non-Gaussian distributio
pinning energies. Within this so-called RM regime no exa
calculation is possible. A Flory argument can estimate
fluctuations by optimizing the free energy of fluctuations
a single length scaleL. For a stiffness with dispersion rela
tion « l(q)}q2v the typical elastic energy of the lineEel
;u2L211v, whereas the pinning energy that can be gain
on the length L is Epin;(Lu2n)1/2. Optimizing (Eel

1Epin)/L with respect tou gives ^u&2(L);L2(322v)/(41n),
i.e., a roughness exponentzRM53(122v/3)/(41n). For
v50 it is known that the estimatezRM5(31n)/2(21n)
improves on the Flory argument.17,18 To interpolate to
this v50 result, we suggest an estimatezRM5(31n)(1
22v/3)/2(21n) for generalv on this phenomenologica
basis.

As long asv,3/2 the vortex line is self-affine, and w
can find the displacement fluctuations by normalizing
scaling relation̂ u&2(L)5L2zRM appropriately. This applies
to the nondispersive (v50) short-scale regimesLc,L
,«lab for weak pinningLc.d @and thus for a strong Jo
sephson coupling«lab.d only# or d,L,«lab for strong
pinning Lc,d @for a weak Josephson couplingd.«lab
only#. Furthermore it applies on large length scalesL.Lc

.L̃c in the case of weak pinning. For weak pinning we no
malize the scaling relation usinĝu&2(Lc)5jab

2 and find

^u&2~L !.jab
2 S L

Lc
D 2zRM

~32!

for Lc,L,«lab and L.Lc.L̃c . For strong pinning, we
normalize by employing the result~28! for ^u&2(d), and we
find

^u&2~L !.^u&2~d!S L

dD 2zRM

~33!

for d,L,«lab .
However,zRM becomes formally negative for allv.3/2

such that an electromagnetic coupling~with v52) destroys
the self-affine scaling properties of the line. This becom
relevant forL.Lc if also L̃c.Lc , which immediately im-
plies the stronger inequalityL̃c.Ld.Lc because of the
jumps in the pinning length that we obtained in Eqs.~22! and
~23!. The resulting inequalityLd.Lc applies ford.d«l if
«lab.d or dd.1 if «lab,d ~in the case of weak pinning
Lc.d the inequality can only be fulfilled for a strong Jo
sephson coupling whereLd5«lab.d; for strong pinning
Lc,d the inequality is always fulfilled for a weak Josephs
coupling whereLd5d.«lab). The cases of strong Josep
son coupling «lab.d and weak Josephson couplingd

is
3-8
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SINGLE-VORTEX FLUCTUATIONS IN LAYERED . . . PHYSICAL REVIEW B69, 144513 ~2004!
.«lab can be treated in a unified manner if we use cor
sponding definitions of the length scaleLd , see Eq.~4!, and
the pinning plateau lengthL̃c , see Eq.~21!. To find the dis-
placementŝ u&2(L) in this part of the random manifold re
gime where dispersion is relevant we can argue in close a
ogy to thermal and random force fluctuations. First, we n
that on scalesLd,L,lab the electromagnetic interactio
leads to the decoupling of vortex elements such t
^u&2(L).^u&2(Ld) remains constant within this regime. O
scales larger thanlab , we can formulate a coarse-graine
model for the vortex line in terms of elastically coupled se
ments of lengthj uu5lab , each of which explores an are
j'

2 5^u&2(Ld) in the transversal direction. A given segme
has to completely reoptimize its configuration if it is di
placed byu;j' . The typical pinning energy fluctuatio
DEl in such a reoptimization is obtained as the sum of
ergy fluctuations of thelab /Ld independently adapting sub
segments:

DEl
2.

lab

Ld
@« l~qd!^u&2~Ld!Ld

21#2.« l~qd!2j uuj'
4 Ld

23 .

~34!

Therefore on scalesL.lab we can use a coarse-grained d
order potentialVl(z,u) with zero mean and a Gaussian d
tribution with

Vl~z,u!Vl~a8,u8!5DEl
2j uu

21j'
2 dj uu

~z2z8!dj'
~u2u8!.

~35!

Thus the effective random force strength isgl

5DEl
2j uu

21j'
22 . The coarse-grained dispersion-free stiffne

for L.lab is the isotropic, local limit value«l.«0. Using
such a coarse-grained model we read off an effective pinn
length

L̃c.j'
2/3«0

2/3gl
21.LdS «0

« l~qd! D
2/3

, ~36!

which is exactly the pinning plateau length found earlier
Eq. ~21!. In the coarse-grained model, the displacements
L.L̃c are

^u&2~L !.^u&2~Ld!S L

L̃c
D 2zRM

. ~37!

For scales lab,L,L̃c it follows that ^u&2(L),j'
2

5^u&2(Ld) such that short-scale fluctuations still domina
for these length scales. Hence the plateau is also prese
the RM regime, and we obtain in complete analogy to f
mula ~20!,

^u&2~L !.^u&2~Ld!F S L

L̃c
D zRM

11G , ~38!

also for the RM regimeL.Lc for the caseL̃c.Ld.Lc .
This completes our analysis of pinning-induced fluctuatio
for weakly pinned vortex lines.
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V. THERMAL DEPINNING

Thermal fluctuations weaken the pinning by averag
over thermally accessible configurations, which can lead
thermal depinning. For a pinnedd-dimensional elastic mani
fold, thermal depinning is a phase transition from a therma
rough phase withz51/2 to a disorder roughened phase w
a bigger z.1/2 for d,2n/(21n),3 i.e., for a vortex line
with d51 there is a phase transition for alln.2. For the
physically relevant dimensionsn<2 there is no phase tran
sition, and thermal fluctuations are irrelevant asymptotica
however, the crossover scale can become very large.
crossover scale is the pinning lengthLc(T) which starts to
grow above a characteristic depinning temperature due to
weakening of the disorder by thermal fluctuations. In t
marginal casen52, the growth ofLc(T) above the depin-
ning temperature is exponential. For a pointlike pancake v
tex with d50, there is no phase transition in the thermod
namic sense possible but there is a crossover from the
temperature result~28! of the Imry-Ma argument to a high
temperature regime where the RF result~31! holds.21 In
addition, there will be a crossover from strong pinning
pointlike pancake vortices to weak pinning of vortex lines
Lc(T),d at low temperatures butLc(T).d at sufficiently
high temperatures due to the increasing pinning length.9 This
interesting crossover for strong pinning will be studied
detail in Sec. V B; in the following section we focus o
thermal depinning for weak collective pinning, i.e.,Lc(0)
.d.

A. Thermal depinning for weak pinning

In the presence of thermal fluctuations, the displacem
has two partsu5up1uth in the notation of Ref. 1. The par
up is due to pinning and does not average to zero upon
forming the thermal average:up5^u&. The part uth5u
2^u& describes thermal fluctuations around the pinning p
In weak collective pinning theory it is always assumed th
the thermal averages over fluctuations ofuth can be per-
formed just with the elastic Hamiltonian as in the absence
disorder; thus it is assumed that thermal averages are Ga
ian. By exploiting a tilt symmetry of the system22 one can
establish that̂uth

2 & is indeed unchanged by the disorder,

^uth
2 &5^u2&2^u&25^u2&T , ~39!

but the distribution ofuth is non-Gaussian on large scales23

Both findings can also be put in the language of a rep
variational calculation along the lines of Refs. 21 and 2
where an instability with respect to replica symmetr
breaking~RSB! signals thatuth is not Gaussian distributed
Only the replica symmetric solution, which corresponds t
self-consistent RF approximation, has both displacementsuth
and up Gaussian distributed. Therefore, only in the RF
gime on scalesL,Lc(T) it can be justified to thermally
average as in the absence of disorder, which is used to
culateLc(T) within the weak collective pinning theory.

To obtain Lc(T) also for a dispersive line stiffness, w
follow the dynamic approach that is also employed in Ref
in which the dynamic response to random forces is taken
3-9
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account using an overdamped dynamics with a vortex
viscosity h l . This allows one to write thermal average
^u2&T(t). 1

2 ^@u(t)2u(0)#2& t for a dispersive line stiffness
in the absence of the pinning potential as

^u2&T~ t !.TE dq

2p

1

« l~q!q2
$12exp@2« l~q!q2t/h l #%

.2E
q(t)

` dq

2p

T

« l~q!q2
, ~40!

which converges to the result~9! for t→` but at finite times,
the large-scale cutoff is provided by 1/q(t), defined as solu-
tion to the equation« l„q(t)…q(t)25h l /t. Dynamic random
forces are obtained by expanding the potentialV@z,up(t)
1uth(t)# of Eq. ~13! in up(t) aboutup50. In order to cal-
culate ^u(q)&^u(q8)&5GRF(q)2pd(q1q8), we perform
the thermal averageŝuth

2 &T(t) using the result~40!. This
gives
th

h
t

th
c
m

e
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e
GRF~q!.

g

« l~q!q2E0

`dt

h l
e2« l (q)q2t/h lE d2K

~2p!2
K2

3e2K2[ jab
2

1^uth
2 &T(t)]

.
g

« l~q!q2E0

`dt

h l
e2« l (q)q2t/h l

jab
4

@jab
2 1^uth

2 &T~ t !#2

.
g

« l~q!q2Eq

`

dq1

1

« l~q1!q1
3

3
jab

4

H jab
2 12E

q1

`

~dq2/2p!@T/« l~q2!q2
2#J 2 , ~41!

where we replaced the exponential decay witht by cutting
off the t integration for long times att(q)5h l /« l(q)q2, used
the relationt5t(q) to switch back to integration variablesq,
and finally set (d/dq)„« l(q)q2

….« l(q)q to a good approxi-
mation. The advantage of the dynamical approach is to g
erate the proper hierarchy of IR regularizations in theq in-
tegrals in Eq.~41!. Performing the integrals and Fourie
transforming finally gives the result
^u&2~L !.2E
1/L

` dq

2p

g

« l~q!q2E0

1/q

dl
l

« l~1/l !

jab
4

@jab
2 1^u2&T~ l !#2

.

¦

d,L,«lab : ^u&T50
2 ~L !S jab

2

jab
2 1^u2&T~L !

D 2

lnS e1
^u2&T~L !

jab
2 D

d,«lab,L,lab : ^u&T50
2 ~«lab!S jab

2

jab
2 1^u2&T~«lab!

D 2

lnS e1
^u2&T~«lab!

jab
2 D

«lab,d,L,lab : ^u&T50
2 ~d!S jab

2

jab
2 1^u2&T~d!

D 2

lab,L,L̃: ^u&T50
2 ~L !S jab

2

jab
2 1^u2&T~Ld!

D 2

L̃,L: ^u&T50
2 ~L !S jab

2

jab
2 1^u2&T~L !

D 2

lnS e1
^u2&T~L !

jab
2 1^u2&T~Ld!

D ,

~42!
tor

tant

c-

s.

y

which takes into account all possible cases with regard to
vortex lengthL relative to the length scales«lab and d in-
troduced by the dispersion and the thermal plateau lengtL̃.
As becomes clear from the structure of the expressions,
thermal smoothing of the disorder potential as well as
random-force-induced displacements themselves are affe
by the electromagnetic coupling. Within the plateau regi
for thermal fluctuations,Ld,L,L̃, the thermal smoothing
essentially comes from fluctuations on the scaleLd because
line elements effectively decouple. The effects on disord
e

he
e
ted
e

r-

induced fluctuations themselves manifest in the first fac
giving the low-temperature result^u&T50

2 (L) as calculated in
Eq. ~19!. As we saw above, these fluctuations stay cons
in the plateau regimeLd,L,L̃c , see Eq.~20!. In Sec. V B,
it will become clear that the above result~42! is only correct
if we can treat pinning on all length scales by weak colle
tive pinning theory. This becomes wrong as soon asdd.1 or
Lc(0),d when we have strong pinning of pancake vortice
Then all thermal smoothing terms^u2&T(L) in Eq. ~42! have
to be replaced by the numberN(T,L) of states accessible b
3-10
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SINGLE-VORTEX FLUCTUATIONS IN LAYERED . . . PHYSICAL REVIEW B69, 144513 ~2004!
thermal fluctuations of vortex segments of lengthL. This
number will be estimated for the strong pinning case in S
V B, see Eq.~69!.

It is evident that the rich behavior of the displaceme
fluctuations~20! for a dispersive line stiffness will also lea
to interesting features for the pinning lengthLc(T). Taking
into account the thermal smoothing of the pinning potent
the perturbative approach is valid as long as^u&2(L),jab

2

1^u2&T(L) because thermal fluctuations increase the dis
der correlation length to an effective valuejab

2 1^u2&T(L),
see Eq.~41!. Therefore, the temperature-dependent pinn
length Lc(T) is obtained by the condition̂ u&2

„Lc(T)…
5jab

2 1^u2&T„Lc(T)…, which can be evaluated using Eq
~9!, ~19!, and~42!.

Depending on the size of theT50 pinning length~22! or
~23! in comparison to the scalesLd and L̃, the thermal de-
pinning will happen at different characteristic temperatu
such that we have to distinguish three cases within the w
pinning regime

~ i! large disorderLc~0!,Ld ~43!

@for weak pinning we only considerLc(0).d in order to
have weak collective pinning of lines atT50 such that the
regime~i! becomesd,Lc(0),«lab and is presentonly for
a strong Josephson coupling; strong pinning of pancakes
be discussed in the following section#,

~ ii ! intermediate disorderL̃c,Lc~0!,L̃ ~44!

@remember thatLc(0) jumps fromLd to the pinning plateau
lengthL̃c and essentially does not take on values in betwe
see Eq.~22!#, and

~ iii ! very weak disorderLc~0!.L̃. ~45!

We will use the abbreviations~i!, ~ii !, ~iii ! throughout the
whole paper to denote the corresponding cases.

For a strong Josephson coupling«lab.d, we find

~ i!:Lc~T!.

¦

T,Tdp,« : Lc,«

Tdp,«,T,T«l : Lc,«

Tdp,«

T
e(T/Tdp,«)3

T5T«l
2 : «lab

T5T«l
1 : L̃c.

lab

«1/3
.L̃«2/3

T«l
1 ,T,Tdp,i : L̃c

T

T«l
.L̃

T

Tdp,i

T.Tdp,i : L̃e(T/Tdp,i )
3
,

~46a!

~ ii !:Lc~T!.5
T,Tdp,«l : Lc,i

Tdp,«l,T,Tdp,i : Lc,i

T

Tdp,«l
.L̃

T

Tdp,i

T.Tdp,i : L̃e(T/Tdp,i )
3

~46b!
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~ iii !: Lc~T!.5
T,Tdp,i : Lc,i

Tdp,i,T,Tdp,«l : Lc,i

Tdp,i

T
e(T/Tdp,i )

3

T.Tdp,«l : L̃e(T/Tdp,i )
3
,

~46c!

with characteristic temperatures

Tdp,«.«2/3«0
1/3jab

4/3g1/35««0jabS d

« D 1/3

, ~47!

T«l.Tdp,« ln1/3S Tdp,«

Tdp,«l
D2Tdp,«l

.Tdp,«H ln1/3F S d

d«l
D 1/3G2S d«l

d D 1/3J , ~48!

Tdp,«l.«0jab

«

k
.Tdp,«S d«l

d D 1/3

, ~49!

Tdp,i.«0
1/3jab

4/3g1/35«0jabd
1/35«22/3Tdp,« . ~50!

The different regimes in the temperature dependence of
pinning lengthLc(T) for strong Josephson coupling are
lustrated in Fig. 3~a!. For large disorder~i!, i.e., short scales
Lc(0),«lab or d.d«l @but Lc(0).d or dd,1], Eq. ~46!
gives the usual anisotropic result with an exponentially
creasingLc(T) above theanisotropic depinning temperatur
Tdp,« .1 This behavior will continue untilLc(T)5«lab ,
which defines the slightly higher temperatureT«l . Due to
the electromagnetic coupling, the displacements^u&2(L)
stay essentially constant on scales«lab,L,L̃c up to the
pinning plateau length such that the pinning length jumps
the temperatureT«l from Lc5«lab to Lc.L̃c upon a small
temperature increase. In the rangeL̃c,L,L̃ disorder-
induced fluctuations start to increase again withL according
to Eq. ~20! but the thermal fluctuations responsible for t
weakening of the disorder are still essentially constant du
the electromagnetic interactions. This leads to a less effec
smoothing and the pinning length grows only linearly withT.
Finally, on scalesL.L̃, both thermal and disorder-induce
fluctuations increase withL. Because the stiffness takes o
the isotropic value« l.«0 from the local limit of the electro-
magnetic coupling, the characteristic depinning tempera
is the isotropicTdp,i . But also forT.Tdp,i the temperature
dependence ofLc(T) is slightly different from the usual iso
tropic behavior because the additional log divergence in
last line of Eq.~42! is cutoff at small scales by the therm
plateau lengthL̃ due to the small-scale thermal fluctuatio
favored by the electromagnetic coupling.

For intermediate disorder~ii !, lab /«1/3,Lc(0),lab /«,
thedepinning temperature for the scale«lab calledTdp,«l is
most relevant.@Note that due to the dispersion of the stif
ness,Tdp,«l is also the depinning temperature for the therm
plateau lengthL̃, cf. Eq. ~10!#. Starting from the isotropic
value Lc,i at low temperatures, the depinning is driven
short-scale thermal fluctuations on the scale«lab . ~For in-
3-11
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JAN KIERFELD PHYSICAL REVIEW B69, 144513 ~2004!
FIG. 3. Schematic plot of the temperature dependence of the collective pinning lengthLc ~a! for strong Josephson coupling«lab.d
~e.g., for YBCO! according to Eq.~46! and ~b! for weak Josephson couplingd.«lab ~e.g., for BSCCO! according to Eq.~51!. For Lc

,d strong pinning of pointlike pancake vortices sets in~shaded region!. The corresponding curves for the case of strong pinning are
shown at the left and right; they emerge from the strong pinning regime atT5T* and are described by Eqs.~71! and ~72!.
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termediate disorder, we haveTdp,«l,Tdp,i .) For weak dis-
order~iii !, Lc(0).lab /«, the thermal depinning is driven b
thermal fluctuations on the scale of the isotropic Lark
length Lc,i itself, and the relevant depinning temperature
the usual isotropic resultTdp,i . ~For weak disorder, we hav
Tdp,i,Tdp,«l .)

For a weak Josephson couplingd.«lab , we can perform
the same analysis and get analogous results. However
case~i! of large disorderLc(0),d or dd.1 is peculiar be-
cause the condition puts us in the regime of strong pinning
pancakes, and only at temperatures high enough such
Lc(T).d we can get weak pinning of lines. This requires
theory for thermal depinning from strong pinning which w
defer to the following Sec. V B. The basic differences to t
case of strong Josephson coupling are the different defin
of the thermal plateau lengthL̃, see Eq.~11!, and in regimes
~ii ! and ~iii ! thermal depinning is now governed by fluctu
tions on the scaled instead of«lab such that the correspond
ing temperatureTdp,d is the relevant depinning temperatur
As long as weak collective pinning theory applies a
Lc(T).d, we obtain

~ i!: Lc~T!.H T,Tdp,i : L̃c

T

Td
.L̃

T

Tdp,i

T.Tdp,i : L̃e(T/Tdp,i )
3
,

~51a!

~ ii !: Lc~T!.5
T,Tdp,d : Lc,i

Tdp,d,T,Tdp,i : Lc,i

T

Tdp,d
.L̃

T

Tdp,i

T.Tdp,i : L̃e(T/Tdp,i )
3
,

~51b!

~ iii !: Lc~T!.5
T,Tdp,i : Lc,i

Tdp,i,T,Tdp,d : Lc,i

Tdp,i

T
.L̃

T

Tdp,i

T.Tdp,d : L̃e(T/Tdp,i )
3
,

~51c!
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with characteristic temperatures

Tdp,d.« l~1/d!jab
2 /d5Updd

21/2, ~52!

Td.Tdp,d~dd
1/321!5Up~dd

21/62dd
21/2!, ~53!

Tdp,i.«0
1/3jab

4/3g1/35~«0jab
2 /d!«d

4/3dd
1/3. ~54!

Figure 3~b! shows the different regimes in the temperatu
dependence of the pinning lengthLc(T) for weak Josephson
coupling. A detailed study of the case~i! of strong pinning
will be presented in the following section, also for the ca
of strong Josephson coupling («lab.d). In particular, we
will clarify how Lc(T) increases beyondd by thermal
smoothing for the strong pinning situationLc(0),d. The
discussion for the cases~ii ! and~iii ! of intermediate and very
weak disorder carries through analogously to the previ
discussion for strong Josephson coupling.

B. Thermal depinning from strong pinning

Now we address the thermal depinning of pancake vo
ces which are pinned on the scaleL5d. The thermal depin-
ning will be qualitatively different for weakly pinned pan
cake vortices withdd,1 and strongly pinned pancak
vortices withdd.1 @or Lc(0),d]. In particular, it has to be
worked out how to cross over to the findings for weak
pinned lines on scalesL.d if the temperature becomes su
ficiently high.

It is instructive to discuss first what happens if we naive
assume that all thermal averages can be performed with
elastic part of the Hamiltonian as in the absence of disor
as it is justified in weak collective theory, i.e., for weak
pinned pancake vortices which have displacements~31! at
low temperatures. Similar to vortex lines, this means that
range of the pinning forces is smeared out and we hav
replace jab

2 by the effective vortex core areajab
2

1^u2&T(d), cf. Eq.~41!. With Gaussian thermal fluctuation
of the vortex cores, we can define a thermally averaged
ning potentialV̄d by V̄d(^u&)5^Vd(u)& which will again be
3-12
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SINGLE-VORTEX FLUCTUATIONS IN LAYERED . . . PHYSICAL REVIEW B69, 144513 ~2004!
Gaussian distributed as in Eq.~25! but with a thermally
weakened characteristic energy

Ūp
2~T!5Up

2
jab

2

jab
2 1^u2&T~d!

.
Up

2

11T/Tdp,d
. ~55!

This meansTdp,d is the characteristicdepinning temperature
for weakly pinned pancake vortices. The Imry-Ma argument
is made in the same way as atT50 with a slightly lower
number of statistically independent smeared pinning siteN
5u2/(jab

2 1^u2&T), and we find for the optimal displaceme

^u&2.jab
2 dd

1/2S 11
T

Tdp,d
D 21/2

ln21/2dd . ~56!

This result is expected to hold for^u&2.jab
2 1^u2&T , other-

wise perturbation or random force theory applies wh
gives with the same thermally weakened disorder potent

^u&2
RF'jab

2 ddS 11
T

Tdp,d
D 22

~57!

@note that thermally averaged random forces are also Ga
ian distributed but asderivativesof the potential, see Eq
~17!, they have an additional factor (11T/Tdp,d)21 in their
thermally weakened correlations~18! as compared to Eq
~55!#.

At Td.Tdp,d(dd
1/321) we find ^u&2.jab

2 dd
1/3 both with

the Imry-Ma argument~56! and perturbation theory~57!,
moreover^u&2.^u2&T , and both results cross exactly ov
to the line like weak pinning result~42! with L5d as can be
checked easily. Altogether this clearly suggestsLc(Td).d
and a smooth crossover to weak collective pinning theory
lines on scalesL.d. Though this scenario is consistent
turns out not to be correct because the thermal average
Eq. ~55! are performed as in the absence of disorder wit
Gaussian distribution. This is essentially justified if disord
is a small perturbation but in the regime of strong pinning
relevant thermal fluctuations giving rise to the therm
smearing are non-Gaussian.23 As a result formulas~56! and
~57! are incorrect for the casedd.1 of strongly pinned pan-
cake vortices whereas our argumentation is justified
weakly pinned pancake vorticesdd,1 which are correctly
described by formula~57!.

The problem for the case of strongly pinned pancake
clearly recognized if we generalize the replica variatio
calculation of Ref. 21 fromn51 to generaln and apply it to
the physical problem of pancake pinning withn52 at hand.
As usual in replica variational calculations, the perturbat
RF result~57! is exactly what is found as the replica sym
metric ~RS! solution:

1

n
^u2&RS5

1

n
jab

2 T

Tdp,d
1~2p!2n/2jab

2 ddS 11
T

Tdp,d
D 212n/2

,

~58!

Tdp,d5
1

2n
« l~1/d!jab

2 /d. ~59!
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Next, one checks for the stability of this RS solution wi
respect to RSB; the temperature below which the RS solu
becomes locally unstable~which defines the so-called
Almeida-Thouless line! turns out to be exactly the tempera
ture Td that we have identified above as the crossover te
perature to linelike weak collective pinning. Within the re
lica variational approach we can specify numeric
prefactors, and forn52, we find

Td5Tdp,dF S 4

p
ddD 1/3

21G . ~60!

This instability temperature is identical to the temperatu
where the RS mean-square displacement^u2&RS from Eq.
~58! has a minimum as a function ofT or where ^u&2

RS
.^u2&T .

However, following Ref. 21 it can be shown that it is n
the temperatureTd which marks the onset of glassy behavio
Rather, one finds that below a certain temperatureT* a one-
step RSB solution becomes locally stable. In the limitdd
@1 of strong pinning the crossover temperature is

T* 5U* 5~2p!2n/4Up ln21/2@n~2p!2n/4dd
1/2# ~61!

and T* }dd
1/2 is higher thanTd}dd

1/3. In the same limitdd

@1 displacements and the variational free energy are

1

n
^u2&RSB5~2p!2n/4jab

2 dd
1/2 ln21/2@n~2p!2n/4dd

1/2#

3S 11
T

uE0u D
2n/4

, ~62!

uFu5 1
2 ~2p!2n/4Up ln1/2@n~2p!2n/4dd

1/2#. ~63!

The variational free energyF'E0 is dominated by the
ground-state energy at low temperatures.

Equation ~62! describing the thermal depinning of
strongly pinned pancake vortex is the main result of t
section and requires some further discussion.T* is identical
to the temperature wherêu2&RSB5^u2&RS or ^u&2

RSB
.^u2&T and the energy scaleU* from Eq.~30! that we iden-
tified as typical elastic energy barriers between differ
metastable energy minima for the pancake. As can be see
Eq. ~62!, the characteristic depinning temperature in the o
step RSB solution is the ground-state energyuE0u of the T
50 problem. Note that formula~63! is identical to the result
~29! from the Imry-Ma argument but specifies numeric
prefactors. In particular,uE0u.T* such that the disorder
induced fluctuationŝu2&RSB do not experience considerab
thermal smoothing up to the temperature where the R
solution becomes unstable. Thus the one-step RSB solu
is essentially temperature independent and identical to
result~28! of theT50 Imry-Ma argument in the whole tem
perature rangeT,T* . This suggests that pancakes a
strongly pinned in valleys of depth.uE0u, whereas therma
activation into energetically close valleys starts to occur
temperatures.T* leading to the instability of the RSB so
lution. Therefore typical intervalley energy differences a
indeedU* .T* .
3-13
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JAN KIERFELD PHYSICAL REVIEW B69, 144513 ~2004!
As already noted we haveT* .Td for strong pinningdd
.1. So the RSB solution is the only stable extremum of
free energy at low enough temperaturesT,Td whereas the
RS solution is the only stable extremum at high enough te
peraturesT.T* . The situation is somewhat more comp
cated in the rangeTd,T,T* , where both solutions are lo
cally stable but it can be shown that the RSB solution is
global energy minimum.21 This is reminiscent of the ‘‘com-
petition’’ that is induced by the fact that forT.Td the pin-
ning should become linelike as suggested by the naive in
ductory argument but on the other hand, the individ
pancake elements are still strongly pinned in valleys of de
.uE0u.

The results we obtained so far further suggest that wit
the small temperature rangeT* ,T,uE0u the strongly
pinned pancakes will completely liberate from the valleys
depth.uE0u and essentially all states become thermally
cessible at temperaturesT.uE0u. Then thermal fluctuations
are only weakly affected by the strong pinning ener
minima of the individual pancake segments such that a cr
over to the weak collective pinning of lines as outlined in t
preceding section takes place. For a vanishing Josep
coupling this crossover has been described as ‘‘varia
range thermal smoothing’’ in Ref. 9. The central quantity
the Imry-Ma argument presented forT50 above is the num-
b
u

fu
um
i-
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ber of accessible statesN given a ground-state energyE0. At
T50 we have

N~0!5
^u2&

jab
2 E

2`

E0
dEp~E!, ~64!

where the ground-state energy fulfillsN(0)51 by definition.
From our interpretation in terms of energy valleys of dep
.uE0u and intervalley energy differences.T* we expect
N(T) to sharply increase in the temperature intervalT* ,T
,uE0u. For T.0 there are two effects which increaseN(T).
First, for T.T* we have^u2&T.^u&2, and the ‘‘search’’ or
‘‘trapping’’ area increases tôu&21^u2&T . This is the domi-
nant effect at high temperatures and reproduces the w
pinning theory results. Second, and more important
strong pinning at low temperatures, essentially all energ
up to E01T can be probed by the pancake particle: Given
ground-state energyE0 at T50, the probability of occupying
a pancake state of energyE at temperatureT is given by
exp@2(E2E0)/T#/$11exp@2(E2E0)/T#%, which is reminis-
cent of a Fermi-like distribution as two pancakes repel a
cannot occupy the same pinning site. Upon disorder ave
ing this gives for the number of accessible states at temp
ture T,
N~T!5
^u&21^u2&T

jab
2 E

2`

`

dEp~E!
1

11exp@~E2E0!/T#
'

^u&21^u2&T

jab
2 E

2`

E01T

dEp~E!,

.5
T,T* : O~1!

T* ,T!uE0u: S 11
T

T*
D S 11

T

uE0u D
21

expS c
T

T*
2

1

2

T2

Up
2D

T.uE0u:
T

Tdp,d
,

~65!
-

l

, we
tive
where we usedN(0)51, T* 5cUp
2/uE0u with a numerical

constantc5 1
2 (2p)2n/2 from Eqs.~63! and~61!, and the ap-

proximation erfc(z)51/Ap*2`
z dxe2x2

'1/2Apuzu21e2z2

for z!21 if T!uE0u, and 1
2 ,erfc(z),1 if T.uE0u. Taking

only the leading terms of the result~65! and usingc51 in
order to have a smooth crossover atT.uE0u we obtain the
approximate simplified expression

N~T!.S 11
T

T*
D expS T

T*
D ~66!

for T,uE0u. An expression forN(T) is at the heart of a
theory of thermal smearing because it quantifies the num
of states the disorder is averaged over due to thermal fl
tuations within the pinning energy landscape. To make
ther progress we make two assumptions. First, we ass
that N(T) is reasonably large, which will be true for pract
er
c-
r-

e

cally all T.T* due to the exponential increase in Eq.~65!.
Second, we assume that theN(T) states the thermal fluctua
tions average over are drawnrandomlyfrom the distribution
p(E). This assumption is true at high temperatures whenT
.uE0u; at low temperaturesT,uE0u the thermal average wil
be only over the accessible states in the interval@E0 ,E0
1T# above the ground state. Under these assumptions
can use the central limit theorem and introduce an effec
thermally weakened pinning strengthŪp which replaces the
result ~55! that is based on weak pinning assumptions:

Ūp
2~T!5Up

2 1

N~T!
.5 T,uE0u: S 11

T

T*
D 21

expS 2
T

T*
D

T.uE0u:
Tdp,d

T
.

~67!
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Note that atT.uE0u, the high-temperature result cross
over to our above result~55! where we assumed the therm
smoothing to be independent of the disorder, which is o
true for weak pinning. We noted already that forT.T* the
displacement fluctuations are given by RF results. Wher
for weakly pinned pancake vortices (dd,1) the effective
pinning strength~55! was appropriate which led to formul
~57! or ~58!, we have to use the effective pinning streng
~67! for strong pinning (dd.1) in the random force theory
This gives

^u&2
RF.^u&2

RF,T50

1

N2~T!

.jab
2 dd5 T,uE0u: S 11

T

T*
D 22

expS 22
T

T*
D

T.uE0u: S Tdp,d

T D 2

,

~68!

for the correct temperature dependence of the disor
induced displacement fluctuations for pancakes forT.T*
@again, as derivatives of the potential force correlations h
an additional factorN21(T) as compared to Eq.~67!#. Note
that ^u&2

RF,^u2&T for T.T* such that^u2&.^u&T
2 for T

.T* and disorder-induced fluctuations only dominate bel
T* . At T.uE0u, the high-temperature result~68! crosses
over to our above results~57! or ~58!.

We also realize that in Eq. ~42!, factors „1
1^u2&T(d)/jab

2
… which give the number of thermally acce

sible states in weak pinning theory should be replaced
N(T) if we have strong pinningdd.1 @or Lc(0),d]. Also
thermal fluctuations of longer vortex segmentsL.d have
14451
y
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e

y

different behavior in the case of strong pinning. Therm
fluctuations of relative displacements in the different lay
are independent which leads to^u2&T(L).(L/d)^u2&T(d).
Therefore, also the number of thermally accessible sta
adds up to

N~T,L !.
L

d
N~T! ~69!

if L.d. Analogously to what we noted for the therm
smoothing on the scaled, factors@11^u2&T(L)/jab

2 # in the
weak pinning result~42! have to be replaced byN(T,L) in
case of strong pinning.

Using Eq.~42! modified by this replacement and the de
nition of the pinning length by the relation̂u&2

„Lc(T)…
.jab

2 1^u2&T„Lc(T)… we can obtain the thermal smoothin
of the pinning lengthLc(T) for the case of strong pinning
where Lc(0),d at low temperatures. First, we hav
observed above that the transition temperatureT* is
exactly the temperature wherêu&2

RSB(d).^u&T
2(d) such

that

Lc~T* !.d ~70!

by definition of Lc(T). It is also clear from Eqs.~65! and
~69! that for T.uE0u the results for the thermal smoothin
cross over to the weak pinning results. Therefore we reco
cases~i! of the results~51! for weak Josephson coupling an
~46! for strong Josephson coupling forT.uE0u. The cross-
over within the temperature rangeT* ,T,uE0u is approxi-
mately described with the aid of our results~65! and~69! for
N(T,L), and gives a very steep increase fromLc(T* ).d to
the weak pinning results due to the exponential growth~65!
of N(T) in this temperature interval. For strong Josephs
coupling«lab.d we find
~ i!: Lc~T!.5
T* : d

T* ,T,uE0u: d maxH 1,
1

N~T!
e(Lc,« /d)3(T/Tdp,d)N(T)2J

uE0u,T,T«l : Lc,«

Tdp,«

T
e(T/Tdp,«)3

,

~71!

whereas for a weak Josephson couplingd.«lab we obtain

~ i!: Lc~T!.5
T* 2: d

T* 1: Lc,idd
1/6.L̃cdd

21/6~,L̃c!

T* ,T,uE0u: Lc,iN
2/3~T!S T

Tdp,d
D 1/3

.L̃
T1/3Tdp,d

2/3

Tdp,i
N2/3~T!

uE0u,T,Tdp,i : L̃c

T

Td
.L̃

T

Tdp,i
.

~72!
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JAN KIERFELD PHYSICAL REVIEW B69, 144513 ~2004!
Note thatT* .Tdp,« for a strong Josephson coupling («lab
.d) such that the effective depinning temperature appear
be T* as in the case of weak Josephson coupling.Lc(T)
grows with a double exponential forT* ,T,uE0u before we
recover the weak pinning results~46! for T.uE0u. Analyzing
the modified relation~42! carefully, it becomes clear tha
approachingT* from the high-temperature side we fin
Lc(T).d already at a temperatureT.T* lndd<uE0u. On the
other hand we found in Eq.~70! that Lc(T* ).d. This sug-
gests thatLc(T).d not only forT<T* but that this relation
extends into the temperature intervalT* ,T,uE0u which is
implied by the notation in the second line of Eq.~71!. For a
weak Josephson coupling (d.«lab) the electromagnetic
coupling leads to a pronounced jump of the pinning len
Lc(T) at the temperatureT* from Lc.d to Lc.Lc,idd

1/6,
which is followed by an exponential increase up toT.uE0u
where we recover the weak pinning results~51!. This jump is
the analogon to what we found in Eq.~46! for a strong Jo-
sephson coupling. The result~72! for the pinning length for a
weak Josephson coupling is in qualitative agreement
slightly different from what has been obtained previously
Ref. 9.

C. Thermal depinning in the random manifold regime

On scalesL,Lc(T) the disorder-induced displacemen
^u&2(L) are decreased by thermal smearing of the disor
potential according to Eq.~42! for d,L,Lc(T) and weak
collective pinning and according to Eq.~62! on the scaleL
5d when we consider strongly pinned single-pancake vo
ces. Above the depinning temperature whereLc starts to in-
crease from itsT50 value, there is a range of length scal
L,Lc(T) where the disorder-induced displacements
smaller than the thermal displacements^u2&T(L) for weak
collective pinning. However, on scalesL.Lc(T) for weak
collective pinning andL.d for strong pinning the disorde
is still dominating and thermal fluctuations do not change
large-scale scaling properties in the RM regime as wor
out in formulas~32!, ~33!, and~38!. However, we eventually
have to adjust the normalization of the scaling relations
the case of weak pinningLc(T).d we normalize using
^u&2

„Lc(T)….^u2&T„Lc(T)… and obtain

^u&2~L !.^u2&T„Lc~T!…S L

Lc~T! D
2zRM

~73!

in the nondispersive regimesLc(T),L,«lab and L

.Lc(T).L̃c . For strong pinningLc,d on scalesd,L
,«lab the result~33! stays valid for temperaturesT,T*
where thermal smearing can be neglected. ForT.T* the
Larkin length increases beyondd due to thermal smearing
and we can use the above weak pinning result~73! with
Lc(T) as crossover scale.

For the remaining dispersion-dominated caseL.Lc(T)
when L̃c.Ld.Lc(T) the result ~38! remains valid as all
relevant length scales exceedLc(T) and thermal smearing
can be neglected.
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VI. CRITICAL CURRENTS

Each vortex configuration has a different pinning ener
which gives rise to the quenched positional fluctuations
the vortex line that tries to optimize its pinning energy ga
The energy landscape in the high-dimensional configu
tional space is very complex~Fig. 2 illustrates the much
simpler energy landscape of a pointlike pancake segm!
leading to the existence of many metastable vortex confi
rations. If a current is applied there is an additional Lore
force f L5 j F0 /c ~per vortex length! on a pinned vortex seg
ment and thus an energy gainf LLu for displacing a vortex
segment of lengthL by an amountu. Therefore the pinning
energy landscape becomes tilted in the presence of the
ing force and eventually the optimal vortex configurati
changes. In the absence of thermal fluctuations atT50,
however, vortex motion does not set in as soon as the glo
energy minimum changes but only when the initial ener
minimum becomesunstabledue to the driving force exerted
by the current. This happens if the Lorentz forcef L on the
pinned vortex segment becomes larger than the average
ning force, which defines thecritical current density jc . For
j , j c there are energy barriers between the metastable vo
configurations which diverge for small currents. These
ergy barriers can be overcome only by thermal activation
T.0 giving rise tovortex creepfor j , j c . In the limit of
small currents barriers diverge, and the activated creep
namics becomes very slow which is a hallmark of glas
behavior. Forj . j c the tilt of the energy landscape is suffi
cient that all barriers vanish and the vortex line starts
move with the usualflux flow velocity v; j rn /Hc2, where
rn is the normal-state resistivity.

A. Weak collective pinning

In order to determine the critical current density we ha
to consider vortex displacementsu2.jab

2 1^u2&T(Lc),
which are of the order of the disorder potential correlati
length jab at low temperatures which gets smeared out
the thermal motion of the pinned vortex above the depinn
temperature. For weak pinningLc(T).d the optimal length
of the displaced vortex segment is given by the pinn
lengthLc(T). The typicalpinning energy variations Uc en-
countered by displacing such a segment can be estim
from the elastic energy and Eq.~41! for strong Josephson
coupling («lab.d) as

Uc.q2« l~q!GRF~q!uq51/Lc(T)

.gE
0

Lc(T)

dl
l

« l~1/l !

jab
4

@jab
2 1^u2&T~ l !#2

, ~74!

which gives

~ i!: Uc.5
T,Tdp,« : Tdp,«

Tdp,«,T,T«l : T

T«l,T,Tdp,i : Tdp,i

T.Tdp,i : T,

~75a!
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~ ii !,~ iii !: Uc.H T,Tdp,i : Tdp,i

T.Tdp,i : T.
~75b!

First we note that atT50, there is a jump in the charac
teristic energy fromUc.Tdp,« to Uc.Tdp,i if we move from
pinning regime~i! to regime~ii ! by increasing the disorde
strength. This happens because the Larkin length, wh
gives the length scale of the displaced vortex segment, ju

from Lc(0)5«lab to Lc(0)5L̃c at this pinning strengthd
5d«l . The behavior of the pinning energies as a function
temperature is determined by the two characteristic de
ning temperaturesTdp,« andTdp,i for short-scale anisotropic
stiffness and large-scale isotropic stiffness, respectiv
Short-scale segmentsLc(T),«lab thermally depin forT
.Tdp,« and typical barriers are given by the temperatu
then. Most notable is the jump at the temperatureT«l from a
Uc.T«l to the higher valueUc.Tdp,i which is due to the
corresponding jump in the pinning length~46! and the ac-
companying increase in the stiffness« l@1/Lc(T)#. The larger
segmentsLc(T).lab thermally depin only above the isotro
pic depinning temperatureTdp,i which therefore sets again
typical pinning energy forT«l,T,Tdp,i .

For a weak Josephson coupling (d.«lab) we obtain es-
sentially the same result
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~ i!, ~ ii !, ~ iii !: Uc.H T,Tdp,i : Tdp,i

T.Tdp,i : T
~76!

in all three cases~i!–~iii ! but in case~i! of large disorder we
have to consider sufficiently high temperaturesT.uE0u such
that Lc(T)@d, otherwise we are in the regime of stron
pinning. As for a weak Josephson coupling there is als
jump in Uc at T50 when we move from regime~i! to ~ii ! by
increasing the disorder strength. This will become clear
low from theT50 results for strong pinning of single pan
cakes.

The corresponding energy gain from driving the segm
of lengthLc(T) the distanceu„Lc(T)… with u2

„Lc(T)….jab
2

1^u2&T„Lc(T)… is f LLc(T)u„Lc(T)…. jL c(T)u„Lc(T)…F0 /
c. This energy gain balances the pinning energy variati
Uc at the depinning threshold which gives a critical curre

j c.
c

F0
Uc

1

Lc~T!u„Lc~T!…
. ~77!

The jumps inLc(T) lead to characteristic drops in the critic
current density as a function of temperature as reported
the case of vanishing Josephson coupling and strong pin
in Ref. 9. Putting the different results~75! for Uc , ~46! for
Lc(T), and the corresponding expression foru„Lc(T)… to-
gether we find for strong Josephson coupling«lab.d,
~ i!: j c.

¦

T,Tdp,« : j c,«. j 0S d

« D 2/3

Tdp,«,T,T«l : j c,«S T

Tdp,«
D 2

e2
3
2(T/Tdp,«)3

T5T«l
2 : j 0S T«l

«0jab
D 1/2S jab

«lab
D 3/2

«

T5T«l
1 : j 0S T«l

«0jab
D 1/2Tdp,i

T«l
S jab

«lab
D 3/2

«7/3

T«l
1 ,T,Tdp,i : j 0S T

«0jab
D 1/2S Tdp,i

T D 2S jab

L̃
D 3/2

T.Tdp,i : j 0S T

«0jab
D 1/2S jab

L̃
D 3/2

e2(3/2)(T/Tdp,i )
3

. j c,i S T

Tdp,i
D 1/2S Tdp,i

Tdp,«l
D 23/2

e2(3/2)(T/Tdp,i )
3
,

~78a!

~ ii !: j c.5
T,Tdp,«l : j c,i. j 0S Tdp,i

«0jab
D 1/2S jab

Lc,i
D 3/2

. j 0d2/35«2/3j c,«

Tdp,«l,T,Tdp,i : j c,i S Tdp,«l

T D 3/2

T.Tdp,i : j c,i S T

Tdp,i
D 1/2S Tdp,i

Tdp,«l
D 23/2

e2(3/2)(T/Tdp,i )
3
,

~78b!
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~ iii !: j c.

T,Tdp,i : j c,i

Tdp,i,T,Tdp,«l : j c,i S T

Tdp,i
D 2

e2(3/2)(T/Tdp,i )
3

1/2 23/2

~78c!
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5
T.Tdp,«l : j c,i S T

Tdp,i
D S Tdp,i

Tdp,«l
D e2(3/2)(T/Tdp,i )

3
,

where j 0.c«0 /F0jab is the depairing current. The different regimes in the temperature dependence of the critical
density j c for strong Josephson coupling are illustrated in Fig. 4~a!. Most notably, there is a pronounced drop of the critic
current by a factor of«4/3 at T«l in case~i! of large disorder which should be observable at low-field experiments.

Using Eqs.~76! and ~51! results for weak Josephson couplingd.«lab are completely analogous to formulas~78!. The
basic differences are the different definition of the thermal plateau lengthL̃, see Eq.~11!, and that in regimes~ii ! and ~iii !
thermal depinning is now governed by the length scaled and the corresponding temperatureTdp,d . Within weak pinning
theory we are limited to temperaturesT.uE0u where we find

~ i!: j c.5
T,Tdp,i : j 0S T

«0jab
D 1/2S Tdp,i

T D 2S jab

L̃
D 3/2

T.Tdp,i : j 0S T

«0jab
D 1/2S jab

L̃
D 3/2

e2(3/2)(T/Tdp,i )
3

. j c,i S T

Tdp,i
D 1/2S Tdp,i

Tdp,d
D 23/2

e2(3/2)(T/Tdp,i )
3
,

~79a!

~ ii !: j c.5
T,Tdp,d : j c,i

Tdp,d,T,Tdp,i : j c,i S Tdp,d

T D 3/2

T.Tdp,i : j c,i S T

Tdp,i
D 1/2S Tdp,i

Tdp,d
D 23/2

e2(3/2)(T/Tdp,i )
3
,

~79b!

~ iii !: j c.5
T,Tdp,i : j c,i

Tdp,i,T,Tdp,d : j c,i S T

Tdp,i
D 2

e2(3/2)(T/Tdp,i )
3

T.Tdp,d : j c,i S T

Tdp,i
D 1/2S Tdp,i

Tdp,d
D 23/2

e2(3/2)(T/Tdp,i )
3
.

~79c!
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Figure 4~b! shows the different regimes in the temperatu
dependence of the critical current densityj c for weak Jo-
sephson coupling. Case~i! of strong pinning is discussed i
detail in the following section.

B. Strong pinning

For strong pinningLc,d we first focus on the behavior a
low temperaturesT,T* . As the pinning lengthLc exceeds
the layer spacing, the optimal length of the displaced vor
segment is the minimal accessible lengthL5d of a single-
pancake segment. We have shown in Secs. IV B and V B
the energy landscape for a strongly pinned pancake seg
is characterized by two energies. The pancake segmen
attain a ground-state energyE0 in the deepest traps of th
energy landscape@see Eq.~29!#. The ground state is sepa
rated from metastable states by energy barriers of the o
of T* 5U* @see Eqs.~30! and~61!#. A vortex in the ground
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state within an energy valley of sizejab therefore experi-
ences a typical pinning forceuE0u/jab . Driving forces f Ld
5 jdF0 /c.uE0u/jab exceeding this value are needed to t
the energy landscape such that all barriers vanish. Then
critical current for strong pinning is9

j c.
c

F0
uE0u

1

djab
. j d ln1/2dd , ~80!

at low temperatures, where

j d5 j 0

Up

«0d
~81!

is a characteristic current strength that is a convenient m
sure for critical currents at strong pinning@ j d' j 0kdd

1/2 for
weak Josephson couplingd.«lab].
3-18
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FIG. 4. Schematic plot of the temperature dependence of the critical currentj c ~a! for strong Josephson coupling«lab.d ~e.g., for
YBCO! according to Eq.~78! and ~b! for weak Josephson couplingd.«lab ~e.g., for BSCCO! according to Eq.~79!. j c is limited by the
low-temperature strong pinning result~80! which gives the solid line at the top; the barrier current strengthj * according to Eq.~82! gives
the dashed line slightly below. Slightly above the temperatureT* the difference betweenj * and j c vanishes. The corresponding temperatu
dependent curves for the case of strong pinning according to Eq.~86! emerge from this line atT5T* .
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If the current is decreased below the value ofj c given by
Eq. ~80! at low temperaturesT,T* , pancake segments hav
to overcome energy barriers by thermal activation. Howe
it is a hallmark of the strong pinning system that there ex
a range of currentsj * , j , j c for which these barriers ar
independent of the current densityj as the optimal length o
the displaced segment stays at the minimal accessible le
L5d. Only below the characteristicpancake barrier current
strength j* , the optimal length of the displaced vortex se
ment grows beyond the layer spacingd. This crossover cur-
rent strengthj * is obtained by balancing the typical pinnin
energy variationsU* on the scaled against the energy gai
from driving the pancake vortex over a typical displacem
distance u(d)5^u2&(d), as calculated in Eq.~28!. This
gives9

j * .
c

F0
U*

1

du~d!
. j ddd

21/4 ln21/4dd , ~82!

which is well below j c . As barriers to vortex motion are
existing in the regimej * , j , j c we do not identifyj * with
the actual critical current as it has been done in Ref. 9.

At temperaturesT.T* above the characteristic temper
ture T* for the depinning of pancake segmentsboth jc and
j * decrease due to thermal smearing. ForT.T* we find
Lc(T).Lc(T* ).d @see Eq.~70!# and expect a crossover t
our above results~78! for strong Josephson coupling an
~79! for weak Josephson coupling. It can be shown that
critical current j c is also forT.T* still determined by the
Lorentz force necessary to drive small pancake segmen
lengthL5d, however, due to thermal smearing the pinni
energy uE0u of a single-pancake segment is reduced by
factor N(T) as calculated in Eq.~65!. Furthermore, we have
to use a driving distanceu(d) with u2(d).jab

2 1^u2&T(d),
and obtain
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j c.
c

F0

uE0u
N~T!

1

du~d!
, ~83!

which gives aj c that is exponentially decreasing upon i
creasing the temperature aboveT* . Due to this sharp drop
the strong pinning result~83! crosses over to the weak pin
ning results~78! and ~79! @that are only weakly temperatur
dependent# already slightly aboveT* . The currentj * , on the
other hand, crosses smoothly over to the weak pinning
sults ~78! and ~79! for j c right at the temperatureT* where
U* .T* andLc(T* ).d. We will see that the result forj *
decreases much slower thanj c for temperatures slightly
aboveT* . Therefore, the range of currentsj * , j , j c where
the energy barriers arej independent vanishes whenj * and
j c coincide which happens at a temperature only sligh
aboveT* . At higher temperatures we havej c5 j * .

j * is determined from the energy balance for optimal s
ments of sizeLc(T) that are driven a distanceu„Lc(T)… with
u2
„Lc(T)….jab

2 1^u2&T„Lc(T)…. Using the result~42! for
LC(T),d, modified by the replacement of thermal smoot
ing factors byN(T,L), we find for the corresponding cha
acteristic energy scale

~ i!: Uc.H T,T* : U* .T*

T* ,T: T
~84!

for «lab.d and

~ i!: Uc.H T,T* : U* .T*

T* ,T: Tdp,i
~85!

for d.«lab . We note that a jump ofUc happens for weak
Josephson coupling in the strong-coupling regime at the t
perature T* where Uc increases fromUc.T* to Uc
3-19
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.Tdp,i . To calculatej * for T.T* we then use Eq.~77! but in connection with the results~84! and~85! for Uc and~71! and
~72! for Lc(T) appropriate for strong pinning. For strong Josephson coupling«lab.d we obtain

~ i!: j * .5
T* : j ddd

21/4 ln21/4~dd
1/2!

T* ,T,uE0u: j d

T

Up
S Tdp,d

T D 1/2

min$1,N3/2~T!e2(3/2)(Lc,« /d)3(T/Tdp,d)N(T)2
%

uE0u,T,T«l : j c,«S T

Tdp,«
D 2

e2(3/2)(T/Tdp,«)3

~86a!

and for a weak Josephson couplingd.«lab we find

~ i!: j * .5
T* 2: j ddd

21/4 ln21/4~dd
1/2!

T* 1: j c,i S T*

Tdp,d
D 25/6

. j c,idd
25/12ln5/12~dd

1/2!

T* ,T,uE0u: j c,iN
22/3~T!S T

Tdp,d
D 25/6

uE0u,T,Tdp,i : j 0S T

«0jab
D 1/2S Tdp,i

T D 2S jab

L̃
D 3/2

.

~86b!
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Again, there is a pronounced drop of the critical current fo
weak Josephson coupling (d.«lab) at the temperatureT*
by a factor of j c,idd

21/6/ j d.«dk21dd
21/3. This is the anal-

ogon to our above findings in formulas~78! for a strong
Josephson coupling.

VII. CURRENT-VOLTAGE CHARACTERISTICS

From the experimental point of view our results have
teresting consequences for the interpretation of curr
voltage characteristics in the low-field regimeB,F0 /lab

2 .
For weak collective pinning the critical currentj c marks the
crossover from a regime of glassy creep behavior at
currentsj , j c to a flux flow regime at high currentsj . j c .
For a given current densityj , j c there is an optimal segmen
lengthL( j ) and a characteristic displacementu„L( j )… sepa-
rating metastable configurations for which the energy g
f LL( j )u„L( j )… is sufficient to overcome the pinning energ
barriersU„L( j )… between the metastable states. Usually
barrier heightU„L( j )… diverges as the length scaleL( j ) di-
verges for smallj giving rise to typical glassy creep behavio
Thus we have nonzero ohmic resistivity in the flux flow r
gime j . j c and a vanishing ohmic resistivity for smallj
, j c due to diverging energy barriers. Both strong pinni
and electromagnetic coupling along a single-vortex line le
to two distinct features in the current-voltage characteris
at low fields.

We have already seen that for strong pinning of panc
vortices a novel current regimej * , j , j c emerges where
pancake vortices have to activate over barriers as in the t
cal creep scenario but where the barrier height is indepen
from j. This leads to the appearance of a second regime
linear current-voltage characteristics9 as in the flux flow re-
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gime but which is nevertheless dominated by activation o
barriers. This regime should be observable in experime
for temperaturesT,T* .

Furthermore, we can predict jumplike features in t
current-voltage characteristics if pinning is such thatLc
,Ld @strong pinning or case~i! of large disorder for weak
pinning, see definition~43!# at low temperatures. Similar to
the jumps in the Larkin-lengthLc(T) as a function of tem-
perature that we have found in Eqs.~46!, ~71!, and~72! for
this situation also the optimal segment length for the vor
line activation will jump from a valueL( j )5Ld to a larger
valueL( j ).lab at a particular current strength belowj c . As
also the height of the corresponding pinning energy bar
U„L( j )… has a characteristic jump at this current strength
jump should also be observable in the current-voltage ch
acteristics as a qualitative feature. This finding holds for te
peratures such thatLc(T),Ld , i.e., for T,T«l for a strong
Josephson coupling and forT,T* for a weak Josephson
coupling.

VIII. CONCLUSION

We have provided a complete analysis of the displa
ment fluctuations of a pinned single-vortex line in a layer
type-II superconductor including a detailed treatment of
electromagnetic coupling and the strong pinning regime. D
to the existence of four characteristic length scales—
layer spacingd, the length scale«lab below which the Jo-
sephson coupling dominates, the magnetic penetration d
below which electromagnetic dispersion sets in, and the p
ning lengthLc characterizing the disorder strength—the b
havior is very rich. The electromagnetic interaction leads
an effective decoupling of the layers for thermal fluctuatio
3-20
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SINGLE-VORTEX FLUCTUATIONS IN LAYERED . . . PHYSICAL REVIEW B69, 144513 ~2004!
with wavelengthsL in the plateau regime«lab,L,L̃ and
for disorder-induced fluctuations in the plateau regi
«lab,L,L̃c . The extent of these plateau regimes is ch
acterized by two plateau crossover scalesL̃ andL̃c , see Eqs.
~11! and ~21!, respectively. In our analysis we consider
layered type-II superconductors both with strong Joseph
coupling («lab.d), such as YBCO, and with weak Josep
son coupling (d.«lab), such as BSCCO. Regarding th
influence of the line tension dispersion due to the elec
magnetic coupling both kinds of materials behave rat
similarly with length scales«lab and d playing analogous
roles. This can be seen in the definition~4! of the length
scaleLd and in the definitions~11! and ~21! of the thermal
plateau lengthL̃ and the pinning plateau lengthL̃c . Effects
of the nonlocal electromagnetic coupling occur if the sing
vortex lengthL0 @see Eq.~8!# exceeds the dispersion leng
scaleLd . This condition is fulfilled in the low-field regime
B,F0 /lab

2 .
The existence of plateaus in positional fluctuations gi

rise to ‘‘jumps’’ in the pinning lengthLc as a function of
disorder strength and temperature as well as to accomp
ing ‘‘drops’’ in the critical current density. These jumplik
features occur if the pinning length is smaller than the d
persion length scale at low temperatures, i.e., forLc(0)
,Ld . This is the case in the strong pinning regime f
BSCCO whereLc,d or in the weak collective pinning re
gime in YBCO for case~i! of a large disorder according t
the definition ~43!. The jumps will occur at temperature
where Lc(T)5Ld , i.e., where the pinning length becom
comparable to the dispersion length scale. For a strong
sephson coupling~as in YBCO! this is the temperatureT«l at
which Lc(T«l)5«lab and for which we derived expressio
~48! using weak collective pinning theory. For a weak J
sephson coupling~as in BSCCO! the analogous temperatur
is the temperatureT* , see Eq.~61!; using strong pinning
theory we have shown thatLc(T* )5d. We find that the
critical current can easily drop by one order of magnitude
a layered HTSC around these temperatures. Similar to
jumps in the Larkin length, we also predict jumps in t
current-voltage characteristics which are due to jumps in
length of optimal segment for vortex line activation.

To allow comparison with experiments we give some
timates for the characteristic temperatures where we ex
the critical current to drop@note that we take into account th
temperature dependence of the microscopic parameterslab
and jab and calculate these temperatures self-consiste
the given values forlab andjab are forT50]. Taking typi-
cal values for YBCO as a layered HTSC with strong Jose
son coupling,lab'1500 Å, «'1/5, d'12 Å, and a disor-
der strengthd/«'531023, we have weak pinning (dd
,1) and find Tdp,«.35 K for the anisotropic depinning
temperature,Tdp,i.67 K for the isotropic depinning tem
perature. The low-field regime, in which our results sho
be experimentally observable, isB,F0 /lab

2 '900 G for
YBCO. The parameter values for YBCO are typically su
that within the weak collective pinning regime it is indeed
regime~i! of large disorder, i.e.,Lc(0),Ld according to the
definition ~43!. Using the above parameter values for YBC
14451
e
-

n

-
r

-

s

y-

-

r

o-

-

n
he

e

-
ct

ly,

-

we find Lc(0)5Lc,«(0)'18 Å and Ld5«lab'300 Å.
Therefore, a drop of the critical current should be observa
in low-field experiments on YBCO. For YBCO this drop
predicted to occur around a temperatureT«l'45 K. We also
expect that jumplike features in the current-voltage char
teristics are observable for temperaturesT,T«l .

For typical values for BSCCO as a layered HTSC w
weak Josephson coupling@below Td,J'55 K, see Eq.~6!#,
lab'2000 Å, «'1/200,d'15 Å, and using the samed as
for YBCO, we find disorder strengthsd/«'231021 and are
in the strong pinning regime wheredd@1. The low-field
regime, where our results should be observable, isB
,F0 /lab

2 '500 G in BSCCO. We obtainUp'22 K for the
strong pinning energy scale,Tdp,i.61 K for the isotropic
depinning temperature; the barrier heightT* '11 K and the
ground-state energyuE0u'42 K give a range of temperature
in which the critical current density will drop. As opposed
YBCO, such drops in the critical current aroundT.20 K
have already been observed experimentally for BSCCO.8 As
for YBCO, we also predict that jumplike features in th
current-voltage characteristics are observable for BSCC
They should occur in the temperature rangeT,T* '11 K.

The other focus of the present analysis were the prope
of the regime of strong pinning of pancake segments in l
ered type-II superconductors, which occurs forLc,d, i.e., if
the pinning length becomes smaller than the layer spacing
principle, strong pinning can occur both for strong and we
Josephson coupling. However, the layered pinning stren
parameterdd is typically much larger in BSCCO due to th
smaller values ofe, cf. Eq. ~16!. Therefore, we typically
have strong pinning only in BSCCO. Measurements
the magnetic susceptibility provide a probe of the depth
pinning energy minima.7,8 Using this technique the crossove
from weak pinning of vortex lines to strong pinning of poin
like pancake vortices has been observed for BSCCO.7,8 Ac-
cording to our results this transition happens also in the te
perature rangeT* ,T,uE0u. In Ref. 7 the transition to
strong pinning of pancakes has been observed for temp
turesT.20 K also supporting our results. For YBCO diso
der strengths are usually too small to find strong pinning
single pancakes. However, it might be possible to incre
the point disorder strength using proton irradiation25 to a
level where strong pinning effects could be observed also
YBCO.

Furthermore, results obtained in this paper will be of f
ture use in calculating the low-field part of the vortex pha
diagram of layered type-II superconductors by using Lind
mann criteria.
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