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Topological order in the vortex-glass phase of high-temperature superconductors
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The stability of a vortex glass phase with quasi-long-range positional order is examined for a disordered
layered superconductor. The role of topological defects is investigated using a scaling argument supplemented
by a variational calculation. The results indicate that topological order is preserved for some range of param-
eters in the vortex glass phase. The stability regime is given in terms of a simple Lindemann-like criterion and
is consistent with recent experimenfS0163-1827)07501-2

It is well known that the Abrikosov flux lattice in a type-1l cated interplay between elasticity and disorders, and has so
superconductor is unstable to point disorder beyond the Larfar not been addressefliantitatively In this article, we in-
kin length® The nature of the flux array at larger scales hasvestigate this issue using a model of flux lines confined in the
been a subject of intense studfek. has been conjectured planes of a layered superconductor. Our model allows for the
that the flux array iscollectively pinnedforming a vortex formation of dislocation loops and is amenable to analytic
glass(VG) phasé® with zero linear resistivity at low tem- Studies. We first present a scaling argument which yields
peratures. This conjecture is supported by a number of exguppression of large dislocation loops at finite fugacities.
periments on  disordered samples of high- This resultis then supplemented by a variational calculation,
superconductor;‘®where a continuous transition to a phasefrom which we obtain a Lindemann-like criterion giving the
with zero linear resistivity was found upon cooling. On the Size of the stability regime for the topologically ordered VG.
other hand, Bitter-decoratidd, neutron-scattering and ~ Finally, we generalize our argument to the usual experimen-
u4SR (Ref. 13 experiments on weakly disordered sa,m_ﬂestal situation of flux lines perpendicular to the layers, and

have all indicated someng-range orderof the flux array, a compare to experimental findings. _
characteristic usually incompatible with a glass. A common We start with a strongly layered impure superconductor in
interpretation for the observation of a flledtice is a cross- & parallel magnetic field. The superconducting layers pro-
over effect due to the large Larkin lengths in weakly disor-Vide @ sufficiently strong confining potential for the
dered samples. In this article, we investigate a different postJosephson-likevortex lines which exist in the interlayer
sibility, that the flux array may maintain its positional long- SPacing. We shall exclude the possibility of the lines cross-
range ordermuch beyondthe Larkin length, in spite of INg the superconducting layef3:or fields parallel to theb
pinning by point disorders. planes of the Bi compound, typical vortex kink energies are

Such a possibility is indeed realized in a model of aof the order 1&1—T/T.)'K.] This amounts to limiting the
dislocation-freeflux line array in random media* This  vortex displacement field from two components in an isotro-
model is very similar to the randomly pinned charge-densityPiC Sample to one componefite., parallel to the layejsFor
waves and the random-fieldY model which have been Simplicity we shall focus on thdilute limit where the inter-
studied extensively in the past decad&s” A variety of ~ Vortex spacings, (interlayed, I (intralaye) exceed the
approximate methods have been used to obtain the concli?@gnetic penetration depths,,, \. respectively. The im-
sion that point disorders lead to a g|ass phase with on|P|icati0nS of our results on the dense limit are Straightfor-
logarithmic fluctuations in the transverse displacement of th&vard and will be discussed below.
flux array. This implies the existence of quasi-long-range A Wwell-established analytic description forsingle layer
positional order in the glass phase of the dislocation-free flu®f vortex lines(for length scales exceedirg) is given by
arrayt4 the Hamiltonian

As recently suggesteld, such a topologically ordered
glass may actually exist asstablethermodynamic phase for
some range of parameters in the cuprate superconductors.
Related numerical studi¥s'® of the random fieldY model
and a layered model superconductor further supported thishere;(r;) describes the in-plane displacement of the vor-
scenario. However, the issue of spontaneous formation déx lines in thejth layer andK is an (isotropized in-plane
topological defectsi.e., dislocation loopsinvolves compli-  elastic constant. Pinning effects due to point disorder are

K
BH2ol ¢ er]:f [E(V¢j)2_wj[¢j(r||)vr] , (D
"l
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with an effective elastic constant=uK and a random

i potential W[ ¢(r),r] with W[ ¢,r ]W[0,0]=g?cog ¢]5%(r),
11 N where gz=g§\/,u/K. From various methods including
B position-space R& a Flory-type argumen, functional
o @ RG* and a variational Ansat;* one finds that the system
4 T —VW——‘.————— (3) forms a glass phase with
([¢() = b(r)P)ap=2AIN(r—1"[1/) (4)

_ beyondthe positional correlation length ~ y?/g?, with A

FIG. 1. Left: Elastic rearrangement of each planar flux array Carbeing an universal number @(1).22 The logarithmic fluc-
be represented by a number of vortesps (shaded region Right: - . atian in displacement leads to quasi-long-range order and
Aligned vortex loops in successive Iaygrs fo_rm a v_orsmeeIThe an (algebrai¢ Bragg peak at reciprocal lattice vector
boundary of the shedtlark loop on topis adislocation loop 277/|H - This phase was referred to as the “Bragg glagélh
3D, there is a large elastic energy cost, of the order
(12)[ B3 ((V ¢)?)3p~ YL, for logarithmic fluctuations in a
volume of the ordet 3. This energy is compensated by the

X - disorder energy gained from the anomalous displacement of
strength of the random potentials, and the cosine captures thg, f,x array. Thus\E~ yL gives the order of variation in

discrete nature of the vortex lines.With many layers free energy for configurations which differ inp by

stacked next to each other, the Hamiltonian for the wholeo( In(L//)). Note also that the elastic Bragg glass has a

system Is nonzero response to shear.
Given the above properties of the Bragg glass, which ex-
BH= 2 [ﬁHzo[ #; W]+ f Vil dja(r)—ai(rplt, ists so far_only in the u_nphysical _Iimjt—mo_, our first task is
] T to determine whether it can persist at a finitei.e., whether
the system is stable to tlepontaneousormation of disloca-
Vi[¢]=—ucod ¢], (2)  tion loops on length scales much larger than the correlation
. . length/. To investigate this possibility, we divide the sys-
where W;W;, = §; ; W;W; since the bare random potentials (g into two halvegwithin which the layers are elastically
in different layers are uncorrelated. The interactidnp] in - ¢ypled and allow dislocation loops to form in the contact
Eq. (2) can be regarded as the repulsive magnetic interactio lane, say between thigth and (,+ 1)th layers. Analyti-

energy between the lowest harmonics of density fluctuationg,ly, this is implemented by using the following interaction
between vortex lines in “adjacent” layers, a valid approxi- energy in Eq(2):

mation in the dilute limi€° The coupling constan is re-
lated to the shear modulus of the flux line lattice. The main

described by the random potentil;[ ¢;(r)),r], with the
second momeer[gb,r]Wj[O,O]=g§cos{¢]52(r), where the
overbar denotes disorder averagg characterizes thébare

, et )
feature of this model is that it goes beyond the elastic ap- Vilol= 5(1)2(1— djj,) —m'cog )5 ;. 5
proximation, as it allows for dislocation loops between adja-
cent layers(see Fig. 1 with u'~pu>1 approximatingV;[ ¢]. It is useful to con-

In what follows, we first study the phase diagram of thesider first arbitrary values of.’. If the two halves of the
system in terms of the parameters and K for a fixed  system are decoupldde., u’ =0), then each forms a Bragg
strength of disorder. If the vortex layers are uncoupled, i.e.glass, and the configuration of the flux array in each half is
w=0, then each layer undergoes separately a glass transitigidividually optimizedBut if the two halves are tied together
at a critical valueK ;= 1/4r,>*° with a vanishing linear re- (i.e., u'—) , then the constraint across the contact plane
sistivity in the low-temperature phas&$K.) and ohmic forces acompletereoptimization of the flux array, resulting
behavior in the high temperature phasé<(K.).?* The in a higher free energy for each half. Since the constraint
physicall range of interest corre;pondsKt& Ke. _ amounts to changing the boundary conditigbn)(r”) of the

The limit of very weak coupling £<<1) may be studied half-systems, byo[ vin(L//)] according to Eq(4), the typi-

using perturbation theory; it is straightforward to find that a., free energy increase in each half due to the constraint is
weak coupling is irrelevant at large scales. In the limit Ofgiven by AE~ L.

very large couplingu—oe, the interaction zpotentlg‘{/[¢] Observe that the difference between the optimal configu-
may be replaced by the quadratic forpag?/2, which de- (3400 of each half system resulting from the constraint at
scribes an elastig.e., dislocation-freecoupling in the direc- i, can be described by a collection of “vortex sheets” such
tion perpendicular to.the layers. This is just the ani_sotropi'cas the one depicted in Fig. 1. A dislocation loop, which de-
one-component version of the VG considered previously inggrines phase mismatches across the contact plane, is just the
Refs. 5, 14, and 15. After introducing a continuum descripyondary of a vortex sheet at the contact plane. The argu-
ton in _terms of r=(r,r;) and rescaling mentabove thus shows that the disorder energy gained from
r,=(jl) Vuli/K, we get an isotropic three-dimensional the proliferation of dislocations loopsi.e., complete decou-
(3D) elastic Hamiltonian pling) at the contact plane ISE. Consequently, the disorder
energy gained from the formation osigledislocation loop
L << o~ L? g
,3H3D:f dar[ %(Vq&)z—\/\l[d)(r),r] 3) ;zliﬁgﬁ]iijis;.mmg scaling of this energigs~ y'L®, it
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We next consider the interaction energy cost due to the 7= _ — & >
formation of dislocation loops. In the largéut finite) w’ #=plog byalr) = () e @
limit of interest, it is sufficient to focus on larde, the sta-
oty of 2 S optmal confgured dsocalion 0081 be st i a convole st .45 contans ot
systemg(Fig. 1). The energy cost of the core of the disloca- Putions from (i) the quasi-2D VG regimeg ¢¢),p which
tion loop due to the interlayer interaction is extensive. For glominates foru~0; (i) the 3D VG regime(¢¢)sp; and
stretched circular loop of linear sizd, we expect (.m) thermal ’fluctuatlonf on ;cales smaller than the correla-
Ecore~ ' /L. Here, / appears as the “thickness” of the tion length/” for large u. Using Eq.(4) for (¢¢)3p, and
loop because the flux array is elastically coupled at smalleysing (¢ ¢),p=2(1+a)In(L) [where a~(l;go/K)* from
scale€® More generally, if we allow the dislocation loop to Refs. 14 and 1 the following results are obtainéd:The
take on fractal shapes, say with the total loop length scalingelf-consistency equation has a stable solution with nonzero
asLP for L>/ (D=1 being the fractal dimensiorthen the ~ shear modulus only fop.> u.=c?K//2.2 For u<p., the
core energy becomes, o~ u' /2 PLP, system “melts” into a stack of decoupled 2D VG's, i.e., it

The existence or not of dislocation loops can now be deforms a smectic phasé distinguished from the Bragg glass
termined by comparing this core energy with the gain inby a vanishing shear modulug=0. The transition at
disorder energyE s~ v'L®. The value of the exponend  u= . is first order, with a discontinuous jump ja. Our
depends on the structure of the dislocation loop we allowyariational calculation yields a prefactar~60 which de-
i.e., on the fractal dimensio®. We expect that the upper pends very weakly on temperatures, as long as we are away
bound =1) may only be reached if the structure of the from the melting temperature of the pure systénit is il-
associated vortex sheet is similar to those that arise when tHastrative to expresg. and K in terms of the correlation
coupling at the contact plane is changed framh=> to  length of the anisotropic systert2) in the L direction,
n'=0. The structure of the latter can be deduced as follows?’, = \/,uIE/K/. The above stability condition then becomes
Denote the difference in the configuration before/after the”, >cl, , which may be viewed as the disordered-analog of
change inu’ by ¢(r). The vortex sheets are then the equal-the Lindemann criterion.
¢ contours ofe(r), and the associated dislocation loops are Clearly, the layered modegR) we used so far has two
the contours ofp(ry,r, =jol ). The relationship between a limitations: Displacements are uniaxial, and dislocation
rough “landscape” and the fractal geometry of its contoursloops occur only in planes parallel to the vortex layers. We
have recently been examin&tFor a logarithmically rough expect the difference between one- and two-component dis-
landscapep at hand(resulting from the different boundary placements to be analogous to the difference between scalar
condition across the contact planean exact calculation and vector charges in a Coulomb gas representation. Thus,
yields D=3/22*?5Thus, we expecto<1 for D=3/2, and the scaling of the relevant energy scales of a dislocation
w<1 for D<3/2. The total energy of the dislocation loop loop, Egs and E.y, should be unchanged. If we exclude
vacancies and interstitials, a dislocation loglgvays has to
lie within a single plane spanned by its Burgers vector and
the applied field® Therefore, the scaling argument we pre-
sented for the layered system can also be applied to study the
does not admit a stable solution with>/" for large  stability of the Bragg glass in the more common experimen-
u'~u. Hence the Bragg glass is stable to the spontaneougl situation of flux lines perpendicular to the CuO planes.
formation and proliferation of large dislocation loops. The Naive generalization of our results to the isotropic system
possibility of a marginally stable Bragg glass for weakly yields />c-1. We expect a larger numerical factoc
disorder sample was first suggested in Ref. 14, based on tkfince the two component system is less stable. Further taking
assertions thaAE~gL andE,~cL, whereg is the bare into account of the “random manifold” regime which occurs
disorder strength which can be made arbitrarily small and on intermediate scales betwekeand/,'*??we find® a re-
is a given numbef® The above analysis indicates that the duction in the dislocation loop core energy,
dislocation loops are much mostrongly suppressedt low  E_ .~ (C4.C0)YA(1//)2~%¢/L, for a nonfractal dislocation
temperatures by the anomalously large core energy. loop of extentL. Here, c,, and cgg are the tilt and shear

Next, we investigate quantitatively the extent of the sta-moduli, andZ~0.2 is the roughness exponent characterizing
bility regime for the Bragg glass phase of the layered systenthe random manifold. Assuming that even a nonfractal dis-
(2). We consider quasi two-dimensional in-plane fluctua-location loop can make the maximum energy gain
tions, i.e., on thehortestscale in the direction perpendicular g, ~AE~ (c,4ce0)*4%L, we obtain the criterionr”>c¥%].
to the layers. Analytically, we apply a variational treatment, The increased numerical factot% indicates aeducedsta-
with the variational Hamiltoniaft{ obtained by replacing the bility regime for the Bragg glass, resulting from the reduced
interaction potentiaV;[ ¢] in Eq. (2) by the quadratic form core energy. In the dense limit>1, if /=X, we find that
Vj[¢]=ﬁ¢2/2, which describes an elastice., dislocation- Ecoe iS further reduced by a factol/)?¢ leading to the
free) coupling in the direction perpendicular to the layers.criterion /> ¢\, where the vortex spacingis replaced
The parametern has the meaning of an effective shearby the range of the magnetic interactian The Bragg glass
modulus and may be determined self-consistently within thesannot be stable in the limkt—c (or at scales below for
variational treatment. The minimization of the variational finite \'s) because the long-ranged magnetic interaction
free energy with respect t@ yields the self-consistency gives rise to a much stronger disorder energ§~ L2
equation which always exceedB e

This is evaluated using a Gaussian approximation which can

Eloop: Ecore™ Edis'VM,/27DLD_ Y Le® (6)
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We can summarize these findings in the Lindemann-likdndeed be a manifestation of the Bragg glass. For fields ex-
criterion for the stability of the Bragg glass ceedingB., the system is dominated kstrong disorders
and its properties are not known. It may simpheltinto a
/>ctEmax(,\), ®  viscous line liquid, or it may form another type of vortex
with ¢=O(50). In fact, the criteriori8) is equivalent’ to the glass'
more conventional Lindemann-criterion proposed recently
by Ertasand Nelsort! with a corresponding Lindemann- _ : (
numbercLzll\/E. Our estimate of yieldsc, ~0.15, which F|she_r, T. Giamarchi, J. Kondev, P. Le Doussal, M. C. Mar-
agrees well with the experimentally accepted value. Usinghetti: D R. Nelson, and L. H. Tang. T.H. acknowledges the
material parameters similar to Ref. 31 for a typical BSCCO SuPport of A.P. Sloan Foundation and ONR through Grant
the criterion(8) yields an upper critical field®.~500G be- No. ONR-N00014-95-1-1002. T.N. acknowledges the hospi-
low which the Bragg glass phase is staffi@his coincides tality of Harvard University where part of the work was
with the critical field where Bragg peaks appear in BSCccodone, as well as the financial support of the Volkswagen

We are grateful for many helpful discussions with D. S.

(Ref. 12 and suggests that the observed Bragg peaks mayoundation and the GIF.
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