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Topological order in the vortex-glass phase of high-temperature superconductors
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The stability of a vortex glass phase with quasi-long-range positional order is examined for a disordered
layered superconductor. The role of topological defects is investigated using a scaling argument supplemented
by a variational calculation. The results indicate that topological order is preserved for some range of param-
eters in the vortex glass phase. The stability regime is given in terms of a simple Lindemann-like criterion and
is consistent with recent experiments.@S0163-1829~97!07501-2#
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It is well known that the Abrikosov flux lattice in a type-I
superconductor is unstable to point disorder beyond the
kin length.1 The nature of the flux array at larger scales h
been a subject of intense studies.2 It has been conjecture
that the flux array iscollectively pinned, forming a vortex
glass~VG! phase3–6 with zero linear resistivity at low tem
peratures. This conjecture is supported by a number of
periments on disordered samples of high-Tc
superconductors,7–10where a continuous transition to a pha
with zero linear resistivity was found upon cooling. On t
other hand, Bitter-decoration,11 neutron-scattering,12 and
mSR ~Ref. 13! experiments on weakly disordered samp
have all indicated somelong-range orderof the flux array, a
characteristic usually incompatible with a glass. A comm
interpretation for the observation of a fluxlattice is a cross-
over effect due to the large Larkin lengths in weakly dis
dered samples. In this article, we investigate a different p
sibility, that the flux array may maintain its positional lon
range ordermuch beyondthe Larkin length, in spite of
pinning by point disorders.

Such a possibility is indeed realized in a model of
dislocation-freeflux line array in random media.5,14 This
model is very similar to the randomly pinned charge-dens
waves and the random-fieldXY model which have been
studied extensively in the past decades.14–17 A variety of
approximate methods have been used to obtain the con
sion that point disorders lead to a glass phase with o
logarithmic fluctuations in the transverse displacement of
flux array. This implies the existence of quasi-long-ran
positional order in the glass phase of the dislocation-free
array.14

As recently suggested,14 such a topologically ordered
glass may actually exist as astablethermodynamic phase fo
some range of parameters in the cuprate superconduc
Related numerical studies18,19of the random fieldXY model
and a layered model superconductor further supported
scenario. However, the issue of spontaneous formation
topological defects~i.e., dislocation loops! involves compli-
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cated interplay between elasticity and disorders, and ha
far not been addressedquantitatively. In this article, we in-
vestigate this issue using a model of flux lines confined in
planes of a layered superconductor. Our model allows for
formation of dislocation loops and is amenable to analy
studies. We first present a scaling argument which yie
suppression of large dislocation loops at finite fugaciti
This result is then supplemented by a variational calculati
from which we obtain a Lindemann-like criterion giving th
size of the stability regime for the topologically ordered VG
Finally, we generalize our argument to the usual experim
tal situation of flux lines perpendicular to the layers, a
compare to experimental findings.

We start with a strongly layered impure superconducto
a parallel magnetic field. The superconducting layers pr
vide a sufficiently strong confining potential for th
~Josephson-like! vortex lines which exist in the interlaye
spacing. We shall exclude the possibility of the lines cro
ing the superconducting layers.@For fields parallel to theab
planes of the Bi compound, typical vortex kink energies a
of the order 103(12T/Tc)

°K.# This amounts to limiting the
vortex displacement field from two components in an isot
pic sample to one component~i.e., parallel to the layers!. For
simplicity we shall focus on thedilute limit where the inter-
vortex spacingsl' ~interlayer!, l i ~intralayer! exceed the
magnetic penetration depthslab , lc respectively. The im-
plications of our results on the dense limit are straightf
ward and will be discussed below.

A well-established analytic description for asingle layer
of vortex lines~for length scales exceedingl i) is given by
the Hamiltonian3

bH2D@f j ,Wj #5E
r i
HK2 ~¹ if j !

22Wj@f j~r i!,r i#J , ~1!

wheref j (r i) describes the in-plane displacement of the v
tex lines in thej th layer andK is an ~isotropized! in-plane
elastic constant. Pinning effects due to point disorder
626 © 1997 The American Physical Society
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55 627TOPOLOGICAL ORDER IN THE VORTEX-GLASS PHASE . . .
described by the random potentialWj@f j (r i),r i#, with the
second momentWj@f,r #Wj@0,0#5g0

2cos@f#d2(r ), where the
overbar denotes disorder average,g0 characterizes the~bare!
strength of the random potentials, and the cosine capture
discrete nature of the vortex lines.5 With many layers
stacked next to each other, the Hamiltonian for the wh
system is

bH5(
j

H bH2D@f j ,Wj #1E
r i

Vj@f j11~r i!2f j~r i!#J ,
Vj@f#52mcos@f#, ~2!

whereWjWj 85d j , j 8WjWj since the bare random potentia
in different layers are uncorrelated. The interactionV@f# in
Eq. ~2! can be regarded as the repulsive magnetic interac
energy between the lowest harmonics of density fluctuati
between vortex lines in ‘‘adjacent’’ layers, a valid approx
mation in the dilute limit.20 The coupling constantm is re-
lated to the shear modulus of the flux line lattice. The m
feature of this model is that it goes beyond the elastic
proximation, as it allows for dislocation loops between ad
cent layers~see Fig. 1!.

In what follows, we first study the phase diagram of t
system in terms of the parametersm and K for a fixed
strength of disorder. If the vortex layers are uncoupled, i
m50, then each layer undergoes separately a glass trans
at a critical valueKc51/4p,3,16 with a vanishing linear re-
sistivity in the low-temperature phase (K.Kc) and ohmic
behavior in the high temperature phase (K,Kc).

21 The
physical range of interest corresponds toK@Kc .

The limit of very weak coupling (m!1) may be studied
using perturbation theory; it is straightforward to find tha
weak coupling is irrelevant at large scales. In the limit
very large couplingm→`, the interaction potentialV@f#
may be replaced by the quadratic form,mf2/2, which de-
scribes an elastic~i.e., dislocation-free! coupling in the direc-
tion perpendicular to the layers. This is just the anisotrop
one-component version of the VG considered previously
Refs. 5, 14, and 15. After introducing a continuum descr
tion in terms of r5(r i ,r') and rescaling
r'5( j l')Am l'

2 /K, we get an isotropic three-dimension
~3D! elasticHamiltonian

bH3D5E d3r H g

2
~¹f!22W@f~r !,r #J ~3!

FIG. 1. Left: Elastic rearrangement of each planar flux array
be represented by a number of vortexloops~shaded region!. Right:
Aligned vortex loops in successive layers form a vortexsheet. The
boundary of the sheet~dark loop on top! is adislocation loop.
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with an effective elastic constantg5AmK and a random
potentialW@f(r ),r # with W@f,r #W@0,0#5g2cos@f#d3(r ),
where g25g0

2Am/K. From various methods including
position-space RG,15 a Flory-type argument,5 functional
RG,14 and a variational Ansatz,14,17one finds that the system
~3! forms a glass phase with

^@f~r !2f~r 8!#2&3D52Aln~ ur2r 8u/l ! ~4!

beyondthe positional correlation lengthl ;g2/g2, with A
being an universal number ofO(1).22 The logarithmic fluc-
tuation in displacement leads to quasi-long-range order
an ~algebraic! Bragg peak at reciprocal lattice vecto
2p/ l i . This phase was referred to as the ‘‘Bragg glass.’’

14 In
3D, there is a large elastic energy cost, of the or
(g/2)*d3r ^(¹f)2&3D;gL, for logarithmic fluctuations in a
volume of the orderL3. This energy is compensated by th
disorder energy gained from the anomalous displacemen
the flux array. ThusDE;gL gives the order of variation in
free energy for configurations which differ inf by
O(Aln(L/l )). Note also that the elastic Bragg glass has
nonzero response to shear.

Given the above properties of the Bragg glass, which
ists so far only in the unphysical limitm→`, our first task is
to determine whether it can persist at a finitem, i.e., whether
the system is stable to thespontaneousformation of disloca-
tion loops on length scales much larger than the correla
length l . To investigate this possibility, we divide the sy
tem into two halves~within which the layers are elasticall
coupled! and allow dislocation loops to form in the conta
plane, say between thej 0th and (j 011)th layers. Analyti-
cally, this is implemented by using the following interactio
energy in Eq.~2!:

Vj8@f#5
m

2
f2~12d j , j 0

!2m8cos@f#d j , j 0
~5!

with m8'm@1 approximatingVj@f#. It is useful to con-
sider first arbitrary values ofm8. If the two halves of the
system are decoupled~i.e.,m850), then each forms a Brag
glass, and the configuration of the flux array in each hal
individually optimized. But if the two halves are tied togethe
~i.e., m8→`) , then the constraint across the contact pla
forces acompletereoptimization of the flux array, resulting
in a higher free energy for each half. Since the constra
amounts to changing the boundary conditionf j 0

(r i) of the

half-systems, byO@Aln(L/l )# according to Eq.~4!, the typi-
cal free energy increase in each half due to the constrain
given byDE;gL.

Observe that the difference between the optimal confi
ration of each half system resulting from the constraint
j 0 can be described by a collection of ‘‘vortex sheets’’ su
as the one depicted in Fig. 1. A dislocation loop, which d
scribes phase mismatches across the contact plane, is ju
boundary of a vortex sheet at the contact plane. The a
ment above thus shows that the disorder energy gained f
theproliferation of dislocations loops~i.e., complete decou-
pling! at the contact plane isDE. Consequently, the disorde
energy gained from the formation of asingledislocation loop
is Edis<DE. Assuming scaling of this energy,Edis;g8Lv, it
follows thatv<1.

n
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628 55JAN KIERFELD, THOMAS NATTERMANN, AND TERENCE HWA
We next consider the interaction energy cost due to
formation of dislocation loops. In the large~but finite! m8
limit of interest, it is sufficient to focus on largeL, the sta-
bility of a single optimally configured dislocation loop o
extent L@l at the contact plane of the two~elastic! half
systems~Fig. 1!. The energy cost of the core of the disloc
tion loop due to the interlayer interaction is extensive. Fo
stretched circular loop of linear sizeL, we expect
Ecore;m8l L. Here, l appears as the ‘‘thickness’’ of th
loop because the flux array is elastically coupled at sma
scales.23 More generally, if we allow the dislocation loop t
take on fractal shapes, say with the total loop length sca
asLD for L@l (D>1 being the fractal dimension!, then the
core energy becomesEcore;m8l 22DLD.

The existence or not of dislocation loops can now be
termined by comparing this core energy with the gain
disorder energy,Edis;g8Lv. The value of the exponentv
depends on the structure of the dislocation loop we allo
i.e., on the fractal dimensionD. We expect that the uppe
bound (v51) may only be reached if the structure of th
associated vortex sheet is similar to those that arise when
coupling at the contact plane is changed fromm85` to
m850. The structure of the latter can be deduced as follo
Denote the difference in the configuration before/after
change inm8 by w(r ). The vortex sheets are then the equ
w contours ofw(r ), and the associated dislocation loops a
the contours ofw(r i ,r'5 j 0l'). The relationship between
rough ‘‘landscape’’ and the fractal geometry of its contou
have recently been examined.24 For a logarithmically rough
landscapew at hand~resulting from the different boundar
condition across the contact plane!, an exact calculation
yields D53/2.24,25 Thus, we expectv<1 for D53/2, and
v,1 for D,3/2. The total energy of the dislocation loop

Eloop5Ecore2Edis;m8l 22DLD2g8Lv~D ! ~6!

does not admit a stable solution withL@l for large
m8'm. Hence the Bragg glass is stable to the spontane
formation and proliferation of large dislocation loops. T
possibility of amarginally stable Bragg glass for weakl
disorder sample was first suggested in Ref. 14, based on
assertions thatDE;gL andEcore;cL, whereg is the bare
disorder strength which can be made arbitrarily small anc
is a given number.23 The above analysis indicates that t
dislocation loops are much morestrongly suppressedat low
temperatures by the anomalously large core energy.

Next, we investigate quantitatively the extent of the s
bility regime for the Bragg glass phase of the layered sys
~2!. We consider quasi two-dimensional in-plane fluctu
tions, i.e., on theshortestscale in the direction perpendicula
to the layers. Analytically, we apply a variational treatme
with the variational HamiltonianH̃ obtained by replacing the
interaction potentialVj@f# in Eq. ~2! by the quadratic form
Ṽj@f#5m̃f2/2, which describes an elastic~i.e., dislocation-
free! coupling in the direction perpendicular to the laye
The parameterm̃ has the meaning of an effective she
modulus and may be determined self-consistently within
variational treatment. The minimization of the variation
free energy with respect tom̃ yields the self-consistenc
equation
e
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m̃5m^cos@f j11~r i!2f j~r i!#&H̃. ~7!

This is evaluated using a Gaussian approximation which
be justified26 in a controlled fashion.̂ff&H̃contains contri-
butions from ~i! the quasi-2D VG regimêff&2D which
dominates form̃'0; ~ii ! the 3D VG regimê ff&3D ; and
~iii ! thermal fluctuations on scales smaller than the corre
tion length l for large m̃. Using Eq.~4! for ^ff&3D , and
using ^ff&2D52(11a)ln(L) @where a'( l ig0 /K)

4 from
Refs. 14 and 17#, the following results are obtained:27 The
self-consistency equation has a stable solution with nonz
shear modulus only form.mc5 c̄2K/l 2.28 For m,mc , the
system ‘‘melts’’ into a stack of decoupled 2D VG’s, i.e.,
forms a smectic phase,29 distinguished from the Bragg glas
by a vanishing shear modulusm̃50. The transition at
m5mc is first order, with a discontinuous jump inm̃. Our
variational calculation yields a prefactorc̄'60 which de-
pends very weakly on temperatures, as long as we are a
from the melting temperature of the pure system.26 It is il-
lustrative to expressm and K in terms of the correlation
length of the anisotropic system~2! in the ' direction,
l '[Am l'

2 /Kl . The above stability condition then becom
l '. c̄l' , which may be viewed as the disordered-analog
the Lindemann criterion.

Clearly, the layered model~2! we used so far has two
limitations: Displacements are uniaxial, and dislocati
loops occur only in planes parallel to the vortex layers. W
expect the difference between one- and two-component
placements to be analogous to the difference between s
and vector charges in a Coulomb gas representation. T
the scaling of the relevant energy scales of a disloca
loop, Edis and Ecore, should be unchanged. If we exclud
vacancies and interstitials, a dislocation loopalwayshas to
lie within a single plane spanned by its Burgers vector a
the applied field.30 Therefore, the scaling argument we pr
sented for the layered system can also be applied to study
stability of the Bragg glass in the more common experim
tal situation of flux lines perpendicular to the CuO planes

Naive generalization of our results to the isotropic syst
yields l .c• l . We expect a larger numerical factorc* c̄
since the two component system is less stable. Further ta
into account of the ‘‘random manifold’’ regime which occu
on intermediate scales betweenl and l ,14,22 we find26 a re-
duction in the dislocation loop core energy
Ecore;(c44c66)

1/2( l /l )222zl 2L, for a nonfractal dislocation
loop of extentL. Here, c44 and c66 are the tilt and shea
moduli, andz'0.2 is the roughness exponent characteriz
the random manifold. Assuming that even a nonfractal d
location loop can make the maximum energy ga
Edis;DE;(c44c66)

1/2l 2L, we obtain the criterionl .c1/2zl .
The increased numerical factorc1/2z indicates areducedsta-
bility regime for the Bragg glass, resulting from the reduc
core energy. In the dense limitl@ l , if l *l, we find that
Ecore is further reduced by a factor (l /l)2z leading to the
criterion l .c1/2zl, where the vortex spacingl is replaced
by the range of the magnetic interactionl. The Bragg glass
cannot be stable in the limitl→` ~or at scales belowl for
finite l ’s! because the long-ranged magnetic interact
gives rise to a much stronger disorder energy,DE;L2,14

which always exceedsEcore.
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55 629TOPOLOGICAL ORDER IN THE VORTEX-GLASS PHASE . . .
We can summarize these findings in the Lindemann-
criterion for the stability of the Bragg glass

l .c1/2zmax~ l ,l!, ~8!

with c*O(50). In fact, the criterion~8! is equivalent32 to the
more conventional Lindemann-criterion proposed recen
by Ertaş and Nelson,31 with a corresponding Lindemann
numbercL.1/Ac. Our estimate ofc yieldscL'0.15, which
agrees well with the experimentally accepted value. Us
material parameters similar to Ref. 31 for a typical BSCC
the criterion~8! yields an upper critical fieldBc'500G be-
low which the Bragg glass phase is stable.32 This coincides
with the critical field where Bragg peaks appear in BSCC
~Ref. 12! and suggests that the observed Bragg peaks
e

y

g
,

ay

indeed be a manifestation of the Bragg glass. For fields
ceedingBc , the system is dominated bystrong disorders,
and its properties are not known. It may simplymelt into a
viscous line liquid, or it may form another type of vorte
glass.14
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