Appendix to "Force-induced desorption and unzipping of semiflexible polymers"

Jan Kierfeld

Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany (Dated: April 18, 2006)

(Dated. April 16, 2

PACS numbers: 82.35.Gh, 82.37.-j, 68.43.-h

In this Appendix I present details on the theory of thermal desorption of semiflexible polymers and on the desorption kinetics.

Thermal desorption. In the absence of a desorbing force $(f_d = 0)$, a semiflexible polymer can undergo thermal desorption, which we want to describe using a model connecting length scales below and above the persistence length $L_p \equiv 2\kappa/T$ ($k_B \equiv 1$). At the desorption transition the correlation length ξ_{\parallel} , which gives the typical length of thermally desorbed segments, diverges. If the length of desorbed segments is comparable or smaller than L_p , i.e., for $\xi_{\parallel} < L_p$ we apply the theory for the adsorption of a weakly bent *semiflexible* polymer [1], whereas we apply standard results for the adsorption of *flexible* Gaussian polymers [2] in combination with an effective or renormalized adsorption potential for $\xi_{\parallel} > L_p$. Using this approach we obtain a result for the critical potential strength W_c for thermal desorption and for the free energy of adsorption f_W which describes the full crossover from the semiflexible to the flexible regime.

On length scales comparable or smaller than L_p , the thermally fluctuating semiflexible polymer is only weakly bent and stays oriented, say along the x-axis. The desorption transition can then be described by the onedimensional distance z(x) of polymer segments from the adsorbing surface z = 0, where 0 < x < L and $L < L_c$ is the projected polymer length. Bending and adhesion energy of the weakly bent semiflexible polymer give a Hamiltonian

$$\mathcal{H}_{\rm SF} = \int_0^L dx \left[\frac{\kappa}{2} (\partial_x^2 z)^2 + V(z(x)) \right]. \tag{1}$$

We consider generic square well adsorption potentials of range ℓ , as they arise from van der Waals forces, screened electrostatic interactions, and crosslinking molecules. In these cases, the potential range ℓ is comparable to the polymer thickness, the Debye-Hückel screening length, and the size of the linker molecule, respectively. For simplicity we neglect a possible orientation dependence in crosslinker-mediated adhesion [1] and consider adhesive square well potentials

$$V(z) = \begin{cases} W & \text{for } z < \ell \\ 0 & \text{for } z > \ell \end{cases}$$
(2)

where W < 0 is the bare adhesion strength and $V(z) = \infty$ for z < 0 due to the hard wall.

The desorption transition for this Hamiltonian has been studied by transfer matrix techniques in Ref. [1]. The critical potential strength for desorption is

$$W_{c,\rm SF} = -\frac{\sqrt{3\pi}}{2} \frac{T}{\ell^{2/3} L_p^{1/3}},\tag{3}$$

The transfer matrix treatment shows that the free energy difference between adsorbed and free state vanishes as

$$f_{W,\rm SF} \approx W_{c,\rm SF} |w_{\rm SF}| / \ln |w_{\rm SF}|^{-1} \tag{4}$$

where $w_{\rm SF} \equiv (W - W_{c,\rm SF})/W_{c,\rm SF}$ is the reduced potential strength. Therefore, the correlation length $\xi_{\parallel} = T/|f_{W,\rm SF}| \propto |w_{\rm SF}|^{-\nu}$ diverges with an exponent $\nu = 1 + \log$.

The weak bending approximation is valid as long as tangent angles are small, i.e., $\langle \phi^2 \rangle \sim \langle (\partial_x z)^2 \rangle \sim \xi_{\parallel}/L_p \lesssim 1$, which is equivalent to the condition $\xi_{\parallel} \lesssim L_p$ mentioned above. This condition is fulfilled for $|W-W_{c,\rm SF}| \gtrsim T/L_p$, i.e., outside a window of adhesion strengths of width T/L_p around the critical value $W_{c,\rm SF}$.

For $\xi_{\parallel} \gg L_p$, i.e., for $|W - W_{c,SF}| \ll T/L_p$, the semiflexible polymer is described as effectively flexible Gaussian polymer with $N = L_c/L_p$ essentially uncorrelated Kuhn segments of length $b = L_p$. Each adsorbed Kuhn segment of length $b \equiv L_p$ is weakly bent and performs small scale fluctuations governed by the Hamiltonian \mathcal{H}_{SF} , which gives rise to an *effective* adsorption potential $V_{\text{eff}}(z)$, which contains entropic contributions from small scale fluctuations. $V_{\text{eff}}(z)$ is also short-ranged and can be assumed to have the same square well form (2) as the bare potential but with the effective binding energy

$$W_{\rm eff} = f_{W,\rm SF} \sim W - W_{c,\rm SF} \tag{5}$$

given by the free energy of adsorption of each semiflexible Kuhn segment and a potential width $\ell_{\text{eff}} = L_p$ set by the thermal fluctuations $\langle z^2 \rangle \sim b^3/L_p = L_p^2$ of each Kuhn segment. In (5) we neglected the small logarithmic correction in (4).

The critical properties of the actual desorption transition are obtained in the limit of large ξ_{\parallel} and, thus, given by the critical behaviour of the effective flexible polymer model. The Kuhn segment length $b = L_p$ and the effective adsorption potential $V_{\text{eff}}(z)$ contain all effects from the bending rigidity. The standard transfer matrix approach for Gaussian polymers [2] shows that the critical effective potential for thermal desorption is $W_{\text{eff},c} = -\frac{\pi^2}{24} \frac{T}{L_p}$. Using (5) this is equivalent to a bare critical potential for desorption

$$W_c \approx W_{c,SF} \left[1 - \frac{\pi^2}{24} (\ell/L_p)^{2/3}\right]$$
$$\approx -\frac{\sqrt{3\pi}}{2} \frac{T}{\ell^{2/3} L_p^{1/3}} \left[1 - \frac{\pi^2}{24} (\ell/L_p)^{2/3}\right].$$
(6)

Because $W_c < W_{c,SF}$, the polymer indeed desorbs in the flexible regime that describes the large scale behavior. The free energy of adsorption in the effective flexible polymer model is given by

$$f_W \approx 3W_{\rm eff}^2 L_p / T \sim 3(W - W_{c,\rm SF})^2 L_p / 2T$$
 (7)

The correlation length $\xi_{\parallel} = T/|f_W| \propto |w|^{-\nu}$, where $w \equiv (W - W_c)/W_c$, diverges with an exponent $\nu = 2$.

The critical properties of the desorption transition at $W = W_c$ are described by the *flexible* polymer model, i.e., thermal desorption is of second order with $\nu = 2$. On the other hand, the transition point $W_c \sim W_{c,\text{SF}}$ and apparent critical properties in the entire region $|W - W_c| \gtrsim T/L_p$ are governed by the *semiflexible* Hamiltonian \mathcal{H}_{SF} with $\nu = 1 + \log$.

For $\xi_{\parallel} < L_p$ or $|W - W_c| \gtrsim T/L_p$ the free energy of adsorption $f_W = f_{W,SF}$ is given by the free energy of adsorption (4) of a semiflexible polymer. For $\xi_{\parallel} \gg L_p$ or $|W - W_c| \ll T/L_p$, on the other hand, the free energy of adsorption is given by the result (7). Neglecting the small logarithmic corrections in the result (4), we obtain a consistent crossover scenario for the free energy of adsorption, which connecting length scales below and above L_p :

$$|f_W| \approx \begin{cases} 3(W - W_c)^2 L_p / 2T & \text{for } |W - W_c| \ll T / L_p \\ |f_{W,\text{SF}}| \sim |W - W_c| & \text{for } |W - W_c| \gtrsim T / L_p \end{cases}$$

The semiflexible regime is characterized by $|W-W_c| \gtrsim T/L_p$, which is equivalent to $|f_W| \gtrsim T/L_p$ or $\xi_{\parallel} \lesssim L_p$. The flexible regime is characterized by $|W-W_c| \ll T/L_p$, which is equivalent to $|f_W| \ll T/L_p$ or $\xi_{\parallel} \gg L_p$.

Constrained free energy for thermal desorption of a semiflexible polymer. The thermal desorption of a weakly bent semiflexible polymer in the regime $|f_W| = T\xi_{\parallel} \gtrsim T/L_p$ as described by the Hamiltonian $\mathcal{H}_{\rm SF}$ has been studied by transfer matrix techniques in Ref. [1]. This approach also allows to calculate the restricted partition sum Z(h) over all polymer configurations with a given height h of the end point. In Ref. [1], the scaling form

$$Z(h) = (h/L_p)^{\theta/2 + 1/3} \Omega(L_p^{1/2} h/\xi_{\parallel}^{3/2}) e^{L/\xi_{\parallel}}$$
(9)

for the restricted partition sum with a critical exponent $\theta = -5/3$ characterizing the segment distribution close to the wall has been derived, together with an explicit result for the shape function

$$\Omega(y) \propto \int_0^\infty d\alpha \alpha^{-1/2} e^{-\alpha - 2y/3\alpha} = \sqrt{\pi} e^{-(8y/3)^{1/2}}.$$
 (10)

Using (10) in (9) we obtain the constrained free energy

$$\Delta F(h) = -T \ln[Z(h)/Z(0)]$$

= $-\frac{T}{2} \ln\left(\frac{h}{L_p}\right) + \frac{2^{7/4}}{3^{1/2}} h^{1/2} \kappa^{1/4} |f_W|^{3/4} (11)$

of a weakly bent semiflexible polymer.

Desorption kinetics. Here we give more details on the analysis of the thermally activated desorption kinetics in the semiflexible regime $|f_W| \gtrsim T/L_p$. The analysis is based on the time-dependent probability P(t) of finding the polymer still adsorbed at time t. With the Arrhenius-type desorption rate $k_d \sim \tau^{-1} e^{-f_0/f_d}$, where $f_0 \equiv L_p^{1/2} |f_W|^{3/2} / T^{1/2}$, the kinetics of desorption is governed by the differential equation

$$dP/dt = -k_d P \tag{12}$$

for the probability P(t). Analogous formulations have been used to describe the rupture of molecular bonds, see [3], where P(t) corresponds to the probability of finding the bond intact at time t.

For a time-constant force $f_d > f_{d,c}$, eq. (12) simply gives $P(t) = e^{-k_d t}$. Also for a time-ramped force $f_d(t) = r_d t$, which increases from the critical force with a constant and slow loading rate $r_d \ll f_0/\tau$ the desorption kinetics is dominated by thermal activation, and we find $P(t) = \exp(-\int_0^t d\tilde{t}k_d(\tilde{t}))$. The most probable desorption time t^* maximizes the probability $P(t)k_d(t)$ of desorption at time t, i.e., $\frac{d}{dt}|_{t^*}(P(t)k_d(t)) = 0$. Using (12) this condition finally leads to the self-consistent equation

$$\tau e^{f_0/r_d t^*} = r_d t^{*2}/f_0 \tag{13}$$

for t^* . The desorption process is thermally activated for $r_d < f_0/t^*$. In this regime we find

$$t^* \sim (f_0/r_d) / \ln (f_0/r_d\tau)$$
 (14)

and the condition for thermally activated behavior is indeed fulfilled for a slow loading rate $r_d \ll f_0/\tau$. In the opposite limit of fast loading rates $r_d \gg f_0/\tau$, the barrier becomes smaller than *T* before the polymer starts to desorb and the process is no longer thermally activated.

- J. Kierfeld and R. Lipowsky, Europhys. Lett. 62, 285 (2003).
- [2] P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979).
- [3] E. Evans and K. Ritchie, Biophys. J. 72, 1541 (1997).