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Single-vortex fluctuations in layered superconductors:
Electromagnetic coupling and crossover to strong pinning
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Positional fluctuations of single vortices induced by thermal fluctuations and random point pinning are
considered in detail for all length scales fully taking into account the competing effects of Josephson and
electromagnetic coupling between vortex elements. The electromagnetic coupling gives rise to a pronounced
dispersion of the line stiffness and soft short-wavelength modes which modify the displacement fluctuations of
the pinned vortex over a wide range of length scales. Furthermore, we present a detailed analysis of strongly
pinned individual pancake vortices in a layered superconductor and study the crossover to the collectively
pinned single-vortex line. The line stiffness dispersion leads to sharp increases in the pinning length at char-
acteristic temperatures both for weak and strong pinning and two crossover scales. We calculate as well the
corresponding increase in the characteristic pinning energy and the pronounced drop of the critical current at
these characteristic temperatures. We predict distinct features in the current-voltage characteristics due to the
effects of strong pinning and vortex line tension dispersion.
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[. INTRODUCTION rise to a thermal depinning and a pronounced temperature
dependence of the pinning length. Much of the present paper

The physics of single vortices pinned by point defects in as devoted to the detailed study of the various crossover phe-
type-ll superconductor is one of the best studied problems imomena that arise due to the presence of up to four relevant
the context of vortex physics as well as the statistical physictength scaled ,,, e\4p, d, andL; which can become com-
of disordered systenms? Nevertheless, there are still some parable in size for HTSC materials depending on anisotropy
important aspects, which have been neglected in earlier theand pinning strength. Depending on the size_gfas com-
oretical studies but deserve further consideration. One opared to the length scales\,, andd there is a crossover
these aspects is the influence of the nonlocal electromagnetitom collectively pinned long vortex line segments for weak
interaction along the vortex line on the statistical physics orpinning potentials (small point defect concentratipnto
larger scales, in particular, regarding the positional fluctuastrongly pinned short segments at higher disorder strengths
tions of the vortex line induced by quenched point disorder(high point defect concentratipnTherefore, the electromag-
and its dynamic behavior in the presence of external currentsietic coupling also has a strong effect on the pinning of
In a layered type-Il superconductor, another aspect is theingle vortices. If in a layered HTSC,. becomes smaller
crossover from collectively pinned long vortex line segmentshan the layer spacind we enter a qualitatively different
containing many pancake segments for small point defeategime of strong pinning, where the perturbative treatment of
concentrations to strongly pinned single-pancake segments pinning forces breaks down even for single-pancake seg-
high point defect concentrations. ments.

The electromagnetic coupling of segments along a vortex Whereas there is extensive literature on the weak collec-
line leads to strongly nonlocal elastic properties of a vortexive pinning theory since the pioneering work of Larkin and
line below the magnetic penetration depth,, which sets  Ovchinnikov# the crossover to strong pinning of single pan-
the range of the electromagnetic coupling. Furthermore, theakes and the implications of the electromagnetic coupling
interplay between electromagnetic coupling and Josephsdior pinning are much less studied although they are techno-
coupling sets a preferred length scadé,, for short- logically relevant for HTSC.For the layered HTSC materi-
wavelength fluctuations of the vortex line, where als we will discuss in detail the crossover from fluctuations
=Nap/A\¢ is the anisotropy ratio of the type-ll supercon- of linelike one-dimensional vortex segments to fluctuations
ductor. For high-temperature superconduct$t3SC) such  of pointlike pancake vortices upon increasing the pinning
as YBaCu;0;_5 (YBCO) or Bi,Sr,CaCyOg, s (BSCCO strength. For BSCCO there have been a number of experi-
this leads to particularly interesting crossover phenomena benental studies® of this crossover behavior. Theoretical
cause the layered structure with layer distads®ts a com-  investigation$ have focused as well on the BSCCO com-
peting shortest length scale for vortex line fluctuations.pound and treated the limit of a vanishing Josephson cou-
These two length scales govern much of the statistical physling of superconducting layers, i.e.=0. In this decoupled
ics of purely thermal fluctuations of single vortex lines. limit pancake vortices in different layers interact only elec-

Pinning by point defects introduces yet another relevantromagnetically. In Ref. 9 it has been shown that in the de-
length scale, the collective pinning length of a weakly  coupled limit the crossover between pointlike and linelike
pinned vortex line. Moreover, thermal fluctuations lead to anpinning leads to a sharp drop of the critical current if tem-
effective weakening of the pinning strength which can giveperature is increased which can also give rise to a two-step
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behavior in the current-voltage characteristics at fixed tempinning of vortex lines al =0 is discussed in Sec. IV Aand
perature. the crossover to strong pinning of individual pancake vorti-

In this paper, we present a more detailed theoretical analyees in Sec. IV B before we consider the pinning of long
sis of the effects of the nonlocal electromagnetic coupling orvortex segments in Sec. IV C. For finite temperatures ther-
the pinning of single vortices and of strongly pinned singlemal fluctuations start to smear out the pinning energy land-
vortices which also extends to the more realistic situation ofcape giving finally rise to thermal depinning of the vortex
a finite Josephson coupling between the layers. This allowdin€, which is discussed in Sec. V. Also in this section, we
one to apply our results to the strongly layered BSCCO COmf_lrst Q|scuss the thermal depinning of a weakly p_mn_ed vortex
pound wheres\,,<d as well as to the YBCO compound line in Sec_. V_A, afterwards th_e thermal deplnmng_ frqm
where the Josephson coupling is much larger suchethgg strong pinning in Sec. V B_, and finally the thermal depinning
becomes comparable to the layer spadin@ualitative dif-  ©Of long vortex segments in Sec. V C. These results can be
ferences between these materials are worked out by o@Pplied to calculate energy barriers for the motion of single
analysis. Our results are also valid in the limit of small layerVortices in the presence of an external curiefithis allows
spacingd<s\,,. Then the layer spacing drops out as a©ne to calculate single-vortex critical currents in Sec. VI and
relevant length scale, and we cross over to a description djlscusg features of th_e curre_nt-vo_ltage characteristics in Sec.
anisotropic type-Il superconductors. VII. A list of symbols is provided in Table I.

We give a complete account of crossover phenomena re-
lated to th_e mterpl_ay t_)etween Josephson co_upllng and elec-”_ ELECTROMAGNETIC COUPLING AND NONLOCAL
tromagnetic coupling in the vortex line tension on the one STIFENESS
hand, and the interplay of pinning by point defects and ther-
mal motion of the vortex elements on the other hand. We A single vortex can be described as a line under tension
study these crossover phenomena in the positional fluctuawith a stiffnesse,. The exact form of the line stiffness de-
tions of the vortex line, the pinning length, the associatethends not only on material parameters such as the magnetic
critical currents, and the current-voltage characteristics. W@enetration depth ,,, the anisotropy ratie=X\,,/\., or
present a detailed and complete calculation of the meanhe Ginzburg-Landau parameter=\ 5,/ £, but also on the
square vortex displacements due to quenched point disord@ravelength of the fluctuations that are considered. This is
and thermal fluctuations for single-vortex segments of arbibecause the electromagnetic interaction is nonlocal and ex-
trary lengthL. The electromagnetic coupling gives rise to atends over a ranga,, for the usual geometry||c also
pronounced dispersion of the line stiffness which leads to theonsidered in this paper. Therefore, the elastic tilt energy of
appearance of soft short-wavelength modes on scales whighe vortex line becomes nonlocal. In the presence of an ex-
modify the displacement fluctuations of the pinned vortexternal pinning potential the Hamiltonian of the single vortex
over a wide range of length scales. Thermal as well asine of lengthL is
disorder-induced positional fluctuations exhibit a rich cross-
over behavior as the vortex lengthpasses through the four ] ] 1
relevant length scales\,;,, d, A,,, andL.. Furthermore _ Pl o /
the dispersion leads to gbbreakggwn of sélf—affine scaling of H= fo dzfo dz [28'(2 2')32u(2)- 6,U(2")
vortex displacements and the emergence of two additional
crossover scales.

Using our results for the positional fluctuations of vortex
segments we demonstrate that sharp increases in the pinning

length and drops in the critical current upon increasing thel’he vortex line configurations are parametrized by a two-
temperature should be observable also in the presence Ofc%mponent displacement field(z) (when commenting on
finite Joseplrllson coupllgg as for YEC?’ a?dlgzven_ln an\;\s/ofhe general case we will denote the number of components
tropic type-Il superconductors in the low-field regime. We,, ,y \yherez is the coordinate along the equilibrium direc-

also predict distinct jumplike features in the current-voltageo, "ot the vortex line which is parallel téi||c. Pinning
characteristics in these materials at sufficiently high ImF.)umypotentials;v are specified later or(2) is the nonlocal vor-
concentration. Moreover, positional fluctuations of single

: ; ) “tex stiffness, and after Fourier transformin
vortices are of great interest for estimates based on the Lin- 8:(q)

+ 5(z—z’)V(z,u(z))]. D

demann criterion regarding the stability of a topologicall =Jdzs,(2)e""* we obtain the dispersion relation of the line
_regarding y pologically giittness. In the limit of an isolated vortex line the dispersive
ordered vortexXattice with respect to thermal fluctuatiotfs P
S . . line tension i$
or random point pinning! In particular, results presented in
this paper will be of further use in obtaining a correct picture
of the low-field part of the vortex phase diagram of layered eol 1 1 q2)\62\b
type-ll superconductors. g(q)~—=1¢&°In + n| 1+ ,
. . . 2 gz 2 2)\2 1+ 2u2

The paper is organized as follows. In Sec. Il we introduce ca 0"Aab q
the nonlocal elasticity of single vortices due to the electro- 2
magnetic coupling. These results can be employed to discuss
purely thermal fluctuations in Sec. Il and fluctuations due towheree = (®o/47\ ,,)? is the characteristic line energy of a
qguenched point disorder @=0 in Sec. IV. Weak collective vortex. The first term stems from the Josephson coupling
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TABLE I. List of symbols. Our notation is mostly adapted from Ref. 1.

8:)\ab/}\c
€d

&1(q)
€0~ (@0/47T}\ab)2

Je

Vortex lattice spacing
Pinning strength parameter
Layer spacing
Pancake ground-state energy
Pinning strength parameter
Layered pinning strength parameter
Anisotropy ratio
Layered anisotropy
(Dispersive single-vortex line tension
Line energy
Critical current

Ed3

E20)
Ed4)
FE46)

Ed5)
Eqs2) and(3)

Eqs(77)—(80), (83), and(86)

id Strong pinning current strength E@D
i* Pancake barrier current Eq82) and(86)
L Thermal plateau length Eqll)
[ Pinning plateau length Eg&21) and (36)
L Collective pinning or Larkin length Eq$22), (23), (46), and(51)
Lyg Dispersion length scale E¢)
Lo Single-vortex length Eq8)
Tap,e Anisotropic depinning temperature Ed@.7)
Tap,e Depinning temperature for the scales,,, L Eq. (49
Tap,i Isotropic depinning temperature EdS0) and (54)
Tap,d Depinning temperature for weakly pinned pancake Eqg. (52
vortices
Tex Temperature wherk (T) =g\ p Eq. (48
Ty Temperature wherk(T)=d from weak collective Eqg. (53
pinning
T4 Crossover temperature to strong Josephson Eq. (6)
coupling
T*=U* Pancake thermal activation temperature &1
U, Pinning energy variation Eq$75), (84), and(85)
U, Pancake pinning energy E6LS)
u* Pancake energy barrier E@O)
between the line elements and is local whereas the second ( 1
term originates from the electromagnetic interaction of line q<)\—: €o
elements, and is strongly nonlocal.is a typical displace- ab
ment, and the corresponding correction term in the expres- 1 1 €0
. . . . -, g(q)={ —<qg< N (3
sion (2) is due to nonlinear elastic effects. In the local limit Nab eNap qz)\gb
(for wave vectorg<1/\ ), the electromagnetic part domi-
nates, and the stiffness is nondispersiye ¢y (= is used if q> 1 : 02,
numerical prefactors or small logarithmic corrections are ne- \ €N\ap

glected. On the smallest scales|$ 1/e\ ), the Josephson S o _
contribution dominates and we find an essentially nondispervhich is justified if prefactors and logarithmic corrections
sive but anisotropic stiffness;=eqe2, which is reduced by ~¢an be neglected. In the limit of a very weak Josephson
a factore2 as compared to the electromagnetic large-scal€0uplinge —0 the dispersion of the electromagnetic contri-
result[we neglect the small logarithmic correction due to thePUtion persists down to the shortest length scale, which is
weakly dispersive factor In(@Zqz) in the following). On set by the layer distancd. For the fluctuation behavior

. . 72 . .
intermediate scales Nj,<g<1l/e\,, the electromagnetic f[he _Iargest possible wave vector sh0W|_qg dl_sper_S|on
: ; L . : - . is important. In a layered material this isgq
coupling dominates but it is reduced by dispersion until it is_

finally cut off by the Josephson contribution Gt 1/e\ 4, - =1/maxd.zhqp} and we introduce a correspondiutsper-

. . . 2\ 2 _ sion length scale
In this regime we finde,=g,/q°\3,. In the following we
will therefore use these simplified expression Lg=maxd,eNapf=NapMaXeq, e},

4
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where Note that even in the dense limit where vortices already have
a considerable magnetic interaction we still find single-
d vortex physics on sufficiently small scales<L, which de-
Sd:)\_ab ®)  fines the range of applicability of our results. Thus the effects

of the dispersion in the line stiffne€8) of a single vortex
is an effectivelayered anisotropyof the material. For the will become relevant ifLy<L,. For a layered HTSC with
short-scale fluctuations it is important to distinguish betweerstrong Josephson coupling such as YBCO or for anisotropic
two classes of type-ll superconductors depending on th&pe-ll superconductors wheley= e\ 5, dispersion effects
strength of the Josephson coupling or the size.ofayered are thus relevant in the low-field regima>\,, or B
superconductors with &trong Josephson coupling > g4 <<I>0/)\§b. For YBCO with \,,~1500 A this low-field
have Ly=e\,,. One prominent example of this class is range isB<900 G. For strongly layered HTSC’s with a
YBCO. Formally, we can also treat anisotropic type-ll su- weak Josephson coupling such as BSCCO we hayed
perconductors which have no layered struct@@ed thus (for t<t,) and effects from the dispersion become important
there is no Josephson couplingithin this class of materials in the regimel ,>d, which is again approximately the low-
if we setd=0. On the other hand, superconductors with afield regimeB<®,/\2, due to the exponential increase of
weakJosephson coupling<egy haveLy=d. Butithas to be | in this regime* For BSCCO with\ ,,~ 2000 A this low-
noted that even ife<eq at T=0 the Josephson coupling field regime isB<500 G. Within these low-field ranges the

becomes strong above a reduced temperature effects from the electromagnetic coupling within a single
) vortex, which we will present in the remainder of the paper,
tgy=1—(eleq) (6)  should be experimentally observable.

becauses 4 (1—t)2. For typical parameters for BSCCO,
£~1/200,d~15 A, \,,~2000 A, andT.~100 K one finds . THERMAL FLUCTUATIONS
that BSCCO has a weak Josephson coupling at low tempera- . ) . )
tures but the Josephson coupling becomes strong above !t iS instructive to consider first how the electromagnetic
T43~55 K. An estimate for the stiffness on the short scaleSoftening affects thermal fluctuatiofise., V=0 in Eq. (1)]
Ly is &/(qq)=eoL2/N2,~eomaxXe’ 2 from Eq. (3) or  ©Of avortexline of lengtiL. Using the expressiof8) for the
somewhat more accuaratﬁ(qd)zso(:g%ma){sﬁ £2)) from stiffness one finds up to irrelevant corrections
Eq. (2).

Considering only fluctuations with wave vectors\ 4

. : . 1dd T
<g<dqq in the Fourier transform the elastic part of the <u2>T(|_)=2f aa
Hamiltonian(1) can be written as W27 g(q)g?
(
TL
HFVJW\&U:)dZ 1 €o u(z)z (7) d<|_<8)\ab: —2
o La|22\2, 1 “o®
. : . : ={ Lg<L<Xmp: (u? L )
i.e., due to the predominantly electromagnetic coupling each d ab: (U)r(La)= /(qq)
vortex segment of length\,, effectively decouplesinto
small segments of lengthy that fluctuate independently in a L>Nap: EJF Tl
harmonic potentiat?> Therefore, the vortex line becomes | g0 £/(dq)’

very soft with respect to fluctuations on the short sdale
This holds for thermal fluctuations as well as for fluctuationswhere (<)
due to pinning by point defects.

In this paper we consider the pinning isblatedvortices
of lengthL. Also in a vortexlattice vortices fluctuate essen-

tially as isolated vortex lines it is sufficiently small that 554y a numerical prefactor, but the parameter dependence
they are not yet limited in their fluctuations by the interaction;g identical. Apart from numerical prefactors the formu@)
Holds for generah-component fieldsi(z). If the electromag-
netic stiffness contribution dominates, the thermal displace-
ments(u?)(L) are approximatelyndependenof L for Ly
<L <\, due to the effective decoupling. The result is a
plateauin the thermal displacements®)(L) over a certain
range of scalek. On scaled >L 4, the thermally fluctuating
vortex line is therefore no longer self-affine with a roughness
2 - exponent/y=1/2 but, instead, we have to explicitly include
L :a<8'(1/|‘0)) _|@<Aap- @ soft short-scale fluctuations on the schlgas we did in the

0 a>Nap:  a(Ngp/a)¥expla/2h,,).  last line of EqQ.(9). It is easy to check that all dispersion

8) relationse|(q)<q~“ with >1 would formally lead to a

1 is the purely thermal average settivg=0.
[The relative displacemerfu(L)—u(0)]?) along an infi-
nite line is larger than the mean-square displacement
(u)(L) of a finite segment of length with fixed center of

CeU’L becomes comparable to the tilt energy1/L)u?/L.
For a vortex lattice constardt, the shear modulus is given
by cge=eo/a’? in the dense regimea<\,, and Cgg
=(gola®)(al\zp)¥?exp(—al\,) in the dilute limit a
>N\,p- Therefore, we find single-vortex behavior also in a
vortex lattice on scales smaller than tiagle-vortex length

Ces
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negative/t=(1— w)/2<0 such that self-affinity is lost. As a ~0 such that we can neglect thermal fluctuations. The effect

consequence we can write the last line of E®). for L of point defects can be modeled by a quenched disorder po-

>N\ap 8S tential V(z,u) with a Gaussian distribution, zero mean, and
short-range correlations in all directiohs,

L _
(U)7(L)=(U?)1 gen (L) +(Uu?)r(Lg)=(u?)7(Lg) f+ 1/, V(z,u)V(z',u")= yggbﬁ(z—z’)égab(u— u’)
(10 . Ko

where the subscriptd<\” implies that only small wave :Vfab5(2—2')f L fab
vectorsq<\,, are integrated over and thus the average is (2m)
performed using the isotropic stiffnesg(q)=¢, according « @iK-(u=u") (13)
to Eq. (2). From formula(10) we read off that short-scale '
fluctuations actually dominate for all scaleg<L <L with The parametely gives the strength of the quenched dis-

) order and is temperature dependeAs indicated in Eq(13)

~ €0 @ _ Nap (11) the & function is smeared out to a rangg, given by the size

_Lds|(qd) Ly maXeq,s}’ of the vortex cores, which can be modeled using the Fourier

- representation of a Gaussian in the second line. A convenient
Therefore,l_d<|_<|_ gives the extent of the plateaLLin the pinning Strength parametaﬁ (See Ref. ]_IS defined by the
thermal displacements and tiieermal plateau length Lis  ratio of the mean-square pinning energy for a small line el-
the crossover length scale where self-affinity breaks dowement of lengthL=¢; and with typical displacementi
and bth g:ontributions in Eq10) are 'egual. We_WiII encoun- =§¢,, Egin(gc): yé2.€., and the square of the correspond-
ter a similar breakdown of self-affinity also in the case ofing tilt enefgyEtm(ic)28082§§b/§c:80§c,
fluctuations induced by point disorder.

Let us briefly comment on implications for the thermal 5 7§§b§c
melting of the vortex lattice in order to demonstrate the im- P (o)
0Sc

portance of the plateau length scalealso for vortex lattice

properties. Using the single-vortex lendth, we can refor-  In a layered material one can consider the analogous energies
mulate the Lindemann criterion for thermal melting in afor a segment of length=d, i.e., the mean-square pinning

(14)

single-vortex form®** energyE?, (d)=U? with the pancake pinning energy
(u?)r(Lo)=cfa?, (12) Up=(y&5d)"? (15)

with the Lindemann number, ~0.1-0.2. In the_dilute limit  and the square of the corresponding tilt eneify,(d)

Lo> N\, and we actually have to use the last line of E9). =g (1d) £2,/d=eq(e%+£2)£2,/d, see Eq.(2). Using this

to calculate the left-hand side of E(L2). Due to the soft e define an analogouayered pinning strength parameter
electromagnetic coupling both contributions franxL, and 84 as

L=L4 can melt the lattice which leads to the existence of

two branches of the melting line in the dilute regime, the U2
upper branch due to fluctuations on the short statel 4= 5 2 TTE (16)
and the lower branch due to fluctuations on the large scale [eo(e“+eg)é5p/d]

L=Lo. A detailed analysis of the resulting melting curves From the definitions it is clear that collective pinning theory

reproduces the results of Ref. 15. Moreover, the thermal plaépplies to weak pinning¥/z<1 and 5,<1. Whereas the

teau scald- is intimately related to the location of the “tip”  former condition is usually fulfilled in anisotropic HTSC's
of the melting curve: I, equals the thermal plateau length sych as YBCO the latter is violated in layered HTSC's with
L, i.e.,Lo=L both contributions are equal and thus this con-strong disorder such as BSCCO. We call pinning wéh
dition determines the location of the tip of the melting curve.>1 strong pinning which we will discuss in detail in Sec.
This makes clear that much of the phase behavior of thé¢v B.

vortex lattice is already encoded in the single-vortex proper-

ties and that it is the nonlocal electromagnetic coupling along A. Weak collective pinning

a single vortex line which gives rise to the complex phase o .

behavior in the low-field regime. Calculations regarding the ~First we want to focus on the pinning of vortéires at
resulting phase diagrams for vortex lattices are presente@W temperatures. This required to consider segments of

elsewheré? in this work we focus on single-vortex proper- lengthL>d. Segments with a length comparableddave
ties. to be treated as pointlike pancake vortices, the disorder-

induced fluctuations of which will be discussed in Sec. IV B.
The physics of a single vortex line in point disorder exhibits
two different scaling regimes depending on the typical size
Now, we consider fluctuations of a single vortex line of the disorder-induced mean-square displacenfait(L)
caused by quenched point defects at low temperatilires of a vortex segment of length. For short vortex lengths

IV. VORTEX PINNING AT T=0
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displacements are smalli)?(L)<£&5,, perturbation theory fluctuations, we find thafu)2(L) is essentiallyindependent

is valid, and we can work with Larkin's random for.CLéS- of L for scalesL 4<L <\,, where the weak electromagnetic
Fluctuations around the ground state of the line@agissian  ¢coupling dominates resulting in a plateau in the pinning-
in this random force(RF) regime and we find & roughness g ced fluctuation€u)2(L) over a certain range of length
exponentge=3/2, i.e.(u)*(L)=L* for alln. This regime is  scales. The roughness exponent for dispersion relations
valid up to thecollective pinningor Larkin length L which ¢ (q)cq™® is {re=(3—2w)/2 and thus negative fomw

is defined by the conditiofu)?(L) = £2,. Longer segments >3/2 such as the electromagnetic coupling with=2.
explore many almost degenerate minima of the pinning enAgain, one concludes that self-affinity is lost far>3/2,

ergy landscape such that fluctuations are non-Gaussian. {ghich manifests itself in the last line of E(L9) that can be
this so-calledrandom manifold RM) regime the roughness written as

exponent is known exactly only far=1 wheregy=2/3.1°
The currently most reliable estimate for genenals (g L)2
=(3+n)/2(2+n) (Ref. 17 and 18giving {gy=5/8 for the <U>Z(L):<u>g<)\(|—)+<u>2(|—d):<u>z(|—d){(~_) +1
vortex line in the bulk superconductor. Therefore we find L
(u)?(L)*L5* as the asymptotic limit for large. However, (20)
these results were derived for a dispersion-free stiffness and complete analogy to formuld.0). The short-scale fluctua-

apply in this form only to length scalds<e\., where we  tions are bigger on scalds,<L <L where
can neglect the dispersive electromagnetic coupling or on

very large scalek >\ ,, where the local limit of the electro- 5 g0 |28 )\4/5 Nab
magnetic coupling dominates. In this section we want to ex- L d(— = —;3: +1/ (22
plore the consequences of the electromagnetic coupling on &1(da) Lg® maxeq”,e"

the scaling properties af(L) for line pinning withL>d. In ) ~ .
particular, we consider only..>d, as L.=d marks the Analogously to thermal fluctuationg,y<L <L thus speci-

boundary to the regime of pancake vortex pinning. From théies the extent of the pIateilu in the quenched displacements.
definition of 84 [see Eq(16)] andL, it becomes clear that The pinning plateau length L also plays the role of an ef-
L.=d is equivalent to54=1 and thus also marks the onset fective collective pinning length as long bs<L . as we will

of strong pinning. see below, cf. Eq(36).

On small scalet <L, where(u)?(L)<¢2,, we expand From Eq.(19) we can obtain the low-temperature collec-
V(z,u) aboutu=0 to find Gaussian distributed random tive pinning length for the case of a strong Josephson cou-
forcesf(z) with pling e\ ,,>d using its definition(u)?(Lo)= &2, :

V(z,u)=f(2)-u, 17 ([ 54=1: d
- —-1/3
fi2)f(z)=y8(z=2')85;. (18 6>06,, 1>64: Lc’g:ggab<g)
The right-hand side of Eq17) being linear inu this leads to S=ot eX
a Gaussian distribution of the displacements Together Lc:< eh ab
with the dispersive elastic part we obtain at low tempera- B ~  Nap
tures, 0= bex Le=—s
&
— L 2J’llddq v L 8< 5,y Lc,izfab571/3:874/3|-c,g
u = =
(wAL) 27 g(q)%q* (22
p [note thate (qq)=¢,(1/d)=gqe? for e\ ,>d such thatsy
d<L<en,: Y s =(6le)(dleéyp)’]. 6= 5@:8(3 is the characteristic dis-
(e0e?)? order strength at whichL,=e\,, and 64=1 or &
=g(&,5/d)3=6,,(e/eq)® the required(highep disorder
— Y strength forL.=d. Within weak collective pinning theor
~{ L.<L< : 2 ~ 3 g c p g y
| e Rab: (W)*(La) sl(qd)ZLd we have to restrict ourselves to the regife< 1 in order to
haveL.>d; at larger disorders pointlike pancake vortices
) Y .3 Y 3 are strongly pinned, which requires a different description,
L>Aap: 82" * £1(0q)2 Lg- see Sec. IV B.
\ 0 10y

L. . is the usual result for the collective pinning length in
(19 an anisotropic superconductor as we find it if the Josephson
Up to numerical prefactors this result holds for mllFor L~ coupling dominates on small scales, whereggis the iso-

=d, only the Fourier mode with the largest wave veagor tropic result which we recover in the local limit on large
—1/d contributes, and we cross over to the pinning of poim_scales due to the electromagnetic coupling. Because the dis-

like pancake vortices with only one degree of freedom,p'"ﬂ‘Cf‘?‘mem~3<U>2 are essentially constant over the range
which will be discussed in Sec. IV B in detail. As for thermal e\ ,,<L<L. up to the pinning plateau length., the pin-
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(a) L, (b) L,

V) S ——— )
Lc= Nejlj

13

~(8/g)
e e et d

strong pinning

P b g 8

FIG. 1. Schematic plot of the disorder dependence of the collective pinning léngth) for strong Josephson coupling\ 5,>d
according to Eq(22) and(b) for weak Josephson couplirty> &\ ,,, according to Eq(23). ForL.<d or §4>1 strong pinning of pointlike
pancake vortices sets in.

ning length jumps ad= §8,, from L.=&\4pto Lc=L, upon  Where pinning is no longer a small perturbation but pointlike
weakening the disorder slightly. These results are illustrate@ancake vortices are strongly pinned at low temperatures.
in Fig. 1(a). The problem of pancake vortex pinning is equivalent to
For a weak Josephson couplidg- e\, it is more con-  that of a single-point particld.e., a short line segment with
venient to use the parametéy for the disorder strength. L=d) with n-component displacementin a disorder poten-

Again restricting ourselves té;<1 we find in analogy to tial Vq(u)=dV(0u) and a harmonic potential due to the
formula (22), coupling to the pancakes in adjacent layers. The Hamiltonian

(1) for the relative pancake displacements becomes

((0q=1: d 1
Hy===&(Ld)u®+ Vy(u), (24)
5d: 17 E ZE 2d
L.~ ¢ ele (23 with &,(1/d)=eo(e2+¢2) from Eq. (2). Note that we have
Sq<l: Lo =&u,0 13 neglect(_ed some logarithmic cp_rrections in the Hamilf[onian
’ CABe13 ~ 13 (24) which come from the additional dependence of, in
\ =deq""0q =Ly the electromagnetic part in E¢R). Corrections due to these

terms are generally smatf®2°and they will be neglected in
[note thats|(qd)=s|(1/d)~—~sos§ for d>e\,p]. In particu-  the following. The disorder potentidfy(u) has a Gaussian
lar, we also have a jump from,=d at 54=1 to the pinning distribution, zero mean, and short-range correlations:

plateau length..~L . upon weakening the disorder slightly,

2 '
because the displaceme&t:x;}2 are constant over the range W= Up ex;{ _ (u—u )2)
d<L<L,, see Fig. lb). y2m" 285,
For weak collective pinning wheh.>d the result(19) 2.0 ,
for the mean-square vortex displacements remains valid ~Up&apde, (U—U )- (25

down to the shortest scale=d where it crosses over to
correspondingperturbativeresults for the pinning of single-
pancake vorticegsee Eq.(31)]. For L.<d, on the other

Then the distribution of realization¥4(u) is a product
P[V4(u)]=1I,p(V4(u)) over independent distributions

hand, we have to consider strong pinning of single-pancake 1 g2
vortices which requires a nonperturbative treatment. p(E)= exp — = —|. (26)
V27U, 2 U;
B. Strong pinning of pancake vortices The strong pinning §4>1) problem has been studied for

On the smallest scale in a layered superconducted ~N=1 by Imry-Ma arguments and a replica variational
we can no longer discuss deformations of an elastic vortegalculation?" Imry-Ma arguments have also been used for
line of length L. Rather we have to consider the relative the casen=2 in Refs. 9, 19, and 20. At low temperatures a
displacements u=u[(I+1)d]—u(ld) between single- vortex with displacement can exploreN'=u?/&, pinning
pancake segmentd the vortex line in two neighboring lay- sites with statistically independent disorder configurations,
ers|+1 and| and discuss the pinning of single-pancakesee Fig. 2. Doing so it can gain a pinning enefgy,(u)
vortices®192°This becomes particularly interesting as soon=— U, In¥4u?¢?) that can be determined from the condi-
as 64>1 where we formally find..<d and enter a regime tion foﬂ"(“)dEp(E)~1. In the Imry-Ma argument the total
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C. Pinning in the random manifold regime

So far we have not considered the pinning-induced defor-
mations of the vortex segment of lendtton scales exceed-
ing the Larkin length, i.e.l.>L for weak pinning or scales
exceeding the layer spacing, i.&.>d for strong pinning.

On these length scales, where displacements fgtijf(L)
>§§b, an expansion of the disorder potential in the displace-
ments resulting in random forces does no longer hold, and
we have to take into account the non-Gaussian distribution of
pinning energies. Within this so-called RM regime no exact
calculation is possible. A Flory argument can estimate the
fluctuations by optimizing the free energy of fluctuations on
a singlelength scald_. For a stiffness with dispersion rela-

monic potential and the disorder energy. The ground-state energy i, e/(q)=q® the typical elastic energy of the linEq

E,, typical elastic barriers are of sig, .

energyE(u)=Epin(u)Jr(1/2d).s|(1/d)u2 is minimized. The
optimal disorder-induced displacement fluctuationn the
ground state is

eE '”m(g) | @0
Solving the last equation iteratively yields
()= 5,041~ 225, (28)
The corresponding ground-state enelgy=E,(u) is
Eo=—U,In*25,, (29

whereas the typical elastic energy sets an energy s¢ale
=(1/2d)e,(1/d)u?

U*=U,In""25,, (30)

which is the typical size of elastic energy barriers between

different metastable states as shown in Fig. 2.

Equation(28) is a nonperturbative result which holds for

(uy2>¢2,, which is exactly the conditiod,>1 for strong

~u’L~ " whereas the pinning energy that can be gained
on the lengthL is Ep,~(Lu~")Y2 Optimizing Ee
+Epin)/L with respect tou gives (uy?(L)~L2G~2)/(4+n),

i.e., a roughness exponetiky=3(1—2w/3)/(4+n). For
w=0 it is known that the estimatég\,=(3+n)/2(2+n)
improves on the Flory argumeht!® To interpolate to
this w=0 result, we suggest an estimalgy=(3+n)(1
—2wl3)/2(2+n) for generalw on this phenomenological
basis.

As long asw<3/2 the vortex line is self-affine, and we
can find the displacement fluctuations by normalizing the
scaling relatioru)?(L) =L2‘rm appropriately. This applies
to the nondispersive «f=0) short-scale regimes . <L
<&l4p for weak pinningL.>d [and thus for a strong Jo-
sephson coupling\ ,,>d only] or d<L<egA\,, for strong
pinning L.<d [for a weak Josephson couplind> e\ 4,
only]. Furthermore it applies on large length scalesL .

>1. in the case of weak pinning. For weak pinning we nor-
malize the scaling relation usin@)?(L.)= &2, and find

L \2¢rm
) (32

W(L)zgib(L—c

for L.<L<e\,, andL>L.>L.. For strong pinning, we

pinning. Otherwise perturbation theory applies and we camormalize by employing the resu8) for (u)?(d), and we

expand the random potentigly(u) to linear order inu to

obtain random forces acting on the pancake vortex. Then one

finds

(U)ZRe=£2,54 (31)

which is the RF result for weakly pinned pancake vortices;

for L=d, the results(31) and (19) coincide.(u)zR,:<§§lb

implies thatL .>d such that we cross over to the weak col-

lective pinning of lines. From Eq4$28) and(31) it follows
that the crossover happensé&t=1 where we thus have,
=d. This is consistent with our finding22) and (23).

find

L\ 2¢rm
) (33

W(L)xW(d)(a

f0r d<|_<8)\ab .

However,{gry becomes formally negative for alh>3/2
such that an electromagnetic couplifwith w=2) destroys
the self-affine scaling properties of the line. This becomes
relevant forL>L, if also L;>L., which immediately im-

plies the stronger inequalitf..>L4>L. because of the
jumps in the pinning length that we obtained in E@R) and

In the RF treatment we neglect the competition of differ-(23). The resulting inequality.4>L . applies foré6> 6., if
ent energy barriers with almost degenerate pinning energieshop,>d or §4>1 if ehy,<d (in the case of weak pinning
for the vortex position and consider only one valley the po-L.>d the inequality can only be fulfilled for a strong Jo-
sition of which is fluctuating from sample to sample. The sephson coupling wherey=¢\,,>d; for strong pinning

typical pinning force isU,/&,, from the variation of the
pinning energyJ, over the distancg,, of disorder correla-
tions.

L.<d the inequality is always fulfilled for a weak Josephson
coupling whereL j=d>e&\ ). The cases of strong Joseph-
son coupling e\ ,,>d and weak Josephson couplird
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>gh,, Can be treated in a unified manner if we use corre- V. THERMAL DEPINNING
sponding definitions of the length scdlg, see Eq(4), and Thermal fluctuations weaken the pinning by averaging

the pinning plateau length., see Eq(21). To find the dis-  oyer thermally accessible configurations, which can lead to
placementgu)*(L) in this part of the random manifold re- thermal depinning. For a pinnetidimensional elastic mani-
gime where dispersion is relevant we can argue in close anajo|d, thermal depinning is a phase transition from a thermally
ogy to thermal and random force fluctuations. First, we notgough phase withf = 1/2 to a disorder roughened phase with
that on scaled j<L<\,, the electromagnetic interaction g bigger £>1/2 for d<2n/(2+n), i.e., for a vortex line
leads to the decoupling of vortex elements such thafyith d=1 there is a phase transition for @t>2. For the
(uy?(L)=(u)*(Ly) remains constant within this regime. On physically relevant dimensions<2 there is no phase tran-
scales larger than,,, we can formulate a coarse-grained sition, and thermal fluctuations are irrelevant asymptotically,
model for the vortex line in terms of elastically coupled seg-however, the crossover scale can become very large. This
ments of lengthé|=\,,, each of which explores an area crossover scale is the pinning lendth(T) which starts to
£2=(u)?(Ly) in the transversal direction. A given segment grow above a characteristic depinning temperature due to the
has to completely reoptimize its configuration if it is dis- weakening of the disorder by thermal fluctuations. In the
placed byu~¢, . The typical pinning energy fluctuation marginal casen=2, the growth ofL.(T) above the depin-
AE, in such a reoptimization is obtained as the sum of enfning temperature is exponential. For a pointlike pancake vor-
ergy fluctuations of the /L4 independently adapting sub- tex withd=0, there is no phase transition in the thermody-
segments: namic sense possible but there is a crossover from the low-
temperature resul28) of the Imry-Ma argument to glhigh-
Nab — _ _ temperature regime where the RF res(8i) holds®" In
AE)Z\:L_d[SI(qd)<U>2(Ld)Ld "P=e1(00) %€l Lg . addition, there will be a crossover from strong pinning of
(34) pointlike pancake vortices to weak pinning of vortex lines if
) . Le(T)<d at low temperatures but.(T)>d at sufficiently
Therefore on scalels>\ ,, we can use a coarse-grained dis- high temperatures due to the increasing pinning lefgthis
order potentiaV,(z,u) with zero mean and a Gaussian dis- jnteresting crossover for strong pinning will be studied in

tribution with detail in Sec. V B; in the following section we focus on
— 5. 1.2 , , thermal depinning for weak collective pinning, i.é¢.¢(0)
Vy(z,u)V,(a’,u ):AE@H §¢5§H(Z_Z )5§L(u—u ). >d.
(35
Thus the effective random force strength i, A. Thermal depinning for weak pinning

=AEZ& '£.%. The coarse-grained dispersion-free stiffness In the presence of thermal fluctuations, the displacement
for L>\4p is the isotropic, local limit value,=e,. Using  has two partsi=u,+ uy, in the notation of Ref. 1. The part
such a coarse-grained model we read off an effective pinningp is due to pinning and does not average to zero upon per-
length forming the thermal averageu,=(u). The partugy=u
o3 —(u) describes thermal fluctuations around the pinning part.

€0 In weak collective pinning theory it is always assumed that
g|(qd)> ' the thermal averages over fluctuations gf can be per-
formed just with the elastic Hamiltonian as in the absence of

which is exactly the pinning plateau length found earlier ingisorder: thus it is assumed that thermal averages are Gauss-
Eq. (21). In the coarse-grained model, the displacements fo[,p, By exploiting a tilt symmetry of the systéfone can

L>L.are establish thatuZ,) is indeed unchanged by the disorder,

~ 2323 1
Lo=£&7"ey ) =Ly

(36)

2R 2N\ /12\ _ 2_ /0,2
W(L)zW(L@(%) . (37) (Ugn)y =(u%) = (W)= (U, (39

but the distribution ofu,, is non-Gaussian on large scafés.
Both findings can also be put in the language of a replica
variational calculation along the lines of Refs. 21 and 24,
where an instability with respect to replica symmetry-
H?eaking(RSB) signals thatu,, is not Gaussian distributed.
“Only the replica symmetric solution, which corresponds to a
self-consistent RF approximation, has both displacemgpts
and u, Gaussian distributed. Therefore, only in the RF re-

For scales A,,<L<L. it follows that (u)?(L)<é&?
=(u)?(Lg) such that short-scale fluctuations still dominate
for these length scales. Hence the plateau is also present
the RM regime, and we obtain in complete analogy to for
mula (20),

. o L {rRM ! : e
200 Ve 1\ 2 il gime on scaled <L.(T) it can be justified to thermally
(WAL =(W(Ly ([C 1), (38) average as in the absence of disorder, which is used to cal-
5 culateL.(T) within the weak collective pinning theory.
also for the RM regimeL>L for the caseL.>L4 >L,. To obtainL (T) also for a dispersive line stiffness, we
This completes our analysis of pinning-induced fluctuationgollow the dynamic approach that is also employed in Ref. 1,
for weakly pinned vortex lines. in which the dynamic response to random forces is taken into

144513-9



JAN KIERFELD

account using an overdamped dynamics with a vortex line
viscosity z,. This allows one to write thermal averages
(u?)(t)=3([u(t)—u(0)]?); for a dispersive line stiffness

in the absence of the pinning potential as

dqg

27y (q)qz{l_exF[_8|(Q)q2t/77|]}
|

(UA7()=T

= dq T
L[ T
a®27T g,(q)q

(40)

which converges to the resuf)) for t— oo but at finite times,
the large-scale cutoff is provided byg(t), defined as solu-
tion to the equatiore,(q(t))q(t)?= »,/t. Dynamic random
forces are obtained by expanding the potentfk,up(t)
+Ug(t)] of Eqg. (13) in uy(t) aboutu,=0. In order to cal-
culate (u(q)){u(q'))=Ggre(q)275(g+q’), we perform
the thermal average&u?)+(t) using the result40). This
gives

PHYSICAL REVIEW B69, 144513 (2004

=dt d’K
Gre(q) = —e*SI(Q)qz“’"j K2

g(q)g?Jo m (2m)?

% @~ K&t (U T(D]

» 4
-~ at o e@atn Sab
e1(q)g2to 7 [&3p+ (Ui r()]?
04 J“ 1
e @gla e(q)ad
4
% gab . (41)

2+ 2 f:<dq2/2w>[we.<qz>q%]

where we replaced the exponential decay withy cutting

off the t integration for long times a{(q) = 7,/¢,(q)qg?, used

the relationt=t(q) to switch back to integration variables

and finally set ¢/dq)(¢,(q)g%)=¢,(q)q to a good approxi-
mation. The advantage of the dynamical approach is to gen-
erate the proper hierarchy of IR regularizations in thim-
tegrals in Eq.(41). Performing the integrals and Fourier
transforming finally gives the result

4
gab

— = dq y 1/q |
2(L)= _—
(wAL) 2Jl/L27T s|(q)q2j d

o e[ +(uHr()]?

- & <UZ>T(L))
d<L<ehkgp: i 2 ) e
eXap <“>T—O(L)(g§b+<u2>T(L>) n<e+ €2
- & | <u2>T<exab>>
d<eXap<L<Xap: (U)Z_q(eh, et T
€Nap b' (U)T—o(&Nap) §§b+<U2>T(87\ab)) "\ 2
. £ |\
== )\a <d<L<)\a 2: +
€Nap bt (U)T=o(d) §§b+<U2>T(d)) (42)
- ( £, )2
Nap<L<L: O i
b (U)T-0(L) £2,+(ud1(Lyg)
i S N
[<L: uy2_ L)(—) '”(e 2 1 ((Ly) )’
\ (U)T=ol 2.+ (U2 (L) Eap+(ur(Lg)

which takes into account all possible cases with regard to thinduced fluctuations themselves manifest in the first factor

vortex lengthL relative to the length scales\,, andd in-

giving the low-temperature resyl)>_,(L) as calculated in

troduced by the dispersion and the thermal plateau lebgth Eq. (19). As we saw above, these fluctuations stay constant

As becomes clear from the structure of the expressions, thg the plateau regimey<L<L., see Eq(20). In Sec. V B,
thermal smoothing of the disorder potential as well as thet will become clear that the above res(@®) is only correct
random-force-induced displacements themselves are affectewe can treat pinning on all length scales by weak collec-
by the electromagnetic coupling. Within the plateau regim&ive pinning theory. This becomes wrong as soodgs 1 or
for thermal fluctuationsly<L<L, the thermal smoothing L.(0)<d when we have strong pinning of pancake vortices.

essentially comes from fluctuations on the sdajebecause

Then all thermal smoothing ternds®)(L) in Eq. (42) have

line elements effectively decouple. The effects on disorderto be replaced by the numbhki(T,L) of states accessible by
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thermal fluctuations of vortex segments of lendth This T<Typi: Lei

number will be estimated for the strong pinning case in Sec. ' ' -

V B, see EQq.(69). i LTy ={ Tapi<T<Tgper: L .ﬂe('r/'rdp,i)3
It is evident that the rich behavior of the displacement (ih): - Le(T) P P “T

fluctuations(20) for a dispersive line stiffness will also lead T>Taper: Te(MTap)?

to interesting features for the pinning lendth(T). Taking pe ' (460

into account the thermal smoothing of the pinning potential,
the perturbative approach is valid as Iong<a$x2(L)<§a
+(u?)¢(L) because thermal fluctuations increase the disor- 5\1/3

der correlation length to an effective valgé,+ (u?)+(L), Tape=eeg” g’§y1/3=sso§ab(—) : (47)
see Eq.(41). Therefore, the temperature-dependent pinning e
length L(T) is obtained by the conditiof(u)?(L.(T))

with characteristic temperatures

=£2,+(u?)1(L((T)), which can be evaluated using Egs. T8X=poyslnl’3(ﬁ)—pols)\
(9), (19), and(42). Tap,en
Depending on the size of tHe=0 pinning length(22) or S5\ 13 5.\ | 13
(23) in comparison to the scalds; andL, the thermal de- —pos(ln 3[(5_) }_( S ) ] (48)
pinning will happen at different characteristic temperatures N
such that we have to distinguish three cases within the weak e 5.\ 13
pinning regime Tap.er=sofan— pos( 5 ) : (49

(i) large disordel .(0)<Lg4 (43

[for weak pinning we only considel.(0)>d in order to
have weak collective pinning of lines @t=0 such that the The different regimes in the temperature dependence of the
regime(i) becomes<L.(0)<e,p, and is presenonly for ~ pinning lengthL(T) for strong Josephson coupling are il-

a strong Josephson coupling; strong pinning of pancakes wilHstrated in Fig. &). For large disordefi), i.e., short scales

Tapi=e0 tagy?=eoéand =" Ty,,. (50

be discussed in the following sectibn Lc(0)<ehgp Or >0, [butL (0)>d or §43<1], Eq. (46)
gives the usual anisotropic result with an exponentially in-
(i) intermediate disordet ;<L ,(0)<L (44) creasing_ (T) above theanisotropic depinning temperature

ber th . fromL he oinni | Tap ! This behavior will continue untilL (T)=gX\ 4,
[remember that .(0) jumps fromL to the pinning plateau WhICh defines the slightly higher temperatuFg, . Due to

Ieng':?L 2:;;nd esientlally does not take on values in betweeny,q electromagnetic coupling, the dlsplacemem$2(L)
see Eq(22)], an stay essentially constant on scakes,,<L<L. up to the
(iii) very weak disorden_c(0)>t. (45) pinning plateau length such that the pinning length jumps at
the temperaturd ., from L.=&\,, to L.=L; upon a small

temperature increase. In the rande<L<L disorder-
induced fluctuations start to increase again viithccording
to Eqg. (20) but the thermal fluctuations responsible for the

We will use the abbreviation§), (ii), (iii) throughout the
whole paper to denote the corresponding cases.
For a strong Josephson coupliay ;p>d, we find

T<Typ.: L, weakening of the disorder are still essentially constant due to
Pe ° the electromagnetic interactions. This leads to a less effective
Tape<T<To: L Tap,e e(MTap,e)° smoothing and the pinning length grows only linearly with
’ 0T Finally, on scaled.>L, both thermal and disorder-induced
T=T,,: e\ap fluctuations increase with. Because the stiffness takes on

the isotropic value;= ¢, from the local limit of the electro-

(D:Le(M=} -7+ . T ~E~E 23 magnetic coupling, the characteristic depinning temperature
en ST e is the isotropicTy, ;. But also forT>Ty,; the temperature
dependence df.(T) is slightly different from the usual iso-
TA<T<Tapi: Le T T tropic behavior because the additional log divergence in the
’ Texn  Tapii last line of Eq.(42) is cutoff at small scales by the thermal
T>Tgp,: T_’e(T/po,i)S, plateau lengti_ due to the small-scale thermal fluctuations
(463 favored by the electromagnetic coupling.
For intermediate disordeii), N 4,/eY3<L(0)<\p/e,
T<Tgper: Le.i the depinning temperature for the scade 5, called Ty, ,) is
T T most relevant[Note that due to the dispersion of the stiff-
(i) :Lo(T)={ Taperx<T<Tupi’ Lg; =l ness,Typ ) IS ellso the depinning temperature for the thermal
dp.eX dpii plateau length_, cf. Eqg. (10)]. Starting from the isotropic
T>Tgp,i: TeMTap)’ valueL; at low temperatures, the depinning is driven by

(46b) short-scale thermal fluctuations on the scale,,. (For in-
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FIG. 3. Schematic plot of the temperature dependence of the collective pinning len¢gh for strong Josephson coupling\ 5,>d
(e.g., for YBCQ according to Eq(46) and (b) for weak Josephson couplirdj>&\,;, (e.g., for BSCCQ according to Eq(51). For L
<d strong pinning of pointlike pancake vortices setgshaded region The corresponding curves for the case of strong pinning are also
shown at the left and right; they emerge from the strong pinning regirie=at* and are described by Eq&.1) and(72).

termediate disorder, we havig,, ., <Tgpi.) For weak dis-  with characteristic temperatures
order(iii ), Lo(0)>\ /€, the thermal depinning is driven by

thermal fluctuations on the scale of the isotropic Larkin Tapa=e(1/d)&5/d=U,85 2, (52)
length L. ; itself, and the relevant depinning temperature is
the usual isotropic resulty,,; . (For weak disorder, we have Ta=Tapa( 55— 1)=Uy( 85 o~ 5519, (53)
Tapi<Tdp.er-)

For a weak Josephson couplidg e\ ,;,, we can perform Tapi=e0 tagy'®= (g0l d)ed 55>, (54)

the same analysis and get analogous results. However, the

case(i) of large disordelL.(0)<d or 64>1 is peculiar be- Figure 3b) shows the different regimes in the temperature
cause the condition puts us in the regime of strong pinning oflependence of the pinning lengdth(T) for weak Josephson
pancakes, and only at temperatures high enough such th&@upling. A detailed study of the cas¢p of strong pinning
L.(T)>d we can get weak pinning of lines. This requires aWill be presented in the following section, also for the case
theory for thermal depinning from strong pinning which we of strong Josephson coupling X,,>d). In particular, we
defer to the following Sec. V B. The basic differences to thewill clarify how L.(T) increases beyondi by thermal
case of strong Josephson coupling are the different definitioAmoothing for the strong pinning situatidn(0)<d. The

of the thermal plateau Iengih see Eq(11), and in regimes discuss!on for the cgaséﬁ) and(iii ) of intermediate and very
(i) and (i) thermal depinning is now governed by fluctua- vv_eak d!sorder carries through analog_ously to the previous
tions on the scald instead ofs\ ,, such that the correspond- discussion for strong Josephson coupling.

ing temperaturdl 4, 4 is the relevant depinning temperature.

As long as weak collective pinning theory applies and B. Thermal depinning from strong pinning
Lc(T)>d, we obtain Now we address the thermal depinning of pancake vorti-
T T ces which are pinned on the scéle-d. The thermal depin-
T<Tgp,i: Lo=—=L— ning will be qualitatively different for weakly pinned pan-
(i): Le(T)= Ta  Tap, (513 cake vortices withdy<1 and strongly pinned pancake
T>Tgpi: te(T/po,i)s' vortices with54>1 [or L;(0)<d]. In particular, it has to be
worked out how to cross over to the findings for weakly
T<Tgpd: Lei pinned lines on scalds>d if the temperature becomes suf-
- T ficiently high. ' . _ ' '
(i) Lo(T)={ Tapa<T<Tgp,: Lci_:[_ It is instructive to discuss first what happens if we naively
¢ "Tapa  Tdpi assume that all thermal averages can be performed with the
T>Typi: Te(MTapi®, elastic part of the Hamiltonian as in the absence of disorder

(51b) as it is justified in weak collective theory, i.e., for weakly
pinned pancake vortices which have displacemé¢Bis at

T<Tgpi: L low temperatures. Similar to vortex lines, this means that the
T - range of t2he pinning forces is smeared out and we r;ave to
(ii): Lo(T)={ Tapi<T<Tapa: Lc'i%ZET_ replace &, by the effective vortex core ared&s,
dp,i +(u?)7(d), cf. Eq.(41). With Gaussian thermal fluctuations
T>Typa: ’Ee(T/po,i)3’ of the vortex cores, we can define a thermally averaged pin-

(510  ning potentialV4 by Vd((u))=(vd(u)> which will again be
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Gaussian distributed as in ER5 but with a thermally Next, one checks for the stability of this RS solution with

weakened characteristic energy respect to RSB; the temperature below which the RS solution
becomes locally unstablgwhich defines the so-called
-, ) §§b U’ZJ Almeida-Thouless lineturns out to be exactly the tempera-
Ug(T)=U (55)  ture T4 that we have identified above as the crossover tem-

P g2 2 = + ’
Eapt(UD)r(d) 1T/ Tapa perature to linelike weak collective pinning. Within the rep-

lica variational approach we can specify numerical
prefactors, and fon=2, we find

4 1/3
(;5(,) —1].

This instability temperature is identical to the temperature

This meansTy, 4 is the characteristidepinning temperature
for weakly pinned pancake vorticéehe Imry-Ma argument
is made in the same way as B0 with a slightly lower

number of statistically independent smeared pinning $ites To=Tapd

(60)
=u?/(£2,+(u?)7), and we find for the optimal displacement

=g o 14 T )‘1’2|nl,25d_ (56) Where the RS mean-square displacem@rft r 5 from Eq.
apd Tap.d (58) has a minimum as a function &f or where(u)gg
2
i i T2 2 2 =(u)r.
This result is expected to hold fgu)*> &,+(u), other- However, following Ref. 21 it can be shown that it is not

wise perturbation or random force theory applies whichie temperatur@, which marks the onset of glassy behavior.
gives with the same thermally weakened disorder potentialgather. one finds that below a certain temperaltrea one-
step RSB solution becomes locally stable. In the lidjt

-2
1+ ) (57) >1 of strong pinning the crossover temperature is

(u)y?Re~ 30 Tang
P,
T*=U*=(2m) U, In " n2m) s (61)
[note that thermally averaged random forces are also Gauss- P " o
ian distributed but aslerivativesof the potential, see Eq. andT*= 44" is higher thanTq=d5". In the same limitdg
(17), they have an additional factor ¢1T/Tg,4) * in their ~ >1 displacements and the variational free energy are
thermally weakened correlationd8) as compared to Eq. 1
(55)]. U e (277) " MAE2 U2 =1/2r oy~ /4 gLl
At Tg=Tgpa(85°~1) we find (u)?=¢2,5%° both with n{U)rse= (2m) T avds Tn2m "5

the Imry-Ma argument56) and perturbation theory57), T \-na

moreover(u)?=(u?);, and both results cross exactly over x| 1+ E—) , (62
to the line like weak pinning resu(#2) with L=d as can be |Eol

checked easily. Altogether this clearly suggelst§Ty)=d o —nia T /4 U2

and a smooth crossover to weak collective pinning theory of [Fl=32(2m) "0, In¥n(2m) "4, (63

lines on scaled. >d. Though this scenario is consistent it The variational free energf~E, is dominated by the
turns out not to be correct because the thermal averages fround-state energy at low temperatures.
Eq. (55 are performed as in the absence of disorder with & Equation (62) describing the thermal depinning of a
Gaussian distribution. This is essentially justified if disorderstrongly pinned pancake vortex is the main result of this
is a small perturbation but in the regime of strong pinning thesection and requires some further discussiohis identical
relevant thermal fluctuations giving rise to the thermali; ine temperature Wherfé_U2>Rss=_<U2>Rs or _<u>2RSB
smearing are non-GaussiahAs a result formul§$56) and =~ (u2); and the energy scalg* from Eq.(30) that we iden-
(57) are incorrect for the cas&,>1 of strongly pinned pan- ified as typical elastic energy barriers between different
cake vortices whereas our argumentation is justified fofetastable energy minima for the pancake. As can be seen in
weakly pinned pancake vorticef<1 which are correctly g (62), the characteristic depinning temperature in the one-
described by formulas7). _ _step RSB solution is the ground-state enefBy| of the T
The problem for the case of strongly pinned pancakes is- g proplem. Note that formulés3) is identical to the result
clearly recognlzed if we generalize the replica var|_at|onal(29) from the Imry-Ma argument but specifies numerical
calculation of Ref. 21 fromm=1 to generah and apply itt0  prefactors. In particular|Eq|>T* such that the disorder-
the physical problem of pancake pinning witk=2 at hand. induced fluctuationgu®)rsg do not experience considerable

As usual in replica variational_calculations, the pe.rturbativethermal smoothing up to the temperature where the RSB

RF rgsult(57) IS 'exactly what is found as the replica sym- solution becomes unstable. Thus the one-step RSB solution

metric (RS) solution: is essentially temperature independent and identical to the
1 result(28) of the T=0 Imry-Ma argument in the whole tem-

1+ _) perature rangeT<T*. This suggests that pancakes are

Tap ’ strongly pinned in valleys of deptk|Eg|, whereas thermal

(58 activation into energetically close valleys starts to occur at
temperatures=T* leading to the instability of the RSB so-

1 lution. Therefore typical intervalley energy differences are
po'd:ﬁs'(lld)ggb/d' 59 indeedu* ~T*. P g Y

1—— 1 T
H<UZ>RS:ﬁ§esz_po ; +(2m) " "2¢2, 84
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As already noted we havE* >T for strong pinningdy ber of accessible statésgiven a ground-state ener@y. At
>1. So the RSB solution is the only stable extremum of theT=0 we have
free energy at low enough temperatufies T4 whereas the
RS solution is the only stable extremum at high enough tem-
peraturesT>T*. The situation is somewhat more compli-
cated in the rang& <T<T*, where both solutions are lo-
cally stable but it can be shown that the RSB solution is the ) .
global energy minimuni! This is reminiscent of the “com- Where the ground-state energy fulfil§0)=1 by definition.
petition” that is induced by the fact that far> Ty the pin- From our mFerpretann in termg of energy valleys of depth
ning should become linelike as suggested by the naive intro=|Eol and intervalley energy differencesT* we expect
ductory argument but on the other hand, the individuaN(T) to sharply increase in the temperature intefak<T
pancake elements are still strongly pinned in valleys of deptii<|Eol. For T>0 there are two effects which increas¢T).
~|Ey|. First, for T>T* we have(u®;>(u)? and the “search” or
The results we obtained so far further suggest that withirftrapping” area increases téu)?+(u?)1. This is the domi-
the small temperature rang&* <T<|Ey| the strongly nant effect at high temperatures and reproduces the weak
pinned pancakes will completely liberate from the valleys ofpinning theory results. Second, and more important for
depth=|E,| and essentially all states become thermally ac-strong pinning at low temperatures, essentially all energies
cessible at temperaturds=|E,|. Then thermal fluctuations up toEy+ T can be probed by the pancake particle: Given a
are only weakly affected by the strong pinning energyground-state enerdy, at T=0, the probability of occupying
minima of the individual pancake segments such that a crossx pancake state of enerdy at temperaturel is given by
over to the weak collective pinning of lines as outlined in theexd — (E—Eg)/T|{1+exd —(E—Ey)/T]}, which is reminis-
preceding section takes place. For a vanishing Josephsaent of a Fermi-like distribution as two pancakes repel and
coupling this crossover has been described as “variableeannot occupy the same pinning site. Upon disorder averag-
range thermal smoothing” in Ref. 9. The central quantity ining this gives for the number of accessible states at tempera-

_ (W) (&
N(O)_?deEp(E)' (64)

the Imry-Ma argument presented for=0 above is the num-

ture T,

(W?+(u)y J (W?+(u)y J
N(T)=———"—| dEpE ~ dEp(E),
(M gib s A )1+eXF[(E—EO)/T] §§b —w P(E)
(T<T*: O(1)
. T T\? T 1T?
T*<T<|Eol: |1+ —||1+ =] exgc——=—
== T* |Eol ™ 2032 (65)
-
T>|Ey|: =,
\ Tapd

where we usedN(0)=1, T*=cU}/|Eo| with a numerical
constantc= %(2#) "2 from Egs.(63) and(61), and the ap-
proximation  erfcg) = 1w [% . dxe X~ 1/2{x|z| "te~Z

for z<—1 if T<|Eg|, andj <erfc(z) <1 if T>|E,|. Taking

only the leading terms of the resu5) and usingc=1 in

order to have a smooth crossoverTat|E,| we obtain the
approximate simplified expression

cally all T>T* due to the exponential increase in Ef5).
Second, we assume that tNT) states the thermal fluctua-
tions average over are drawandomlyfrom the distribution
p(E). This assumption is true at high temperatures when
>|Eg|; at low temperature¥<|E,| the thermal average will

be only over the accessible states in the intef\&},E,

+T] above the ground state. Under these assumptions, we
can use the central limit theorem and introduce an effective

thermally weakened pinning strengﬂlJ which replaces the

T T

N(T)=| 1+ T_* exp( T_*) (66) result(55) that is based on weak pinning assumptions:
for T<|Ey|. An expression folN(T) is at the heart of a ] ! T
theory of thermal smearing because it quantifies the number T<[E: 1+ exp T_*
of states the disorder is averaged over due to thermal qucUS(T)=U§N—T):
tuations within the pinning energy landscape. To make fur- ( T>|Ey: Tap,d
ther progress we make two assumptions. First, we assume or T
thatN(T) is reasonably large, which will be true for practi- (67)
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Note that atT=|Ey|, the high-temperature result crossesdifferent behavior in the case of strong pinning. Thermal

over to our above resu(b5) where we assumed the thermal fluctuations of relative displacements in the different layers

smoothing to be independent of the disorder, which is onlyare independent which leads ¢a?)1(L)=(L/d){u?)(d).

true for weak pinning. We noted already that for T* the  Therefore, also the number of thermally accessible states
displacement fluctuations are given by RF results. Whereaadds up to

for weakly pinned pancake vortice${<1) the effective

pinning strength(55) was appropriate which led to formula _ L

(57) or (58), we have to use the effective pinning strength N(T’L)_HN(T) (69)
(67) for strong pinning ¢4>1) in the random force theory.

This gives if L>d. Analogously to what we noted for the thermal

smoothing on the scalé, factors[1+(u?)r(L)/£2,] in the
weak pinning result42) have to be replaced by(T,L) in
case of strong pinning.

NZ(T) Using Eq.(42) modified by this replacement and the defi-
. nition of the pinning length by the relatiofu)?(L(T))

T =¢2, +(u?)1(Ls(T)) we can obtain the thermal smoothing

exp( _21—_*) of the pinning lengthL.(T) for the case of strong pinning

) where L (0)<d at low temperatures. First, we have
T>|E,|: (po,d) observed above that the transition temperatdie is
' exactly the temperature whex@)?gsd d)=(u)3(d) such

(68) that

for the correct temperature dependence of the disorder- L(T*)~d (70)
induced displacement fluctuations for pancakes TorT* ¢

[again, as derivatives of the potential force correlations havey definition of L¢(T). It is also clear from Eqs(65) and

an additional factoN™*(T) as compared to Eq67)]. Note  (69) that for T>|E,| the results for the thermal smoothing
that (u)2ge<(u?)1 for T>T* such that(u?=(u)7 for T  cross over to the weak pinning results. Therefore we recover
>T* and disorder-induced fluctuations only dominate belowcasesi) of the resultg51) for weak Josephson coupling and
T*. At T=|E,|, the high-temperature resul68) crosses (46) for strong Josephson coupling for>|E,|. The cross-
over to our above resuli®7) or (58). over within the temperature range <T<|E,| is approxi-

We also realize that in Eg.(42), factors (1 mately described with the aid of our resul&b) and(69) for
+(u?)1(d)/&2,) which give the number of thermally acces- N(T,L), and gives a very steep increase frag{T*)=d to
sible states in weak pinning theory should be replaced byhe weak pinning results due to the exponential gro(6)
N(T) if we have strong pinninggy>1 [or L,(0)<d]. Also  of N(T) in this temperature interval. For strong Josephson
thermal fluctuations of longer vortex segmehts-d have couplinge),,>d we find

WRF:WRF,T:O

T<|Ey:

T
1+ —
T*

= &304

T*: d
T*<T<|Eol: dma 1Le(LC,E/d)3(T/poyd)N(T)2
(D Le(T)= N(T) 71
T
|Eol <T<Tg: Lcyg%émdp,s)i
whereas for a weak Josephson couplihge\ 5, we obtain
( T* - d
T Loi050=T o7 (<1 ,)
: T 1/3 ~T1/3-|-2/3
() L(T)={ T*<T<|Ey: Lo iNZ3(T) ~T dp,d N23(T) (72)
’ Tapa Tap,i
Eo|<T<Tgp:: T Tt
0 dp,i - —_— = =
L P! CTd po‘i
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Note thatT*>T,, . for a strong Josephson couplingX;p, VI. CRITICAL CURRENTS
>d) such that the effective depinning temperature appears to
be T* as in the case of weak Josephson coupling.T)
grows with a double exponential fa* <T<|E,| before we
recover the weak pinning resul46) for T>|E,|. Analyzing
the modified relation(42) carefully, it becomes clear that
approachingT* from the high-temperature side we find
L.(T)=d already at a temperatuile=T* Ins;<|Ey|. On the
other hand we found in Eq70) thatL(T*)=d. This sug-
gests that. .(T)=d not only for T<T* but that this relation
extends into the temperature interlei <T<|E,| which is

Each vortex configuration has a different pinning energy
which gives rise to the quenched positional fluctuations of
the vortex line that tries to optimize its pinning energy gain.
The energy landscape in the high-dimensional configura-
tional space is very compleiFig. 2 illustrates the much
simpler energy landscape of a pointlike pancake segment
leading to the existence of many metastable vortex configu-
rations. If a current is applied there is an additional Lorentz
forcef =] dy/c (per vortex lengthon a pinned vortex seg-
mpled b he oo n e second e of £ Fora 17t 2,11 4 10y o 0epiers e
Weak_ Josephsan COUplmgj?s}‘?b) the electr_om_agnetlc energy landscape becomes tilted in the presence of the driv-
coupling leads to a pronounced jump of the pinning 1ength,g force and eventually the optimal vortex configuration
Lc(T) at the temperaturd™ from Lc=d t0 Lc=Lcid3",  changes. In the absence of thermal fluctuations a0,
which is followed by an exponential increase upTte:|Eol  nhowever, vortex motion does not set in as soon as the global
where we recover the weak pinning resuig). This jJumpis  energy minimum changes but only when the initial energy
the analogon to what we found in E@6) for a strong Jo-  ninimum becomesinstabledue to the driving force exerted
sephson coupling. The resdit2) for the pinning length fora  py the current. This happens if the Lorentz forigeon the

weak Josephson coupling is in qualitative agreement butinneq vortex segment becomes larger than the average pin-
slightly different from what has been obtained previously iNning force, which defines theritical current density j. For

Ref. 9. j<j.there are energy barriers between the metastable vortex
configurations which diverge for small currents. These en-
C. Thermal depinning in the random manifold regime ergy barriers can be overcome only by thermal activation for
) ) ) T>0 giving rise tovortex creepfor j<j.. In the limit of
__On scalesL <L(T) the disorder-induced displacements gmq| currents barriers diverge, and the activated creep dy-
(u)*(L) are decreased by thermal smearing of the disordefamics becomes very slow which is a hallmark of glassy
potential according to Eq42) for d<L<L(T) and weak  pehavior. Forj>j, the tilt of the energy landscape is suffi-
collective pinning and according to E(62) on the scald.  cjent that all barriers vanish and the vortex line starts to

=d when we consider strongly pinned single-pancake vortimove with the usuaflux flow velocity v~ jp,/H.,, where
ces. Above the depinning temperature whiegestarts to in-  ;, is the normal-state resistivity.

crease from itsf =0 value, there is a range of length scales
L<L(T) where the disorder-induced displacements are
smaller than the thermal displacemefitg)(L) for weak
collective pinning. However, on scalés>L.(T) for weak In order to determine the critical current density we have
collective pinning and.>d for strong pinning the disorder to consider vortex displacementsi®= &5+ (u?)(L.),
is still dominating and thermal fluctuations do not change thevhich are of the order of the disorder potential correlation
large-scale scaling properties in the RM regime as workedength &,,, at low temperatures which gets smeared out by
out in formulas(32), (33), and(38). However, we eventually the thermal motion of the pinned vortex above the depinning
have to adjust the normalization of the scaling relations. Itemperature. For weak pinnirg.(T)>d the optimal length
the case of weak pinning..(T)>d we normalize using of the displaced vortex segment is given by the pinning
(UY?(Lg(T))=(u?)1(L(T)) and obtain lengthL.(T). The typicalpinning energy variations YJen-
countered by displacing such a segment can be estimated
from the elastic energy and E¢41) for strong Josephson
(73) coupling (g\,p>d) as

A. Weak collective pinning

(U(L)=(u?)(L (T))(L)MRM
T A LT

Uc:qzsl(q)GRF(q)|q=1/Lc(T)

in the nondispersive regime&  (T)<L<ek,, and L .
>L(T)>L,. For strong pinningL.<d on scalesd<L 2yJLC(T)dI | Eab (74)
<&\, the result(33) stays valid for temperatureb<T* 0 g l(1) [£2,+(ud(1)]?’
where thermal smearing can be neglected. ForT* the
Larkin length increases beyortidue to thermal smearing which gives
and we can use the above weak pinning re$u8 with
L.(T) as crossover scale. T<Tgp,: Tap,e

For the remaining dispersion-dominated casel .(T) Tape<T<Tp: T

when [C>Ld>LC(T) the result(38) remains valid as all (i): Ug= ) (75a
relevant length scales exceéd(T) and thermal smearing Tax<T<Tapi* Tapi
can be neglected. T>Tgp,i: T,
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T<po,i . po,i T<po,i . po,i

(75b) (i), (i), (iii): Ug=

= 76
T>Tgpit T. T>Tgpit T (76

(i), (iii): Ug
in all three case§)—(iii) but in case(i) of large disorder we
. L . have to consider sufficiently high temperatufies|E,| such
_F'r,St we note that al =0, there is ajump in the charac- that L.(T)>d, otherwise we are in the regime of strong
teristic energy fromU =Tqp . 10 Uc=Tqp,; if we move from  ,inning As for a weak Josephson coupling there is also a
pinning regime(i) to regime(ii) by increasing the disorder jump inU, at T=0 when we move from regimé) to (i) by
strength. This happens because the Larkin length, Wh'C"hcreasing the disorder strength. This will become clear be-
gives the length scale of the displaced vortex segment, jumpgy from the T=0 results for strong pinning of single pan-
from L¢(0)=e\,p, to L(0)=L, at this pinning strengtl®  cakes.
= 4., . The behavior of the pinning energies as a function of The corresponding energy gain from driving the segment
temperature is determined by the two characteristic depinef lengthL.(T) the distanceu(L,(T)) with u2(LC(T))~—~§§b
ning temperatures 4, , and T, ; for short-scale anisotropic +(Uu?)1(L(T)) is fL(MuL(T)=]L(Tu(L(T))Po/
stiffness and large-scale isotropic stiffness, respectivelyc. This energy gain balances the pinning energy variations
Short-scale segments (T)<e\,, thermally depin forT U. at the depinning threshold which gives a critical current
>Tgp. and typical barriers are given by the temperature
then. Most notable is the jump at the temperaflire from a c 1
U.=T,, to the higher valudJ .=T,,; which is due to the jo=5Ug————.
cocrresponding jump in the pinningpvleng(hG) and the ac- Po " Le(Mu(Le(T))
companying increase in the stiffnes§1/L.(T)]. The larger The jumps inL.(T) lead to characteristic drops in the critical
segmentd .(T) >\ 4, thermally depin only above the isotro- current density as a function of temperature as reported for
pic depinning temperaturgy,; which therefore sets again a the case of vanishing Josephson coupling and strong pinning

(77

typical pinning energy foll,, <T<Tg;. in Ref. 9. Putting the different resultg5) for U, (46) for
For a weak Josephson couplind> e\ ,,) we obtain es- L (T), and the corresponding expression faiL (T)) to-
sentially the same result gether we find for strong Josephson coupling,,>d,
( 5\2/3
T<po,£: jc,s:jO(;)
T \%2 3
Tap<T<Tox? jc e 2(MTap.)’*
i € po,s
B T,, |2 312
e ],
€oab €Nap
/ /
. . T:T+ J Ts)\ lZpo,I gab 3287/3
(I): Je= oA 0 Sogab Ts)\ 8)\ab (78@
T \Y¥2(T. 2 32
TA<T<Tgpi: jo< ) <_dp"> @’
€o€ap T L
1/2 3/2
T>Typ jo( T ) @’ e (32)(TTgp )3
' €o€ap L
1/2 S\ —32
:jci(i) ( Tapi ) ef(axz)(r/po,i)i
\ N\ Tapi/ | Tapex
r Td . 1/2( g b 3/2
T<Tgper: i "") Sab) i 523 23
dp,e\ Je,i=] (Sofab Lc,i Jo Jc,e
.. . . po,e)\ 32
(i) je=q Taperx<T<Tapi* Jei| —— (780
T l/2< Td o\ —3/2 3
T>Tan T L) e~ (32)(TTgp)°
\ 4 JC"(po,i) Tap,ex
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T<Tgp,: Jeii
Tapi<T<Taper: | ( T ) e ommmy,?
. en |l—] e p,i
(ii): jem=q T dee deil T (789
112 Y
T>po N . jc i( T ) ( po,l ) e,(3/2)(-l—/-l—dp’i)?:7
’ N\ Tap,i Tap,ex

wherejo=ceq/Py&,, is the depairing current. The different regimes in the temperature dependence of the critical current
densityj. for strong Josephson coupling are illustrated in Fi@).4Most notably, there is a pronounced drop of the critical
current by a factor o£*3 at T,, in case(i) of large disorder which should be observable at low-field experiments.

Using Egs.(76) and (51) results for weak Josephson couplidg- e\ 5, are completely analogous to formulé&). The
basic differences are the different definition of the thermal plateau ldngee Eq(11), and that in regimesii) and (iii )
thermal depinning is now governed by the length schlend the corresponding temperaturg, . Within weak pinning
theory we are limited to temperatur&s>|E,| where we find

( 12
Ty €ab
,0( ) e/l
£0éan T
(D Je={ T>Typi: 57 e~ (32 (M/Tgp)? (793
80§ab L
1/ -3/2 .
~ (312)(TITypi)
e pi)”
\ JCI(pol) (
T<Tgpd: Jeii
Tapa<T<Tapi: | _(po,d>3/2
(I|) jcz P Rl ¢l T (79b)
1/2 N\ -32
T>Tgp,i: jc,i(TL) (@) e‘(3/2)(”po,i)3l
dp,i dp,d
T<Tgp,: Jeii
2
i poi<T<pod: jCI(L e_(3/2)(T/po,i)3
(i) jo= ’ ' "\ Tap,i (799
T \Y2 T, .\ —32
T>Tapa: jc,i(ﬁ) ( jp;) e*(3/2)(T/po‘i)3_
p,i P,

Figure 4b) shows the different regimes in the temperaturestate within an energy valley of siz&,, therefore experi-

dependence of the critical current densjtyfor weak Jo- ences a typical pinning forciy|/&,p,. Driving forcesf, d

sephson coupling. Cage of strong pinning is discussed in =jd®,/c>|Ey|/&,, exceeding this value are needed to tilt

detail in the following section. the energy landscape such that all barriers vanish. Then the
critical current for strong pinning s

B. Strong pinning

For strong pinnind-.<d we first focus on the behavior at
low temperature§ <T*. As the pinning length.. exceeds
the layer spacing, the optimal length of the displaced vortex
segment is the minimal accessible lengith d of a single-
pancake segment. We have shown in Secs. IV B and V B that
the energy landscape for a strongly pinned pancake segment — & 81)
is characterized by two energies. The pancake segment can Jd 1080d
attain a ground-state enerdy, in the deepest traps of the
energy landscapfsee Eq.(29)]. The ground state is sepa- is a characteristic current strength that is a convenient mea-
rated from metastable states by energy barriers of the ordesure for critical currents at strong pinnifgy~ Joxﬁd’z for
of T*=U* [see Eqgs(30) and(61)]. A vortex in the ground weak Josephson coupliri> e ).

¢ 1 C o nl2
<I>0|E°|d§ szdln 84 (80)
a

at low temperatures, where
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_______ strong pinning i I

o, ~ o
e A . strong pinning

................................

-2, )’
~e

dpji

FIG. 4. Schematic plot of the temperature dependence of the critical cygréal for strong Josephson couplirg\ ,,>d (e.g., for
YBCO) according to Eq(78) and (b) for weak Josephson couplirdi> e 4, (e.g., for BSCCQ according to Eq(79). j. is limited by the
low-temperature strong pinning res(@®0) which gives the solid line at the top; the barrier current strengthccording to Eq(82) gives
the dashed line slightly below. Slightly above the temperatiréhe difference betweeji andj. vanishes. The corresponding temperature-
dependent curves for the case of strong pinning according t¢8Bpemerge from this line at=T*.

If the current is decreased below the valug ofjiven by _ c |Eol 1
Eq. (80) at low temperature$<T*, pancake segments have Je= 3 N A Ay (83
. S ®y N(T) du(d)
to overcome energy barriers by thermal activation. However,
it is a hallmark of the strong pinning system that there existsWhich ives ai. that is exponentially decreasing upon in-
a range of currenty” << | for which these barriers are creasing the tJecm erature gboVé Dl).l/e to this sr?ar pdro
independent of the current densjtas the optimal length of o stro% inninp resulB3) crosées over to the we%k iﬁ—
the displaced segment stays at the minimal accessible Iengm 9p 9 P
- o : ning results(78) and(79) [that are only weakly temperature
L=d. Only below the characteristigancake barrier current : . -
. X dependentalready slightly abov@&™*. The currenf*, on the
strength |, the optimal length of the displaced vortex seg- .
. ! other hand, crosses smoothly over to the weak pinning re-
ment grows beyond the layer spacidgThis crossover cur- sults (78) and (79) for |, right at the temperaturg* where
rent strengthj* is obtained by balancing the typical pinning le N9 P

S " . Y U*=T* andL(T*)=d. We will see that the result for*
energy variationd)* on the scalel against the energy gain decreases much slower thgp for temperatures slightl
from driving the pancake vortex over a typical displacement 3¢ b gntly

: e ; . aboveT*. Therefore, the range of currerjts<j<j. where
g:ite?ceu(d)—(u )(d), as calculated in Eq(2§). This the energy barriers aijeindependent vanishes wheh and

jc coincide which happens at a temperature only slightly
aboveT*. At higher temperatures we hayg=j*.
., ¢ 1 a1 j* is determined from the energy balance for optimal seg-
=gV du(d) =jadq~ IN""" 4y, (82)  ments of sizd.(T) that are driven a distanag(lL .(T)) with
0 U2(Lo(T))=£2,+(u?)1(L(T)). Using the result(42) for
Lc(T)<d, modified by the replacement of thermal smooth-
ing factors byN(T,L), we find for the corresponding char-
acteristic energy scale

which is well belowj.. As barriers to vortex motion are
existing in the regimg* <j<j. we do not identifyj* with
the actual critical current as it has been done in Ref. 9.

At temperature§ >T* above the characteristic tempera-

ture T* for the depinning of pancake segmebtsth j. and (): U 2[T<T*: U*=T* -
j* decrease due to thermal smearing. ForT* we find U TE<T T

Lo(T)>L(T*)=d [see Eq(70)] and expect a crossover to

our above resultg78) for strong Josephson coupling and for e\ap>d and

(79) for weak Josephson coupling. It can be shown that the

critical currentj, is also forT>T* still determined by the T<T* Ut=T*

Lorentz force necessary to drive small pancake segments of (i): U= [ : (85)
lengthL=d, however, due to thermal smearing the pinning T*<T: Tgpi

energy |E,| of a single-pancake segment is reduced by a

factor N(T) as calculated in Eq65). Furthermore, we have for d>&\,,. We note that a jump o), happens for weak

to use a driving distance(d) with u?(d)=£2,+(u?)+(d), Josephson coupling in the strong-coupling regime at the tem-
and obtain perature T* where U, increases fromU.,=T* to U,
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=Tgp,i- To calculatgy* for T>T* we then use EQ.77) but in connection with the result84) and(85) for U; and(71) and
(72) for Lo(T) appropriate for strong pinning. For strong Josephson couglhyg>d we obtain

T*: Jdg(; l/4|n—1/4( 531./2)
TH<T<|Eo: | T (po,d)m in{1,N32(T)e~ (3 1d)3(T/Tgp ) N(T)?
. . . —_ mim 1, e c.e P,
T 2
|EO|<T<T8)\: jca( ) e_(3/2)(T/po,s)3
Y po,s
and for a weak Josephson couplidg e\ 5, we find
( T* - jd551/4|n71/4( 53/2)
T* —5/6
T* +: jcyi(T ) :jcyi6g5/12|n5/12( 521./2)
dp,d
i = L T\ 86b
e Y 2’3<T>(T ) o0
dp,d
T \Y2(T. \2 3/2
|Eo| <T<Tgp,: jo( ) (ﬂ) @ )
\ Sogab T L

Again, there is a pronounced drop of the critical current for agime but which is nevertheless dominated by activation over
weak Josephson couplingl¥ e\ ,;,) at the temperaturé@* barriers. This regime should be observable in experiments
by a factor ofj ;85 "jq=eqx 16,3, This is the anal- for temperatureg <T*.

ogon to our above findings in formula§8) for a strong Furthermore, we can predict jumplike features in the
Josephson coupling. current-voltage characteristics if pinning is such that
<L4 [strong pinning or casé) of large disorder for weak
VIl. CURRENT-VOLTAGE CHARACTERISTICS pinning, see definitiori43)] at low temperatures. Similar to

the jumps in the Larkin-length.(T) as a function of tem-
From the experimental point of view our results have in-perature that we have found in Edg6), (71), and(72) for
teresting consequences for the interpretation of currenthis situation also the optimal segment length for the vortex
voltage characteristics in the low-field regirﬁei@ol)\ib. line activation will jump from a value.(j)=L4 to a larger
For weak collective pinning the critical currejit marks the  valueL (j)>\ ., at a particular current strength belgw. As
crossover from a regime of glassy creep behavior at lovalso the height of the corresponding pinning energy barrier
currentsj <j to a flux flow regime at high currenjs>j..  U(L(j)) has a characteristic jump at this current strength, a
For a given current density< . there is an optimal segment jump should also be observable in the current-voltage char-
lengthL(j) and a characteristic displacemen(t.(j)) sepa- acteristics as a qualitative feature. This finding holds for tem-
rating metastable configurations for which the energy gairperatures such that.(T)<L4, i.e., for T<T,, for a strong

fLL(j)u(L(j)) is sufficient to overcome the pinning energy Josephson coupling and far<T* for a weak Josephson
barriersU(L(j)) between the metastable states. Usually thecoupling.

barrier heightU(L(j)) diverges as the length scdléj) di-
verges for smalj giving rise to typical glassy creep behavior.
Thus we have nonzero ohmic resistivity in the flux flow re-
gime j>]j. and a vanishing ohmic resistivity for smgll We have provided a complete analysis of the displace-
<j. due to diverging energy barriers. Both strong pinningment fluctuations of a pinned single-vortex line in a layered
and electromagnetic coupling along a single-vortex line leadype-Il superconductor including a detailed treatment of the
to two distinct features in the current-voltage characteristicelectromagnetic coupling and the strong pinning regime. Due
at low fields. to the existence of four characteristic length scales—the
We have already seen that for strong pinning of pancakéayer spacingd, the length scale\ 4, below which the Jo-
vortices a novel current regimg* <j<j. emerges where sephson coupling dominates, the magnetic penetration depth
pancake vortices have to activate over barriers as in the typbelow which electromagnetic dispersion sets in, and the pin-
cal creep scenario but where the barrier height is independening lengthL . characterizing the disorder strength—the be-
from j. This leads to the appearance of a second regime withavior is very rich. The electromagnetic interaction leads to
linear current-voltage characteristicas in the flux flow re- an effective decoupling of the layers for thermal fluctuations

VIIl. CONCLUSION
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with wavelengths_ in the plateau regimex,,<L<L and We find L¢(0)=L..(0)~18 A and Ly=s\,,~300 A.
for disorder-induced fluctuations in the plateau regimeTherefore, a drop of the critical current should be observable

exap<L<L.. The extent of these plateau regimes is charin low-field experiments on YBCO. For YBCO this drop is

acterized by two plateau crossover scéﬂmdtc, see Egs. predicted to occur around a ter_nperatmggw45 K. We also
(11) and (21), respectively. In our analysis we considered expe_ct that jumplike features in the current-voltage charac-
layered type-Il superconductors both with strong Josephsol§Tistics are observable for temperatulesT,, . ,
coupling (X ,,>d), such as YBCO, and with weak Joseph- For typical values fqr BSCCO as a layered HTSC with
son coupling €>&\,,), such as BSCCO. Regarding the Weak Josephson couphr[@elowTd,J%SS.K, see Eq(6)],
influence of the line tension dispersion due to the electroran~2000 A, £~1/200,d~15 A, and using the sam@as
magnetic coupling both kinds of materials behave rathefor YBCO, we find disorder strength¥s~2x10"* and are
similarly with length scales:\,, and d playing analogous in the strong pinning regime wheré;>1. The low-field
roles. This can be seen in the definitiof) of the length regime, where our results should be observable,Bis
scaleLy and in the definitiong11) and (21) of the thermal <<I>0/)\§b%500 G in BSCCO. We obtaild ;~22 K for the
plateau lengtiL and the pinning plateau length,. Effects ~ strong pinning energy scald, ;=61 K for the isotropic
of the nonlocal electromagnetic coupling occur if the single-depinning temperature; the barrier heigtt~11 K and the
vortex lengthL, [see Eq.(8)] exceeds the dispersion length ground-state enerdy |~ 42 K give a range of temperatures
scaleLq. This condition is fulfilled in the low-field regime in which the critical current density will drop. As opposed to
B<®dy/\2,. YBCO, such drops in the critical current aroufid=20 K

The existence of plateaus in positional fluctuations givesave already been observed experimentally for BSC®@®.
rise to “jumps” in the pinning lengthL. as a function of for YBCO, we also predict that jumplike features in the
disorder strength and temperature as well as to accompangurrent-voltage characteristics are observable for BSCCO.
ing “drops” in the critical current density. These jumplike They should occur in the temperature rafge T* ~11 K.
features occur if the pinning length is smaller than the dis-  The other focus of the present analysis were the properties
persion length scale at low temperatures, i.e., f(0)  of the regime of strong pinning of pancake segments in lay-
<Lg4. This is the case in the strong pinning regime forgreq type-Il superconductors, which occursligezd, i.e., if
BSCCO where.<d or in the weak clollect|ve pINNING e~ tha pinning length becomes smaller than the layer spacing. In
gime in YBCO for casi) of a large disorder according 10 incinje. strong pinning can occur both for strong and weak
the definition (43). The jumps will occur at temperatures Josephson coupling. However, the layered pinning strength

whereL.(T)=Lq4, i.e., where the pinning length becomes . . .
comparable to the dispersion length scale. For a strong Jg_arameterﬁd 's typically much larger in BSCCO due_to the
smaller values ofe, cf. Eq. (16). Therefore, we typically

sephson couplingas in YBCQ this is the temperature,, at have strong pinning only in BSCCO. Measurements of

which L¢(T.) =2Aap and for which we derived expressmn_the magnetic susceptibility provide a probe of the depth of

(48) using weak collective pinning theory. For a weak Jo-".~ " g . .
sephson couplingas in BSCCQ the analogous temperature pinning energy minim&2 Using this technique the crossover
from weak pinning of vortex lines to strong pinning of point-

is the temperaturd™*, see Eq.(61); using strong pinning . :
theory we have shown thdt(T*)=d. We find that the like pancake vortices has been observed for BSCeéac-

critical current can easily drop by one order of magnitude incording to our results this transition happens also |n the tem-

a layered HTSC around these temperatures. Similar to thBerature rangeT* <T<|E,|. In Ref. 7 the transition to

jumps in the Larkin length, we also predict jumps in thestrong pinning of pancakes has been observed for tempera-

current-voltage characteristics which are due to jumps in théuresT=20 K also supporting our results. For YBCO disor-

length of optimal segment for vortex line activation. der strengths are usually too small to find strong pinning of
To allow comparison with experiments we give some es-single pancakes. However, it might be possible to increase

timates for the characteristic temperatures where we expetiie point disorder strength using proton irradiaffoto a

the critical current to dropnote that we take into account the level where strong pinning effects could be observed also in

temperature dependence of the microscopic parametgrs YBCO.

and &,, and calculate these temperatures self-consistently, Furthermore, results obtained in this paper will be of fu-

the given values fok ., and ¢,,, are forT=0]. Taking typi-  ture use in calculating the low-field part of the vortex phase

cal values for YBCO as a layered HTSC with strong Josephdiagram of layered type-Il superconductors by using Linde-

son coupling\,,~1500 A, e~1/5, d~12 A, and a disor- mann criteria.

der strengthé/e~5x10"3, we have weak pinning &

<1) and find Ty, ,=35 K for the anisotropic depinning
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