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Dislocations and the critical endpoint of the melting line of vortex line lattices
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~Received 11 April 2000!

We develop a theory for dislocation-mediated structural transitions in the vortex lattice which allows for a
unified description of phase transitions between the three phases, the elastic vortex glass, the amorphous vortex
glass, and the vortex liquid, in terms of a free-energy functional for the dislocation density. In the presence of
point defects, the existence of acritical endpointof the first-order melting line at high magnetic fields, which
has been recently observed experimentally, is explained.
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Since the pioneering work1 where the first-order flux-line
lattice ~FLL! melting into an entangled vortex liquid~VL !
was established, there has been a continuous developme
our views of the vortex lattice phase diagram in high-Tc

superconductors.2 Weak point disorder was shown to driv
the vortex lattice into a vortex glass~VG! state with zero
linear resistivity.3–5 Observations of hysteretic resistivit
switching and magnetization measurements6 have supported
the first-order melting of very clean lattices. A crossov
from the first-order melting at low magnetic fields to a co
tinuous VG-VL transition has been related to the structu
transition within the vortex solid which is described8–10 as a
topological transition between the low-fieldelasticVG,7 free
from topological defects7,11,12 and maintaining quasi long
range translational order,13,7 and the high fieldamorphous
VG, where disorder generates proliferation
dislocations.11,12 A simple picture of the vortex phase dia
gram has emerged where the three generic phases — VL
high-field amorphous VG, and the low-field, low
temperature quasilattice or Bragg glass~BrG! ~Ref. 7! — are
governed by the three basic energies: the energy of the
fluctuations, pinning, and elastic energies. The transit
lines are determined by matching of any of the two ba
energies, and the match of all three energies marks the
critical point where the first-order melting terminates.9 While
this simplistic picture is supported by observations
Bi2Sr2CaCu2O81d ~BSCCO!, it fails to describe the
YBa2Cu3O7-d ~YBCO! phase diagram~see Fig. 1! where the
endpoint of the first-order melting line appears to be se
rated from the point where topological transition and melt
line merge.14

In this paper we present an explanation for the existe
of a critical endpoint of the first-order melting line in th
presence of point disorder. Our argumentation is based
unified description of the vortex lattice phases. We dem
strate that all phase transitions between vortex lattice ph
can be described asdislocation mediatedby deriving the free
energy for an ensemble of directed dislocations as a func
of the dislocation density in the presence of thermaland
disorder. Each of the experimentally observed phases is c
acterized by its inherentdislocation densityor, equivalently,
by the characteristic dislocation spacingRD . The elastic VG
is dislocation-free and hasRD5`. The VL can be viewed as
a vortex array saturated with dislocations such thatRD;a,
and in the amorphous VG,RD;Ra , where Ra is the so-
called positional correlation length on which typical vort
PRB 610163-1829/2000/61~22!/14928~4!/$15.00
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displacements are of the order of the lattice spacinga.2

Within our approach each phase corresponds to one of
local minima in the dislocation ensemble free energy, a
dislocation densities in these minima represent theequilib-
rium dislocation densities in the corresponding phases.
global minimum corresponds to the thermodynamica
stable phase under the given conditions, phase transit
occur when two local minima exchange their role as glo
minimum. This mechanism for the transitions enables us
deriveLindemann-criteria both for the locations of the the
mal melting line and for the disorder-induced instability lin
of the BrG. Furthermore, the characteristic scale set by
mean distance between free dislocations offers a natura
planation of the critical endpoint of the first-order meltin
line: While at low magnetic fieldsRa@a and the amorphous
VG appears to contain significantly less dislocations than
VL, at higher field whereRa5a the two phases becom
thermodynamicallyequivalent and the first-order melting
line has to terminate.

Before addressing effects of disorder we need to rev
the dislocation-mediated thermal melting of the FLL.15 A
free energy for the dislocation degrees of freedom govern
phase transitions is derived from vortex lattice elastic
theory. Dislocations in the FLL can be of both screw or ed
type, but in either case they are confined to the gliding pla
spanned by their Burger’s vectorb and the magnetic field.15

The single dislocation energy consists of the core energyEc

FIG. 1. Schematic phase diagram of YBCO. Insets show typ
free energy densitiesf of a dislocation ensemble as function of th
dislocation densityr.
R14 928 ©2000 The American Physical Society
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and of the logarithmically diverging contribution from th
long-range elastic strains.16 Accordingly, the dislocation en
semble can be modeled as an array of elastic lines wi
long-range Coulomb-like interaction. A single directed d
location line is parameterized by its displacement fielduD(z)
and is described by the Hamiltonian17

HD@uD#5E dzS Es1
1

2
eD~]zuD!2D , ~1!

where the stiffnesseD} ln(1/kza) has a logarithmic disper
sion due to the long-range strain field andEs is the self-
energy of a straight dislocation. For thermal melting, t
short-wavelength limit,kz;1/a, is relevant. It is convenien

to rescalez5 z̃1
2 Ac44/c66 such that dislocation energies b

come isotropic with eD5Ec5cDKb2/4p (cD'1) and Es

5Ec1Kb2/4p ln(L/a), whereK5Ac44c66 is the isotropized
elastic constant(c44 andc66 are the tilt and shear moduli o
the vortex lattice, respectively.L is the system size in the
transverse direction!. Note that the Peierls barrierWp and the
associated ‘‘kinking’’~Ref. 16! of edge dislocation lines ca
be neglected near the melting transition. It can be shown
kinks are irrelevant above the temperatureTk;aAWpeD.
Numerically, we findWp&1024Ec , such thatTk is much
lower than Tm . Therefore, the basic length scale along t
magnetic field is solely set by the competition of FL t
and shear and given byaz'Ac44/c66/2 (az'a in the
rescaled system!. The free energy of a single disloca
tion can be readily calculated from the partition su
ZD5*DuD exp(2bHD@uD#) by Gaussian functional inte
gration and consists of the core energy, the long-ra
strains elastic energy, and the entropy term:

FD~L !

Lz
5Ec1

Kb2

4p
lnS L

aD2T
1

2az
lnS 11

2pTaz

eDa2 D . ~2!

The spontaneous formation of a single dislocation is proh
ited by the logarithmic divergence of its elastic energy wh
has to bescreenedfor a phase transition to occur. One po
sible mechanism is screening by dislocationloops on all
length scales as in a second-order 3DXY-type ph
transition,18 the other is a first-order phase transition whe
an ensemble ofunbounddislocation lines withfinite density
threads the sample at the transition. Without loss of gene
ity we can consider an ensemble ofdirecteddislocation lines
in this scenario. In the ensemble of unbound dislocati
with a Coulomb-type interaction, the Debye-Hu¨ckel screen-
ing by freedislocations of opposite Burger’s vector is by f
more effective than the screening by small closed disloca
loops which we therefore neglect in this situation. The eff
tive hard-core repulsion of dislocations with thesameBurg-
er’s vectors, due to the energy penalty for Burger’s vect
with b.a, also gives rise to screening. We find in the FL
that the planarity constraint favors such a first-ord
transition.19 Taking screening into account and an addition
entropy cost (}r3) from the steric repulsion, we derive th
following free-energy density for a~topologically neutral!
dislocation ensemble of density 2r:20
a
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f ~r!52rS Ec2T
1

2az
lnS 11

2pTaz

eDa2 D D
12r

Kb2

4p
0.3 lnS 1

b~T! a2r
D 1r3

p2

3

T2a2

eD
. ~3!

f (r) can be obtained in a more rigorous manner by mapp
dislocations onto a quantum system of 2D Fermions w
Coulomb interaction.21,22 This allows for the systematic cal
culation of screening effects in Eq.~3! through the Lindhard-
Thomas-Fermi theory for Coulomb screening and excha
terms, and leads to a screening parameterb(Tm)'0.5. A
first-order melting following from Eq. ~3! occurs atTm
'1.57Ecaz'0.15Ka3, which is equivalent to melting ac
cording to the Lindemann-criterion with a Lindeman
numbercL'0.2; in good agreement with experimental a
numerical results. At the melting transition dislocations p
liferate with a high density rm'0.2a22, hence the VL is
saturated with dislocations.

Now we are in the position to address the effect of
random pinning potentialVpin(r ), in the presence of which
the dislocation-freevortex array is collectively pinned an
exhibits three different spatial scaling regimes:~i! Small dis-
tances where vortex displacementsu are smaller than the
coherence lengthj and perturbation theory applies.23 ~ii ! In-
termediate scales wherej&u&a and disorder potentials
seen by different FL’s are effectivelyuncorrelated. This re-
gime is captured in so-called random manifold~RM!

models,2,7 leading to a roughnessG̃(r )5^(u(r )2u(0))2&
.a2(r /Ra)2zRM, wherezRM'1/5 for thed53 dimensional
RM with two displacement components. The crossover sc
to the asymptotic behavior is thepositional correlation
length Ra where the average displacement is of the order
the FL spacing:u'a. ~iii ! The asymptotic Bragg glass re
gime where thea-periodicity of the FL array becomes im
portant for the coupling to the disorder and the array is
fectively subject to aperiodic pinning potential with period
a.13 Here the logarithmic roughness G̃(r )
'(a/p)2ln(er/Ra), i.e., zBrG5O(log)13,7 takes over.

In a disordered system atT50 the mechanism for dislo
cation proliferation is fundamentally different from the the
mal melting discussed before. While thermal melting is go
erned by theentropy gain due to unbinding dislocations
pairs, theT50 transition is driven by FLL adjustment t
disorder. Disorder distorts the FLL giving rise to significa
elastic stresses; dislocation proliferation releases th
stresses, and leads to energy gain through the disloca
degrees of freedom. It has been shown in Refs. 11 and
that the three-dimensional~3D! BrG phase isstable with
respect to dislocation formation. As we will show, instabi
ties arise from the subasymptotic regimes. To handle ana
cal difficulties and to provide a unified treatment through
scaling regimes, we develop an approach to the 3D prob
based on aneffective random stress modelwhich has the
same displacement correlations as the full nonlinear dis
dered model but allows for aseparationof dislocation and
elastic degrees of freedom. This idea is motivated by
renormalization group~RG! for the two-dimensional~2D!
BrG which explicitly shows it renormalizes asymptotical
into a random stress model24 and has been used in Ref. 25
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show the instability of the 2D BrG with respect to
dislocations.7,25 For simplicity we consider auniaxial FLL
model ~in the incompressible limitc11@c66) which yields
the same dislocation energetics as the isotropized t
component model. The Hamiltonian is

H@u#5E
r
H 1

2
K~“u!21s•“uJ , ~4!

wheres(r ) is therandom stress fieldwhich we assume to be
Gaussian distributed with a second moments i(k)s j (k8)
5d i j S(k)(2p)3d(k1k8) characterized by the functio
S(k) in Fourier space. The effective random stresses cau
displacements with the same~two point! correlations as
those for the RM or BrG regime are

S~k!5H BrG:
1

2
K2k21a2

RM: BRMK2k21a2~kRa!22/5

~5!

~the exact crossover determining the numerical constantBRM
is nontrivial26!. The validity of the random stress model
well-established in 2D. Besides, the functional RG treatm
of the BrG ind542e dimensions shows that displacemen
asymptotically obey Gaussian statistics up to the first or
in e,27 which can always be modeled by an effective rand
stress field.

We calculate the free energy of an ensemble of dislo
tion linesRi(s) with the densityb(r )5( ib*dsdRi /ds from
the Hamiltonian~4! analogously to.28 In the random stress
model the Hamiltoniandecouplesinto the elastic part and a
dislocation part:

HD@b#5E
r
E

r8

K

2
br•br8G0~r2r 8!1E

r
br•gr , ~6!

where G0(r )51/(4pr ) is the 3D Green’s function. Here
g(r ) is an effectiverandom potentialfor dislocation lines
defined by the transversal part ofs through“3g5sT @cf.
~Ref. 25!#. The energy Eq.~6! contains the long-range elast
energyEs of dislocations in the first term and in the stocha
tic second term the disorder energyEdis which allows dislo-
cations to gain energy by optimizing their paths. The dis
cation disorder energy is completely determined by the
displacement correlations through gi(k)gj (k8)

5d i j
1
2 S(k)k22(2p)3d(k1k8) in the different regimes

given by Eq.~5!. For a single directed dislocation line, th
Hamiltonian~6! reduces to the problem of a directed elas
line with a logarithmic dispersion in a random potential th
is long-range correlated described by Eq.~5!. For a directed
dislocation of lengthLz and confined in the transversal d
rection to a scaleL, the mean-square disorder energy flu
tuations are

Edis
2 ~Lz ,L !;H BrG: Ec

2LzL

RM: Ec
2LzLS L

Ra
D 2/5

.
~7!

These expressions give an estimate of thetypical disorder
energy a dislocation line can gain. They neglectrare fluctua-
tions in the energy gain from optimally positioning the di
o-

ng

t

r

-

-

-
L

t

-

location in the transversal plane which give logarithmic c
rections;O(ln L).12 The optimal path of the dislocation i
rough uD;Lz

zD with an exponentzD . The roughness can b
obtained by a Flory argument equating the elastic ene
from the deformationeD(L)uD

2 /L and the disorder energ
Edis

2 (Lz5L,uD)1/2 on one large length scale set by the fluc
tuation wavelengthL. This yieldszD(BrG)512O(log2/3)
and zD(RM)5 15

13 2O(log10/13), where logarithmic correc-
tions come from the dispersion of the stiffness and rare fl
tuations. SincezD(BrG)<1, the BrG is marginallystable
against penetration of asingle directed dislocation11,12

whereaszD(RM).1 such that the random manifold i
clearly unstable. Note that the scaling arguments of Ref. 1
taking into account rare fluctuations give the same re
regarding the stability of the BrG phase as our Flory arg
ment.

Given the stability of the BrG against spontaneous form
tion of a single dislocation at weak disorder we present
mechanism for the destruction of the topologically order
BrG phase at increased disorder strengths or magnetic fie
The mechanism is based on the above result that within
mains of subasymptotic sizeL,Ra the FLL is unstable to a
spontaneous formation of dislocations. This can indeed l
to the proliferation of infinitely long dislocations in aweak
first-order phase transition where dislocation elements
laterally confined by afinite dislocation density to scalesL
,1/Ar. Thus the characteristic dislocation densityrc

;Ra
22 at the transition is given just by the crossover scaleRa

below which instabilities can occur. The discontinuities
this transition are small and may eventually disappear
weak disorder if the length scaleRa becomes of the order o
typical sample dimensions. The random stress model ena
us to quantify this idea by estimating typical free-ener
minima of the dislocation ensemble. The screened lon
range elastic energy density and the core energy density
the ~neutral! dislocation ensemble with density 2r are given
by eD(r)52r„Ec1(Kb2/4p)ln(1/ar1/2)… as in Eq.~3! at T
50. Dislocations are confined to a transversal scaleRD
.r21/2 set by the distance to the next dislocation. The d
order energy gain is optimized against the elastic deform
tion on each longitudinal scaleLp.RD(RD /Ra)22/15 ~RM!
or Lp.RD ~BrG! independently. Lp is the collective pinning
length of the dislocation. Using Eq.~7! with Lz5Lp and L
5r21/2 for the BRG regime (r,Ra

22) and theRM regime
(r.Ra

22), we can estimate the corresponding minimal fre
energy densities

f ~r!'eD~r!2H BrG: 2ABrGEcr

RM: 2ARM

Ec

a2
~ra2!

13
15S a

Ra
D

4
15

.
~8!

The prefactorsA[ABrG.ARM are related toBRM and the
exact crossover in Eq.~5! and are not known exactly; forA
'8 ~corresponding toBRM'7), we obtain good agreemen
with experiments in estimates below. When both results
Eq. ~8! are combined one indeed finds a local minimum
the free-energy density atr5Ra

22 that characterizes an
amorphous VG phase. Over a wide range of magnetic fie
the dislocation density in the amorphous VG is muchlower
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than in the VL for which we have foundr'0.2a22 above.
The elastic BrG phase loses stability with respect to dislo
tion proliferation and a transition into an amorphous V
phase if the local minimum atr5Ra

22 becomes the globa
free-energy minimum. This occurs via a weak first-ord
transition above a magnetic fieldBBrG given by a criterion
Ra /a5C with a ‘‘Lindemann-number’’C5exp(A21). This
is identical to the Lindemann criterion obtained in Refs. 1
and 10 and equivalent10 to the more familiar form
^„u(a)2u(0)…2&5cL

2a2 ~see Ref. 8! with cL'exp„(1
2A)/5…'0.25 forA'8.

So far, we have derived the free energies~3! and ~8! and
identified three possible characteristic minima:~i! The
dislocation-free minimum atr50 which is stable in the elas
tic BrG phase at lowT and low H. ~ii ! The minimum atr
;a22 that becomes stable in the disorder-free case for h
T in the VL. ~iii ! A minimum atr'Ra

22 which is realized in
the amorphous VG. Combining our results for the therm
melting and the disorder-induced ‘‘melting,’’ we have o
tained a qualitative theory for theentirephase diagram of the
vortex matter.

Moreover, this provides a framework for a natural exp
nation of the experimentally observedcritical endpoint of
the first-order melting line: At elevated fields the position
correlation lengthRa decreases10 and finally reachesRa;a
such that the two free-energy minima of the VL and t
d

-

r

h

l

-

l

amorphous VG mustmerge. Both these phases become the
modynamically indistinguishable and have identicalequilib-
rium lattice order. Above the critical endpoint there mig
still exist adynamictransition~or crossover! which involves
the thermal depinning of dislocations, similar to the we
known thermal depinning transition of, for example, a sing
pinned vortex line. The exact location of the critical en
point, obtained from the condition that the amorphous V
minimum of Eq. ~8! moves away fromr5Ra

22 to higher
dislocation densities, is determined by the conditionRa /a
5exp(2 1

2113A/15) ~which is again equivalent to a Linde
mann criterion, with a slightly largercL). This gives an es-
timate BBrG /Bcp5exp„2 8

15 (4A/1521)…'0.6 for A'8,
which is in qualitative agreement with the experiments14

BBrG is the instability field of the BrG~see above! and thus
the ‘‘coexistence point’’ where the topological transition lin
ends in the first-order melting line and all three phases
elastic BrG, amorphous VG, and VL — can coexist.
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