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Dislocations and the critical endpoint of the melting line of vortex line lattices
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We develop a theory for dislocation-mediated structural transitions in the vortex lattice which allows for a
unified description of phase transitions between the three phases, the elastic vortex glass, the amorphous vortex
glass, and the vortex liquid, in terms of a free-energy functional for the dislocation density. In the presence of
point defects, the existence ofcatical endpointof the first-order melting line at high magnetic fields, which
has been recently observed experimentally, is explained.

Since the pioneering wotkvhere the first-order flux-line displacements are of the order of the lattice spacing
lattice (FLL) melting into an entangled vortex liqui/L)  Within our approach each phase corresponds to one of the
was established, there has been a continuous developmentlo€al minima in the dislocation ensemble free energy, and
our views of the vortex lattice phase diagram in high- dislocation densities in these minima representebailib-
superconductorsWeak point disorder was shown to drive rium dislocation densities in the corresponding phases. The
the vortex lattice into a vortex glag¥G) state with zero global minimum corresponds to the thermodynamically
linear resistivity>~® Observations of hysteretic resistivity stable phase under the given conditions, phase transitions
switching and magnetization measurem@iave supported occur when two local minima exchange their role as global
the first-order melting of very clean lattices. A crossoverminimum. This mechanism for the transitions enables us to
from the first-order melting at low magnetic fields to a con-gerive Lindemann-criteria both for the locations of the ther-
tinuous VG-VL transition has been related to the structuralng| melting line and for the disorder-induced instability line
transition within the vortex solid which is descrifet’as a ot the BrG. Furthermore, the characteristic scale set by the
topological transition between the low-fieddhsticVG,” free o0 distance between free dislocations offers a natural ex-
from topological defecl?é!s;% and maintaining quasi long- - hation of the critical endpoint of the first-order melting
range translational order,” and the high fieldamorphous line: While at low magnetic fieldR,>a and the amorphous

VG, where disorder generates proliferation of VG i sianif VI disl . han th
dislocations:>*? A simple picture of the vortex phase dia- appears to contain significantly less dislocations than the
VL, at higher field whereR,=a the two phases become

gram has emerged where the three generic phases — VL, th . . . .
high-field amorphous VG, and the low-field, low- t_hermodynammglIyequwalent and the first-order melting
temperature quasilattice or Bragg gl4BsG) (Ref. 7) — are  lIn€ has to terminate. , N
governed by the three basic energies: the energy of thermal Before addressing effects of disorder we need tg revisit
fluctuations, pinning, and elastic energies. The transitiohe dislocation-mediated thermal melting of the FELA
lines are determined by matching of any of the two basidree energy for the dislocation degrees of freedom governing
energies, and the match of all three energies marks the trRhase transitions is derived from vortex lattice elasticity
critical point where the first-order melting terminates/hile  theory. Dislocations in the FLL can be of both screw or edge
this simplistic picture is supported by observations ontype, but in either case they are confined to the gliding plane
Bi,SL,CaCuOg. s (BSCCO, it fails to describe the spanned by their Burger's vectbrand the magnetic fielth
YBa,Cu;0,.5 (YBCO) phase diagranisee Fig. 1 where the  The single dislocation energy consists of the core engigy
endpoint of the first-order melting line appears to be sepa-
rated from the point where topological transition and melting B
line merge'* |
In this paper we present an explanation for the existence
of a critical endpoint of the first-order melting line in the
presence of point disorder. Our argumentation is based on a
unified description of the vortex lattice phases. We demon- 1
strate that all phase transitions between vortex lattice phases ﬁg

Bcp'

can be described akslocation mediatety deriving the free
energy for an ensemble of directed dislocations as a function

of the dislocation density in the presence of therraat By
disorder. Each of the experimentally observed phases is char- B B
) L . . - . rG
acterized by its inhererttislocation densityor, equivalently, @KE‘
by the characteristic dislocation spaciRg . The elastic VG L
is dislocation-free and hd&,=o. The VL can be viewed as
a vortex array saturated with dislocations such Rat-a, FIG. 1. Schematic phase diagram of YBCO. Insets show typical

and in the amorphous V&Rp~R,, whereR, is the so- free energy densitiekof a dislocation ensemble as function of the
called positional correlation length on which typical vortex dislocation density.
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and of the logarithmically diverging contribution from the

long-range elastic strairt§.Accordingly, the dislocation en- f(p)=2p
semble can be modeled as an array of elastic lines with a

long-range Coulomb-like interaction. A single directed dis- 2
location line is parameterized by its displacement figjdz) +2p QO.S In
and is described by the Hamiltonign 4

27 Ta,
2

1
E.—T=—In| 1+
¢ 2aZ ( EDa.

(b(T)a%)” 3 e

f(p) can be obtained in a more rigorous manner by mapping
1) dislocations onto a quantum system of 2D Fermions with

Coulomb interactiod!?2 This allows for the systematic cal-
culation of screening effects in E) through the Lindhard-
Thomas-Fermi theory for Coulomb screening and exchange
terms, and leads to a screening paramétger,,)~0.5. A
thellrst-order melting following from Eq. (3) occurs atT,

— — 3 . . . . _
short-wavelength limitk,~ 1/a, is relevant. It is convenient ~ 1-5/Ec8,~0.15a” which is equivalent to melting ac
cording to the Lindemann-criterion with a Lindemann-

e i i i - . . .
t0 rescalez=2z3 yCsa/Ceq SUch that dislocation energies be numberc, ~0.2; in good agreement with experimental and

come isotropic with ep=Ec=CcpKb?/4m (cp~=1) andEs  nymerical results. At the melting transition dislocations pro-
=E+Kb?4m In(L/a), whereK = \/C4,Ceg is theisotropized  jiferate with ahigh density p,,~0.2a"2, hence the VL is
elastic constan{c,, andcgg are the tilt and shear moduli of g5t rated with dislocations.
the vortex lattice, respectively. is the system size in the Now we are in the position to address the effect of a
transverse dir'ect'icjnNote that the Peierl_s barril_ﬁfvp a_md the  random pinning potentia¥,,(r), in the presence of which
associated “"kinking”(Ref. 16 of edge dislocation lines can the gislocation-freevortex array is collectively pinned and
be neglected near the melting transition. It can be shown thadyhibits three different spatial scaling regimés:Small dis-
kinks are irrelevant above the temperatlig~aJyWyep.  tances where vortex displacementsare smaller than the
Numerically, we findW,=10"“E., such thatT, is much  coherence lengtl and perturbation theory appli&(ii) In-
lower than T,. Therefore, the basic length scale along thetermediate scales wheré<u<a and disorder potentials
magnetic field is solely set by the competition of FL tilt seen by different FL's are effectivelyncorrelated This re-
and shear and given by,~\Csu/Ced2 (a,~a in the gime is captured in so-called random manifol®&M)
rescaled system The free energy of a single disloca- models?” leading to a roughnesé(r)zm
tion can be readily calculated from the partition SUM _ 22(¢/R_)2éRM, where gy~ 1/5 for thed=3 dimensional
Zp=JDup exp(-BHplup]) by Gaussian functional inte- g\ with two displacement components. The crossover scale
gration and consists of the core energy, the long-rangg, ihe asymptotic behavior is thpositional correlation
strains elastic energy, and the entropy term: length R, where the average displacement is of the order of
the FL spacingu~a. (iii) The asymptotic Bragg glass re-

1
Hplup]= J dz( ES+§ ED(&ZUD)2> )

where the stiffnesgp«In(1/k,a) has a logarithmic disper-
sion due to the long-range strain field akg is the self-
energy of a straight dislocation. For thermal melting,

Fo(L) Kb2 L 1 2nTa, gime where thea—peri_odicity of the FL array becomes |m
=B+ ——In[—| -T=—In| 1+ . (20  portant for the coupling to the disorder and the array is ef-
L, 4m - \a 28, €pa fectively subject to geriodic pinning potential with period

a'® Here the logarithmic roughness G(r)

The spontaneous formation of a single dislocation is prohib=(a/)?In(er/R,), i.e., {gc= O(log)*>’ takes over.

ited by the logarithmic divergence of its elastic energy which In a disordered system at=0 the mechanism for dislo-
has to bescreenedor a phase transition to occur. One pos- cation proliferation is fundamentally different from the ther-
sible mechanism is screening by dislocatimops on all ~ mal melting discussed before. While thermal melting is gov-
length scales as in a second-order 3DXY-type phaserned by theentropy gaindue to unbinding dislocations
transition'® the other is a first-order phase transition wherepairs, theT=0 transition is driven by FLL adjustment to
an ensemble ofinbounddislocation lines witHfinite density  disorder. Disorder distorts the FLL giving rise to significant
threads the sample at the transition. Without loss of generaklastic stresses; dislocation proliferation releases these
ity we can consider an ensembledifecteddislocation lines  stresses, and leads to energy gain through the dislocation
in this scenario. In the ensemble of unbound dislocationglegrees of freedom. It has been shown in Refs. 11 and 12
with a Coulomb-type interaction, the Debye-tkel screen- that the three-dimensionaBD) BrG phase isstable with

ing by free dislocations of opposite Burger’s vector is by far respect to dislocation formation. As we will show, instabili-
more effective than the screening by small closed dislocatioties arise from the subasymptotic regimes. To handle analyti-
loops which we therefore neglect in this situation. The effecal difficulties and to provide a unified treatment through alll
tive hard-core repulsion of dislocations with tsemeBurg-  scaling regimes, we develop an approach to the 3D problem
er's vectors, due to the energy penalty for Burger's vectorbased on areffective random stress modehich has the
with b>a, also gives rise to screening. We find in the FLL same displacement correlations as the full nonlinear disor-
that the planarity constraint favors such a first-orderdered model but allows for aeparationof dislocation and
transition® Taking screening into account and an additionalelastic degrees of freedom. This idea is motivated by the
entropy cost ¢ p>) from the steric repulsion, we derive the renormalization grougRG) for the two-dimensional2D)
following free-energy density for @opologically neutral  BrG which explicitly shows it renormalizes asymptotically
dislocation ensemble of density 2° into a random stress mod&kand has been used in Ref. 25 to
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show the instability of the 2D BrG with respect to location in the transversal plane which give logarithmic cor-
dislocations?® For simplicity we consider ainiaxial FLL  rections~O(InL).*2 The optimal path of the dislocation is
model (in the incompressible limit,,>Ceg) Which yields  rough u,~L:° with an exponent, . The roughness can be
the same dislocation energetics as the isotropized tWogptained by a Flory argument equating the elastic energy
component model. The Hamiltonian is from the deformationep(L)u3/L and the disorder energy
1 E3.<(L,=L,up)? on onelarge length scale set by the fluc-
H[u]=J[§K(Vu)2+ o-Vuy, (4)  tuation wavelength_. This yields {p(BrG)=1—0(log??

' and /p(RM)=2—0O(log*”*3, where logarithmic correc-
wherea(r) is therandom stress fieldhich we assume to be tion§ come.from the dispersion of the .stiffnes_f, and rare fluc-
Gaussian distributed with a second momenwj(k’) tuations. Slnceg“D(BrG)$1,_ the BrG is mar_glnall)@tabltze
— 5”_2(k)(277)35(k+kr) characterized by the function against penetration of aingle directed dislocatioft-

3 (k) in Fourier space. The effective random stresses causin§€r€as {p(RM)>1 such that the random manifold is
displacements with the sam@wo point correlations as Clearly unstable Note that the scaling arguments of Ref. 12

those for the RM or BrG regime are taking _into account rare fluctuations give the same result
regarding the stability of the Br ase as our Flory argu-
garding the stability of the BrG ph Flory arg
1o, 1, ment.
S (k)= BrG: EK k™ a ®) Given the stability of the BrG against spontaneous forma-
(k)= o1 o s tion of a single dislocation at weak disorder we present a
RM:  BruKk™"a“(kR,) mechanism for the destruction of the topologically ordered

(the exact crossover determining the numerical congagt BrG phase at inc_reased disorder strengths or magnef[ic_fields.
is nontriviaf®). The validity of the random stress model is The mechanism is based on the above result that within do-

well-established in 2D. Besides, the functional RG treatmenf@ins of subasymptotic size<R, the FLL is unstable to a
of the BrG ind=4— e dimensions shows that displacementsSponta”eo_“S fo_rmatlor_1 qf _dlslocatlon:_;. Thls_ can _mdeed lead
asymptotically obey Gaussian statistics up to the first ordefC the proliferation of infinitely long dislocations inseak
in €,2” which can always be modeled by an effective randomf'rSt'mder phase transition where dislocation elements are
stre,ss field. laterally confined by dinite dislocation density to scalds

We calculate the free energy of an ensemble of disloca™ 1/:@ Thus th_e_ Chare}cterlstlc dislocation densipy.
tion linesR;(s) with the densityb(r)=3;bfdsdR;/dsfrom  ~Ra“ at the transition is given just by the crossover ségje
the Hamiltonian(4) analogously t3° In the random stress below which instabilities can occur. The discontinuities in

model the Hamiltoniamlecouplesnto the elastic part and a this transition are small and may eventually disappear for
dislocation part: weak disorder if the length scale, becomes of the order of

typical sample dimensions. The random stress model enables
K , us to quantify this idea by estimating typical free-energy
HD[b]:fr fr,gbr'br'Go(r_r Herr'gr’ (6)  minima of the dislocation ensemble. The screened long-
range elastic energy density and the core energy density for
where Gg(r)=1/(4mr) is the 3D Green’s function. Here the (neutra) dislocation ensemble with density Zre given
g(r) is an effectiverandom potentialfor dislocation lines by ep(p)=2p(E.+ (Kb%/4m)In(1/ap?) as in Eq.(3) at T
defined by the transversal part ofthroughV X g= o [cf. =0. Dislocations are confined to a transversal sdaje
(Ref. 25]. The energy Eq(6) contains the long-range elastic =~p~ 12 set by the distance to the next dislocation. The dis-
energyE; of dislocations in the first term and in the stochas-order energy gain is optimized against the elastic deforma-
tic second term the disorder enerBy;s which allows dislo- tion on each longitudinal scale,~Rp(Rp/R,) ~#*® (RM)
cations to gain energy by optimizing their paths. The dislo-or L =Ry, (BrG) independentlyL , is the collective pinning
cation disorder energy is completely determined by the Fllength of the dislocation. Using Eq7) with L,=L, andL
displacement correlations through  g;(k)g;(k") =p Y2 for the BRG regime (< R;z) and theRM regime
= 51;%2(k)k_2(277)35(k+ k') in the different regimes (p> R;Z), we can estimate the corresponding minimal free-
given by Eq.(5). For a single directed dislocation line, the €nergy densities
Hamiltonian(6) reduces to the problem of a directed elastic

line with a logarithmic dispersion in a random potential that BrG: 2Ag,gEcp
is long-range correlated described by Gg. For a directed 4
dislocation of lengthL, and confined in the transversal di- f(p)~ep(p)— 1 a\Bs (8

RM: oA E( a2)1—5
rection to a scald, the mean-square disorder energy fluc- RM 2 P
tuations are

a

The prefactorsA=Ag,c=Agrm are related tBgy and the

BrG: EZL,L exact crossover in Eq5) and are not known exactly; fok
EgiS(LZ,L)N ) L\25 7) ~8 (corresponding tBgy~7), we obtain good agreement
RM:  EZL,L R with experiments in estimates below. When both results in
a

Eqg. (8) are combined one indeed finds a local minimum in
These expressions give an estimate of tyjgical disorder the free-energy density ap=R, 2 that characterizes an
energy a dislocation line can gain. They neglece fluctua- amorphous VG phase. Over a wide range of magnetic fields
tionsin the energy gain from optimally positioning the dis- the dislocation density in the amorphous VG is mimver
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than in the VL for which we have found~0.2a"2 above.
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amorphous VG musherge Both these phases become ther-

The elastic BrG phase loses stability with respect to dislocamodynamically indistinguishable and have identiequilib-
tion proliferation and a transition into an amorphous VGrium lattice order. Above the critical endpoint there might
phase if the local minimum q@:R;Z becomes the global still exist adynamlct_ransmor!(or cr(_)ssove)r_w_hlch involves
free-energy minimum. This occurs via a weak first-orderthe thermal depinning of dislocations, similar to the well-

transition above a magnetic fieBls,g given by a criterion
R,/a=C with a “Lindemann-number’C=exp(A—1). This

is identical to the Lindemann criterion obtained in Refs. 1

and 10 and equivalett to the more familiar form
((u(a)—u(0))?>y=c’a’® (see Ref. 8 with c ~exp(1
—A)/5)~0.25 forA~8.

So far, we have derived the free energi@sand (8) and
identified three possible characteristic minimali) The

dislocation-free minimum gi=0 which is stable in the elas-

tic BrG phase at lowl and lowH. (ii) The minimum atp

known thermal depinning transition of, for example, a single
pinned vortex line. The exact location of the critical end-

1 point, obtained from the condition that the amorphous VG

minimum of Eq.(8) moves away fromsz;Z to higher
dislocation densities, is determined by the conditRyya
=exp(—3+13A/15) (which is again equivalent to a Linde-
mann criterion, with a slightly larger, ). This gives an es-
timate Bgg/Bcp=exp(— 15(4A/15—1))~0.6 for A~8,
which is in qualitative agreement with the experimefits.
Bg:c is the instability field of the Br@see aboveand thus

~a~2 that becomes stable in the disorder-free case for higllnhe ““coexistence point” where the topological transition line

T in the VL. (iii) A minimum atp~R;2 which is realized in

the amorphous VG. Combining our results for the therma
melting and the disorder-induced “melting,” we have ob-

ends in the first-order melting line and all three phases —
ielastic BrG, amorphous VG, and VL — can coexist.
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