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Theory of Plastic Vortex Creep
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We develop a theory for plastic vortex creep in a topologically disordered (dislocated) vortex solid
phase in type-II superconductors in terms of driven thermally activated dislocation dynamics. Plastic
barriers for dislocations show a power-law divergence at small driving currents j, Upl� j� ~ j2m, with
m � 1 for a single dislocation and m � 2�5 for creep of dislocation bundles. This implies a suppression
of the creep rate at the transition from the ordered vortex phase (m � 2�11) to the dislocated glass and
can manifest itself as an observed increase of the apparent critical current (second peak). Our approach
applies to general dynamics of disordered elastic media on a random substrate.

PACS numbers: 74.60.Ge, 61.72.Bb, 74.60.Jg
One of the most fascinating dynamic phenomena of
complex systems with internal degrees of freedom is
the thermally activated motion of elastic media in a
random environment (creep) characterized by a highly
nonlinear response to a dc driving force, F [1]: y �
exp�2const�TFm�, where y is the velocity, T is the
temperature, and m is the exponent depending on the
geometry and the dimensionality of the driven medium.
The concept of thermally activated creep is ubiquitous
in disordered systems and describes a wealth of low
temperature transport phenomena including the dynamics
of dislocation and/or domain walls in inhomogeneous
environments [1,2], driven vortex lattices and charge
density waves [3–6]. The derivation of the fundamental
creep feature, energy barriers U� j� � j2m diverging at
small driving forces (currents j), was based on the elastic
behavior of the pinned structures; thus in the common
view creep behavior is implicitly attributed to the elastic
medium free of topological defects.

The description of thermally activated dynamics of
amorphous structures containing a large amount of topo-
logical defects is a long-standing problem that appeared
first in the theory of work hardening and related relax-
ation processes in dislocated solids. In the context of
vortex physics the quest for the description of creep in a
topologically disordered medium was motivated by the
observation of the disorder-induced transition between
a low-field quasilattice or Bragg glass (BrG) [5,7], the
phase free of topological defects, and a high-field phase,
characterized by an enhanced apparent critical current
[8]. The latter phase was suggested to be a topologically
disordered, dislocated vortex state or amorphous vortex
glass (AVG) [9–11]. In a recent series of experiments
[12,13] the phase coexistence characteristic for a first-
order transition was established, and creep barriers in the
high-field vortex state were shown to diverge faster than
creep barriers in the low-field elastic phase.

On the theoretical side the problem is to find an ap-
propriate quantity enabling parametrization of the amor-
phous phase, since the starting point for the usual creep
description–elastic manifold and/or perfect elastic lattice
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do not seem to apply. A first step towards such a quanti-
tative description was made in Ref. [14], where all phase
transitions between vortex lattice phases, including both
disorder-induced transition and thermal melting, were de-
scribed in terms of dislocation-mediated behavior, and a
free energy functional F �nD� for an ensemble of directed
dislocations in the presence of thermal fluctuations and
quenched disorder was derived (nD is the areal dislocation
density). The BrG-AVG transition was found to be of weak
first order in accordance with the experimental results of
Ref. [13]: at the BrG-AVG transition, dislocations enter
with a density nD � R22

a given by the positional correla-
tion length Ra on which typical vortex displacements are of
the order of the lattice spacing a [6]. Upon increasing the
magnetic field up to the critical point the dislocation den-
sity of the AVG increases to vortex liquidlike values nD �
a22 such that the AVG and vortex liquid phases become
thermodynamically indistinguishable at the critical point.

In this Letter, building on the aforementioned ideas, we
propose a quantitative description of plastic creep in terms
of the dislocation degrees of freedom. We find a critical
plastic current jpl below which dislocations are collectively
pinned and plastic creep occurs via the activated motion
of collectively pinned dislocation lines. The critical plastic
current is lower than the critical current for vortex depin-
ning jpl , jc, hence plastic motion of depinned disloca-
tions sets in before viscous flow of the entire vortex lattice
can occur. We derive the associated plastic creep energy
barriers Upl� j� � j2mpl diverging infinitely at j ! 0. We
calculate the pinning force acting on dislocations from the
Peach-Köhler force exerted on vortices by the pinning cen-
ters. We show that an external current sent through a dis-
located vortex lattice generates a Peach-Köhler force with
a component causing dislocation glide. The interplay of
these two forces determines the glassy dislocation dynam-
ics, in particular the depinning threshold for dislocation
glide and the energy barriers for plastic creep below the
depinning threshold.

The energy of a single straight vortex lattice dislocation
of length L and with Burger’s vector b consists of the core
energy and of the logarithmically diverging contribution
© 2000 The American Physical Society
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from the long-range elastic strains [15]: E0 � LED�cD 1

ln�L��a��, where L� is the lateral system size, ED �
Kb2�4p , K �

p
c44c66 is the isotropized elastic constant

in the rescaled coordinate z � z̃ 1
2

p
c44�c66, and cD � 1

is found numerically (c44 and c66 are the tilt and shear
moduli of the vortex lattice, respectively). Bending of
the dislocation line costs an elastic energy associated with
its stiffness eD . Hence, the single directed dislocation
line—parametrized by its displacement field uD�z�—is
described by the Hamiltonian

HD�uD� � E0 1
Z

dz
1
2

eD�≠zuD�2, (1)

where the stiffness eD � ED ln�1�kza� has a logarithmic
dispersion due to the long-range strain field.

We find the driving force acting on an edge dislocation
with b k x when a transport current j k y is sent through
the sample. The driving current creates a magnetization
gradient, determined by Maxwell’s equation = 3 B �
4p

c j. This gradient, in turn, induces shear strains in the
vortex lattice: ≠xuy � ≠xa � a

2p

c
j
B . The resulting shear

stresses give rise to a glide component of the driving
Peach-Köhler force [15] (per dislocation length):

Fdrive
x � syxb � bKa

2p

c
j
B

. (2)

Note that compression stress leads only to dislocation
climb, which can be neglected as a slow process requir-
ing diffusion of interstitials [16].

The displacements induced by the magnetization gra-
dient can be accommodated only via the creation of a
stationary superstructure of regularly spaced bands of dis-
locations with Burger’s vectors having a y component [17].
Our representative “test” dislocation moves through this
superstructure, which is similar to grain boundaries ap-
pearing in bent atomic crystals [15]. Since such dislocation
bands are essentially free of shear stresses [15], they do not
contribute to the bulk driving shear experienced by the test
dislocation (2) everywhere between the bands, and, there-
fore, the superstructure does not affect the glide motion.

The random pinning potential Vpin�r� “seen” by the
vortex array also produces Peach-Köhler–type forces act-
ing on dislocations. To find these pinning-induced Peach-
Köhler forces, we first have to determine the random stress
exerted by the pinning potential on a frozen-in elastic
displacement configuration uel�R, z� of the vortex lattice:
Vpin�R 1 uel, z� � s

pin
ij �R 1 uel, z�=iuel,j . The spatial

distribution of the pinning stresses is thus governed by
the quenched distribution of the elastic displacements uel
of the dislocation-free collectively pinned vortex array.
The latter shows different scaling behaviors depending
on the spatial regime in question: (i) Small distances
where vortex displacements u are smaller than the co-
herence length j, and perturbation theory applies [18].
(ii) The intermediate scales where j & u & a, and dis-
order potentials seen by different vortices are effectively
uncorrelated. This regime is captured in so-called random
manifold (RM) models [6,7], leading to a roughness
G̃�r� � 	�uel�r� 2 uel�0��2
 � a2�r�Ra�2zRM , where zRM �
1�5 for the d � 3-dimensional RM with two displace-
ment components. The crossover scale to the asymptotic
behavior is the positional correlation length Ra, where the
average displacement is of the order of the vortex spacing:
u � a. (iii) The asymptotic Bragg glass regime where the
a periodicity of the vortex array becomes important for the
coupling to the disorder, and the array is effectively subject
to a periodic pinning potential with period a [5]. Here
the logarithmic roughness G̃�r� � �a�p�2 ln�er�Ra�, i.e.,
zBrG � O �log� [5,7] takes over.

For the physics of dislocations on scales .a, only
the RM and BrG regimes are relevant. We obtain
approximately Gaussian distributed quenched stresses

with s
pin
ij � 0 and s

pin
ij �k�spin

ij �k0� � Spin�k� �2p�3 3

d�k 1 k0� with Spin�k� � K2k2G�k�, i.e.,

Spin�k� � K2a2k21

Ω
BrG: 1
RM: BRM�kRa�22zRM , (3)

determined by the elastic correlations G�k� with a numeri-
cal constant BRM. The RM result holds for kRa . 1, while
the BrG behavior occurs for kRa , 1.

To derive the correct Peach-Köhler pinning force it is
crucial to take into account not only the “direct” quenched
pinning stresses sij�r� but also the elastic stresses s

el
ij

themselves which are responding to the same pinning po-
tential and hence tend to relax the (longitudinal) compo-
nents of the stress. A simple but lengthy calculation shows
that the pinning Peach-Köhler force on a dislocation ele-
ment dR,

dFpin
a � eabl�s

pin
bk 1 s

el
bk�bkdRl , (4)

is rotation-free �= 3 dFpin�g � 0; the corresponding po-
tential plays the role of the pinning Hamiltonian:

H
pin

D �uD� �
Z

dz
duD,l

dz
bkg

pin
kl �uD , z� ,

g
pin
kl �k�gpin

k0l0 �2k� � k22Spin�k�dkk0dll0 � K2G�k�dkk0dll0 .

(5)

By combining Eqs. (1), (2), and (5), one arrives at the
free energy HD�uD� 1 H

pin
D �uD� 2

R
dz Fdrive ? uD

giving an adequate description of an ensemble of pinned
dislocations.

Starting with statics we discuss roughening of the dis-
location in the presence of disorder. The typical squared
pinning energy fluctuations upon displacing a dislocation
segment L over a distance uD (in the xz glide plane) can
be calculated from (5),

E2
pin�L, uD� � b2K2LuD

Z L

0
dz

Z uD

0
dx

3
Z d3k

�2p�3 k2G�k�eikzz1ikxx

� E2
DLuD

Ω
RM: �uD�Ra�2zRM

BrG: 1
, (6)
4949



VOLUME 85, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 4 DECEMBER 2000
whereas the corresponding elastic bending energy of the
dislocation is Eel�L, uD� � 1

2ED ln�L�a�u2
D�L (1). Opti-

mization gives a dislocation roughness as

uD�L� � L

Ω
RM: �L�Ra�2zRM��322zRM�O �log�
BrG: ln22�3�L�a� , (7)

i.e., exponents zD � 15
13 for RM scaling �L , Ra� and

zD � 1 2 log2�3 for BrG scaling. The instability with
respect to dislocation proliferation is signaled by anoma-
lous energy gains if zD . 1, i.e., in the RM regime. In
the BrG regime the energy balance is more subtle, and,
to conclude on the stability at zD , 1, one has to con-
vert the result (7) into an approximate renormalization
group (RG) scheme: the energy gain due to roughen-
ing is DE � EDL ln21�3�L�a� � EDLẽD�L�21�3, where
the logarithmic correction is identical to the dimension-
less line tension ẽD � eD�ED on the scale L. Interpret-
ing DE��EDL� as disorder correction to the line tension
ẽD�L� on the scale L and summing these corrections up
successively on each scale, together with the bare tension
ẽ

0
D�L� � ln�L�a�, one obtains an integral RG equation,

ẽD�lnL� �
Z lnL

0
d� �1 6 ẽD���21�3� , (8)

equivalent to the result of Ref. [10]. Integration shows
that corrections to ẽ

0
D�L� are irrelevant and hence the BrG

regime is stable with respect to dislocation formation [10].
The detailed stability analysis for both regimes was given
in Ref. [14]: the BrG-AVG transition is weakly first or-
der, and dislocations proliferate with the density nd � R2

a
defined by the scale Ra of crossover between the unstable
RM and the stable BrG regimes.

Now we extend our scaling analysis to the dynamic be-
havior of the driven dislocation. A dislocation segment of
length L �,Ra� and laterally displaced over uD gains not
only the energy (6) due to pinning potential but also an
energy LuDFdrive by the driving force (2) while it loses
bending energy, and has thus a free energy:

F�uD , L�
ED

�
u2

D

L
2 �LuD�1�2

µ
uD

Ra

∂zRM

2 LuD
8p2

c
j
B

.

(9)
Minima of the pinning potential are typically separated by
distances uD � a, determined by the core size of the dis-
location. A dislocation confined within one such minimum
is collectively pinned on a plastic pinning length,

Lpl � a

µ
Ra

a

∂2zRM�3

, Ra , (10)

which is obtained by minimizing F�uD � a, L� with re-
spect to L at zero current. This is the analog of the Larkin
pinning length Lc � jd21�3 of the single vortex, where
d is the dimensionless pinning strength of Ref. [6]. To
depin the dislocation, the driving force in (9) has to ex-
ceed the pinning force Fpin�Lpl� � ED

a Lpl�a�Ra�4zRM�3 on
a segment of length Lpl. This determines a critical plastic
current jpl,
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jpl �
c

8p2

B
a

µ
a
Ra

∂4zRM�3

� j0

µ
2pHc2

B

∂27�4

d5�18,

(11)

where j0 � c
6
p

3 p
Hc2�j is the depairing current. Com-

paring this result to the depinning current jc � j0d2�3

for a single vortex, one finds jpl , jc for typical disorder
strengths d � 1023, and the plastic motion of dislocations
may occur even if the vortices themselves are still pinned.
One concludes that at sufficient currents the plastic motion
dominates transport in the dislocated AVG phase.

However, the existence of a current jpl . 0 implies that
dislocations are pinned at low currents and, therefore, the
plastic motion for j ø jpl occurs only via activation over
diverging plastic energy barriers Upl� j� � j2mpl , i.e., as a
plastic creep. The typical segment size L� j� for activated
motion at j ø jpl is determined from (9) by balancing the

energy gain due to the driving force Edrive � 8p2

c
j
BL11zD

against the pinning energy Epin � EDL2zD21 of a disloca-
tion line roughened according to the above result (7). This
yields

Upl� j� � EDa

µ
a
Ra

∂2zRM�3µ
jpl

j

∂�2zD21���22zD �
(12)

and we obtain the scaling law mpl � �2zD 2 1���2 2 zD�
(as for single vortex creep [6]) relating the plastic creep
exponent mpl to the dislocation roughness. We find mpl �
17
11 in the RM regime �L� j� , Ra� and mpl � 1 in the BrG
regime �L� j� . Ra�. Both exponents are considerably
larger than their counterpart m � 2�11 for elastic single
vortex creep, showing that plastic creep rates are much
smaller than elastic creep rates.

So far we have focused on a single dislocation. Now we
turn to an ensemble of interacting dislocations. On large
scales exceeding the dislocation spacing RD , which varies
from RD � Ra at the AVG-BrG transition to RD � a at
the critical point [14], interactions become essential and
plastic creep is governed by the motion of dislocation
bundles in a glide plane (xz plane). Deformations uD�x, z�
of such a 2D bundle can be described by an elastic Ham-
iltonian with tilt modulus Kz � ED�RD and the com-
pression modulus Kx � RD≠

2
RD

�R2
Df�RD�� which can be

calculated from the dislocation-free energy f�RD�, see
Ref. [14] (in the absence of disorder, one finds Kx �
ED�RD). By including the pinning energies, we obtain
the Hamiltonian,

H �uD�x, z�� �
Z

dx dz
1
2

�Kx�≠xuD�2 1 Kz�≠zuD�2�

1
X

i

Z
dz H

pin
D �bi , uD�iRD , z�� .

(13)

The dislocation bundle contains dislocations of opposite
signs with the same density to avoid the accumulation of
stress. Hence the sum over the dislocation index i in (13)
goes over alternating Burger’s vectors bi k x. On scales
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Lx ¿ RD , dislocations couple effectively as dipoles to dis-
order and we obtain for the bundle disorder energy fluctu-
ations Eb

dis�Lz , Lx , uD� � Epin�Lz , uD� with Epin�Lz , uD�
from (6). This has to be balanced against the elastic energy
Eel�Lz , Lx , uD� �

p
KxKy u2

D with Lz �
p

Kz�Kx Lx re-
sulting in a roughness

uD�Lz� � L1�3
z R

2�3
D

(
RM: �L

1�3
z R

2�3
D

Ra
�2zRM�322zRM

BrG: 1
. (14)

Note that the bundle roughness is reduced as compared
to that of single dislocations: zD � 5

13 for RM scaling
�L , Ra� and zD � 1

3 for BrG scaling. Analogous to the
case of the single dislocation, one easily establishes the
plastic creep exponents for bundle creep, in particular one
finds the same scaling relation mpl � �2zD 1 d 2 2��
�2 2 zD� as for d-dimensional vortex bundles [6]. This
gives mpl � 10

21 in the RM regime and mpl � 2
5 in the

BrG regime. A crossover from the single dislocation
to the bundle scaling occurs at currents j , jb , where
L� jb� �

p
Kz�Kx RD . For RD � a, one finds jb � jpl,

meaning that only plastic bundle creep can be measured
above the critical point defined by RD � a.

By the spirit of the derivation, our results seem to ap-
ply to superconductors with pronounced vortex lines (like
YBCO) rather than to the layered BSCCO. Yet the creep
exponent measured within the AVG phase in Ref. [12] is
strikingly close to mpl � 2

5 . In layered compounds such as
BSCCO the vortex lattice consists of pancakes only weakly
coupled across different layers by their magnetic interac-
tion. Whereas the Bragg glass phase can persist at low
magnetic fields due to the small interlayer coupling, the
layers essentially decouple at higher fields, and the result-
ing 2-dimensional pancake lattices are unstable with re-
spect to dislocation formation in the presence of pinning by
point defects [19]. Also the 2D dislocations exhibit plastic
creep, as can be seen from the following argument. Let us
consider a pair of opposite edge dislocations a distance uD

apart with an interaction energy Eint�uD� � ED ln�u�a�,
where ED � c66 � b2�2p in 2D. The typical energy
gain from the disorder has been calculated in Ref. [19]
to be Epin�uD� � ED ln3�2�uD�Ra�. On the one hand,
the 2D Bragg glass is unstable to dislocation formation
because the disorder-induced valleys exceed the interac-
tion energy: Epin�uD� ¿ Eint�uD� for uD ¿ Ra. Further-
more, Epin�uD� also gives the typical size of the energy
barriers between optimized dislocation positions, i.e., the
barriers for plastic creep: Upl � Epin�uD�. In the presence
of the driving current the dislocations will gain an energy
Edrive � 8p2

c
j
BuD from the force (2) which can pull the

dislocation pair apart over these energy barriers. Balanc-
ing both terms, we find logarithmically diverging barriers
for plastic creep in 2D:
Upl� j� � ED ln3�2�1�j� . (15)

In conclusion, we have developed a theory of plastic
creep in terms of the dislocation dynamics in the pinned
vortex lattice. We have found diverging barriers for plas-
tic vortex transport, in agreement with the experimentally
observed low creep rates or high apparent critical cur-
rents. The obtained results are relevant for other sys-
tems where glassy dynamics is controlled by topological
defects, for example, charge density waves in disordered
crystals and/or work-hardened solids.
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