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Abstract. We investigate theoretically statistics and thermally activated
dynamics of crack nucleation and propagation in a two-dimensional heterogeneous
material containing quenched randomly distributed defects. We consider a crack
tip dynamics accounting for dissipation, thermal noise and the random forces
arising from the elastic interactions of the crack opening with the defects. The
equation of motion is based on the generalized Griffith criterion and the dynamic
energy release rate and gives rise to Langevin-type stochastic dynamics in a
quenched disordered potential. For different types of quenched random forces,
which are characterized (a) by the range of elastic interactions with the crack
tip and (b) the range of correlations between defects, we derive a number of
static and dynamic quantities characterizing crack propagation in heterogeneous
materials both at zero temperature and in the presence of thermal activation. In
the absence of thermal fluctuations we obtain the nucleation and propagation
probabilities, typical arrest lengths, the distribution of crack lengths and of
critical forces. For thermally activated crack propagation we calculate the mean
time to fracture. Depending on the range of elastic interactions between crack
tip and frozen defects, heterogeneous material exhibits brittle or ductile fracture.
We find that aggregations of defects generating long-range interaction forces (e.g.
clouds of dislocations) lead to anomalously slow creep of the crack tip or even
to its complete arrest. We demonstrate that heterogeneous materials with frozen
defects contain a large number of arrested microcracks and that their fracture
toughness is enhanced to the experimentally accessible timescales.
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1. Introduction

The fracture mechanism of different materials depends crucially on the structure of the
material and is usually termed brittle or ductile, depending on the amount of dissipated
energy in the process of crack propagation [1]. Homogeneous crystalline materials show
fast brittle fracture as first explained by Griffith [2], whereas homogeneous amorphous
materials exhibit slow ductile fracture dominated by plastic deformation at the crack
tip [1, 3]. In brittle fracture there is essentially no plastic deformation at the tip of
a propagating crack and, thus, the dissipated energy remains small, such that much
of the elastic energy can be converted into kinetic energy, giving rise to fast cracks.
In ductile fracture, on the other hand, the material around the crack tip undergoes
considerable plastic deformation, and the resulting motion of dislocations provides an
effective mechanism to dissipate energy into the surrounding solid. Therefore, the energy
needed for the crack advance is relatively large, and cracks in ductile materials are typically
much slower than in brittle materials. Ductile materials are often amorphous, i.e. they
contain a large number of mobile defects, such as dislocations, whereas defect-free crystals
are brittle.

However, the realistic situation is more complicated because materials are disordered
and contain quenched heterogeneities, i.e. immobile defects such as dislocation pileups,
inclusions or defective molecular bonds [1, 4, 5]. Such quenched defects are present
already before a crack starts propagating and are not mobile. Therefore, they cannot
directly contribute to energy dissipation. In this paper, we specifically consider a random
array of such heterogeneities, which is embedded in an otherwise defect-free crystal as
schematically shown in figure 1. On the one hand, such arrays of quenched defects are
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Figure 1. Left: sketch of an arrested crack in a random array of frozen
dislocations; the dashed crack indicates a favorable region for crack nucleation.
Right: typical realization of the effective force −γ+Fx+fd(x), see equation (10),
acting on the crack tip in a random array of frozen dislocations (δ = 3 in
equation (4)).

not mobile and, thus, do not provide an effective way of dissipating energy as in a ductile
material. On the other hand, such defects interact with the crack via elastic deformations
and, therefore, exert quenched random forces onto the crack tip. This raises two kinds
of questions: first, whether such quenched defects favor or obstruct crack nucleation
and propagation and, second, whether the resulting fracture mechanism could still be
characterized as brittle or becomes ductile.

It is intuitively plausible that crack nucleation is favored by defects as the crack can
choose a favorable nucleation site, where the interaction energy with the surrounding
defects lowers the nucleation barrier for subcritical cracks. However, after having chosen
a favorable nucleation site the crack has to propagate through the array of heterogeneities
in a direction, which is essentially determined by the applied force. Having chosen its
nucleation site the crack position is not optimized for the subsequent propagation process.
Therefore, it appears much less clear how this propagation process is affected by random
heterogeneities and, in general, one rather expects that subsequent crack propagation is
slowed down in a random array of defects. This raises the question whether frozen defects
enhance or degrade the fracture toughness of a material. In order to answer this question
the crack dynamics also has to be considered. An anomalously slow crack propagation
can prevent fracture on the experimental timescale. The inspiring work [6] addressed
the question of the disorder-stimulated nucleation of critical cracks. In this paper, we
first reconsider this zero-temperature problem of calculating the fracture probability of
a disordered medium under an external load for two more general classes of quenched
defects. Then we discuss static crack length distributions and the extreme value statistics
of critical forces. The second part of the paper goes beyond the static analysis and
focuses on the dynamics of cracks in heterogeneous materials and the statistics of fracture
times. A short account of some of the results discussed in this paper regarding the
crack dynamics has already appeared as a letter [7]. Quenched immobile defects interact
with the crack tip and give rise to energy barriers for crack propagation. We consider
crack equations of motion which include thermal noise and allow it to overcome such
barriers by thermal activation. This process gives rise to a slow crack dynamics. It is
well known that thermal activation plays an important role for crack nucleation [8] and
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propagation [9]. Slow thermally activated crack dynamics has been previously discussed
for energy barriers arising from lattice trapping effects [10, 11] and additional disorder
effects in random fuse models [12, 13]. Whereas in these works only finite energy barriers
slow down crack propagation, we show that for materials containing quenched defects
the long-range elastic interaction with the crack tip can give rise to much higher energy
barriers diverging with the crack length, which can slow down crack motion much more
effectively and lead to crack arrest or anomalously slow crack dynamics with a zero mean
velocity.

The other question is whether the fracture of a crystal resembles brittle or ductile
fracture in the presence of defects or heterogeneities, which are quenched. In the presence
of a sufficiently small concentration of quenched defects the fracture process is expected
to remain brittle in general. If the mobility of defects increases, as has been observed in
Si for dislocations [14] or stacking faults, i.e. dislocation pileups [15] above a certain
temperature, a transition to ductile fracture can take place. In heterogeneous two-
dimensional random spring [16] or random fuse [17, 18] network models with quenched
random spring or fuse breaking thresholds, on the other hand, defects are absent but
a similar brittle-to-ductile transition has been found numerically if the distribution of
spring or fuse breaking thresholds is broadened. In these networks, microcracks tend to be
generated for broad spring or fuse breaking threshold distributions, and fracture proceeds
by coalescence of such microcracks rather than crack propagation in the ductile regime.
In the ductile or tough regime the fraction of damaged material prior to unstable growth
of a crack is of the order of unity, whereas it remains small in the brittle regime. Using
analytical arguments it has been shown in [19] that such a transition is absent and fracture
is brittle in a one-dimensional heterogeneous fiber composite. More recent numerical work
on random fuse and random spring networks shows that the fracture is indeed brittle, with
a strong damage localization before crack propagation but the damage precursors exhibit
behavior similar to percolation [20]. In this paper, we will focus on the effects of immobile
defects on the propagation of a single crack, i.e. we neglect effects from the interaction
between cracks and the coalescence of microcracks. Our results suggest that a transition
from a brittle to an effectively ductile fracture mechanism can arise as a function of the
scaling properties of the disorder-induced elastic forces, by which the immobile defects
interact with the crack tip. For short-range disorder-induced elastic forces, a single crack
shows unstable growth above a certain critical length set by the disorder strength, which is
typical for a brittle material. For sufficiently long-range disorder-induced elastic forces, on
the other hand, the crack becomes arrested or anomalously slow and further propagation
requires an increase of the external load. Such a behavior is qualitatively similar to ductile
fracture.

We restrict ourselves to the simplest situation of cracks in a thin (quasi-) two-
dimensional ideally elastic plate containing a random array of heterogeneities. In two
dimensions the crack front is a point—the crack tip—such that additional effects from
crack front roughening are absent. Building on Griffith’s concept of energy balance [2],
we consider crack tip motion governed by the dynamic energy release rate [3, 21] and derive
an equation of motion for the crack tip that includes dissipative and thermal forces, and
position-dependent random forces acting on the crack tip due to frozen material defects.
Starting from such an equation of motion for crack dynamics we can treat both statics and
dynamics of cracks for different kinds of frozen heterogeneities, which are characterized
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by the scaling properties of their elastic interactions with the crack opening. We find
that the fracture behavior strongly depends on these elastic interactions and introduce
two generic classes of crack tip forces, namely short- and long-range correlated forces
(SRCF and LRCF), which are characterized by an exponent δ. We derive all results for
the general case of arbitrary δ. Following [6] we consider in particular three special
cases of frozen heterogeneities: (i) a random fracture toughness from bond strength
variations, (ii) random impurities giving rise to local compression of the elastic medium
and (iii) randomly placed frozen dislocations interacting with the crack. The range of
elastic interactions with the crack tip increases from type (i) to (ii) and (iii). We find
that supercritical cracks are permanently arrested by sufficiently long-range disorder-
induced elastic forces, such as those generated by frozen dislocations (iii). Considering
the thermally activated dynamics of propagating cracks, we derive anomalously slow
dynamics with vanishing mean velocity for all three types (i)–(iii) of disorder. Static and
dynamic findings are interpreted in a unified manner in terms of the distribution of fracture
times. We conclude that quenched material defects provide a very effective mechanism
for slowing down crack propagation and find characteristic experimentally observable
material properties such as the extreme value statistics of critical stresses, power-law
distributions of crack waiting times and the existence of ensembles of arrested microcracks.
For sufficiently long-range disorder-induced elastic forces we find anomalously slow or even
arrested cracks. This favors a ductile material failure by alternative mechanisms such as
microcrack coalescence or a slow fatigue mechanism under cyclic loading.

2. Crack tip equation of motion

Let a single planar crack extend from −x/2 to +x/2 along the x direction of a two-
dimensional elastic medium of size L loaded in mode I by a uniform external stress σ.
We will consider a perfectly straight crack and neglect the possibility that the crack path
could deviate from a straight line because of disorder effects. In a perfectly homogeneous
elastic medium, the Griffith crack energy E(x) is the sum of the elastic energy gain Eel(x)
and the crack surface energy Es(x). The driving force for crack tip advance is the release
of elastic energy, which is given by the static energy release rate G(x) [1]:

G(x) = −∂xEel = K2(x)/Y = πσ2x/2Y ≡ Fx, (1)

where K(x) ≡ σ(πx/2)1/2 is the stress intensity factor and Y = E/(1 − ν2) is Young’s
modulus in 2D. The energy release rate is balanced by the specific fracture energy γ related
to the crack surface energy Es:

γ = ∂xEs. (2)

Griffith’s criterion for the onset of crack growth gives G > Gc = γ [2], where Gc is the
critical energy release rate that can be reached by increasing the crack length beyond its
critical value:

xc = γ/F = 2γY/πσ2. (3)

Material heterogeneities are incorporated into Griffith’s force balance as additional
frozen random forces fd(x). As in [6], we take Gaussian distributed random forces with

zero mean fd(x) = 0, where the overbar denotes the average over disorder, and consider
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two types of forces: short- and long-range correlated forces (SRCF and LRCF) with

fd(x)fd(x′) = Δδx
δδa(x − x′) (SRCF), (4)

fd(x)fd(x′) =
δ + 1

4
Δδx

(δ−1)/2x′(δ−1)/2
(LRCF), (5)

where a is a microscopic cutoff length, Δδ is the strength of the random forces proportional
to the defect concentration and the exponent δ characterizes the elastic interaction
between frozen defects and the crack. The corresponding disorder potential energy Ed(x)
of the crack tip defined via fd(x) = −∂xEd has correlations

(Ed(x) − Ed(x′))2 =
Δδ

δ + 1
|xδ+1 − x′δ+1| (SRCF), (6)

(Ed(x) − Ed(x′))2 =
Δδ

δ + 1
(x(δ+1)/2 − x′(δ+1)/2

)2 (LRCF). (7)

For large separations |x − x′| � x, both types of random forces give rise to the same

correlations (Ed(x) − Ed(x′))2 ∼ Δδ|x − x′|δ+1 of the disorder potential energy. It was
shown in [6] that (i) random bonds (random fracture toughness) result in SRCF with
δ = 0, (ii) impurities produce SRCF with δ = 1 and (iii) dislocations induce LRCF with
δ = 3, i.e. δ increases with the range of the elastic interaction between the crack tip and
defects. In general, we expect δ = 5 − 2α for the heterogeneity-induced power-law stress
fields decaying as σ ∼ r−α. For frozen impurities, (ii), σ ∼ r−2 (α = 2), and for frozen
dislocations, (iii), σ ∼ r−1 (α = 1). Random surface energies, (i), are of a finite range
corresponding to δ = 0.

In the following, we will introduce two types of equation of motion for the crack
tip: an overdamped dynamics of the crack tip derived from Griffith’s crack energy and
an equation of motion governed by the dynamic energy release rate. To derive the
overdamped dynamics of the crack tip one has to include dissipative and thermal forces
into the force balance. Dissipation occurs mostly near the crack tip where the energy is
converted into heat by plastic deformation [21]. Thus dissipation can be described as a
local viscous force −ηẋ with the crack tip viscosity η. Including thermal forces ζ(t) we
obtain the overdamped equation of motion of the crack tip:

ηẋ = G(x) − γ + fd(x) + ζ(t) = −γ + Fx + fd(x) + ζ(t), (8)

where the thermal noise and viscous force are related via 〈ζ(t)ζ(t′)〉 = 2ηTδ(t − t′)
(〈ζ(t)〉 = 0, kB ≡ 1). A simple overdamped dynamics is appropriate for very slow cracks
and has been widely used in modeling crack front roughening [22, 23]. However, it does not
capture important features emerging at higher crack tip velocities such as the existence
of a terminal crack velocity [3]. Then the kinetic energy of the elastic medium has to be
taken into account by using the dynamic energy release rate G(x, ẋ) [3]:

G(x, ẋ) = A(ẋ)G(x) ≈ (1 − ẋ/cR) G(x). (9)

In general, A(ẋ) decreases monotonically with the increasing crack tip velocity ẋ with
A(0) = 1 in the static limit and A(cR) = 0, where cR ∝ (Y/ρ)1/2 is the Rayleigh wave
velocity (ρ is the mass density) [3]. The last approximation in equation (9) is a particularly
simple functional form which is appropriate for most experiments and will be used in what
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follows. It should also be noted that equation (9) is not valid at very high crack velocities
where branching of cracks sets in [21]. In a homogeneous material the dynamic force
balance G(x, ẋ) = γ generalizes the Griffith’s criterion and describes the energy flux
into the crack tip and its subsequent conversion into the crack surface energy. Including
dissipation by the viscous force −ηẋ, the thermal forces ζ(t), as well as the frozen random
forces fd(x) into the dynamic force balance, −ηẋ + G(x, ẋ) = γ − fd(x)− ζ(t), one finally
arrives at the equation of motion for the energy release dynamics:

ηẋ = B(x) [−γ + Fx + fd(x) + ζ(t)] , (10)

B(x) ≡ [1 + (γ/ηcR)(x/xc)]
−1 ≡ [1 + b/x]−1 , (11)

which resembles the overdamped dynamics (8) with an effectively x-dependent
temperature determined by the dimensionless function B(x); b ≡ ηcR/F is the
characteristic crack length. For small cracks x 	 b, B(x) ≈ 1, and equation (10) reduces
to the overdamped dynamics (8). For large cracks x � b; on the other hand, B(x) vanishes
as B(x) ≈ b/x, giving rise to a small effective temperature.

3. Crack statistics at zero temperature

3.1. Nucleation probability

In the absence of any flaws for fd(x) = 0, microcracks can be thermally nucleated for
T > 0 [8], but the material would be stable against crack formation at T = 0. However,
there is a non-zero probability that cracks of the critical size x ∼ xc = γ/F are also
‘nucleated’ by the quenched disorder at T = 0 if the disorder energy gain can compensate
for the nucleation energy ΔEc = γ2/2F [6]. The probability pnucl for a disorder-induced
nucleation can be calculated by noting that the disorder energy Ed(xc) =

∫ xc

0
dy fd(y)

(setting Ed(0) ≡ 0) is Gaussian-distributed with E2
d(xc) ∼ Δδx

1+δ
c /(1 + δ), which scales

in the same way for both SRCF and LRCF. The resulting nucleation probability is

pnucl = prob[ΔEc + Ed(xc) < 0]

∼ e−(ΔEc)2/2E2
d(xc) ∼ e−(1+δ)γ3−δF δ−1/8Δδ , (12)

which increases with increasing disorder strength Δδ and is identical for SRCF and LRCF.
Alternatively, the nucleation probability can be obtained from the random force

statistics as

pnucl = prob[−γ + fd(x) > 0 for 0 < x < xc], (13)

which is the probability that a crack can spontaneously grow up to x = xc = γ/F at
T = 0 against the crack surface force γ, which dominates for such subcritical cracks.
For SRCF the nucleation probability can be computed from the Gaussian distribution of
independent random forces:

prob[{fd(x)}] ∼ exp

(

− 1

2Δδ

∫ ∞

0

dx x−δfd(x)2

)

(14)

as

ln pnucl =

∫ xc

0

dx

a
ln

[∫ ∞

γ

df exp

(

− a

2Δδ

x−δf 2

)]

∼ −
∫ xc

0

dx
1

2Δδ

x−δγ2, (15)
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giving

pnucl ∼ e−x1−δ
c γ2/Δδ ∼ e−γ3−δF δ−1/Δδ , (16)

in general agreement with (12). Using a characteristic force scale

Fγ ≡ (Δδγ
δ−3)1/(δ−1), (17)

which is related to the crack surface energy per length γ, the results (12) or (16) can be
written as

pnucl ∼ e−(F/Fγ )δ−1

. (18)

Interestingly, for δ > 1, the nucleation probability decreases with increasing force F . This
is an effect of the small critical length xc for large F , which does not allow for an effective
disorder energy gain for δ > 1.

3.2. Arrest length

After nucleation, a growing crack can get arrested by tip forces due to frozen disorder, thus
preventing fracture. In order to calculate the propagation probability at zero temperature
we have to analyze the competition between the driving force Fx and the random force
fd(x), which can eventually stop the crack if Fx+fd(x) < 0. The typical crack length in a
heterogeneous material is set by the crack arrest length x∗, where the driving force on the
crack is balanced by the typical stopping force from heterogeneities, Fx∗ = (fd(x∗)2)1/2

(we focus on supercritical cracks x � xc and neglect the crack surface energy γ).

For SRCF we use (fd(x)2)1/2 ∼ (Δδ/a)1/2xδ/2 and find a typical length scale

x∗ ∼
(

F 2a

Δδ

)1/(δ−2)

. (19)

For δ > 2 the force equilibrium is unstable with respect to crack propagation and the
material behaves as brittle. We find Fx � fstop(x) ∼ xδ/2 for large x � x∗ and the
stopping force is not sufficient to arrest the crack. Then the probability that the stopping
force exceeds the driving force becomes exponentially small for large x. Small cracks
x < x∗, however, are stable as the stopping force exceeds the driving force. Therefore, x∗

has a similar meaning as a disorder-induced critical crack length for δ < 2. The actual
critical crack length is the maximum of x∗ and xc = γ/F for δ < 2. We will assume a
weak collective disorder, which has a small amplitude Δδ and becomes effective only by
the cooperative effects of many impurities. In this limit we typically have x∗ � xc.

For δ > 2, on the other hand, the force equilibrium is stable with respect to crack
propagation and x∗ is the typical length of arrested cracks stabilized by the disorder
stopping force. For x > x∗ the probability that the driving force exceeds the arresting
force drops exponentially. As a result the probability for spontaneous fracture of a sample
of size L becomes exponentially small ∼e−L for δ > 2 if L � x∗. This is reminiscent of a
ductile fracture behavior. For the marginal case δ = 2 the crack stability does not depend
on the crack length but solely on the ratio F/Δ2 ∝ σ2/Y Δ2 of external driving force
and disorder. In particular, the propagation probability only depends on the ratio F/Δ2

and the system size L. Because for large sample size L, the crack samples many different
random forces and eventually hits a stopping force with finite but small probability, the
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probability for spontaneous fracture of a sample of size L still becomes exponentially small
∼e−L also for δ = 2 for large L.

For LRCF the result is slightly different. Then we have a typical stopping force
(fd(x)2)1/2 ∼ Δδ

1/2x(δ−1)/2, which leads to an arrest length

x∗ ∼
(

F 2

Δδ

)1/(δ−3)

(20)

and a shift by one in the behavior in the parameter δ such that the critical δ for the
transition from brittle to ductile behavior becomes δ = 3: for δ < 3 cracks are unstable
with respect to propagation, for δ > 3 they are stable, and the case of frozen dislocations
δ = 3 corresponds to the marginal case where stability depends on the parameter only
depending on the ratio F/Δ3 and the system size L. But for LRCF also a long crack only
samples one random force configuration such that the probability of spontaneous fracture
of a sample of size L does not depend on L for LRCF.

3.3. Propagation probability

Following [6] we consider the probability to fracture—given a certain initial position of
the crack where it has been nucleated with a length xc. This equals the probability that
a crack propagates through the sample starting with a length xc from a certain initial
point, i.e. in a certain array of random forces, and is given by the probability of violating
the static force equilibrium, such that we find a positive force on the crack tip for all
xc < x < L:

pprop = prob[Fx + fd(x) > 0 forxc < x < L]. (21)

Whereas the nucleation probability only depends on the driving force F , the propagation
probability can also depend on the finite system size L, up to which the crack
has to elongate. Similar considerations have been used previously to study crack
propagation [24, 25]. In these approaches it was also assumed that the crack tip deviates
from a straight line. Then the crack tip can optimize its propagation direction, which
gives rise to an extreme value distribution of the random forces.

For SRCF, we can calculate the propagation probability (21) using the Gaussian
distribution of random forces (14). Using this we find for the probability to find crack
propagation in a sample of finite size L:

ln pprop =

∫ L

xc

dx

a
ln

[∫ ∞

−F

df̃ exp

(

− a

2Δδ
x−δ+2f̃ 2

)]

∼
∫ L

xc

dx

a
ln

[
1 − e−(x/x∗)−δ+2

]
, (22)

with x∗ given by equation (19). Depending on whether δ < 2 or δ > 2, the last integral
shows two qualitatively different behaviors. For δ < 2 the exponential becomes small for
x � x∗, which means that the probability of finding stable minima decreases exponentially
for x � x∗. Then we can cut the x integral at x ∼ x∗ and find

ln pprop ∼ −x∗

a
(SRCF, δ < 2). (23)
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Here we assumed that x∗ � xc, i.e. a weak collective disorder. Otherwise we have to
cut the integral at xc, which leads to the results (2.43) or (2.45) derived by Arndt and
Nattermann in [6] for δ = 0 and δ = 1, respectively. For δ > 2 we can find stopping forces
with increasing probability for all x > x∗. Then the x integral is cut only at the system
size x ∼ L, leading to

ln pprop ∼ L

a
ln

[
1 − e−(x∗/L)δ−2

]
(SRCF, δ > 2). (24)

Therefore, for δ > 2 and L � x∗ the probability for a crack to propagate through the
sample is vanishing exponentially with the system size L; only if the characteristic stable
crack length x∗ approaches the sample size L can a crack propagate through the whole
sample.

For δ < 2, the resulting propagation probability is a finite number independent of L:

pprop ∼ e−x∗/a ∼ e−(Fa/F )2/(2−δ)

(SRCF, δ < 2), (25)

with the characteristic force scale

Fa ≡
(
Δaδ−3

)1/2
(δ ≤ 2). (26)

Fa is a small force determined by the condition x∗(Fa) ∼ a, i.e. the force necessary to
make a small crack of length ∼ a unstable or critical for δ < 2. Such a result is typical
for the brittle fracture. For δ > 2, on the other hand, we find

pprop ∼
[
1 − e−(x∗/L)δ−2

]L/a

∼
[
1 − e−(F/FL)2

]L/a

(SRCF, δ > 2), (27)

with a characteristic force scale

FL ≡
(

Lδ−2 Δ

a

)1/2

(SRCF, δ > 2), (28)

which is a very large force determined by the condition x∗(FL) ∼ L. This result is
characteristic for a ductile behavior because pprop increases only if the stable crack of
length x∗ is extended through the entire sample of size L.

The marginal case δ = 2 needs special consideration. For the short-range force
correlator (4) with δ = 2 we find instead of (22)

ln pprop ∼
∫ L

xc

dx

a
ln

[

1 − exp

(

− a

2Δ2
F 2

)]

� L

a
ln

[

1 − exp

(

− a

2Δ2
F 2

)]

, (29)

resulting in

pprop ∼
[
1 − e−(F/Fa)2

]L/a

(SRCF, δ = 2), (30)

with Fa ≡ (Δ/a)1/2 as in (26). Therefore, also for δ = 2 and L � xc the probability for a
crack to propagate through the sample is vanishing exponentially with the system size L
qualitatively similar to the case δ > 2.

For LRCF, the calculation has to be done with more care because the kernel
K(x, x′) ≡ fd(x)fd(x′) for the Gaussian probability distribution of random forces, as given
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by (5), has only a single non-zero eigenvalue as opposed to the short-range correlators
which have L/a non-zero eigenvalues. This is not only a technical difficulty but reflects
relevant physics: for LRCF there exists only a single force mode which is able to stop the
crack, whereas for SRCF we find L/a potential stopping modes (one per site along the
crack). Therefore, the propagation probability for δ ≥ 3 does not become exponentially
small with increasing L/a as for the corresponding case δ > 2 for SRCF. One finally finds

pprop ∼ 1 − e−(x∗/L)δ−3 ∼ 1 − e−(F/FL)2 (LRCF), (31)

with x∗ given by equation (20) and the characteristic force scale

FL ≡
(
ΔδL

δ−3
)1/2

(LRCF) (32)

for LRCF. For δ > 3, FL is diverging with the system size corresponding to a vanishing
fracture probability

pprop ∼
(

F

FL

)2

∼
(

L

x∗

)3−δ

≈ 0 forL � x∗ (LRCF, δ > 3). (33)

For δ < 3, on the other hand, FL becomes small for increasing system size and

pprop ≈ 1 (LRCF, δ < 3), (34)

i.e. a crack can easily propagate.

For the marginal case δ = 3, which is the relevant case for frozen dislocations,

FL = Δ
1/2
3 is independent of system size L and

pprop ∼ 1 − e−F 2/Δ3 (LRCF, δ = 3). (35)

It is remarkable that the crack nucleation probability is

pnucl ∼ e−F 2/Δ3 ∼ 1 − pprop (36)

in this case, see (12). This shows that nucleation and propagation roughly exclude
each other, leading to an enhanced stability: for F 2 � Δ3 cracks are not nucleated,
whereas for F 2 	 Δ3 cracks can nucleate but not propagate. Nattermann and Arndt find
Δ3 ∼ cfdb

2
fdσ

2 ∼ cfdb
2
fdFY and thus F 2/Δ3 ∼ ε2/cfdb

2
fd, where cfd is the concentration of

frozen dislocations, bfd their Burgers vector and ε = σ/Y the homogeneous strain resulting
from an applied stress in the absence of a crack. As long as strains are smaller than a
characteristic strain εc, ε 	 εc ≡ bfd/dfd, where dfd ∼ 1/

√
cfd is the typical distance

between frozen dislocations, the propagation probability (35) stays small. Estimates of
Nattermann and Arndt for strong disorder in glass (cfd = 1016 m−2 and bfd = 5× 10−8 m)
give εc = bfd/dfd � 0.05. A strain of 5% is considerable for a brittle material such as glass,
which demonstrates the enhanced stability in the presence of frozen dislocations.
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3.4. Fracture probability

Spontaneous fracture at T = 0 requires both nucleation and propagation [6], and the
probability of fracture at T = 0 is given by the product

pfrac = prob[Fx − γ + fd(x) > 0 for 0 < x < L]

� prob[−γ + fd(x) > 0 for 0 < x < xc]

× prob[Fx + fd(x) > 0 forxc < x < L]

= pnuclpprop. (37)

The nucleation probability pnucl depends on F , γ and the disorder strength, as given
by (12) or (18), whereas the propagation probability pprop does not depend on γ but on
the applied force F , the disorder strength, and eventually the sample size L and is given
by (25), (27) and (30) for SRCF, and (31) for LRCF. For SRCF we have

pfrac ∼

⎧
⎨

⎩

e−(F/Fγ)δ−1−(Fa/F )2/(2−δ)

(SRCF, δ < 2)

e−(F/Fγ)δ−1
[
1 − e−(F/FL)2

]L/a

(SRCF, δ > 2),
(38)

as follows from the results (25), (27) and (18). For LRCF we find

pfrac ∼ e−(F/Fγ)δ−1
[
1 − e−(F/FL)2

]
(LRCF), (39)

as follows from the results (31) and (18). For δ < 2 for SRCF and δ < 3 for LRCF, the
fracture probability does not vanish in the limit of large L, which characterizes the brittle
disordered material.

These T = 0 results for the fracture probability can also be rephrased in terms of the
probability p∞ ≡ prob[τfrac = ∞] for a crack to have an infinite propagation or fracture
time τfrac. Because positive crack tip forces for all x imply a finite fracture time, we have
p∞ = 1 − pfrac at T = 0. For δ < 2 for SRCF and δ < 3 for LRCF, where fracture is
brittle, we find p∞ < 1, whereas p∞ ≈ 1 approaches 1 in the limit of large system size L
for the ductile regimes δ > 2 for SRCF and δ ≥ 3 for LRCF.

As a function of the disorder strength, the nucleation probability as given
by (12) is increasing, showing that disorder assists in nucleation. The propagation
probabilities (25), (27), (30) and (31) are all decreasing for increasing disorder strength,
showing that propagation is opposed by disorder. Thus, there can exist an intermediate
value for the disorder strength, which maximizes the fracture probability (37). For SRCF
and δ < 2 the maximal fracture probability is attained for Δδ ∼ aγ2−δF δ. For δ > 2, on
the other hand, the propagation probability dominates and increasing disorder strength
always decreases the fracture probability. For LRCF a maximal fracture probability is
only attained for δ ≥ 3 for Δδ ∼ γ3−δF δ−1. For δ = 3 we find the previously discussed
case of frozen dislocations, where nucleation and propagation exclude each other such that
the fracture probability remains always low with a maximum at Δ3 ∼ F 2.

In the following sections we will see how the functional dependence of pfrac on the
system size L governs the crack length distribution whereas the functional dependence of
pfrac on the external force F governs the critical force for fracture.
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3.5. Crack length distribution

Using the results for the dependence of the fracture probability pfrac = pfrac(L) on the
system size L, we can obtain the distribution Pcl(�) of arrested crack lengths � using the
relation

Pcl(�) = prob[Fx + fd(x) > 0 for 0 < x < �] × prob[F� + fd(�) < 0]

= pfrac(�) prob[F� + fd(�) < 0], (40)

which expresses the fact that an arrested crack of length � first has to propagate up to
this length and then has to be stopped at the length �. Note the nucleation probability
pnucl is independent of the sample size L, and pfrac(�) = pnuclpprop(�) only depends via the
propagation probability pprop(�) on �.

For SRCF the crack length distribution can be calculated from (40) as

pcl(�) ≈ pfrac(�) exp
(
− a

2Δ
�−δ+2F 2

)

∼

⎧
⎨

⎩

e−(�/x∗)2−δ

(SRCF, δ < 2)
[
1 − e−(x∗/�)δ−2

]�/a

e−(x∗/�)δ−2

(SRCF, δ > 2).
(41)

For δ < 2, we used the L-independent result (25) for pprop and find that the crack length
distribution decays exponentially with the characteristic decay length x∗. Long cracks with
� � x∗ are rare because they are unstable and the sample typically fractures instead, For
δ > 2, we used (27) for pprop and the crack length distribution decays exponentially with
a much smaller characteristic decay length ∼a. For δ > 2, it is hard to find macroscopic
cracks with � � a because they are immediately arrested. So in both cases the resulting
crack length distribution is exponential but the underlying mechanism giving rise to this
result is very different.

Similarly, using (31) for pprop, we find for LRCF a crack length distribution

pcl(�) ∼
(
1 − e−(�/x∗)3−δ

)
e−(�/x∗)3−δ

(LRCF), (42)

which decays exponentially for δ < 3 because long cracks are unstable and thus rare, and
which decays algebraically for δ > 3 because cracks become arrested before they grow to
large lengths.

3.6. Critical force

The information about the critical force which is needed to initiate crack motion at T = 0
is contained in the dependence pfrac = pfrac(F ) of the fracture probability on the external
force F , which follows from the identity

pfrac(F ) = prob[Fx − γ + fd(x) > 0 for all x]

= prob[F > max
x

{(−fd(x) + γ)/x}]
= prob[F > critical forceFc], (43)

where

Fc ≡ max
x

{(−fd(x) + γ)/x} (44)
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defines the critical force. Because the driving force Fx is increasing with crack length x,
the combination fd(x)/x determines the critical force. As disorder forces are not bounded
from above, the critical force Fc might become infinite. The relation (43) shows that
the F dependence pfrac = pfrac(F ) of the fracture probability, which we have discussed
in previous sections, also contains the information about the cumulative distribution of
critical forces for the models (8) or (11) at T = 0. The resulting probability distribution
of the critical force is given by

p(Fc) = ∂F |F=Fc
pfrac(F ). (45)

Fc is not yet the critical force for actual fracture, which we will denote by Ffrac in the
following, but Fc is the critical force for a single crack with given initial position. Once
a crack has nucleated at a favorable site and reached the critical length xc, it starts to
propagate in the direction set by the external loading (eventually its path deviates from
a perfect straight line due to disorder; this effect is ignored here). Each crack nucleated
at statistically independent nucleation sites experiences a different set of random forces.
We define N as the number of such statistically independent nucleation sites. For SRCF
it is reasonable to assume that N ∼ (L/xc)

2 assuming that a crack nucleated a distance
xc away sees an statistically independent set of random forces. Similar assumptions have
been made in random fuse networks [26]–[28]. The result N ∝ L2 also holds for LRCF
if random energy correlations between cracks at different locations fall off faster then d−2

for two cracks a distance d apart. Then the corresponding energy correlation length stays
finite. For heterogeneity-induced power-law stress fields decaying as σ ∼ r−α the random
energy correlations only decay for α > 2, where we find a power-law decay ∝ d4−2α.
Hence, for LRCF random energy correlations between cracks at different locations fall off
faster than d−2 only for α > 3 or δ < −1. Therefore, N ∝ L2 only holds for uncorrelated
random forces and impurities. For frozen dislocations, each crack sees essentially the
same random forces unless there is a large decorrelation length ξ for the random forces
because of another characteristic length scale in the defect distribution. We expect that
such a length scale exists in many applications, for example it could be caused by defect
clustering effects: in a sample containing grain boundaries with a characteristic distance
ξ, energy correlation between frozen dislocations will decay beyond the length scale ξ. If
such a length scale exists, we expect N ∼ (L/ξ)2 also for LRCF with δ > −1; otherwise
N ∼ O(1).

The fracture force Ffrac is the minimum critical force over all N statistically
independent starting points:

Ffrac = min
N

{Fc}. (46)

Therefore, the distribution for the fracture force Ffrac will attain the limiting form of an
appropriate extreme value distribution and differ from the distribution of critical forces
Fc as given by (45) if N is a macroscopic number. In order to estimate the mean fracture
force Ffrac, we can use a simple extreme value estimate, according to which the probability
to find a critical force Fc smaller than the typical minimum value Ffrac should be roughly
1 if N independent samples are taken:

pfrac(Ffrac)N = 1, (47)

where the asymptotics of the distribution pfrac(F ), as given by (38) for SRCF and (39)
for LRCF, in the limit of small F is explored.
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For SRCF, this estimate leads to

Ffrac ∼
{

Fa(lnN)−(2−δ)/2 (SRCF, 0 < δ < 2)

FL [ln (L/a ln N)]1/2 (SRCF, δ > 2).
(48)

Thus the mean critical force is essentially given by the two characteristic force scales Fa,
see (26), and FL, see (28), for δ < 2 and δ > 2, respectively. This demonstrates the
two different mechanisms leading to fracture for δ > 2 and δ < 2: (i) for δ < 2 fracture
is brittle and occurs if the force is sufficient to make a microscopic crack unstable with
respect to propagation, i.e. a ∼ x∗, which happens at F ∼ Fa. (ii) For δ > 2 fracture is
ductile and occurs if the force is sufficient to extend the stable crack of length x∗ through
the sample of size L, i.e. L ∼ x∗, which happens at F ∼ FL. According to (48) and (28),
the average fracture strength increases with system size with FL ∼ L(δ−2)/2 for disorder
with δ ≥ 2, i.e. frozen dislocations, but reduces logarithmically with N for δ < 2. For
LRCF the extreme value estimate (47) gives

Ffrac ∼ FLN−1/2 (LRCF), (49)

and the mean critical force is determined by the characteristic force scale FL, see (32). For
δ ≥ 3 this force scale grows with the system size and the fracture mechanism is ductile.
For δ < 3, on the other hand, FL becomes small for increasing system size L and a crack
can easily propagate after nucleation, see (34), which leads to a vanishing fracture force.

We can go further and calculate the distribution of fracture forces Ffrac, i.e. the
probability p(Ffrac) to find a critical force Ffrac for a given realization of disorder, from
extreme value statistics. The fracture force Ffrac = minN{Fc} is the minimum critical
force over all N statistically independent starting points and each of the Fc is drawn
from a distribution p(Fc) given by (45) with the cumulative distribution pfrac(F ), as
given by (38) for SRCF and (39) for LRCF. Therefore, the distribution of the quantity
1/Ffrac = maxN{1/Fc} approaches the type of extreme value distribution which is
appropriate for the cumulative distribution of 1/Fc, which is given by

prob[1/Fc < x] = 1 − pfrac(1/x) (50)

according to (43).
For SRCF and δ < 2, the distribution (38) decreases exponentially with x = 1/F

such that the corresponding extreme value distribution of 1/Ffrac = maxN{1/Fc} is of the
Gumbel type and

prob[Ffrac > F ] = prob[1/Ffrac < 1/F ]

∼ exp
[
−c1N

2/(2−δ)e−c2(Fa/F ) lnδ/2 N
]

(SRCF, δ < 2) (51)

with constants c1 and c2. This result applies to random bonds (i) and random impurities
(ii) and generalizes previous findings for random fuse models [28], which correspond to the
special case of random bonds (i) with δ = 0. Calculating the average value Ffrac with (51)
we recover our result (48).

For SRCF and δ ≥ 2, the distribution (38) is a power law (xFL)−2L/a for large x =
1/F . Therefore, the corresponding extreme value distribution of 1/Ffrac = maxN{1/Fc}
is of the Frechet type with

prob[Ffrac > F ] ∼ exp
[
−c1N(F/FL)2L/a

]
(SRCF, δ > 2) (52)
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with a constant c1. Similarly, for LRCF, the distribution (39) is a power law (xFL)−2 for
large x = 1/F , and the resulting extreme value distribution is of the Frechet type

prob[Ffrac > F ] ∼ exp
[
−c1N(F/FL)2

]
(LRCF). (53)

The probability prob[Ffrac >F ] in (51), (52) and (53) equals the probability that the
sample will not fracture and, thus, that all N statistically independent cracks are arrested.
If δ > 2 for SRCF or δ ≥ 3 for LRCF, the resulting fracture probabilities 1−prob[Ffrac >F ]
in the presence of N statistically independent cracks decrease algebraically for large system
sizes L or F 	 FL. Therefore, heterogeneities with long-range forces, such as frozen
dislocations (iii) with δ = 3, effectively arrest large supercritical cracks, even if small
cracks are nucleated with a finite probability.

4. Dynamics of thermally activated crack propagation

While at T = 0 any energy barrier leads to crack arrest, thermal fluctuations at T > 0
give rise to activated crack propagation even in the presence of local energy barriers. The
equation of motion (10) for the crack tip resembles the overdamped motion of a driven
particle in a one-dimensional disorder potential Ed(x), which has been studied extensively
for disordered systems [29]. At low temperatures, the particle exhibits slow dynamics due
to a wide distribution of energy barriers giving rise to anomalously slow diffusion, creep
or even particle arrest [30]. In the following, we will focus on the dynamics of crack
propagation and neglect the crack surface energy γ in the equation of motion (10).

We consider an ensemble of cracks arrested at T = 0 by the random forces and
address the question of whether it stays arrested when the finite temperature, T > 0,
is switched on. To this end we focus now on a typical crack and the corresponding
disorder-averaged fracture time τfrac, whereas in the previous section we focused on the
probability to find a rare propagating crack with finite fracture time τfrac. To investigate
this problem systematically we start from the Fokker–Planck equation for the probability
density P (x, t) corresponding to the equation of motion (10):

∂tP = −∂xJ, (54)

ηJ = −TB2(x)∂xP + B(x)[−γ + Fx + fd(x)]P, (55)

where we used the Stratonovich formulation [31].
The stationary solutions P (x) for non-zero constant current J and absorbing

boundary condition P (L) = 0 are

P (x) =
ηJ

TB2(x)

∫ L

x

dy exp

[∫ y

x

du ∂uφ

]

, (56)

which are governed by the effective potential φ(x) with ∂xφ ≡ (−Fx− fd(x))/B(x). The
non-zero constant current J corresponds to the number of cracks the propagation per time
and, thus, determines the time to fracture

τfrac = 1/J. (57)
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The time to fracture τfrac can be obtained from the normalization condition
∫ L

0
P (x) = 1:

τfrac ≈
∫ L

0

dx
η

TB2(x)

∫ ∞

0

dz e−I(x,z) with

I(x, z) ≡
∫ x+z

x

du
[
Fu/TB(u)− Δδu

δ/T 2B2(u)
]
, (58)

where we took the limit of infinite L and performed the disorder average. The behavior of
I(x, z) for large z governs the fracture time. Using the asymptotics for large u, B(u) ≈ b/u,
see equation (11), we find

I(x, z) ∼ Fz3/3Tb − Δδz
3+δ/(3 + δ)T 2b2 (59)

for large z. In this limit, I(x, z) scales in the same manner for both SRCF and LRCF.
Therefore, our results regarding the thermally activated dynamics apply to both types of
random forces. Plugging this in (58) we find that the mean fracture time τfrac remains
finite for δ < 0, where I(x, z) is large and positive, whereas it diverges for δ > 0, where
I(x, z) becomes large and negative. For δ = 0, the mean fracture time is infinite for
Δ0 > Δ0,c ≡ FTb = TηcR, i.e. above the threshold disorder strength Δ0,c, which is
independent of the driving force F .

We can also calculate the distribution of random energy barriers, which govern the
activated dynamics [32]. As follows from the equation of motion (10), the effective random
energy governing thermal activation is φ(x) with

∂xφ ≡ (−Fx − fd(x))/B(x). (60)

Therefore, we have to calculate the distribution of barriers p(E) for the random energy
φ(x) of a particle initially at x = xi. This distribution originates from the Gaussian
distribution of random forces fd(x) with correlations (4) or (5) and is given by a path
integral in ‘energy space’:

p(E) ∼
∫ L

0

dx

∫ φ(xi+x)=E

φ(xi)=0

Dφe−S[φ(y)], (61)

S ≡ (1/2Δδ)

∫ xi+x

xi

dy y−δ (B(y)∂yφ + Fy)2 . (62)

The saddle point path φ0(y) for the action S obeys the relation ∂y[y
−δ(B(y)∂yφ0+Fy)] = 0

which has to be solved with boundary conditions φ0(xi) = 0 and φ0(xi +x) = E. Focusing
on large cracks we consider the limits x � xi and x � b and finally find a saddle
point action S0 ∼ (Eb + Fx3/3)x−3−δ/Δδ. Another saddle point approximation for the x
integration in (61) gives a typical barrier size x0 ∼ (Eb/F )1/3, which leads to an effective
barrier distribution

p(E) ∼ 1

E0
e−(E/E0)1−δ/3

(δ < 3) (63)

for large cracks (x � xi and x � b), where

E0 = b−1Δ
3/(3−δ)
δ F−(3+δ)/(3−δ) (64)
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is the characteristic barrier energy. For large cracks with x � xi, this distribution
scales in the same manner for both SRCF and LRCF. This demonstrates again that
our results regarding the thermally activated dynamics apply to both types of random
forces. The distribution (63) is a stretched exponential in general, only for δ = 0 it attains
a simple exponential form. For δ > 3 large barriers are no longer rare and p(E) cannot be
normalized. The corresponding distribution of waiting times τ follows from the Arrhenius
law τ ∼ τ0e

E/T , where τ0 is a characteristic microscopic timescale of the dynamics, which
depends on η and b:

p(τ) ∼ T

τE0
exp

[
−(T/E0)

1−δ/3 ln1−δ/3 τ
]

(δ < 3). (65)

The waiting time distribution assumes a power-law form for δ = 0 and decays faster than
a power law for 0 < δ < 3. For δ > 3 large waiting times are no longer rare and the
distribution cannot be normalized anymore.

Now we consider the crack tip starting at xi and traveling a distance xt � xi

within a time t. For 0 ≤ δ < 3, the highest barrier Et as obtained from the condition

1 = (xt/x0)
∫ Et

0
dE p(E) governs the dynamics. This leads to Et ∼ E0 ln3/(3−δ) xt, and

using the Arrhenius law t ∼ τ0e
Et/T we find a crack tip dynamics

xt ∼
x0E0

T
exp

[
(T/E0)

1−δ/3 ln1−δ/3 t
]

(0 ≤ δ < 3). (66)

For δ = 0, i.e. a random fracture toughness (i), this represents anomalously slow diffusion
with a power-law dynamics xt ∼ tT/E0 where E0 = Δ0/Fb. For T < E0 or above the
threshold disorder strength Δ0,c we find a vanishing mean velocity xt/t → 0 in agreement
with our above result of a diverging mean fracture time τfrac. For δ < 0, we find fast
brittle fracture xt ∼ t in agreement with our above result of a finite mean fracture time.
For δ > 0 the crack dynamics is slower than any power law with xt/t → 0 representing
an effective crack arrest in agreement with an infinite mean fracture time. For δ ≥ 3, we
find complete crack arrest xt ≈ 0.

Thus an ensemble of cracks that was arrested at T = 0 remains effectively arrested
(in the sense of an infinite fracture time or zero average velocity) for heterogeneities with
δ > 0, which include frozen dislocations (iii) and random impurities (ii). For random
bonds (i) with δ = 0 we find the anomalously slow diffusion with the power-law dynamics.
Only for short-range disorder, δ < 0, will thermal fluctuations lead to fast fracture by
activation.

5. Statistics of fracture times

The dynamic calculation shows that effective crack arrest with an infinite mean fracture
time τfrac is possible for δ ≥ 0 and thus for all three types of disorder (i)–(iii) introduced
above. An infinite mean fracture time implies a non-zero probability p∞ > 0 for an infinite
fracture time. Thus we find p∞ > 0 for δ > 0 and p∞ = 0 for δ > 0. For δ = 0 we have
p∞ > 0 (p∞ = 0) for Δ0 > Δ0,c (Δ0 < Δ0,c). Together with our results from the static
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T = 0 arguments, we can summarize our findings as

p∞ ≈ 1 for δ ≥ 2 (SRCF) or δ ≥ 3 (LRCF) (iii) frozen dislocat.

0 < p∞ < 1 for 0 < δ < 2 (SRCF) or 0 < δ < 3 (LRCF) (ii) random impurit.

p∞ = 0 for δ < 0. (67)

Random fracture toughness (i) is an example of the special case δ = 0, where we find a

power-law distribution of fracture times, p(τfrac) ∼ τ
E0/T
frac . The tails of the disorder energy

barrier distribution are much more effective in crack tip trapping than the finite barriers
due to lattice effects [10, 11].

6. Conclusion and discussion

We formulated an equation of motion (10) for the crack tip by incorporating effects from
dissipation, thermal fluctuations and frozen heterogeneities into the dynamic fracture
criterion G(x, ẋ) = γ. This equation of motion resembles an overdamped Langevin-
type equation in a one-dimensional disordered potential. At zero temperature we find
that the heterogeneous material can exhibit brittle or ductile fracture, depending on
the range of elastic interactions between crack tip and frozen defects. We find different
forms of slow crack propagation as summarized in the result (67) for the probability
of an infinite fracture time. Frozen defects with δ ≥ 2 give rise to complete crack
arrest. This applies to hard-worked materials [33] containing frozen dislocations (iii).
Also for random fracture toughness (i) and impurities (ii), the disorder potential leads
to a slow crack dynamics with zero mean velocity as the crack tip gets trapped in the
deep potential minima. This explains the existence of arrested metastable microcracks
in heterogeneous materials, which can be considerably larger than the critical crack
length of the homogeneous material and have been observed in a number of recent
experiments [34, 35]. Experimentally observed fracture precursors in heterogeneous
materials with power-law waiting time distributions [34]–[37] can also be explained in
the framework of our theory as characteristics of the case δ = 0 of random fracture
toughness (i), for which we derived a power-law waiting time distribution between crack
advance events in equation (65). It remains an issue for future investigations whether the
ensemble of arrested microcracks becomes unstable with respect to microcrack coalescence
or to slow crack growth by cyclic loading in fatigue experiments.
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