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Abstract

Semiflexible polymers and filaments play an important role in bi-
ological and chemical physics. Single filaments are characterized by
a certain bending rigidity which governs their persistence length and
buckling instabilities. Attractive mutual interactions of filaments in
bundles or the attractive interaction with an adhesive substrate lead
to equilibrium phase transitions, such as bundling and adsorption. Fi-
nally, on the level of active systems consisting of many interacting
filaments, we discuss cooperative ordering effects in non-equilibrium
systems such as motility assays. In motility assays filaments are ad-
sorbed and driven by motor proteins, which are anchored to a planar
two-dimensional substrate. The interaction with motor proteins leads
to enhanced ordering of filaments. Motility assays containing patterns
of adsorbed motors, i.e., stripes of low motor density with increasing
widths can be used to sort filaments according to their lengths.

Keywords: Filaments, Semiflexible Polymers, Molecular Motors, Buck-
ling, Bundling, Pattern formation

1 Introduction

Stiff, filamentous polymers play an important role in biological and chemical
physics. Both DNA or cytoskeletal filaments such as F-actin and microtubules1,2
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and chemically synthesized stiff polymers such as dendronized polymers3

are “nanorods”. These polymers have diameters in the range from 2 to 25
nanometers which leads to a considerable bending rigidity and gives rise
to persistence lengths comparable to or larger than the polymer’s contour
lengths. Such semiflexible polymers exhibit a variety of cooperative phenom-
ena, which we will briefly review in this article. The cooperative behavior
arises from the competition of several energies in the system, i.e., the bend-
ing energy, the thermal energy, interaction energies, and external driving
forces. In biological systems, driving forces can arise from the activity of
molecular motors which perform directed motion on cytoskeletal filaments
or the polymerization dynamics of cytoskeletal filaments. Both the activity
of molecular motors and the polymerization dynamics are processes far from
equilibrium and are typically coupled to the hydrolysis of adenine triphos-
phate (ATP).

First, we will consider two aspects of single filaments related to the co-
operative behavior of their bending modes, the renormalization of bending
rigidity and the buckling instability. The bending rigidity renormalization
leads to an effective softening of large-scale fluctuations of a filament, which
can be quantified using renormalization group methods.4 The buckling insta-
bility is an important effect that restricts the force generation by growing
filaments. We discuss a cusp-like singularity in the projected length as a
function of the filament length, which can serve as an experimental signa-
ture for the buckling of growing filaments or rods.

Then we will discuss the equilibrium phase transition that leads to the
formation of filament bundles in the presence of attractive interactions,
which can arise from crosslinking proteins or unspecific interactions.5 In
eukaryotic cells, the most important building blocks of the cytoskeleton are
microtubules and filamentous actin (F-actin). Actin filaments have a persis-
tence length Lp ' 30µm,6 microtubules are much stiffer with a persistence
length Lp ' 10mm.7 In the cortex of the cell, actin filaments form a dense
meshwork which is responsible for many of the viscoelastic properties of the
cell. Another important morphology that is found in the cell are filament
bundles,8 which, e.g., support cell protrusions and serve as stress fibres.
Both meshworks and bundles are hold together by different actin-binding
crosslinking proteins.8,9 Actin bundling crosslinkers possess two adhesive
end domains which bind to filaments by weak bonds; crosslinker mediated
interactions therefore allow a reversible formation of actin bundles, which
can be regulated by the concentration of crosslinkers in solution. Solution
of actin filaments and crosslinking proteins have been studied in vitro in
a number of recent experiments.10−12 In these studies it has been observed
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that bundle formation in F-actin solutions containing crosslinking molecules
requires a threshold crosslinker concentration above which (i) F-actin bun-
dles become stable against the thermal fluctuations of filaments and (ii) a
phase containing networks of bundles separates. Polymerizing bundles are
used within the cell in order to generate forces.13,14 We will shortly discuss
one possible “zipping”-mechanism for force generation which is based on the
conversion of adhesive energy into polymerizing forces.

Another important equilibrium phase transition of polymers is their ad-
sorption to an attractive planar surface. For semiflexible polymers or fila-
ments, the adsorption transition is similar to the binding of two filaments
but represents a distinct universality class.15 Various single molecule meth-
ods have been applied to adsorbed semiflexible polymers because both vi-
sualization and manipulation are easier for adsorbed polymers with a large
diameter, such as DNA.16,17 These polymers are generically semiflexible be-
cause strong entropic or enthalpic interactions along their backbone increase
the bending rigidity. The manipulation kinetics of strongly adsorbed single
filaments or semiflexible polymers on structured substrates requires thermal
activation.18,19 Here, we will discuss the adsorption behavior of filaments in
motility assays. In such an assay, cytoskeletal filaments are adsorbed and
driven over a two-dimensional, planar substrate by motor proteins whose
tails are anchored to the substrate.20 In order to obtain adsorption, a critical
density of motor proteins is needed in close analogy to the critical crosslinker
concentration for the formation of a filament bundle.

Motility or gliding assays are a standard biochemistry assay to charac-
terize motor proteins, which is based on measuring the lateral displacement
of adsorbed filaments. In biological cells, small forces generated by motor
proteins organize and rearrange cytoskeletal filaments and give rise to active,
non-equilibrium filament dynamics, which plays an important role for cell
division, motility, and force generation.1,2 Whereas conventional “passive”
polymer dynamics is governed by thermal fluctuations,21 active filament dy-
namics is characterized by a constant supply of mechanical energy by motor
proteins, which hydrolyze ATP. Motility assays are model systems, which
allow to study active filament dynamics in a controlled manner. By ana-
lyzing the transport velocities of single filaments gliding over the substrate,
information can be obtained about basic properties of molecular motors such
as their maximal velocity. We introduce a simulation model for motility as-
says, which refines previous models22−24 and contains semiflexible filaments,
motor heads, and polymeric motor tails as separate degrees of freedom.

In such motility assays, several interesting ordering phenomena can occur
on the nanoscale if we consider many interacting filaments. The ordering
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is caused by the interplay of the active dynamics of filaments and their
mutual repulsive interactions. On the one hand, we find an increased ten-
dency for nematic ordering in motility assays with randomly adsorbed motor
proteins.25 On the other hand, stripe-shaped patterns of adsorbed motors
can be used for the length sorting or fractionation of filaments.

This article is organized as follows. In section 2, the persistence length
of a single filament is discussed in the framework of a systematic renor-
malization group approach. In section 3, we discuss a particular feature
of the buckling instability of a single filament, which is relevant to experi-
ments on growing filaments. In section 4, the formation of filament bundles
via crosslinker-mediated attractive interactions and the ability of “zipping”
bundles to generate forces is discussed. The adsorption of a filament on an
adhesive surface, which is provided by a planar two-dimensional substrate
covered with anchored motor proteins and which represents the geometry
used in motility assays, is considered in section 5. In section 6, we intro-
duce a model for the active filament dynamics in motility assays and present
recent simulation results. These results demonstrate an enhanced nematic
ordering of interacting filaments in motility assay. They also demonstrate
that filaments can be sorted according to their length if striped patterns of
different motor density are realized in a motility assay.

2 Persistence length

The coupling between the different bending modes of single filaments can
lead to a considerable softening of the filaments on large length scales. On
length scales larger than the persistence length Lp, the polymer appears
to be flexible. We have quantified this effect using renormalization group
(RG) methods; here we briefly summarize some of the results, details are
presented elsewhere.4 Starting from a discretized model for an inextensible
semiflexible chain consisting of M bonds or segments of length `b and with
unit tangent vectors ti (i = 1, ...,M) in d spatial dimensions. The bending
energy of this semiflexible chain is given by26

H{ti} =
κ

`b

M∑

i=1

(1− ti · ti−1), with t2
i = 1, (1)

where κ is the bending rigidity. Physically relevant cases are chains in three
spatial dimensions (d = 3) and chains, which are adsorbed on a planar
substrate and, thus, confined to two dimensions (d = 2). In the continuum
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Figure 1: κ(`)/κ as a function of `/`b = 2R for K0 = 1000 for d = 2 (dashed
line) according to the recursion relation (2 and d = 3 (solid line).

limit of small `b the model (1) reduces to the continuous worm-like chain
model for an inextensible filament.27

The partition sum is obtained by integrating over all possible bond ori-
entations with the appropriate Boltzmann weight exp(−H{ti}/T ), where T
is the temperature in energy units. Within the model (1), modes of different
wavelengths are coupled. Upon integrating out short-scale fluctuations, this
leads to a softening of the effective renormalized κ(`) governing the fluctu-
ations with wave length ` such that κ(`) < κ. In order to calculate κ(`),
we use a real-space functional renormalization group (RG) approach, which
has been developed originally in the context of one-dimensional classical
Heisenberg spin models.28 The RG transformation eliminates fluctuations
up to the scale ` = 2R`b. After the Rth RG step, we can find an exact
recursion relation for κM = κ(2R`b). For d = 2, the resulting recursion
relations are given by4

κR
κ

=
2R

K0

{ ∞∑

m=−∞

[
λ(0)
m (K0)

]2R

m2

}/{ ∞∑

m=−∞

[
λ(0)
m (K0)

]2R
}

with K0 ≡ κ/`bT and λ(0)
m (K0) ≡ e−K0Im(K0)

(2)

where Im(x) denotes the modified Bessel function of the first kind.29 A
similar recursion relation can be found for d = 3. The renormalized κ(`) for
d = 2 and d = 3 is plotted in Fig. 1 as a function of the length scale `. For
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large `, the expression (2) has the asymptotic behavior

κ(`)

κ
≈ `T

κ

(
2e−`T/2κ − 4e−`T/κ + 8e−3`T/2κ − . . .

)
(3)

which is governed, to leading order, by the decay length Lp = 2κ/T which we
identify with the persistence length in d = 2. Similarly, we define Lp = κ/T
in d = 3. These results generalize the conventional definitions based on the
exponential decay of the particular two-point tangent correlation function
and gives identical results for Lp. In the remainder of this article we will
define the persistence length by the d = 2 result, i.e.,

Lp ≡ 2κ/T. (4)

3 Buckling instability

Another hallmark of filaments or nanorods with bending elasticity is the
presence of buckling instabilities if the filament is subject to a large com-
pressional force of size F as follows from classical elasticity theory.30 In the
absence of thermal fluctuations, the filament undergoes such an instability
if the compressional force F exceeds a certain threshold value, the critical
force Fc, for constant filament length or if the filament length L exceeds a
certain critical length Lc for constant force. We will limit our discussion
to the situation of a longitudinal force F that acts parallel to the straight,
unbuckled state of the filament. The threshold values for force and filament
length are then given by

Fc = c2bcπ
2κ/L2 and Lc = cbcπ (κ/F )1/2 , (5)

where cbc is a dimensionless coefficient that depends on the boundary con-
ditions at the two filament ends. For the three boundary conditions (bc0),
(bc1), and (bc2) described in the next paragraph and illustrated in Fig. 2,
one has cbc = 1/2, 1 and 2, respectively.

Let us denote the two ends of the filament by e1 and e2. Filament end
e1 is taken to be immobilized and to have a fixed spatial position. The
orientation of the filament segment adjacent to e1, which is described by the
tangent vector of this segment, may be free or clamped: ‘free’ means that it
can freely adapt to the compressional force, ’clamped’ that it is constrained
to be parallel to this force. The three boundary conditions are now defined
as follows (see also Fig. 2): (bc0) Filament end e1 is clamped and filament
end e2 is free. In this case, a longitudinal force that acts parallel to the
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Figure 2: Straight unbuckled filament and three boundary conditions (bc0),
(bc1), and (bc2) for buckling. (Left) Straight, unbuckled filament growing
against the upper (grey) wall which exerts the longitudinal force F . The
projected length L‖ of the filament is equal to its contour length L. The
straight filament is stable as long as L do not exceed a critical value Lc,
which differs for the three boundary conditions (bc0), (bc1), and (bc2),
see eq. (5). For L > Lc the filament buckles and L‖ < L. The lower
filament end e1 has a fixed spatial position. For (bc0), filament end e1 is
clamped to an orientation parallel to the force and filament end e2 is free;
for (bc1), both filaments ends can freely adapt their orientations; for (bc2),
both filament ends have clamped orientation and, furthermore, we only allow
for displacements of e2 parallel to the force.

straight, unbuckled filament leads to a displacement of e2 that has both
a longitudinal and a transverse component; (bc1) Both filament ends are
free. As the filament buckles, the filament end e2 is only displaced in the
longitudinal direction parallel to the force; and (bc2) Both filament ends are
clamped and we only allow for a longitudinal displacement of e2 parallel to
the force.

In the living cell, the ATP-driven polymerization of filaments is an im-
portant mechanism for force generation. Likewise, synthetic semiflexible
polymers, which grow via polymerization, can be envisaged as suitable sys-
tems for force generation on the nanoscale. The ability of these systems
to perform work is, however, limited by the buckling instability. Here we
want to discuss a simple model system where a single filament is growing
by polymerization against a planar wall. As before, one filament end, e1, is
immobilized and has a fixed spatial position. The other end, e2, can now
grow by attachment of monomers which leads to a time-dependent filament
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length L = L(t). Since this growth is rather slow, we can assume that the
filament attains a state of mechanical equilibrium with length L = L(t).
The planar wall is movable and is loaded by a constant force F , such that
it always touches and pushes the growing end of the filament. Now we
investigate how the buckling instability of the filament is reflected in the
behavior of the projected length L‖, which is the longitudinal extension of
the filament in the direction parallel to the force and is directly accessible
in experiments.

If the filament bends in a plane, its configuration can be described by the
planar angle φ(s) between its tangent vector and the force direction which
is parametrized by the arc length s with 0 < s < L. The total energy E of
the filament then has the form

E =

∫ L

0
ds
[κ

2
(∂sφ)2 + F cosφ(s)

]
, (6)

where the first and the second term represent the bending and compression
energy, respectively. The force F is positive if it acts against the growing
filament. The projected length L‖ is given by

L‖ =

∫ L

0
ds cosφ(s). (7)

Minimizing the total energy E with respect to the angle configuration φ(s),
leads to the beam equation which has to be solved for appropriate boundary
conditions. This solution can be expressed in terms of the planar angle
φ∗ ≡ φ(s∗). For the boundary conditions (bc0) and (bc1), one simply has
s∗ = L. For the boundary condition (bc2), the arc length s∗ corresponds
to the smallest s–value for which the filament’s curvature vanishes which
implies dφ(s)/ds = 0 for s = s∗. One then finds that the ratios of the
contour length L and of the projected length L‖ to the critical length Lc are
given by

L

Lc
=
I1(φ∗)
I1(0)

and
L‖
Lc

=
I1(φ∗)− I2(φ∗)

I1(0)
(8)

with the two integrals

I1(y) ≡
∫ y

0
dx

1√
2(cos x− cos y)

(9)

and

I2(y) ≡
∫ y

0
dx

1− cos x√
2(cos x− cos y)

. (10)
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As y goes to zero, the first integral has the finite limit I1(0) = π/2 whereas
I2(0) = 0. Using these expressions, one can obtain a parametric represen-
tation of the reduced projected length L‖/Lc as a function of the reduced
contour length L/Lc in the buckled state with L > Lc. For the two boundary
conditions (bc0) and (bc1), one obtains the same relation which is plotted
in Fig. 3. Close to the buckling instability, all three boundary conditions
lead to the asymptotic behavior

1− L‖/Lc ≈ 3 (L/Lc − 1) for small L/Lc − 1 > 0. (11)

For L < Lc, on the other hand, the filament is unbuckled which implies that
the projected length L‖ is identical with the contour length L and

1− L‖/Lc = 1− L/Lc for L/Lc − 1 < 0. (12)

Combining the two results for L > Lc and L < Lc, we see that the relation
between projected and contour length exhibits a cusp at the buckling point
with L = Lc as shown in Fig. 3,

For a growing filament this cusp-like singularity directly translates into
a singularity in time. The filament growth can be characterized by the rate
ωeff(F ) of subunit insertion or attachment which depends on the external
force F . The time-dependent length of the filament is then given by

L(t) = Lc + `b ωeff(F )(t− tc) (13)

where `b is the size of the inserted subunits and tc is the buckling time.
As an example, let us consider an actin filament which is extended by a
formin molecule with insertion rate ωeff(0) ' 2.5 subunits/s and subunit
size `b ' 2.75 nm.31 Using the growth law (13) for L(t) in (11) for t > tc and
in (12) for t < tc, one obtains the jump

dL‖
dt

∣∣∣∣
t=tc+0

−
dL‖
dt

∣∣∣∣
t=tc−0

= −4 `b ωeff(F ) (14)

in the growth rate dL‖/dt of the projected length at the buckling instability.
This singularity should be accessible to experiments and can then be used
to determine the growth rate ωeff(F ) of the filament or nanorod. The sin-
gularity as given by (14) also applies to N parallel filaments provided one
replaces F by F/N .
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Figure 3: Plot of the reduced projected length L‖/Lc as a function of the
reduced contour length L/Lc for the two boundary conditions (bc0) and
(bc1), see text. For L < Lc, the filament is straight with L‖ = L which
corresponds to the left part of the diagram with L/Lc− 1 < 0. The buckled
solution appears for L > Lc as shown in the right part of the diagram
with L/Lc − 1 > 0. The red curve is obtained numerically by a parametric
plot using φ∗ = φ(L) as the curve parameter. The black line is the linear
approximation (11). For L/Lc − 1 > 0.478, L‖ becomes negative.
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Figure 4: Monte Carlo snapshots of bundles with N = 20 filaments. (a)
Close to the unbinding transition in the bundled phase. (b) Deep in the
bound phase, the bundle tends to segregate due to slow kinetics and filament
entanglement. (c) The equilibrium shape of the bundle is roughly cylindrical.

4 Filament bundles

Within this section we consider an equilibrium phase transition in a system
of many filaments, which have a short-range attractive interaction mediated
by crosslinkers. We consider N filaments with bending rigidity κ in a solu-
tion containing crosslinking molecules with two adhesive end groups. This
system exhibits a critical crosslinker concentration, X1 = X1,c, which sepa-
rates two different concentration regimes. For X1 < X1,c, the filaments are
unbound and uniformly distributed within the compartment. For X1 > X1,c,
the filaments form either a single bundle, which represents the true ground
state of the system as in Fig. 4(a) and (c) , or several sub-bundles, which rep-
resent metastable, kinetically trapped states as in Fig. 4(b). Furthermore, as
we decrease the crosslinker concentration from a value above X1,c towards a
value below X1,c, the bundles undergo a discontinuous unbinding transition
at X1 = X1,c. The existence of a single, discontinuous unbundling transi-
tion can be established by analytic methods for N = 2 filaments15 and by
Monte Carlo (MC) simulations for larger bundles containing up to N = 20
filaments.5



J. Comput. Theor. Nanosci. 3, 898-911 (2006) 12
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Figure 5: Crosslinkers connecting two filaments. If these crosslinker
molecules are rather rigid, they mediate effective filament-filament inter-
actions that depend on the filament orientations as discussed in Ref. [15].
In this article, we will focus on the case of short, flexible crosslinkers with
two adhesive endgroups as indicated in this figure. In the latter case, the
effective filament-filament interactions depend only on the distance between
the filaments.

4.1 Model

The filaments are oriented along one axis, say the x-axis, and can be para-
metrized by two-dimensional displacements zi(x) (i = 1, ..., N) perpendic-
ular to the x-axis, with 0 < x < L‖, where L‖ is the projected length of
the polymer. This parametrization is appropriate provided the longitudi-
nal correlation length of the displacements is small compared to Lp. The
filament interaction is mediated by crosslinking sticker molecules that ad-
sorb from the surrounding solution. Each linker consists of a short polymer
with adhesive endgroups, see Fig. 5. In the following, we assume flexible
linkers for simplicity which can link two filaments irrespective of their ori-
entation; orientation-dependent interactions which arise from rigid linkers
can be studied in a similar way, see Ref. [15].

We discretize the filament into segments of length a‖, i.e., xk = ka‖ and
zi,k = zi(xk). The presence or absence of a crosslinker molecule at segment
k of filament i is described by the occupation number ni,k = ni(xk) = 0, 1.
The filament-crosslinker system is governed by the Hamiltonian

H =
∑

i

[Hb,i{zi}+H1{ni}] +
∑

i,j

H2{zi−zj, ni, nj} , (15)

where the first contribution Hb,i =
∫ L

0 dx1
2κ
(
∂2
xzi
)2

contains the bending
energies of the filaments. The term H1 describes the intrafilament interac-
tions of linkers. We consider a lattice gas of linkers with hard-core repulsion
adsorbing on a filament with H1 =

∑
k a‖Wni,k where W < 0 is the adhe-

sive energy (per length) of one linker end group. The third contribution H2
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describes the pairwise interactions between filaments i and j and is given by

H2 =
∑

k

a‖
[
Vr(∆zij,k) +

1

2
(ni,k + nj,k − 2ni,knj,k)Va(∆zij,k)

]
(16)

where ∆zij,k ≡ zi,k − zj,k. The first term represents the hard-core repulsion
between two filaments that is independent of the linker occupation and leads
to a potential Vr(z) = ∞ for |z| < `r and Vr(z) = 0 otherwise. The length
scale `r is of the order of the filament diameter. The second term is the
linker-mediated attraction and is non-zero if either segment k of filament
i or segment k of filament j carries a linker. Then the other filament is
attracted by a linker-mediated potential Va(z). The latter filament gains
the additional energy |W | if |∆zij,k| ≤ `a, where the potential range `a is of
the order of the linker size. This attraction is modeled by the potential well

Va(z) = W for 0 < | z| − `r < `a and Va(z) = 0 otherwise. (17)

We can perform the partial trace over the crosslinker degrees of free-
dom ni,k in the grand-canonical ensemble to obtain an effective interaction
between filaments. Each crosslinker has two adhesive ends. The first adhe-
sive end adsorbs on a filament and establishes the standard Langmuir-type
adsorption equilibrium with a linker concentration per site X1 ≡ 〈ni,k〉1 =
cx/(Kd + cx) where the average is taken with the Hamiltonian H1. X1 is
thus determined by the concentration cx of linkers in solution, where Kd

is the equilibrium constant of the dissociation reaction of the crosslinker
with the filament. Tracing over weakly bound linkers with |W | � T/a‖,
we end up with effective pairwise linker-mediated filament interactions, i.e.,
H̄2 ≈ 1

2

∑
k a‖[Vr(∆zij,k)+ V̄a(∆zij,k)], which have the same functional form

as the bare interactions; the short-range attractive part V̄a is of the form
(17) with a strength 1

W̄ ≈ 2X1W (18)

proportional to the linker concentration on the filament. Pairwise filament
interactions with potentials of the form (17) are generic and do not only arise
from crosslinkers but also from van-der-Waals, electrostatic, or depletion
forces.

4.2 Discontinuous unbundling transition

We have studied bundle formation by MC simulations for up to N = 20
identical filaments (κi = κ) using the effective Hamiltonian H =

∑
iHb,i +

1This corrects the corresponding eqs. in Ref. [5]; The effective interaction H̄2 contains
an additional factor 1/2, and the effective potential strength W̄ an additional factor 2.
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Figure 6: MC data for N = 2, 3, 5, 10, 20 identical filaments (with persis-
tence length Lp = 200, contour length L‖ = 100, potential range `a = 0.001,
and hard core radius `r = 0.1; all lengths are in units of ∆x, lines are guides
to the eye). For N = 10, 20 two branches of data are shown corresponding
to two different initial conditions; in the lower branch we prepared a com-
pact cylindrical configuration, in the upper branch (thick lines) we arranged
filaments initially in a plane. (a) Mean energy 〈H〉/NL‖ per filament (in
units of T ) as a function of the effective potential strength |W̄ | (in units of
T/∆x). Arrows correspond to the snapshots in Fig. 4. (b) Logarithmic plot
of the mean filament separation 〈∆z〉 ≡ 〈|∆zij | − `r〉 (in units of ∆x) as a
function of the reduced potential strength (|W̄ | − |W̄c|)/|W̄ |.

∑
i,j H̄2. Filaments are discretized into L‖/∆x points along the x-direction,

in which we apply periodic boundary conditions. In each MC step we at-
tempt a random perpendicular displacement in the z-direction. The MC
simulations can be used to determine the locus and order of the unbind-
ing transitions, at which the mean energy 〈H〉 exhibits a discontinuity, see
Fig. 6a. To gain further insight into bundle morphologies, we also measure
the mean segment separation 〈|∆zij |−`r〉, see Fig. 6b, which is directly pro-
portional to the mean bundle thickness that can be determined by optical
microscopy in experiments.

Our MC simulations confirm that, for bundles containing up to N = 20
filaments, there is a single, discontinuous unbinding transition, see Fig. 6a.
In the presence of a hard-core repulsion, the critical potential strength W̄c

saturates to a N -independent limiting value W̄c,∞ for large N . The nu-
merical simulations support a scaling behavior W̄c,∞ − W̄c ∼ N−λ with an
exponent λ ' 1.0± 0.1 as shown in Fig. 7. As can be seen in Fig. 4a typical
bundle morphologies close to the transition are governed by pair contacts
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Figure 7: MC data points for the critical potential strength |Wc| as a function
of the inverse filament number 1/N . The data points are fitted well by a
straight line with a limiting value W̄c,∞ ' 4.48.

of filaments. The bundle thickness, as given by the mean segment separa-
tion 〈|∆zij | − `r〉, stays finite up to the transition, see MC data in Fig. 6b.
For increasing N , an increasing number of higher moments 〈(|∆zij | − `r)m〉
remains finite at the transition [all moments m < 2(N − 1)(3N − 4)/3 re-
main finite] showing that the critical thickness fluctuations of large bundles
become small.

Deep in the bundled phase, i.e., for large |W̄ |, our MC simulations show
that bundles do not always reach their equilibrium shape. Small sub-bundles
containing typically N ∼ 5 filaments form easily, start to entangle, and fur-
ther equilibration is kinetically trapped suggesting that the bundle is in a
“glass” phase. Fig. 4b shows the segregation into sub-bundles in a typical
configuration and Fig. 6a shows the corresponding rise in the mean bundle
energy per filament which approaches the N = 5 result. In Fig. 6b the
pronounced rise of the mean separation for N > 5 with increasing potential
strength and with increasing N is due to the segregation. This behavior
is reminiscent of the experimentally observed F-actin structures consisting
of networks of small bundles.11 Only when starting from a sufficiently com-
pact initial state, bundles relax towards the equilibrium form in the MC
simulation, which is a roughly cylindrical bundle with a hexagonal filament
arrangement as shown in Fig. 4c. In contrast to the segregated form, the
bundle thickness and the mean energy per filament of the equilibrium form
decrease with increasing N , as can be seen in Fig. 6.

The critical potential strength W̄c corresponds to a critical crosslinker
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Figure 8: Schematic illustration of the zipping mechanism. Upon zipping or
bundling of filaments over an additional length ∆x they gain an adhesion
energy J∆x. Motion of the wall over the same distance ∆x against an
external force f requires an energy f∆x.

concentration X1,c. For weakly bound linkers |W | � T/a‖, we have a simple
linear relation W̄ ≈ 2X1W such that X1,c ≈ W̄c/2W . The corresponding
relation for strongly bound linkers is more complicated but X1,c will increase
monotonically with increasing W̄c.

Our simulations use periodic boundary conditions and treat very long
and essentially parallel filaments. In order to include translational and rota-
tional entropy we can map the ensemble of semiflexible filaments considered
here onto an ensemble of rigid rods of finite length L and diameter a⊥ at a
certain concentration c. The effective pairwise attraction (per length) J is
given by the bundling free energy of the filaments with J ∼ W̄c− W̄ > 0 for
|W̄ | > |W̄c|. Using the results of Refs. [32], we find that the hard rod system
separates into a high-density nematic phase and a low-density nematic or
isotropic phase above a critical attraction, which is in qualitative agreement
with the experimental results in Refs. [10-12].

4.3 Force-generation by bundling or zipping

The adhesive energy which is gained during bundle formation can be used
to generate forces. The basic mechanism can be explained for two filaments
which are bundling or zipping due to a short-range attraction as discussed



J. Comput. Theor. Nanosci. 3, 898-911 (2006) 17

in the previous section. As sketched in Fig. 8, we start with a bundle of two
filaments which is oriented in the x-direction. One end of the bundle – the
lower end in Fig. 8 – is spatially fixed and has a clamped orientation. At
the other end of the bundle – the upper end in Fig. 8 – the two filaments
unbind and bend against a rigid wall. The wall exerts a total force F in the
negative x-direction, such that each filament is loaded by a force F/2. As
the filaments bind or zip together over an additional length ∆x, they gain
a free energy J∆x, where J > 0 is the free energy of adhesion (per length)
as introduced in the previous section. In the absence of thermal shape fluc-
tuations of the filaments, the free energy is equal to the energy of adhesion
J ≈ |W̄ |. In the presence of thermal fluctuations, this ‘bare’ adhesion energy
is considerably reduced by entropic contributions until it finally vanishes as
J ∼ W̄c− W̄ close to the unbundling transition as discussed above. Zipping
together an additional length ∆x implies that the wall moves by the same
distance ∆x which costs an energy F∆x. The total zipping free energy gain
is Ezip = (J − F )∆x and zipping happens spontaneously for forces f that
satisfy

F < Fzip = J, (19)

where Fzip is the maximal force which can be generated by this simple
mechanism. Deep in the bundled phase, we have

Fzip = J ≈ |W̄ | , for |W̄ | � |W̄c|. (20)

The zipping mechanism does not rely on polymerization forces but requires
a length reservoir for the filaments in front of the wall. This length reservoir
has to be constantly renewed by polymerization at the free polymer ends as
long as the zipping proceeds. Force generation by the zipping mechanism is
eventually limited by the buckling instability of the bundled zipped stem.
Similar zipping mechanisms have been proposed to play an essential role in
the motility of nematode sperm cells.33,34

We have performed MC simulations of the zipping mechanism for two
identical filaments using an effective Hamiltonian H =

∑
iHb,i +

∑
i,j H̄2,

which we parameterize in terms of the contour length L of the filaments.
Each filament is discretized into L/∆s equidistant points along its contour.
Initially, we prepare a bundle oriented in the x-direction parallel to the
direction of the force with one end fixed and clamped, and the other end in a
splayed configuration as shown in the snapshot Fig. 9 on the left. During the
MC simulation additional monomers can attach at the splayed ends (gaining
a binding energy Em < 0), which provides the necessary reservoir in polymer
length. The wall is loaded with a force F and moved instantaneously (or
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Figure 9: (a) Snapshot from MC simulations of zipping for two polymers
with Lp = 2000 (in units of ∆s), an adhesive potential of |W̄ | = 50, and a
force F = 50 (both in units of T/∆s), i.e., close to the critical force Fzip. The
wall is visible in dark grey, the immobilized clamped ends of the filaments
are outside the range of the picture in the front. (b) Mean velocity 〈vw〉 (in
units of ∆s per MC time step) of the pushing wall for an adhesive potential
with |W̄ | = 50 as a function of the pushing force F . The other parameters
are as in Fig. 6; the critical potential strength for bundling is |W̄c| ' 3.2,
i.e., the simulations are performed deep in the bundled phase. The arrow
corresponds to the snapshot on the left. For F < Fzip we find 〈vw〉 > 0,
and the zipped part of the bundle is growing. For F > Fzip, it shrinks and
〈vw〉 < 0. The MC data is consistent with Fzip ≈ |W̄ | = 50, see (20).
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adiabatically) to the monomer position with the largest x-coordinate after
each MC step. After a steady state has established for a given force F
we measure the mean velocity 〈vw〉 of the pushing wall in the positive x-
direction. In the MC simulations we find indeed a threshold behavior with
a critical force Fzip in agreement with our argument above. At low pushing
forces F < Fzip, we find 〈vw〉 > 0, and the zipped part of the bundle is
constantly growing, whereas at high forces F > Fzip, it constantly shrinks
since 〈vw〉 < 0. Our MC data are consistent with the above estimate (20)
for |W̄ | � |W̄c|, i.e., deep in the bundled phase, see Fig. 9 on the right.

For bundles consisting of N filaments we expect the free energy gain
from binding or zipping N filaments together over an additional length ∆x
to scale as NqJ∆x/2 for large N , where q is the number of nearest neighbors:
Because of the repulsive part of their interaction, filaments in large bundles
only interact with a limited number q of nearest neighbors for short-range
attractions. Moving the wall by the same distance ∆x costs an energy
F∆x and, thus, we expect Fzip ∼ NqJ/2 for the maximal force that can
be generated by the zipping of a bundle consisting of a large number N of
filaments.

5 Filament adsorption

The adsorption transition of a single filament onto a planar substrate is
qualitatively similar to the bundle formation for N = 2 filaments in 1+1
dimensions, where the one-dimensional perpendicular distance z(x) from
the surface is analogous to a one-dimensional separation between filaments.
The adsorption transition can be solved analytically,15 which reveals that
unbinding and desorption represent two distinct universality classes with
different critical exponents.

Here we want to consider the adsorption of a filament with persistence
length Lp = 2κ/T on a planar two-dimensional substrate where molecular
motors are adsorbed with an areal density σ. Each motor can bind to a
filament within a capture radius `m and a binding energy Wm < 0. Then
each motor gives rise to an adsorption potential Vad(z) of the same functional
form as the potential (17),

Vad(z) = Wm for 0 < z < `m and Vad(z) = 0 otherwise. (21)

In the following we assume that the motor tail is flexible such that the
filament can bind at any orientation. A rigid motor tail eventually gives rise
to an orientation-dependent adsorption potential because filaments could
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bind only at a preferred angle. In Refs. [15] both cases have been discussed,
and it has been found that the orientation-dependence can affect the order
of the adsorption transition. Whereas we find for orientation-independent
adsorption potentials a second order transition, the adsorption transition can
become first order if the potential is orientation-dependent. 2 In contrast
to the case of the annealed crosslinker ensemble considered previously, the
motors represent a partially quenched ensemble of adsorption points. In
the following, we consider the typical experimental situation of a rather
uniform coverage with motor proteins and also neglect effects from filament
fluctuations parallel to the surface. Then the array of motors gives rise to
an average adsorption potential V̄ad(z) of the same functional form as the
potential (21) with a potential strength W̄ad = Wmσ`m. On length scales
comparable or smaller than Lp, the semiflexible polymer is only weakly bent
by thermal fluctuations and its configurations are governed by the effective
Hamiltonian

Had =

∫ L‖

0
dx
[κ

2
(∂2
xz)

2 + V̄ad(z(x))
]
. (22)

We consider the limit of long filaments L‖W̄ad � T , which can exhibit
a desorption transition. Using the model (22), this desorption transition
has been studied by transfer matrix techniques in Refs. [15]. The critical

potential strength for desorption is W̄ad,c = −cT `−2/3
m L

−1/3
p corresponding

to a critical motor density

σc = c
T

Wm`
5/3
m L

1/3
p

, (23)

where c ≈
√

3π/2 ≈ 1.5. For motor densities above the critical density,
filaments adsorb onto the substrate with anchored motors against the ther-
mal fluctuations of filaments. The critical motor density for adsorption is
decreasing with increasing filament rigidity κ. Using estimates Wm ' 15T
and `m ' 10−2µm for kinesin and Lp ' 10mm for microtubules, we find a
critical motor density σc ' 10µm−2 for adsorption.

The transfer matrix treatment shows that the free energy difference be-
tween adsorbed and unbound state vanishes as |∆f | ≈ |W̄ad,c||w|/ ln |w|−1

where w ≡ (W̄ad− W̄ad,c)/W̄ad,c. Therefore, the correlation length ξ‖ =
T/|∆f | ∝ |w|−ν diverges with an exponent ν = 1 + log. The weak bending
approximation is valid as long as gradients are small, i.e., 〈(∂xz)2〉 ∼ ξ‖/Lp .

2The case of an orientation-independent adsorption potential (21) corresponds to the
case ∆ = 0 in Refs. [15].
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1, which is fulfilled for |W̄ad−W̄ad,c| & T/Lp, which typically applies to stiff
filaments such as microtubules adsorbed by kinesins.

6 Motility assays for motor proteins

Motility assays are model systems, which allow to study active filament dy-
namics in a controlled manner. In motility assays, filaments are connected
to the substrate by anchored motors of sufficient density σ > σc. In the
presence of ATP, the motor heads start to perform a directed walk on the
filaments, which induces active dynamics of adsorbed filaments. By ana-
lyzing the transport velocities of single filaments gliding over the substrate,
information can be obtained about basic properties of molecular motors
such as their maximal velocity. If many interacting filaments are studied
interesting active ordering phenomena can occur.

6.1 Model

Our microscopic model for motility assays describes filaments, motor heads,
and polymeric motor tails as separate degrees of freedom.25 One end of the
motor tail is anchored to the substrate and the motor head on the other
end can bind to a filament with the correct orientation since the motor tail
is rather flexible. Once bound the motor head moves along the filament
thereby stretching the polymeric tail, which gives rise to a loading force
acting both on the motor head and the attached filament. This force feeds
back onto the motion of the bound motor head, which moves with a load-
dependent motor velocity.35,36 Filaments follow an overdamped dynamics
with external forces arising from the stretched motor tails and the repulsive
filament-filament interaction.

To proceed, let us consider N rigid filaments of length L on a planar
two-dimensional substrate 3. The configuration of filament i (i = 1, ..., N)
is then specified by the position of its center of mass ri and its orientation
angle θi, see Fig. 10. The overdamped translational and rotational dynamics
of each filament i is described by the stochastic Langevin-type equations of
motion25

Γ · ∂tri =
∑Ni

α=1
Fα
i +

∑N

j=1
Fij + ζi (24)

3The model can be extended to deformable filaments by modeling each filament as a
set of Ns segments connected by elastic springs and hinges, see P. Kraikivski, Ph.D. thesis,
Universität Potsdam, 2005.
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Figure 10: Schematic view onto substrate surface: A filament i attached
by two motors attached. The vector ri points towards the filament’s center
of mass, the parameters θi and ui represent the orientational angle and
unit vector, respectively. The motor α is anchored at rα0 , and its head is
positioned at rαi .

and

Γθ∂tθi =
∑Ni

α=1
Mα
i +

∑N

j=1
Mij + ζθ,i , (25)

where Ni is the number of motor heads attached to filament i and indexed
by α. The vector ui = (cos θi, sin θi) is the orientational unit vector of
filament i. Friction forces are governed by the matrix of translational fric-
tion coefficients, Γ = Γ‖ui ⊗ ui + Γ⊥(I − ui ⊗ ui),

21 where I is the unit
matrix, and Γθ is the rotational friction coefficient. All friction coefficients
Γ‖, Γ⊥ and Γθ are known from passive filament dynamics. The transla-
tional and angular thermal random forces ζ i(t) and ζθ,i(t), respectively, are
Gaussian distributed with correlations 〈ζ i(t)⊗ ζj(t′)〉 = 2TΓδijδ(t− t′) and
〈ζθ,i(t)ζθ,j(t′)〉 = 2TΓθδijδ(t − t′). The stretched tail motor α is exerting a
force Fα

i onto the filament. The end-to-end vector of the polymeric tail is
∆rα ≡ rαi −rα0 , where the motor tail is anchored at rα0 and the head position
is rαi . We model the polymeric tail as freely jointed chain such that Fα

i is
pointing in the direction −∆rα and its absolute value is obtained by invert-
ing the force-extension relation of a freely jointed chain.26 There is also a
corresponding torque due to the motor activity, M α

i = |(rαi − ri)×Fα
i |. The

interaction forces Fij and torques Mij are due to the purely repulsive inter-
actions between filaments i and j corresponding to a hard-rod interaction
for filaments of diameter D.

The dynamics of motor heads is described by a deterministic equation
of motion, which has the form

∂tx
α
i = v(Fα

i ) , (26)
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where |xαi | ≤ L/2 defines the position of the motor α on the rod i, i.e.,
rαi = ri + xαi ui and the filament polarity is such that the motor head moves
in the direction ui. The motor velocity v is a function of the loading force
Fα
i which builds up as the motor tail becomes more and more stretched. We

use a piecewise linear force-velocity relation

v(Fα
i ) = vmax for Fα

i · ui ≥ 0

= vmax

(
1− |F

α
i |

Fst

)
for Fα

i · ui < 0 and |Fα
i | < Fst

= 0 for Fα
i · ui < 0 and |Fα

i | > Fst

(27)

where vmax is the maximal motor velocity, which is attained if the mo-
tor is pulled forward. The motor speed decreases linearly if the motor is
pulled backwards, until it stalls if the backwards force exceeds the stall
force Fst.

35,36 We assume that the motor binds to the filament when the
distance between the position of the fixed end of the motor tail at rα0 and
the filament is smaller than the capture radius `m. Apart from the stall
force Fst the motor is also characterized by its detachment force Fd, above
which the unbinding rate of the motor head becomes large. For simplicity
we assume in our model that the motor head detaches whenever the force
Fαi exceeds a threshold value Fd. We consider the case of processive motors
with a high duty ratio close to unity, i.e., motors detach from a filament
only if they reach the filament end or if the force F becomes larger than the
detachment force Fd.

6.2 Simulation

Using the above model we can perform simulations of gliding assays for dif-
ferent distributions of motors, i.e., random distributions or patterns of mo-
tors. We will first focus on a random distribution of motors with a surface
density σ and a system with periodic boundary conditions. At each time step
∆t, we update the motor head position xαi and filament position by using
the discrete version of the equations of motion (25) and (26). The parameter
values that we choose for the simulations are comparable with experimental
data on assays for conventional kinesin. The simulation results presented in
this article have been obtained for assays of quadratic geometry and area
25µm2 with rigid filaments of length L = 1µm and diameter D = L/40. We
simulate at room temperature T = 4.28 × 10−3pNµm. The friction coeffi-
cients are taken to be Γ⊥ = 2Γ‖ = 4πηL/ ln(L/D) and Γθ = Γ‖L2/6, where
η is the viscosity of the surrounding liquid. We use a value η = 0.5pN s/µm2

much higher than the viscosity of water, ηwater ∼ 10−3pN s/µm2, which
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Figure 11: (a) Simulation results for average distance 〈Sθ〉 traveled by a
filament between successive rotations as a function of the filament length
L for high motor concentration. The solid line is the analytical result (28)
as derived in Ref. [22]. (b) and (c): Snapshots of a gliding assay of rod-
like filaments with filaments density ρ = 2/L2 on a motor coated substrate
with randomly distributed motors and periodic boundary conditions. For
detachment forces Fd = Fst, we find (b) an isotropic phase at low motor
surface density σ`mL = 0.03 and (c) active nematic ordering at high motor
surface density σ`mL = 0.09.

allows to take larger time steps and decreases the simulation time. We
checked that this does not affect results by performing selected simulation
runs also at the viscosity of water. We use a maximum motor speed of
vmax = 1µms−1 and a stall force of Fst = 5pN. The capture radius for
motor proteins is `m = 10−2µm and the length of the fully stretched motor
tail Lm = 5× 10−2µm.

The motion of a single filament with contour length L is characterized
by stochastic switching between rotational and translational diffusion if no
motors are attached, directed translation in rotationally diffusing directions
if one motor is attached, and directed translation in one direction if two or
more motors are attached. The relative frequency of these types of motion
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depends on the average number of motors attached to the filament or the
average distance 〈dm〉 between bound motors and, thus, on the surface mo-
tor concentration σ.22 In the limit of high motor concentration a filament
has two or more bound motors on average and 〈dm〉 ∼ 1/σ`m. The single
filament performs a persistent walk with the effective persistence length22

ξp =
〈Sθ〉
〈∆θ2〉1/2 =

L+ 2〈dm〉
L+ 3〈dm〉

L3

9`2m

(
eL/〈dm〉 − 1− L

〈dm〉

)
(28)

where 〈Sθ〉 is the average distance traveled by a filament between successive
rotations and 〈∆θ2〉1/2 = 3/σL2 is the average rotation angle at each rota-
tion. The theoretical result (28) is confirmed by our simulation as shown
in Fig. 11a. The average filament velocity vF = 〈|ṙi|〉 can be obtained by
simultaneously equating (i) the filament friction force with the total mo-
tor driving force and (ii) the filament velocity with the motor velocity in
the steady state, which leads to vF = vmax(1 + Γ‖vmax〈dm〉/LFst)−1. This
relation is confirmed by our simulations.

6.3 Enhanced ordering

Our results for the simulation of many filaments with hard-core interactions
indicate that the motility assay exhibits active nematic ordering if the motor
density σ is increased as can be seen in the two simulation snapshots Figs.
11b and c.25 Both the rod density ρ and the motor density σ are essential
in order to determine the phase behavior of the non-equilibrium motility
assay. For given L/`m, the corresponding phase diagram depends on the
dimensionless which can be described in the plane of the two dimensionless
parameters ρL2 and σ`mL as shown in Fig. 12. Nematic ordering in a sys-
tem of N filaments can be characterized by the time averages of the order
parameter S ≡ ∑i6=j cos (2(θi − θj))/N(N − 1). In equilibrium, i.e., in the
absence of motors (σ = 0) we find a continuous isotropic-nematic transition
at a critical density ρc,0 ' 4.3/L2 in the simulation, which is in good agree-
ment with the analytic result ρc = 3π/2L2 ' 4.7/L2 based on Onsager’s
theory.37 The equilibrium transition is found numerically from the inversion
point of the curve 〈S〉 = 〈S〉(ρ) for a value 〈S〉 ' 0.2, which we also use
as the threshold value for active nematic ordering if motors are present and
σ > 0, see Fig. 12. Snapshots of the actively driven system in the isotropic
and nematic phase are shown in Figs. 11b and c, respectively. In the re-
sulting phase diagram in Fig. 12, the critical density ρc for active nematic
ordering decreases with increasing motor density, i.e., nematic ordering is
favored if more mechanical energy is fed into the system. The transition is
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Figure 12: The phase diagram of the gliding assay as a function of the
dimensionless filament density ρL2 and dimensionless surface motor density
σ`mL for a detachment force Fd = Fst and L/`m = 100. Each simulation
run corresponds to one data point; arrows correspond to the snapshots in
Fig. 11. If the average order parameter 〈S〉 < 0.2, the system is in the
isotropic phase (black squares, grey area), if 〈S〉 > 0.2 it is in the nematic
phase (blue triangles, blue area). The solid line represents the analytical
result (30).

continuous also for non-zero motor-density. In the presence of motor activ-
ity, there is a non-vanishing filament current in the nematic phase, which is
characteristic for a non-equilibrium phase. This filament current associated
with the nematic order breaks the rotational symmetry and can be estab-
lished only for periodic boundary conditions. For a closed system with hard
wall boundary conditions, on the other hand, we expect the formation of
vortex-like rotating filament patterns.

The simulation results can be explained using the concept of an effectively
increased filament length

Leff =
√
L(L+ ξp) (29)

as compared to the equilibrium system, which explains that motor activity
actually favors nematic ordering. The increased effective length is an effect
of the persistent motion of each filament, which effectively increases the
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excluded volume area. This concept can be derived more rigorously by
coarse-graining in time and averaging over time intervals of one persistence
time tp = ξp/vF in the framework of a dynamical mean-field approach. We
finally obtain the critical filament density for the active isotropic-nematic
transition,

ρc =
c

L[L+ ξp(〈dm〉, `m, L)]
(30)

with c = 3π/2 from the analytical mean-field calculation. In the absence
of motors we have ξp = 0 and the relation (30) reduces to the equilibrium
result of Ref. [37]. Using the expression (28) for the persistence length ξp =
ξp(〈dm〉, `m, L), we obtain an explicit expression of the isotropic-nematic
phase boundary in the active system in terms of the microscopic model
parameters, which is in good agreement with the simulation data, see Fig.
12. Beyond mean-field, we expect an increased numerical prefactor c in (30)
but the same parameter dependence. For thermally fluctuating filaments
the phase diagram in Fig. 12 should be truncated for σ < σc, see eq. (23),
where filaments can undergo thermal desorption from the planar substrate.

6.4 Filament sorting

An interesting application of motility assays is filament size sorting or frac-
tionation on the nanoscale using substrates coated with particularly designed
patterns of molecular motor density. Using simple gradient patterns this
possibility has already been explored experimentally in Ref. [38]. Here we
propose a more efficient geometry and give a first proof of principle using
our simulation model.

If there are two spatial regions I and II on the substrate, which are char-
acterized by different motor densities σI and σII with σI < σII, filaments
tend to move to region I of low motor density σI . If the substrate contains
an alternating pattern of stripes of low and high motor density, as shown
in Fig. 13, the filaments accumulate in the stripes with low motor density,
unless the width Lσ of the stripes of low motor density is larger than the
filament length L. Then, filaments can “bridge” the stripes of low motor
density. This behavior can be used to construct an assay for the sorting of
filaments according to their lengths by patterning the substrate with low
motor density stripes which are arranged with increasing width as shown in
Fig. 13 for three stripes. In general we can sort filaments into Nσ stripes
with widths Lσ,1 < Lσ,2 < .... < Lσ,Nσ . A filaments of length L can bridge
all narrow stripes until it encounters a stripe s with Lσ,s−1 < L < Lσ,s,
which is sufficiently broad to “trap” the filament. Fig. 13 demonstrates that
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Figure 13: Snapshots of gliding assays of a ternary mixture of rod-like fila-
ments of different lengths on a substrate coated with an alternating pattern
of stripes of low (σ1 = 0) and high (σ2 > 0) motor density. Each system
of area 96.3µm2 contains a ternary mixture of N = 120 filaments with 40
filaments of length L1 = 0.5µm, L2 = 1µm, and L3 = 1.4µm each, which
corresponds to a total filament density of ρL2

2 = 1.25. The stripes have
increasing width from left to right with Lσ,1/L1 = 0.58, Lσ,2/L1 = 1.165,
and Lσ,3/L1 = 1.73. The motor density σ2 outside the stripes is high with
σ2`mL2 = 0.24 for the assay (a) and σ2`mL2 = 0.3 for (b). Both snapshots
clearly indicate the sorting of filaments according to their lengths within the
different stripes.
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this sorting principle works for an assay consisting of a ternary mixture of
filaments.

7 Conclusion and Outlook

Semiflexible polymers and filaments, which are ubiquitous both in natural
biological systems and synthetic biomimetic chemical systems, are nanorods
which are subject to thermal fluctuations and external forces. In this article
we reviewed some of the cooperative phenomena that can arise from the
presence of a large number of internal bending modes or by interactions in
filament assemblies.

We discussed the persistence length of a single filament using a renormal-
ization group approach and some characteristics of the buckling instability
of a single filament. Then we moved on to systems containing ensembles
of filaments and presented simulations and analytical results for bundling
transitions, which can also be used to generate forces on the nanoscale by
means of zipping mechanisms. Finally we presented a simulation model for
motility assays where filaments are subject to active fluctuations from motor
proteins that are immobilized on a substrate. This active driving leads to
an enhanced tendency for nematic ordering.

In this article, we focused on thermally fluctuating biological filaments.
Principles which are realized in nature can guide the design of artificial
or synthetic devices, which fulfill similar tasks as their biological counter-
parts. One particularly interesting example might be force generation on
the nanoscale, where nature uses polymerizing or zipping forces which could
be imitated in synthetic or biomimetic polymer systems in the future. An-
other example where experimental work has already started are size sorting
assays for the fractionation of filaments.38 For synthetic metal nanorods,
also quantum fluctuations might play a role in future experiments (see Ref.
[39] for an example), which have not been discussed in this article.
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List of Symbols

cx crosslinker conc. in solution
D filament diameter
〈dm〉 mean distance between bound motors
∆rα end-to-end vector of motor tail
κ bending rigidity
` RG length scale
`b bond length
`a range of linker potential
`m motor capture radius
`r hard core size
η viscosity of the surrounding liquid
F compressional force
Fc critical force for buckling
Fd detachment force
Fα
i loading force onto filament i from motor head α

Fij filament interaction forces
Fst stall force
Fzip maximal zipping force
Γ‖, Γ⊥ filament friction coefficients

Γθ rotational friction coefficient
φ(s) tangent angles
J free energy of adhesion
L filament contour length
L‖ filament projected length

Lc critical length for buckling
Leff effective filament length (29)
Lp persistence length (4)
Lσ width of stripe of low motor density
M bond number
Mα
i torque onto filament i from motor head α

Mij filament interaction torques
ni,k crosslinker occupation on site k of filament i
N number of filaments in a bundle or assay
Nσ number of stripes
ri center of mass of filament i
rα0 anchor point of tail of motor α
rαi position of head of motor α on filament i
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R RG step number
ρ filament density
ρc critical filament density for ordering
s arc length
S nematic order parameter
〈Sθ〉 mean distance traveled by a filament between rotations
σ motor density
t tangent vector
t time
tp persistence time of filament motion
T temperature (in energy units)
θi angle of filament i
ui orientation of filament i
vF mean filament velocity
vmax maximal motor velocity
〈vw〉 mean zipping velocity
Va(z) linker-mediated potential (17)
Vad(z) adsorption potential (21)
Vr(z) hard-core repulsion
W adhesive energy (per length) of one linker end group
W̄ effective potential strength (18)
Wm motor binding energy
W̄ad effective adsorption potential strength
W̄c crit. potential strength for bundling
x 1-dim. coordinate parallel to filament
xαi position of motor α on filament i
X1 crosslinker conc. per filament site
X1,c crit. crosslinker conc. per site for bundling
ξp persistence length of filament motion (28)
z (d− 1)-dim. coordinate perp. to filament
ζi(t) translational thermal random force
ζθ,i(t) rotational thermal random torque
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