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In this Appendix I present details on the theory of
thermal desorption of semiflexible polymers and on the
desorption kinetics.

Thermal desorption. In the absence of a desorbing
force (fd = 0), a semiflexible polymer can undergo ther-
mal desorption, which we want to describe using a model
connecting length scales below and above the persistence
length Lp ≡ 2κ/T (kB ≡ 1). At the desorption transition
the correlation length ξ‖, which gives the typical length
of thermally desorbed segments, diverges. If the length
of desorbed segments is comparable or smaller than Lp,
i.e., for ξ‖ < Lp we apply the theory for the adsorp-
tion of a weakly bent semiflexible polymer [1], whereas
we apply standard results for the adsorption of flexible
Gaussian polymers [2] in combination with an effective
or renormalized adsorption potential for ξ‖ > Lp. Using
this approach we obtain a result for the critical potential
strength Wc for thermal desorption and for the free en-
ergy of adsorption fW which describes the full crossover
from the semiflexible to the flexible regime.

On length scales comparable or smaller than Lp, the
thermally fluctuating semiflexible polymer is only weakly
bent and stays oriented, say along the x-axis. The des-
orption transition can then be described by the one-
dimensional distance z(x) of polymer segments from the
adsorbing surface z = 0, where 0 < x < L and L < Lc
is the projected polymer length. Bending and adhesion
energy of the weakly bent semiflexible polymer give a
Hamiltonian

HSF =

∫ L

0

dx
[κ

2
(∂2
xz)2 + V (z(x))

]
. (1)

We consider generic square well adsorption potentials of
range `, as they arise from van der Waals forces, screened
electrostatic interactions, and crosslinking molecules. In
these cases, the potential range ` is comparable to the
polymer thickness, the Debye-Hückel screening length,
and the size of the linker molecule, respectively. For sim-
plicity we neglect a possible orientation dependence in
crosslinker–mediated adhesion [1] and consider adhesive
square well potentials

V (z) =

{
W for z < `
0 for z > `

(2)

where W < 0 is the bare adhesion strength and V (z) =
∞ for z < 0 due to the hard wall.

The desorption transition for this Hamiltonian has
been studied by transfer matrix techniques in Ref. [1].
The critical potential strength for desorption is

Wc,SF = −
√

3π

2

T

`2/3L
1/3
p

, (3)

The transfer matrix treatment shows that the free energy
difference between adsorbed and free state vanishes as

fW,SF ≈Wc,SF|wSF|/ ln |wSF|−1 (4)

where wSF ≡ (W −Wc,SF)/Wc,SF is the reduced poten-
tial strength. Therefore, the correlation length ξ‖ =
T/|fW,SF| ∝ |wSF|−ν diverges with an exponent ν =
1 + log.

The weak bending approximation is valid as long as
tangent angles are small, i.e., 〈φ2〉 ∼ 〈(∂xz)2〉 ∼ ξ‖/Lp .
1, which is equivalent to the condition ξ‖ . Lp mentioned
above. This condition is fulfilled for |W−Wc,SF| & T/Lp,
i.e., outside a window of adhesion strengths of width
T/Lp around the critical value Wc,SF.

For ξ‖ � Lp, i.e., for |W−Wc,SF| � T/Lp, the semi-
flexible polymer is described as effectively flexible Gaus-
sian polymer with N = Lc/Lp essentially uncorrelated
Kuhn segments of length b = Lp. Each adsorbed Kuhn
segment of length b ≡ Lp is weakly bent and performs
small scale fluctuations governed by the Hamiltonian
HSF, which gives rise to an effective adsorption poten-
tial Veff(z), which contains entropic contributions from
small scale fluctuations. Veff(z) is also short-ranged and
can be assumed to have the same square well form (2) as
the bare potential but with the effective binding energy

Weff = fW,SF ∼W −Wc,SF (5)

given by the free energy of adsorption of each semiflex-
ible Kuhn segment and a potential width `eff = Lp set
by the thermal fluctuations 〈z2〉 ∼ b3/Lp = L2

p of each
Kuhn segment. In (5) we neglected the small logarithmic
correction in (4).

The critical properties of the actual desorption tran-
sition are obtained in the limit of large ξ‖ and, thus,
given by the critical behaviour of the effective flexible
polymer model. The Kuhn segment length b = Lp and
the effective adsorption potential Veff(z) contain all ef-
fects from the bending rigidity. The standard transfer
matrix approach for Gaussian polymers [2] shows that
the critical effective potential for thermal desorption is
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Weff,c = −π2

24
T
Lp

. Using (5) this is equivalent to a bare

critical potential for desorption

Wc ≈ Wc,SF[1− π2

24
(`/Lp)

2/3]

≈ −
√

3π

2

T

`2/3L
1/3
p

[1− π2

24
(`/Lp)

2/3]. (6)

Because Wc < Wc,SF, the polymer indeed desorbs in the
flexible regime that describes the large scale behavior.
The free energy of adsorption in the effective flexible
polymer model is given by

fW ≈ 3W 2
effLp/T ∼ 3(W −Wc,SF)2Lp/2T (7)

The correlation length ξ‖ = T/|fW | ∝ |w|−ν , where w ≡
(W −Wc)/Wc, diverges with an exponent ν = 2.

The critical properties of the desorption transition at
W = Wc are described by the flexible polymer model, i.e.,
thermal desorption is of second order with ν = 2. On the
other hand, the transition point Wc ∼Wc,SF and appar-
ent critical properties in the entire region |W −Wc| &
T/Lp are governed by the semiflexible Hamiltonian HSF

with ν = 1 + log.
For ξ‖ < Lp or |W −Wc| & T/Lp the free energy of

adsorption fW = fW,SF is given by the free energy of
adsorption (4) of a semiflexible polymer. For ξ‖ � Lp
or |W−Wc| � T/Lp, on the other hand, the free energy
of adsorption is given by the result (7). Neglecting the
small logarithmic corrections in the result (4), we obtain
a consistent crossover scenario for the free energy of ad-
sorption, which connecting length scales below and above
Lp:

|fW | ≈
{

3(W−Wc)
2Lp/2T for |W−Wc| � T/Lp

|fW,SF| ∼ |W−Wc| for |W−Wc| & T/Lp
(8)

The semiflexible regime is characterized by |W −Wc| &
T/Lp, which is equivalent to |fW | & T/Lp or ξ‖ . Lp.
The flexible regime is characterized by |W−Wc| � T/Lp,
which is equivalent to |fW | � T/Lp or ξ‖ � Lp.

Constrained free energy for thermal desorption of
a semiflexible polymer. The thermal desorption of a
weakly bent semiflexible polymer in the regime |fW | =
Tξ‖ & T/Lp as described by the Hamiltonian HSF has
been studied by transfer matrix techniques in Ref. [1].
This approach also allows to calculate the restricted par-
tition sum Z(h) over all polymer configurations with a
given height h of the end point. In Ref. [1], the scaling
form

Z(h) = (h/Lp)
θ/2+1/3Ω(L1/2

p h/ξ
3/2
‖ )eL/ξ‖ (9)

for the restricted partition sum with a critical exponent
θ = −5/3 characterizing the segment distribution close
to the wall has been derived, together with an explicit
result for the shape function

Ω(y) ∝
∫ ∞

0

dαα−1/2e−α−2y/3α =
√
πe−(8y/3)1/2

. (10)

Using (10) in (9) we obtain the constrained free energy

∆F (h) = −T ln[Z(h)/Z(0)]

= −T
2

ln

(
h

Lp

)
+

27/4

31/2
h1/2κ1/4|fW |3/4 (11)

of a weakly bent semiflexible polymer.

Desorption kinetics. Here we give more details on the
analysis of the thermally activated desorption kinetics
in the semiflexible regime |fW | & T/Lp. The analy-
sis is based on the time-dependent probability P (t) of
finding the polymer still adsorbed at time t. With the
Arrhenius-type desorption rate kd ∼ τ−1e−f0/fd , where

f0 ≡ L1/2
p |fW |3/2/T 1/2, the kinetics of desorption is gov-

erned by the differential equation

dP/dt = −kdP (12)

for the probability P (t). Analogous formulations have
been used to describe the rupture of molecular bonds, see
[3], where P (t) corresponds to the probability of finding
the bond intact at time t.

For a time-constant force fd > fd,c, eq. (12) sim-
ply gives P (t) = e−kdt. Also for a time-ramped force
fd(t) = rdt, which increases from the critical force with a
constant and slow loading rate rd � f0/τ the desorption
kinetics is dominated by thermal activation, and we find
P (t) = exp(−

∫ t
0 dt̃kd(t̃)). The most probable desorption

time t∗ maximizes the probability P (t)kd(t) of desorp-
tion at time t, i.e., d

dt |t∗(P (t)kd(t)) = 0. Using (12) this
condition finally leads to the self-consistent equation

τef0/rdt
∗

= rdt
∗2/f0 (13)

for t∗. The desorption process is thermally activated for
rd < f0/t

∗. In this regime we find

t∗ ∼ (f0/rd)/ ln (f0/rdτ) (14)

and the condition for thermally activated behavior is in-
deed fulfilled for a slow loading rate rd � f0/τ . In the
opposite limit of fast loading rates rd � f0/τ , the bar-
rier becomes smaller than T before the polymer starts to
desorb and the process is no longer thermally activated.
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