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Interacting Arrays of Lines and Steps in Random Media
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The phase diagram of two interacting planar arrays of directed lines in random media is obtained
by a renormalization group analysis. The results are presented in the contexts of the roughening
of anisotropically reconstructed crystal surfaces, and the pinning of vortex line arrays in planar
Josephson junctions. Among the findings are the stability of a flat anisotropically reconstructed surface,
a novel second-order phase transition with continuously varying critical exponents, and the generic
disappearance of the glassy “superrough” phases found previously for a single line array. Relevance of
our results to the issue of replica-symmetry breaking is also discussed. [S0031-9007(96)01639-0]

PACS numbers: 68.35.Rh, 05.70.Jk, 64.70.Pf, 74.60.Ge

The statistical mechanics of planar arrays of directedp), characterized by an (isotropized) elastic constant
lines is of interest to various physical systems. For exX [15]. The second term describes density variations
ample, the steps formed on a vicinal crystal surface can bg(¢,r) induced by a random potentitl(r), reflecting the
modeled by an array of directed lines confined in a planattraction of the line defects [e.g., tk& X 1) microfacets
[1]. The same model describes Josephson vortex lines ior the vortex lines] by the quenched point defects in the
a planar Josephson junction subject to a parallel magnetizackground. The density field has the foping (r),r] =
field [2,3]. An important issue concerns the behavior ofpo[1 — 3. ¢ /27w po + 2c027pox — ¢)], where py =
such arrays of lines in the presence of quenched disorders/! is the average line density, antd= (x,z) with
It is known that the lines are pinned by point disorders; along the line direction. The random potential is
and become “glassy” at low temperature [4]. Howevertaken to have zero mean with short-range correlations
different analytic [4—8] and numeric [9] studies have V(r)V(r’) = gé(r — r’) of (bare) strengtlz.
yielded conflicting results regarding the nature of the glass An interaction between two such species of lines in
phase. A subject of debate is the possible breaking ahe form of frm Vine(r1 — r2)p(db1,11)p(dho,12) With a
replica-symmetry in the glass phase [10,11]. short-ranged potential;, leads to

In this article we study the effect of point disorders on )
two interacting species of lines in a plane. This problem B Him =~ fr{Z,upo codi — ¢2) + KV - Vo,
arises in the study of anisotropically X 1) reconstructed (2)
gold (110) surfaces [12], where two kinds @f X 1) mi- , )
crofacets can be treated as two species of interacting lind4th © = Ji Vin(r) andK, = p/87° [15]. We assume
(Fig. 1). Previous studies of the pure system have reveald§€ disorder potentia¥; acting on species to be statisti-

a rich phase diagram with a variety of phases as a functiof@lly identical, with the cross-correlation§ (r)V(r') =
of the interaction parameters [12—14]. The inclusion of¢«d(r — r') to be specified below.2 The full Hamilton-
point disorders, say crystalline defects originating from dan of our system 3 [¢1, 2] = 3 Hopldi, Vi] +
disordered substrate, induces deformations in the trajectétint[¢1, ¢2], can then be written in a succinct form (after
ries of the microfacets. Similar issues arise in two layerdieglecting irrelevant terms [15]),

of magnetically interacting Josephson vortex lines. Per- K;;

forming a renormalization group (RG) analysis in replica BH = [{7] V-V, —w; - Vo,

space, we are able to obtain a detailed picture of the RG r

flow. The result is applied to discuss the phase diagram — Wi(¢i,r) + 2upi cod; — ¢2)}, 3
of the reconstructed surfaces as well as the structure of the

glass phases obtained for the vortex arrays.

A single species of directed lines confined in a plane
containing quenched randomness can be described by the
continuum Hamiltonian [2,3]

B30l0.V1 = [ 15592 - vip600f @

on length scales exceeding the line spacihg The FIG. 1. Two kinds of (3 X 1) microfacets on a2 X 1)

first p_art of (1) gives the elastic_energy Of_the line reconstructed crystal surface. The backgrohck 1) facets
array in terms of a displacement-like scalar figldr)  can be on four possible sublattices (marked “a’—“d”). Each
(a displacement by corresponds to a shift 027 in (3 X 1) facet shifts the phase by one sublattice.
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with effective random potential¥; and w; whose shown in Fig. 2 [inset (a)], the disordey)(is irrelevant at

correlators are W;(¢,r)W;(¢’,r') = Zg,-jp(z) cof¢ —  high temperaturesr(> «), yielding the usual logarithmic
¢S — '), wi(r)w;(r') = A;8(r — /), with A;; = roughness for 2D surfaces, accompanied by a quasi-long-
gij/8m*  The parameters of the theory areranged domain order. We refer to this as the decoupled
Kj=K,g;=gAj=A for i=j, and K;= Iine (DL) phas_,e. Atr = «, th_e marginal irrelevan_ce @f _
Ky 8i; = guA;jj = A, for i # j. The cosine cou- yields a marginally coupled line phase (ML), which again
plings reflects the discrete nature of the lines. has logarithmic roughness and quasi-long-ranged domain

A physical observable of interest for the crystal sur-ordering. At low temperaturesr (< «), the disorder
face is the height profilé(r) of the surface. It is given is relevant. The resulting glass phases are described
by h(r) = |¢,(r) — ¢»(r)]/27 since lines from species by the line of fixed pointsg”(x) = « — 7 which are
1 and 2 represent upward and downwdsdXx 1| mi- perturbatively accessible fok|, |7| << 1. Since complete
crofacets, respectively (Fig. 1), and it is thifference decoupling implies also [see Eq. (2)] that, = 0 or
of the two that determines the height profile [14]. Notex + 7 = 0, only the pointg® = 2|7| (andu™ = 0, k* =
also that the(2 X 1) reconstructed surface has a choicel7|) along the lineg*(«) is the physical fixed point; it
of four possible sublattices on the surface, as marked iflescribes a decoupled glass (DG) phase. The surface
Fig. 1. Each step is thus also a domain wall separatis super rough[1] in the DG phase, with(h2) ~ In* L
ing the domains of the sublattices. An order parametepn large scalesL. The glassiness is also reflected
capturing the ordering of the domains é¢™, where by a disordered (short-ranged) domain order due to the
o(r) = [¢1(r) + ¢,(r)]/4 specifies the domain phase. anomalous scaling of the domain phagg?) ~ In?L.

In the following analysis, we shall characterize the sys-The logarithmic singularities i#2) and(¢2) both result
tem by excludingall forms of topological defects i,  from the divergence o wheng* is finite.

and ¢,. While this approximation is reasonable for the Another well known limit of our problem is that
Josephson junctions [16], it is not always valid for the re-of vanishing disorder g, g,, = 0), where a Kosterlitz-
constructed surfaces where vortices in the phase field Thouless (KT) transition occurs independent of[see
can play an important role [12—14]. For the latter caseFig. 2, inset (b)]. For large couplinig:|, the two species
our results will be used to determine the relevancy of thédecome locked together, forming elastically coupled line
vortices in the presence of quenched disorders. (EL) phases with|u*|,x* — O(1). Since the up and

To find the large scale behaviors of the system indown steps are now paired, in phaé¢, = ¢,) for
the absence of topological defects, we apply the Replica > 0 or out of phase(¢; = ¢ + 7) for u <0,
method to average over disorders. A replica-symmetri¢he surface idlat, with quasi-long-ranged domain order.
RG analysis [17,18] yields the following recursion rela- The issue of vortices in the phase field has been
tions (to bilinear order) upon a change of scaleof addressed in Ref. [14]. The vortices are equivalent to

de/dl = (k — T)g — &> — gup loops involving the intersection of the four types of
mes domain walls. The relevance of the vortices is controlled
dgu/dl = (k — 7 — 8)gu — 88u — &M, by the scaling of¢ ¢), which depends only om in the
_ _ _ _ pure problem. Simple power counting along the line of
dpfdl = 2x = dp = (7 + K)gu = g1, Ref. [14] indicates that the vortices are relevant i&> 0
de/dl = u(p — 2g,)/2, and irrelevant ifr < 0. In the presence of quenched
— (2 2 disorders, it naively appears that the vortices might be
ds/dl = (g gu)/2- _ (4) relevant in the Iowytenﬁ)gerature reginte < 0) as ngl,
Here x = 1 — [4m(K — K,)]™" is a reduced elasticity gue to the anomalous variations in induced by the
parameted = 87(A — A,), and a nonuniversal numeri- disorders. This is, however, not always the case as the
cal factor ¢ for our IR-regularization) is absorbed following analysis will show.
into g, u, andg,. The RG flow is controlled by the  We shall focus on two choices of disorder which are
reduced temperature = [47(K + K,)]”' — 1, which  of particular interest: (i) identical disorder for the two
is not renormalized due to a statistical tilt symmetry.speciesg, = g, 6 = 0) and (i) completely uncorrelated
There exists a sixth RG equatiatd/dl = (¢> + g;)/2  disorder g, = 0). Case (i) is the generic situation
for the parametep = 8 (A + A,). While § does not for steps on the anisotropically reconstructed surfaces
feedback into (4), its flow controls the scaling of the phasewith disorder. It can also be specifically constructed
field ¢ and will be crucial in determining the relevancy of for the two layers of Josephson vortex lines. The most
vortices ing. striking feature of the RG flow in the low temperature

Before delving into the structure of the RG flow, we (7 < 0) regime [Fig. 2] is the strong instability of the
first mention two limiting subproblems which have beenDG fixed point with respect to interspecies interaction
studied previously. In the limik, g, = 0, the elasticity u # 0. An attractive interaction 4 < 0) favors the
parametek is also not renormalized, and the RG equationtwo species to lock into the same configuration, i.e.,
has the same structure as that obtained for a single speciés = ¢, or h = 0 (flat). Once locked, the system acts
of lines [4] with an effective temperature — k. As  effectively as a single species with a doubled elastic
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constantk, or equivalently a lower effective temperature, tion is second order for < 0, with an algebraically di-
so that the effective single species problem is in theverging correlation length (characterized by an exponent
glass phase. Correspondingly, (4) yields (foralk 0)  » = 2|7|/7) upon crossing the separatrix. Itis a remark-
an RG flow away from the unstable DG fixed pointable feature of this system that while both RG sinks are
to a sink with strong interspecies couplimnd strong (at least marginallydlisorder free the unstable fixed point
disorder g*, k*, —u* — O(1)]. We refer to this as the governing the transition idisorder dominated
elastically coupled glass (EG) phase. Because fluctuation The above analysis of the RG flow can be straightfor-
in ¢ is large for both7 > 0 (entropy driven) andr <  wardly turned into a phase diagram. We define an inter-
0 (disorder driven), vortices inp are always relevant species interaction ener@y = w7, and present the phase
for attractive interspecies interactions. Proliferation ofdiagram in the(U,T) space, for the interesting = 0
vortices (or loops of domain walls) restores the isotropysector at a fixed disorder strenggh[see Fig. 3(a)]. The
of the surface at large scales, rendering the anisotropisuperrough DG phases exist & = 0 below a critical
treatment meaningless. In the asymptotic isotropic phaséemperaturel,. given byK,. = 1/(47). These phases are
coupling to bulk disorder is likely to roughen the surfacemarked by the thick wavy line in Fig. 3(a) and are unstable
as in [1]. However, a detailed description in that regimeto (disorder-generated) dislocationsgn For U > 0, a
is beyond the scope of this paper. separatrixx = u + 2k separates the flat, pure phase (EL)
A repulsive interaction g > 0) competes with fluc- at low temperature and large repulsion from the two high
tuations in the random potential, which still attempts totemperature phases. At very high temperatufes{ T,),
lock the two species into the same configuration. Orthe system is in the pure decoupled phase (DL) which is
the low temperature sider (< 0) [19], this competition unstable to (thermally generated) dislocationginUpon
leads totwo RG sinks separated by a second-order phaskwering the temperature beyond the line= 0 (thin solid
transition: If the repulsive interaction dominates, theline), the system settles into tiséableML phase for weak
two species avoid each other by locking into a configurepulsive interaction (compared ). Further lowering
ration with ¢, = ¢, + 7, i.e., with one species dis- the temperature beyond the separatrix (the thick solid line),
placed by half a line spacing with respect to the otherthe system makes a second-order transition from the ML
Such a configuration can be interpreted again as a singte the EL phase which is also stable with respect to dis-
species, but now with a doubled line density. This leaddocations. Note that because the critical properties there
to a higher effective temperature, such that the effectiveare controlled by the fixed poirt which depends ormr,
single species system i®t glassy, withg® = 0. Cor-  the critical exponents governing this transition actually
responding to this scenario, we find for weak bare disvary continuouslyalong the thick solid line. The second-
order a RG flow away from DG towards the fixed point order transition terminates at a point where the separa-
EL, and the RG trajectories approach their pendants in thiix intersects the line = 0 [the open circle in Fig. 3(a)].
disorder-free subproblem. For stronger disorders, howWe expect the transition between DL and EL at higher
ever, we obtain a RG flow from DG towards the fixed temperatures to be the same as that of the disorder-free
point ML, since the disorder weakens the interspeciesase [14].
coupling . and «, while the couplingu in turn weak- Perhaps the most striking result of the above analysis
ens the disordeg. Note that both the EL and ML phases is the suppression of glass order bel@w by applying
are stableto the formation of dislocations in the phase a small repulsion between the two species of lines. This
field ¢ at low temperatures [19], sina® is finite when effect stabilizes the anisotropy of the reconstruction and
g* = 0. The phase transition separating the EL phase anthe flatness of the surface. It is also quite interesting
the ML phase is governed by an unstable fixed pomt ( from a more general theoretical perspective: The glass
at(x*, g%, u*) = (—1,2,4)|7]/7 , which is the attractor of order was found previously for a single line array in
the plane of separatrix = u + 2« . The phase transi- random media by analysis based on the replica-symmetric
RG method [1,4,5], but was not found in more recent
studies using a variational method with replica-symmetry

EL
& )'(“//ih} breaking (RSB) [7,8]. The latter finds instead the ML
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FIG. 3. Phase diagram for two species of lines in (a) identical
FIG. 2. RG flow for identical disordefg, = g, A = A,). and (b) uncorrelated random media. In (a), only te< 0
Insets (a) and (b) describe the flow for the subcase wittsector corresponding to repulsive interactions is shown, while
no interspecies couplingu(= 0) and no disordersg(= 0), in (b), repulsive and attractive interactions lead to the same
respectively. phase diagram (see text).
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phase, which appears naively to be consistent with oucoupled glass phases is very similar (including the numeri-
findings here. However, our result can in fact be usedal value ofc) to the result obtained recently for a problem
to question the internal consistency of the RSB schemenvolving manylayers of vortex lines [21].
As described in Ref. [20], a physical way of probing the In conclusion, we have presented a detailed RG analysis
existence of RSB is to take twphysicalreplicas of a for a model of two interacting planar line arrays in
system (in identical random potential) and monitor therandom media. Among the findings are a novel second-
response to a small repulsion between the replicas. Ibrder phase transition with continuously varying critical
there is a degeneracy of low free energy states (which thexponents, the stability of the anisotropic flat phase
RSB scheme attempts to describe), then an infinitesimdbr repulsive interactions, and the replacement of the
repulsion between the replicas will force the two to occupysuperrough glass phase by a marginally coupled phase.
different states which haveimilar glassy propertieand We are grateful to helpful discussions with T. Natter-
little overlap. The system we have analyzed so far camann and T. Giamarchi. This work is supported by ONR-
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