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Lindemann criterion and vortex lattice phase transitions in type-II superconductors
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We discuss the destruction of vortex lattice order in type-II superconductors by random point pinning and
thermal fluctuations based on Lindemann criteria. The location of the melting line and the order-disorder
transition, which marks the destruction of the topologically ordered Bragg glass phase and is the reason for the
second peak effect, is calculated. We focus on a comparative discussion of different versions of Lindemann
criteria and, with regard to experiment, on a comparative discussion of three classes of type-II
superconductors—low-Tc , anisotropic high-Tc , and layered high-Tc materials. Specific attention is paid to the
role of nonlocal magnetic interlayer couplings and the softening of elastic moduli at high magnetic fields,
which is crucial for low-Tc materials. We also discuss in detail the competing mechanisms of thermal depin-
ning and temperature dependence of the pinning strength through microscopic parameters as well as the
crossover between single vortex and bundle pinning for low-Tc materials.
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I. INTRODUCTION

Influence of quenched random pinning on the crystall
order of the vortex lattice in type-II superconductors is
issue of longstanding interest for theory and experiment
cause structural properties of the vortex lattice immedia
influence quantities crucial for applications, e.g., critical c
rents and electrical resistance. The flux line array in highTc
superconductors ~HTSC’s! such as Bi2Sr2CaCu2O81x
~BSCCO! or YBa2Cu3O72x ~YBCO! is extremely suscep
tible to thermal and disorder-induced fluctuations due to
interplay of several parameters such as high transition t
peratureTc , large magnetic penetration depthl and short
coherence lengthj, and a strong anisotropy of the materia
This leads to the existence of a variety of fluctuation dom
nated phases of the flux-line array and very rich phase
grams for the HTSC materials.1–3 But also in low-Tc mate-
rials such as 2H-NbSe2 ~NbSe! structural instabilities of the
vortex lattice produce analogous effects in the critical c
rent, however, in much closer vicinity to the upper critic
field Hc2 as compared to high-Tc materials.

Upon increasing the temperature across the melting t
sition of the vortex lattice the critical current goes to ze
and superconductivity is destroyed by thermal fluctuations
the vortex lines. The existence of a melting transition of
flux-line lattice ~FLL! into an entangled vortex liquid~VL !
was first proposed by Nelson.4 Observations of hystereti
resistivity switching and magnetization measurements5 have
experimentally supported a first-order melting of very cle
lattices. Calculations for the locus of the melting line ha
been mainly based on the use of the Lindemann crite
^u2&T5cL

2a2, which estimates the root-mean-square therm
displacement fluctuations (^u2&T)1/2 of a vortex element a
the melting transition as a fractioncLa of the FLL spacinga
with a Lindemann numbercL'0.2. The phenomenologica
Lindemann criterion has proven very successful in desc
ing experimental melting curves, and refined theoreti
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evaluations of^u2&T have been presented for anisotropi6

and strongly layered7 HTSC materials. Recently two meltin
theories going beyond a Lindemann analysis have been
posed offering two complementary mechanisms for the v
tex lattice melting. In Ref. 8 a self-consistent analysis
anharmonicities beyond the elastic deformation of the F
leads to a melting instability, in Ref. 9 a theory of
dislocation-mediated vortex lattice melting is put forward

Since the work of Larkin and Ovchinnikov,10 the influ-
ence of quenched pointlike pinning centers on the vor
lattice and the nature of the collectively pinned FLL ha
been subject of intense theoretical interest. It was argue
Refs. 11 and 12 that weak point disorder drives the vor
lattice into a vortex glass~VG! state with zero linear resis
tivity, which has been supported by experimental findings13

In weak collective pinning theory according to Ref. 1
disorder-induced relative displacements grow
^@u(r )2u(0)#&2;r 42d in d-dimensional space, i.e., th
pinned FLL is described by the roughness exponentz5(4
2d)/2. This would lead to an instability with respect to th
proliferation of topological defects such as dislocations
the FLL ~Ref. 14! such that weak point disorder was believ
to destroy the crystal order of the FLL. However, the arg
ment does not take into account that the results of Ref. 10
modified for displacements exceeding the coherence len
j. On larger length scales the growth of relative displa
ments first crosses over to a power law with a somew
smallerz,12 before a very slowlogarithmicgrowth sets in on
the largest scales.15,16 In the absence of dislocations th
leads to a VG phase that maintains quasi-long-range tran
tional order with power-law Bragg singularities in the stru
ture factor and has thus been called ‘‘Bragg glass’’~BrG!.16

In Refs. 16–18 it has been argued that the elastic BrG
stable against dislocation formation at low magnetic field

Upon increasing the magnetic field the vortex lattice so
ens and the point disorder strength effectively increases
sufficiently high magnetic fields the BrG becomes unsta
©2004 The American Physical Society01-1
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and dislocations proliferate.9,17,18 Various experimental sig
natures can be attributed to the resulting order-disorde
amorphization transition into a high-fieldamorphousVG.
Neutron-diffraction measurements on BSCCO~Ref. 19!
show a destruction of the characteristic power-law Bra
peaks at higher fields. Also transport measurements
YBCO ~Ref. 20! indicate a crossover from the first-ord
melting at low magnetic fields to a continuous VG-VL tra
sition that can be related to the order-disorder transit
within the vortex solid. The occurrence of a very sharp s
ond peak in magnetic hysteresis measurements on BSCC21

YBCO,22 or NbSe~Ref. 23! at a well-defined second pea
field can be interpreted as another hallmark of the ord
disorder transition from a low-field elastic BrG to the hig
field amorphous VG. The second peak is associated wi
rise of the critical current across this transition which is d
to an onset of plastic deformation. It has been shown in R
24 that plastic degrees of freedom depin at lower curr
densitiesj but below the depinning threshold barriersU( j )
; j 2m are higher, i.e.,m is larger for plastic creep, which ca
explain the rise in the apparent critical current that manife
in the second peak. This corresponds to the intuitive pict
that the additional plastic deformation allows better adju
ment of the pinned FLL configuration thus leading to larg
critical currents.

Analogously to the case of thermal melting, progress
predicting the locus of the order-disorder or amorphizat
transition has mainly been made by using generalized p
nomenological Lindemann criteria.25–32 Derivations of Lin-
demann criteria have been given in Refs. 17 and 9 by stu
ing the onset of the instability of the BrG with respect
spontaneous generation of disorder-induced dislocati
Whereas Refs. 25–30 and 32 focus on high-Tc materials
such as BSCCO or YBCO, Ref. 31 addresses also lowTc
materials such as NbSe. In this paper we want to critica
review the Lindemann analysis for the three representa
materials BSCCO, YBCO, and NbSe with BSCCO as a ty
cal strongly layered high-Tc compound with weak Josephso
coupling, YBCO as a typical moderately anisotropic hig
Tc , and NbSe as a typical weakly anisotropic low-Tc type-II
superconductor. On the one hand, we want to emphasize
common approach via the Lindemann analysis; on the o
hand, the comparative study will show that each of the th
mentioned classes of superconductors exhibit peculiar
that have to be taken into account in the analysis. At l
magnetic fields, when the vortex spacinga becomes larger
than the magnetic penetration depthl, we have to pay spe
cific attention to the role of nonlocal electromagnetic co
plings. This becomes particularly important for BSCCO w
its weak Josephson coupling where the order-disorder tra
tion takes place at such low fields. In low-Tc materials, on
the other hand, the softening of elastic moduli at high m
netic fields is particularly relevant because both melting l
and the order-disorder transition are located close to the
per critical fieldHc2. An important point in interpreting ex
periments is also a detailed knowledge of the tempera
dependence of the order-disorder transition line, which
determined by an interplay between the temperature de
dence of microscopic parameters entering the pinn
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strength and the effective weakening of the pinning poten
by ‘‘thermal smearing’’ due to thermal motion of the vortice
which can give rise to thermal depinning.1 Often one or the
other source of temperature dependence can be negle
For example, in low-Tc materials depinning temperatures a
very close toTc and the temperature dependence throu
microscopic parameters is more important whereas in h
Tc materials thermal depinning is the dominating effect.

The paper is organized as follows. First we will discu
the Lindemann criteria for thermal and disorder-induc
melting transitions in Sec. II. In a system subject
quenched disorder the Lindemann criterion can be form
lated in two slightly different versions both of which can b
interpreted in terms of the underlying melting mechanis
Thermal and quenched fluctuations can actindependently
from each other in destroying the lattice order or they can
cooperatively. In Sec. III we will show how the Lindemann
criterion for melting of the vortex lattice can be reformulat
in terms of fluctuations ofsinglevortices of a certain length
the single-vortex length L0, that is set by the interaction
within the FLL. In Sec. IV we discuss how the properties
single-vortex fluctuations are strongly modified if the non
cal electromagnetic coupling cannot be neglected. This
comes crucial in the Lindemann analysis for the stron
high-Tc layered materials, e.g., BSCCO. In Sec. V w
present the Lindemann analysis for thermal melting in
absence of quenched disorder, first for YBCO and NbSe,
then for BSCCO. In order to study the order-disorder
amorphization transition that is caused by quenched p
disorder employing the single-vortex Lindemann criteri
we have to discuss the pinning of single vortices which
done in Sec. VI. Within weak collective pinning theory di
cussed in Sec. VI A, the characteristic length scale set by
frozen-in point disorder is thecollective pinningor Larkin
length Lc . We have to carefully distinguish several pinnin
regimes depending on the size of the pinning lengthLc in
comparison to the single-vortex lengthL0 and the layer spac
ing d in a layered material. ForLc.L0 we havebundle pin-
ning for Lc.L0 andsingle-vortex pinningfor Lc,L0 which
are discussed in Sec. VI B. ForLc,d the layered structure
becomes relevant for the pinning, and there is a crosso
from weak collective pinning tostrong pinningof pancake
vortices which is discussed separately in Sec. VI C. The L
demann analysis is complicated by the fact that the pinn
strength is temperature dependent through two differ
mechanisms. We have a temperature dependence of the
ning strength through the microscopic parameters~such asl
or j) but we also have smearing or weakening of disorder
thermal fluctuations above thedepinning temperature Tdp .
Therefore we have to carefully discuss the temperature
pendence of the crossover between the different pinning
gimes for the three exemplary materials throughout Sec.
Having clarified the different pinning regimes we can pe
form the Lindemann analysis for the order-disorder or am
phization transition driven by the quenched point disord
This task is split into two parts. In Sec. VII we discuss t
analysis forT50 depending on magnetic fields and pinnin
strength. Finally, in Sec. VIII, we discuss the influence
thermal fluctuations and perform the Lindemann analysis
1-2



e
ia

e
i-
-

st
th
er

a
o
s
et

ex

tic
ct
n
a
te
ui

ly

be
g

ila

he
th

er

a
v

-I

ss

e
al

r-
we

ed
r the
hat
oint

mal
l

the

hed

-

ere
he
are
Eq.
d
-

st
G
e

os-
to
ht:
r

elt-

LINDEMANN CRITERION AND VORTEX LATTICE . . . PHYSICAL REVIEW B 69, 024501 ~2004!
T.0, i.e., in the familiarB-T plane. In the Appendix we
provide a set of values for material parameters used for
timates throughout the text for all three exemplary mater
and a list of symbols~Table I!.

II. LINDEMANN CRITERION

The phenomenological Lindemann criterion has prov
successful6,7 in determining the locus of the melting trans
tion for the first-order thermal melting transition. At suffi
ciently low disorder strength or low magnetic fields the fir
order thermal melting transition can also be found in
presence of point disorder. In its conventional form for th
mal fluctuations the Lindemann criterion is formulated as

^u2&T5cL
2a2, ~1!

whereu is the displacement of vortex elements and^•••&T
the purely thermal average in theabsenceof quenched dis-
order. The Lindemann numbercL is introduced here as
phenomenological parameter that is supposed to depend
weakly on the specific lattice parameters of the solid pha
in particular it is assumed to be independent of the magn
field. In principle its value can be determined byab initio
melting theories going beyond a Lindemann analysis, for
ample, in Ref. 9 a valuecL'0.2 is found for dislocation-
mediated vortex lattice melting. The Lindemann numbercL
can also be determined from simulations of the vortex lat
melting transition. Early Monte Carlo studies of an intera
ing line model33 find a melting transition with a Lindeman
number that depends weakly on the magnetic field with v
ues cL'0.2 over a wide field range. Path integral Mon
Carlo simulations of the corresponding lattice to superfl
transition of two-dimensional~2D! bosons34 give a Linde-
mann number cL'0.25. Finally, carefully equilibrated
Monte Carlo simulations of the three-dimensional uniform
frustrated, anisotropicXY model35 give a value of cL
'0.18. All these findings suggest that a Lindemann num
cL'0.2 is appropriate for the thermal vortex lattice meltin
For the disorder-induced transition we will assume sim
values of the Lindemann number.

For thermal fluctuations the main contribution to t
mean-square displacement comes from fluctuations with
shortest wavelength of the order of the vortex spacinga.
Therefore one can rewrite the Lindemann criterion for th
mal melting~1! as

^Du2~a,0!&T5^@u~a,0!2u~0,0!#2&T5cL
2a2, ~2!

whereu(R,z) is the displacement of the vortex element
r5(R,z), anda is a unit vector of the hexagonal Abrikoso
lattice. z is the coordinate parallel to the magnetic fieldH
which is directed along the c axis of the anisotropic type
superconductor in the usual experimental situation,Huuc. In
the form ~2!, the Lindemann criterion is alocal criterion
where thermal fluctuations in the bond lengtha1Du(a,0)
connecting nearest neighbors are used to indicate the lo
global positional order of the FLL. In the form~2! the Lin-
demann criterion can also be applied to situations wh
^u2&T is formally diverging as, for example, in the therm
02450
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melting of a two-dimensional lattice and to the orde
disorder transition due to quenched point disorder that
will discuss now.

There are two possibilities to generalize criterion~2! in
order to include phenomenologically the disorder-induc
quenched displacement fluctuations as possible cause fo
destruction of the vortex crystal. To see this we first note t
at finite temperatures and in the presence of quenched p
disorder the displacement has two partsu5up1uth in the
notation of Ref. 1. The quenched partup is due to pinning
and does not average to zero upon performing the ther
average:up5^u&. The partuth5u2^u& describes therma
fluctuations around the pinning part. Thus^uth

2 &5^u2&
2^u&2 is the thermal part andup

25^u&2 the disorder part of
the mean-square fluctuations. By using a tilt symmetry of
vortex system36 one can establish that^uth

2 & is unchanged by
the quenched disorder, i.e.,^uth

2 &5^u2&T . However,uth is
not Gaussian distributed as in the absence of quenc
disorder.37

The first possibility to generalize criterion~2! is to replace
^Du2(a,0)&T5^Duth

2 (a,0)& by thefull mean-square displace
ment ^Du2(a,0)&5^Duth

2 (a,0)&1^Dup
2(a,0)& in Eq. ~1!:

^Du2~a,0!&5^Du2~a,0!&T1^Du~a,0!&25cL
2a2. ~3!

This procedure is suitable if temperature~or entropy! and
quenched disorder actcooperativelyin generating topologi-
cal defects in the FLL. It corresponds to a scenario wh
there is onlyone topologically disordered phase beyond t
BrG instability, and the VL phase and the amorphous VG
thermodynamically identical phases. A criterion such as
~3! would shift the thermal melting line to lower fields an
lead to acrossoverof the thermal melting line into the amor
phization transition line as soon aŝ Du2(a,0)&T

5^Du(a,0)&25cL
2a2 at a temperatureTx , see Fig. 1. A Lin-

demann criterion of the form~3! has been assumed in almo
all previous Lindemann analysis of the Br
stability.25–28,30–32It can also be formulated in terms of thre
characteristic energies of a vortex lattice unit cell,29,32 the
temperatureT, a characteristic energyEpl}cL

2 necessary for

FIG. 1. Schematic phase diagram~neglecting reentrance at low
fields! illustrating the two scenarios corresponding to the two p
sible generalizations of the Lindemann criterion. Left: According
Eq. ~3! if temperature and point disorder act cooperatively. Rig
According to Eqs.~2!, ~4!, and~5! if temperature and point disorde
cause distinct phase transitions. The dashed line is the thermal m
ing line in the absence of quenched disorder according to Eq.~2!.
The temperatureTx is defined by ^Du2(a,0)&T5^Du(a,0)&2

5cL
2a2.
1-3
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JAN KIERFELD AND VALERII VINOKUR PHYSICAL REVIEW B 69, 024501 ~2004!
plastic deformation of the FLL, and a characteristic pinni
energyEpin ~equations forEpl andEpin will be given below!
asT1Epin5Epl .

A different possibility to generalize criterion~2! is based
on a mechanism where temperature and quenched diso
do not act cooperatively but lead to twodistinct instabilities
of the BrG, for example instabilities with respect to disloc
tion loops on two different length scales. Such a mechan
has been advocated in Ref. 9 where temperature leads
instability with respect to a dislocation array of high disl
cation densityr;a23, which can be interpreted as a V
phase saturated with small dislocation loops. On the o
hand, quenched disorder leads to an instability with resp
to a much smaller dislocation density that is essentially
by a large pinning length~the positional correlation length
see Ref. 9! and characterizing the amorphous VG. Havi
such a scenario in mind one would rather generalize Eq.~1!
by introducing a second criterion which considers only
pinning-induced displacements

^Du~a,0!&25cL
2a2, ~4!

giving the locus of the disorder-induced or amorphizat
transition line. The locus of the thermal melting line is st
given by Eq.~1! or ~2! and unchanged by quenched disord

Within the scenario where quenched disorder and ther
fluctuations act independently, one consequently argues
two distinct topologically disordered phases, the VL and
amorphous VG~at least close to the stability region of th
quasiordered BrG, where we expect Lindemann criteria
work, at higher fields a critical end point can occur9!. This
suggests that the locus of the VG-VL transition is given b
third Lindemann-like criterion

^Du2~a,0!&T5^Du~a,0!&2, ~5!

and we have three-phase coexistence for^Du2(a,0)&T

5^Du(a,0)&25cL
2a2 at the temperatureTx , see Fig. 1. Only

in the Lindemann analysis of Ref. 29 this second general
tion of the Lindemann criterion has been employed con
tently although in Ref. 25 a criterion equivalent to Eq.~5! is
applied to calculate the irreversibility line@but the BrG phase
boundary is calculated using Eq.~3! in Ref. 25#. In Ref. 29
the two Lindemann criteria were formulated in terms of t
three characteristic energies that we introduced above.
can writeT5Epl equivalent to Eq.~1! as criterion for ther-
mal melting, the BrG-VL transition.Epin5Epl correspond-
ing to Eq.~4! is the criterion for the order-disorder transitio
line between VL and amorphous VG. FinallyT5Epin
equivalent to Eq.~5! is the criterion for the VG-VL transi-
tion.

Within a dislocation-mediated melting theory it is inde
possible to give some qualitative arguments supporting
view that quenched disorder and thermal fluctuations actin-
dependentlyrather than cooperatively in destroying the la
tice order. For dislocation-mediated melting it is expec
that a first-order transition into a VL phase without a
short-scale translational order has to correspond to a p
transition where a dense array of dislocations (r;a23) en-
ters the sample. On the other hand, in the presence
02450
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quenched disorder dislocation lines gain disorder energy
optimizing their position and shape. However, in a den
dislocation array with dislocation distances or dislocati
loop sizes of the order of the lattice spacinga also the opti-
mization of position and shape can only take place over
tances of the order ofa, and thus give only small additiona
disorder energy gains compared to the entropic terms. T
suggests that quenched disorder is an irrelevant perturba
and that thermal fluctuationŝuth

2 & alone should be consid
ered in the Lindemann criterion, as in Eq.~1!. On the other
hand, for the melting induced by quenched disorder, ther
fluctuations are irrelevant because in the three-dimensio
FLL ^uth

2 & is independent of system size and thus not dive
ing in the thermodynamic limit. Therefore we expect tem
perature to be an irrelevant perturbation at this order-diso
or amorphization transition that causes only thermal sme
ing of the disorder but does not change the nature of
transition.1 This suggests that as in Eq.~4! disorder-induced
fluctuations^u&2 alone should be considered in the Lind
mann criterion. Note that effects of thermal smearing
taken into account already in expressions such as^u&2 due to
the thermal preaveraging.

The situation is more subtle for related models of elas
manifolds intwo dimensions.38,39 There it has been demon
strated rigorously that below a depinning temperature th
mal fluctuations are irrelevant and the transition driven
quenched disorder is in the same universality class as
correspondingT50 transition. As in three dimensions tem
perature influences this transition only by thermal smear
below the depinning temperature.39 This low-temperature be
havior can also be qualitatively understood by using a L
demann criterion where only disorder-induced fluctuatio
^u&2 are considered. Above the depinning temperature, h
ever, thermal fluctuations change the renormalization-gr
flow equations. In a qualitative Lindemann analysis this b
havior can only be obtained by the use of a Lindemann
terion analogously to Eq.~3! where both sorts of fluctuation
act cooperatively.

If the dimensionality is further decreased and we consi
a one-dimensionalsinglevortex it is well known1 that disor-
der even becomes irrelevant forn.2 wheren is the number
of components of the vortex displacement field. For t
physical case ofn52 disorder is only marginally relevant
and it is the competition between quenched and thermal fl
tuations that leads to an exponential increase in the cross
scale between the short-scale regime dominated by the
fluctuations and the large-scale regime dominated by di
der fluctuations, the pinning lengthLc(T) @cf. Eq. ~43! be-
low#. In this sense, quenched disorder and thermal fluc
tions always act cooperatively on single vortices. Theref
we expect the cooperative Lindemann criterion to eventu
govern the physics in the very diluted regime where the th
mal melting fieldbm drops below the single-vortex pinnin
field bsv .

We want to conclude this section by comparing the res
ing phase diagrams if the criterion~3! based on cooperative
action of quenched and thermal fluctuations is used or
criteria ~2!, ~4!, and~5! where quenched and thermal fluctu
1-4
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LINDEMANN CRITERION AND VORTEX LATTICE . . . PHYSICAL REVIEW B 69, 024501 ~2004!
tions act independently. In Fig. 1 it is shown that natura
the stability boundary of the BrG phase is at slightly low
fields within the scenario of cooperatively acting fluctu
tions. At low T, when thermal fluctuations have no effec
and close toTc both scenarios give identical results. Th
differences become most pronounced around the temper
Tx of three-phase coexistence in the second scenario o
dependently acting fluctuations. Based on the arguments
sented before we will employ the approach ofindependently
acting quenched and thermal fluctuations, i.e., the crit
~2!, ~4!, and~5! throughout this paper which have also be
used in Ref. 29 for BSCCO and which are supported by
melting theory presented in Ref. 9.

III. SINGLE-VORTEX LENGTH AND LINDEMANN
CRITERION

Local Lindemann criteria of the form~2!–~5!, which are
probing fluctuations of changes in bond lengthDu(a,0) be-
tween nearest neighbors, can be reformulated in terms o
fluctuations of a single vortex line of a certain length whi
is set by the interactions with its nearest neighbors. T
length scale is the so-calledsingle-vortex length L0 ~in the
notation of Ref. 1!, which can be obtained within the elast
description of the FLL in terms of the displacement fie
u(r ) with an elastic Hamiltonian that contains tilt, shear, a
compression modes and associated elastic modulic44, c66,
andc11, see for example Refs. 1 and 2. Over a wide range
parameters the vortex lattice is practically incompressib
c11@c66, such that transversal shear displacements are m
larger than the longitudinal compression displacements
given temperature or quenched randomness. Therefore
can neglect the longitudinal displacement modes for w
follows, and we consider a vortex line participating in
shear deformation on the scale of the vortex lattice unit
R5a perpendicular to the vortex line and on a scaleL along
the vortex line~we denote perpendicular scales byR and
scales parallel to the vortex line byL). The corresponding
wave vectors areuK u5KBZ in the direction perpendicular to
the vortex where KBZ'2Ap/a is the ~circularized!
Brillouin-zone radius andq51/L in thez direction along the
vortex line. The single-vortex scaleL0 is determined by op-
timizing the sum of the tilt and shear energy of the vort
lattice unit cell Etilt 1Eshear5c44(KBZ,1/L)a2u2/L
1c66Lu2 with respect to the lengthL which gives

L0.aS c44~KBZ,1/L0!

c66
D 1/2

.S « l~1/L0!

c66
D 1/2

~6!

(. is used if numerical prefactors are neglected!, where we
have to take into account the dispersion of the tilt modu
c445c44(K,q) whereas the shear modulus is approximat
dispersion-free. BecauseK.1/a represents the shorte
wavelengthc44(1/a,q).« l(q)/a2 is given by the single-
vortex line tension« l(q). The length scaleL0 sets the typical
scale along the vortex line over which a single vortex c
freely fluctuate relative to its neighbors. Fluctuations
larger scales are suppressed by the vortex interaction.
effective single-vortex model has also been called ‘‘ca
02450
r
-

ure
n-
re-

ia

e

he

is

f
,
ch
a

we
t

ll

s
y

n

is
e

model’’25,29 because a vortex line is trapped in a hexago
cage by the interaction with its nearest neighbors on sc
larger thanL0. On scales smaller thanL0 the cage is large
enough for the vortex line to freely fluctuate.

As the vortex lattice is essentially incompressible the el
tic vortex lattice fluctuations are dominated by transver
shear and tilt modes which are described by the transve
part GT(K ,q) of the elastic vortex lattice Green’s function

GT~K ,q!5c66K
21c44~K,q!q2. ~7!

Tilt and shear contributions always enter the final results
thermal and disorder-induced displacement fluctuati
through the elastic Green’s function~7! as a rescaling of
length scales inz direction shows.3 Therefore the elastic
Green’s function~7! governs the scaling of tilt and shea
contributions, and for a given wave vectorK of shear defor-
mation only tilt deformations withq.K@c66/c44(K,q)#1/2

are accessible at comparable deformation energies both
thermal and disorder fluctuations. Thus the scaling of tilt a
shear deformations due to Eq.~7! leads to the following re-
sult for displacementsDu(L)[Du(0,L)5u(0,L)2u(0,0)
andDu(R,0)5u(R,0)2u(0,0):

^Du2~R,0!&T5^Du2~0,L !&T ,

^Du2~R,0!&5^Du2~0,L !&, ~8!

if the lengthR in direction perpendicular to the vortex line
andL in direction parallel to the vortex lines are related
L.R@c44(1/R,1/L)/c66#

1/2. According to Eq.~6!, the single-
vortex length scaleL0 is defined such thatL5L0 and the
vortex lattice spacingR5a in the perpendicular direction
form such a pair of length scales. Therefore we can use
~8! to rewrite the Lindemann criteria~2!–~5! as

^Du2~a,0!&T5^Du2~0,L0!&T ,

^Du2~a,0!&5^Du2~0,L0!&. ~9!

To calculate mean values ofDu(L0)5u(0,L0)2u(0,0),
however, we only need to know single-vortex properties
scalesL,L0 @the relative fluctuations ofDu(L0) are also
identical to the total fluctuationsu of a vortex of lengthL
5L0]. Hence, fluctuations of a single vortex up to the sc
of the cage length are identical to relative fluctuations of t
neighboring vortices. The local character of the Lindema
criteria ~2!–~5! becomes even more obvious.

If the Lindemann criterion is formulated in terms of thre
characteristic energies as in Refs. 29 and 32 they also ref
the energies of a vortex fluctuation of wavelengthL0 parallel
and wavelengtha perpendicular to the vortex line. The typ
cal thermal energy of such a fluctuation isT. The typical
energy for a plastic deformation can be estimated by
elastic energy corresponding to a deformation withu5cLa
which is Epl.« l(1/L0)cL

2a2/L0. The typical pinning energy
is estimated by the elastic energy corresponding to the t
cal pinning-induced displacementu5^Du(a,0)&2 which is
Edis.« l(1/L0)^Du(a,0)&2/L0. It becomes clear that the cri
1-5
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teria T5Epl , T1Edis5Epl , Edis5Epl , and T5Epin are
equivalent to the Lindemann criteria~2!–~5!.

In the following we calculate the single-vortex lengthL0
from Eq. ~6!. The result of this calculation will be

L0.H «a~12b!21/2 for a,lab

aS a

lab
D 23/4

expS 1

2

a

lab
D for a.lab ,

~10!

whereb5B/Bc252pjab
2 /a2 is the reduced magnetic induc

tion, lab is the magnetic penetration depth, and«5lab /lc
the anisotropy ratio of the type-II superconductor. Sm
logarithmic corrections are neglected in Eq.~10!. In the di-
lute limit (a.lab) and in the dense limit (a,lab) very
close to the upper critical field 12b!1 the single-vortex
length becomes very large. In both cases this is due
softening of the lattice and a corresponding decrease inc66,
however for slightly different reasons. At low fields the vo
tex interaction decreases exponentially with increasinga/lab
leading to a softening, at extremely high fields softening
due to the effective increase of the magnetic penetra
depth l̃ab5lab(12b)21/2 by the large normal cores of th
vortices2 and an effective decrease of the vortex-vortex
teraction by a factor (12b).40 The influence of the softening
at high fields on the single-vortex lengthL0 has been missed
in Ref. 31 giving misleading results regarding the locus
the amorphization transition line for low-Tc materials such
as NbSe where this effect becomes very important beca
melting and amorphization transition lines are both loca
in the vicinity of the upper critical field.

To calculateL0 from Eq. ~6! we need the shear modulu
c66 and the single-vortex line tension« l(q). The shear
modulusc66 is given by2,40

c66'5
«e0

4a2
~12b!2 for a,lab

«0

a2
Ap

6 S a

lab
D 3/2

expS 2
a

lab
D for a.lab

~11!

and exponentially decreasing in the dilute limit. The full e
pression for the dispersive vortex line tension is2

« l~q!'
«0~12b!

2 F «2lnS 1

KBZ
2 jab

2 1«2jab
2 q2D

1
~12b!

q2lab
2

lnS 11
q2lem

2

11q2u2D G , ~12!

where«05(F0/4plab)
2 is the characteristic line energy of

vortex, andjab is the coherence length. The first term ste
from the Josephson coupling between the line elements
is local whereas the second term originates from the elec
magnetic interaction of line elements, and is thus stron
nonlocal. The scale
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lem5lab~12b1KBZ
2 lab

2 !21/2.min$lab~12b!21/2,a%
~13!

gives the length scale below which the nonlocality of t
electromagnetic contribution sets in. It turns out to be r
evant only in the dilute regimea.lab wherelem'lab . u is
a typical displacement and the corresponding correction t
in Eq. ~12! is due to nonlinear elastic effects. Factors of
2b) in the expression~12! for the line stiffness result from
extending the elastic theory for the FLL to higher magne
fields b.0.25 by replacinglab by an effective magnetic
penetration depth

l̃ab5lab~12b!21/2 ~14!

that takes into account a renormalization due to the la
normal cores of the vortices.2 This also led to the replace

ment of «0 by «̃05«0(12b) in Eq. ~12!. Using Eqs.~11!
and ~12! in Eq. ~6! we obtain the above result~10! for the
single-vortex lengthL0.

The dispersive behavior of the single vortex line deser
some further attention. In the local limit~for wave vectors
q,1/lem) the stiffness becomes nondispersive and« l

.«0@«21(12b)lem
2 /lab

2 #; the electromagnetic part dom
nates for all fields witha.«lab where the stiffness takes o
its isotropic value« l.«0. In particular, the electromagneti
part governs the behavior in the whole dilute limita.lab .
On the smallest scales@q.1/«l̃ab5(12b)1/2/«lab#, the Jo-
sephson contribution always dominates and we find an
sentially nondispersive~we neglect a small logarithmically
dispersive correction! but anisotropic stiffness« l.«0(1
2b)«2. On intermediate scales 1/lem,q,1/«l̃ab the elec-
tromagnetic coupling dominates but it is reduced by disp
sion until it is finally cut off by the Josephson contribution
q'1/«l̃ab . In this regime we find« l.«0(12b)2/q2lab

2 .
As can be seen from Eq.~10! the single-vortex lengthL0

is alwayssmaller than «lab(12b)21/2 in the dense regime
a,lab . This means that in the whole dense regime the e
tromagnetic coupling is completely suppressed by the dis
sion becauseL0 is small enough that all fluctuations withq
,«l̃ab are suppressed by the caging effect. Therefore,
need to consider large-scale fluctuations withq,«l̃ab only
in the dilute limit where we can neglect factors of (12b)
and set

lem'lab . ~15!

Finally, this leads us to the following simplified expressio
for the line stiffness which are justified if prefactors an
logarithmic corrections are not crucial and valid only for t
relevant fluctuationsq,1/L0 which are not suppressed b
the cage effect:
1-6
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« l~q!.5
a,lab : «0~12b!«2

a.lab : 5
«0 for q,

1

lab

«0

q2lab
2 for

1

lab
,q,

1

«lab

«0«2 for q.
1

«lab
.

~16!

IV. SINGLE-VORTEX FLUCTUATIONS
AND ELECTROMAGNETIC COUPLING

As already pointed out we can use Eq.~9! to calculate the
averages in the Lindemann criteria~2!–~5! by considering
single-vortex fluctuations up to the scaleL0 set by the vortex
interaction. As the simplified expression~16! shows there are
no further complications from nonlocal couplings in th
dense regimea,lab because the essentially nondispers
Josephson coupling governs the behavior up to the scalL0
in this regime.

This, however, changes if the dilute limita.lab is con-
sidered where competing effects of Josephson and ele
magnetic coupling between vortex elements have to be ta
into account as Eq.~16! shows. The effects for single-vorte
fluctuations due to temperature and quenched disorder
discussed in detail elsewhere.41 For a self-contained discus
sion we will present here the main results.

Due to the competing nonlocal electromagnetic and lo
Josephson coupling there is a window of wave vect
1/lab,q,1/«lab in the dilute limit a.lab where the line
stiffness is strongly dispersive with« l(q)}q22, see Eq.~16!.
In the limit of a very weak Josephson coupling«→0 the
dispersion of the electromagnetic contribution persists do
to the shortest length scale, which is then set by the la
distanced. For the fluctuation behavior in the dilute limit th
largest possible wave vector showingq22 dispersion is im-
portant. In a layered material this isqd.1/max$d,«lab% and
we introduce a correspondingdispersion length scale

Ld5max$d,«lab%5labmax$«d ,«%, ~17!

where

«d5
d

lab
~18!

is an effectivelayered anisotropyof the material. For the
short-scale fluctuations it is important to distinguish betwe
two classes of superconductors depending on the streng
the Josephson coupling or the size of«. Superconductors
with a strong Josephson coupling«.«d have Ld.«lab ;
YBCO falls into this class and of course all low-Tc materials
such as NbSe without layered structures. On the other h
superconductors with aweakJosephson coupling«,«d have
Ld.d. But it has to be noted that even if«,«d at T50 the
Josephson coupling becomes strong above a temperatu

td512~«/«d!2 ~19!
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because«d}(12t), wheret5T/Tc is the reduced tempera
ture. For typical parameters for BSCCO,«'1/200, d
'15 Å, lab'2000 Å, and Tc'100 K one finds that
BSCCO has a weak Josephson coupling at low temperat
but the Josephson coupling becomes strong aboveTd
'36 K.

Considering only fluctuations with wave vectors 1/lab
,q,qd one can show that due to the predominantly el
tromagnetic coupling each vortex segment of lengthlab ef-
fectively decouplesinto small segments of lengthLd that
fluctuate independently in a harmonic potential.42 Therefore,
the vortex line becomes very soft with respect to fluctuatio
on the short scaleLd . This holds for thermal fluctuations a
well as for fluctuations due to pinning. In particular, th
leads both for thermal and for fluctuations from quench
point disorder to a breakdown of scaling in the displacem
correlations. For L.Ld displacements ^Du2(L)&T or
^Du2(L)& essentially donot grow over a certain regime o
length scales~neglecting eventual weak logarithmic corre
tions!. Furthermore, on scalesL.lab , ^Du2(L)&T or
^Du2(L)& can be calculated in the conventional way usi
the isotropic stiffness« l(q).«0 but short-scale contribution
^Du2(Ld)&T and ^Du2(Ld)& have to be taken explicitly into
account. Specifically, we find forL5L0 ~the following equa-
tion holds analogously for thermal averages^•••&T)

^Du2~L0!&

.H ^Du2~L0!&« for d,L0,«lab

^Du2~Ld!& for Ld,L0,lab

^Du2~L0!& i1^Du2~Ld!& for L0.lab ,

~20!

where the subscript ‘‘« ’’ implies that only large wave vectors
q.«lab are integrated over and thus the average is p
formed using the anisotropic stiffness« l(q).«0«2 and
analogously the subscript ‘‘i ’’ implies that only small wave
vectorsq,lab are integrated over and thus the average
performed using the local limit of Eq.~16! where the stiff-
ness is isotropic« l.«0.

According to the Lindemann criteria~2!–~5! in conjunc-
tion with Eq. ~9! the vortex phase diagram is determined
the displacement fluctuations of a single-vortex on scaleL
,L0. From Eq.~20!, the structure of the phase diagram wi
regard to the dominant scale of these single-vortex fluct
tions becomes clear, see Fig. 2. In the dense regimea,lab
the essentially nondispersive anisotropic Josephson pa
« l(q) is always dominating. Then the largest scaleL0 in the
cage model is the dominant scale of fluctuations as in
first line of Eq. ~20! but we have to include possible high
field corrections and use« l(q).«0(12b)«2 in the dense
limit. Evaluation of the Lindemann criteria will show tha
this produces the upper branches of both the melting and
amorphization transition line in the regimea,lab of the
B-T plane, see Fig. 2.

In the dilute limit a.lab the situation becomes mor
complicated becauseL0 grows exponentially witha, see Eq.
~10!, and thusL0.lab essentially in the whole dilute limit.
Then effects from the nonlocal electromagnetic coupling
1-7
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FIG. 2. Schematic diagrams in theb-t plane~the dilute regime is enlarged! showing the dominant scales for displacement fluctuation
a single-vortex of lengthL0. For YBCO and NbSe fluctuations on the largest scaleL0 dominate in the dense regime and determine the up
branches of the melting and order-disorder transition lines. BSCCO exhibits quasi-2D behavior in large parts of the dense regime
tions on the exponentially large scaleL0 also determine the lower branches of transition lines deep in the dilute regime for YBCO, N
and BSCCO. The continuation of the upper branches of the transition lines into the dilute regime, however, is determined by fluctu
the scaleLd ; for YBCO and NbSeLd5«lab whereas for BSCCOLd5d at low temperatures.
th
th
he
rg
e
on
o

,
in
f
e
4

ht
n
e

ate
to

ive

with
ch
a
and
the
c-
ors

ant

f one
come relevant and according to Eq.~20! fluctuations from
two scales—L0 andLd5max$d,«lab%—are dominant. Evalu-
ation of the Lindemann criteria shows that fluctuations on
scaleLd give the continuation of the upper branch of bo
the melting and the amorphization transition line into t
dilute regime whereas fluctuations on the exponentially la
scaleL0 give the lower branches of both transition lines, s
Fig. 2. Thus the nonlocal electromagnetic coupling is resp
sible for the typical phase diagrams with reentrant liquid
amorphous vortex phases that we will find, see Figs. 3
and 7. Experimentally, lower branches of neither the melt
nor the order-disorder transition line could be observed so
in the dilute regime. Therefore we will focus on the upp
branches throughout this paper. Given the results in Ref.
a calculation of the lower branches is in principle straig
forward but actually very involved as the full fluctuatio
behavior including the interplay of thermal and quench
fluctuations over all length scales is very diverse.
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As the previous discussion showed, in order to calcul
the upper branches of the transition lines, we only need
consider single-vortex fluctuations with the nondispers
anisotropic stiffness« l(q).«0(12b)«2 from the Josephson
coupling as long as we have strong Josephson coupling
Ld5«lab as for YBCO and NbSe. Only for the upper bran
of the transition lines in the dilute limit for BSCCO with
weak Josephson coupling dispersion becomes crucial,
we have to take into account fluctuations on the scale of
layer spacingLd5d. This means we have to consider flu
tuations of a single pancake vortex relative to its neighb
in adjacent layers.

Quasi-2D behavior of the vortex lattices becomes relev
for melting processes as soon asL0,d when the tilt energy
can be neglected against the shear energy on the scale o
layer spacingd. The crossover conditionL0,d is fulfilled
for b.b2D above the2D crossover field
al

er

w
s-
FIG. 3. Schematic phase diagrams for therm
melting of the vortex solid~VS! into a vortex
liquid ~VL ! in the absence of quenched disord
for NbSe, YBCO, and BSCCO. For BSCCO
above the crossover fieldb2D there is a decou-
pling into a 2D VS prior to melting.~The dilute
regime is enlarged, the reentrance at very lo
fields is shown for completeness but not di
cussed in the text.!
1-8
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b2D.
2p

k2
maxH «2

«d
2 ~12b!21,1J , ~21!

where we used Eq.~10! and neglected a logarithmi
correction.1 k5lab /jab is the Ginsburg-Landau paramete
For a strong Josephson coupling«.«d the crossover field is
in the dense regime and has a temperature depend
b2D(12b2D)}(12t)21. From Eq.~10! one derives that for
«.d/5jab we alwayshaveL0.d and there is no crossove
to quasi-2D behavior. This condition is actually fulfilled fo
YBCO with typical parameters«'1/5, d'12 Å, and jab
'15 Å. Therefore we will exclude the possibility of 2D be
havior for YBCO in our subsequent discussions of melt
and order-disorder transitions. For a weak Josephson
pling «,«d the 2D crossover field is approximately equal
~actually slightly below! the field b52p/k2 at which a
5lab , i.e., the boundary between the dilute and dense
gime. This means for a weak Josephson coupling, e.g
BSCCO belowTd'36 K, the vortex lattice melting show
quasi-2D behavior in the whole dense limit. It is expect
that as soon as the melting or the amorphization transi
line intersects the lineb2D(t) the character of the melting o
amorphization process changes from 3D linelike to quasi
and decoupling of the FLL happens prior to the meltin
which is then a 2D melting transition.

However, it has been a long-standing question7 whether
already the dominance of fluctuations on the scaleLd5d
given by the layer spacing~for weak Josephson coupling
e.g., in BSCCO! in the dilute regime leads to a qualitative
different melting transition. Because these decoupl
quasi-2D fluctuations dominate the mean-square displ
ments in the Lindemann criterion for melting one can arg
that melting and decoupling happen in a single transition
in other words, that the FLL melts or becomes amorphousby
decoupling. The argument against this point of view is th
L0.d still holds and pancake vortex lattices in different la
ers are interacting logarithmically.42 For the thermal melting
transition it has been convincingly demonstrated in Ref.
that even in the absence of a Josephson coupling«50 there
is still a 3D lattice melting at low magnetic fieldsB,B2D .
However, this subtle issue is beyond the scope of the Lin
mann criteria employed in this paper. For the case of
amorphization transition in the presence of disorder
analogous question is still unanswered.

A two-dimensional BrG phase has been shown to beal-
ways unstable with respect to dislocation formation in t
presence of disorder44 such that the decoupling transitio
leads directly to a 2D amorphous VG if amorphization do
not happen prior to decoupling. At this point it should al
noted that a Lindemann-like criterion analogous to Eq.~4!
would give the incorrect result regarding the instability of t
2D BrG phase as it would predict the existence of an am
phization transition and thus of a quasiordered 2D BrG ph
below a critical disorder strength.

Figure 2 summarizes the findings of this section regard
the relevant length scales for the fluctuations causing mel
or amorphization for the three exemplary materials we w
to study in this paper. YBCO has a strong Josephson c
02450
nce

u-

e-
in

d
n

D
,

g
e-
e
r,

3

e-
e
e

s

r-
e

g
g
t

u-

pling and Ld5«lab , BSCCO a weak Josephson couplin
and thusLd5d for temperaturesT,Td , and in the low-Tc
material NbSe there is no layered structure at all~formally
corresponding to«d'0) andLd5«lab .

V. THERMAL MELTING

First we want to briefly recapitulate the calculation
thermal melting curves in the absence of disorder accord
to the Lindemann criterion~2! or the equivalent criterion

^Du2~L0!&T5cL
2a2 ~22!

formulated in terms of displacement fluctuations of a sing
vortex on scalesL,L0 using Eq.~9!, to which we apply our
results of the preceding section for the length scales of
relevant fluctuations causing melting. For thermal melti
we will reproduce the well-known results of Ref. 6 for a
isotropic materials and Ref. 7 for strongly layered materia
We rederive these results as part of the complete phase
gram and to demonstrate the simplicity and correctness
the present approach. The results are summarized in F
for NbSe, YBCO, and BSCCO.

A. YBCO and NbSe

YBCO and NbSe are both anisotropic type-II superco
ductors and have qualitatively similar melting curves as lo
as the layered structure of YBCO can be neglected. Fluc
tions are larger in the high-Tc material YBCO due to the
increased transition temperatures (Tc'90 K for YBCO and
Tc'6 K for NbSe! and lower coherence lengths (jab
'20 Å in YBCO andjab'100 Å in NbSe! which lead to a
Ginsburg number1

Gi5
1

8 S Tc

««0jab
D 2

~23!

which is Gi'1.531022 for YBCO but much smaller Gi
'1.731026 in NbSe. Therefore, the vortex lattice melting
the low-Tc material NbSe takes place only at high fields
the vicinity of Hc2, see Fig. 3.

As pointed out in Sec. IV, the Josephson coupling dom
nates throughout the dense regimea,lab and thus we use
the anisotropic line stiffness« l(1/L0).«0(12b)«2 and L0
.«a(12b)21/2 from Eq. ~10! to obtain

^Du2~L0!&T.
TL0

« l
.a2S b

2p D 1/2

~12b!23/2
T

««0jab
.

~24!

With the Lindemann criterion~22! this gives for the upper
branchbm(t) of the melting line the well-known result6,1

bm

~12bm!3
.

p

4
cL

4Gi21~12t !t22. ~25!

For b!1 the factors 12b can be neglected andbm}(1
2t)t22 or Bm}(12t)2t22. Close to the upper critical field
for 12b!1, this yields
1-9
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12bm.S p

4 D 21/3

cL
24/3Gi1/3~12t !21/3t2/3. ~26!

If the upper branch of the melting line is continued in
the dilute limita.lab fluctuations on the scaleLd dominate
the expectation value in the Lindemann criterion~22!,
^Du2(L0)&T.^Du2(Ld)&T . YBCO and NbSe have a stron
Josephson coupling and thusLd5«lab . On the scale«lab ,
we use again the anisotropic line stiffness« l(1/«lab)
.«0«2 and get

^Du2~«lab!&T.
T«lab

« l
.a2

b

2p
k

T

««0jab
. ~27!

Thus the Lindemann criterion gives the upper branchbm(t)
of the melting line in the dilute limit as

bm.
p

A2
cL

2k21Gi21/2~12t !1/2t21 ~28!

or Bm}(12t)3/2t21.7

B. BSCCO

The strongly layered BSCCO has a weak Josephson
pling at temperatures belowTd'36 K. The upper branch o
the melting line should intersect the 2D crossover lineb2D(t)
around the 2D melting temperature of a superconduc
layer Tm

2D'd«0/70.1 Taking again d'15 Å and lab

'2000 Å as typical parameters for BSCCO, one findsTm
2D

'10 K which is well belowTd . This means that at the tem
peratureTm

2D the 2D crossover line is at the boundary to t
dense regime, see Eq.~21!, such that the upper branch of th
3D melting line lies entirely in the dilute regime, see Fig.

In the case of a weak Josephson coupling atT50 another
phase diagram for the 3D thermal melting is possible ifd and
« are such thatTm

2D.Td . In this case the upper branch of th
melting line will enter the dense regime before the melt
transition turns into 2D melting, and the phase diagram lo
qualitatively similar to that of YBCO. But for clarity of pre
sentation we will limit the discussion here to the situati
Tm

2D,Td that arises for a realistic choice of parameters
the BSCCO material.

In the dilute regime, BSCCO exhibits a behavior distin
from YBCO or NbSe due to its weak Josephson coupling
Ld5d. At the upper branch of the melting line fluctuation
on the scale of the layer spacingLd5d dominate the mean
square displacement in Eq.~22! due to the nonlocal electro
magnetic coupling as discussed in Sec. IV, i.e.,^Du2(L0)&T
.^Du2(d)&T . To calculate^Du2(d)&T on the scale of the
layer distance, the fluctuations of single pancakes have t
considered. This can be done in much more microscopic
tail ~see for example Ref. 42! but for our purposes we ca
consider a single pancake coupled to the pancakes in a
cent layers by a harmonic potential« l(1/d)Du2/d, and use
« l(1/d).«0«d

2 from Eq. ~16! ~where we neglected logarith
mic corrections42 in u). We obtain
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^Du2~d!&T.
Td

« l~1/d!
.a2

bk2

2p

T

«0d
~29!

and the Lindemann criterion gives the upper branchbm(t) of
the melting line for BSCCO in the dilute limit as

bm~ t !.A2pcL
2k22Gi2D

21~12t !t21 ~30!

or Bm(t)}(12t)2t21,7 where we used the 2D Ginsbur
number Gi2D52Gi1/2k21«/«d'Tc/100Tm

2D .1 For BSCCO
with Tc'100 K the 2D Ginsburg number is Gi2D'0.096.
For low temperaturest!1, we can rewrite Eq.~30! to get
the melting temperature as function of fieldb,

Tm~b!.Tm
2D70cL

2 2p

bk2
~31!

showing that the transition approaches indeed the 2D mel
transition of a layer upon intersectingb2D'2p/k2 ~if we
choosecL'1/A70), see Fig. 3.

For temperaturesT,Tm
2D the 3D vortex solid first under-

goes a decoupling transition at a fieldbdc into a 2D vortex
solid which undergoes a 2D melting transition atTm

2D . If this
decoupling transition is also described by a Lindemann
terion of the form

^Du2~0,d!&T5cL
2a2 ~32!

as suggested in Refs. 7 and 48, we will get the same for
las ~30! and~31! for the decoupling transition linebdc(t) or
alternativelyTdc(b), which is thus the continuation of th
3D melting line into the 2D regime, see Fig. 3.

VI. PINNING OF SINGLE VORTICES

Before addressing the BrG stability boundaries by us
the Lindemann criterion~4! we want to discuss different pin
ning regimes depending on the strength of the frozen dis
der. We consider a single elastic vortex line with stiffne
« l(q) in a quenched disorder potentialV(z,u) with a Gauss-
ian distribution, zero mean, and short-range correlations
all directions,

V~z,u!V~z8,u8!5gjab
4 d~z2z8!Djab

~u2u8!. ~33!

The parameterg gives the strength of the quenched disord
and is temperature dependent.1 This temperature dependenc
due to the microscopic pinning mechanism will be discus
further below. Usually, we consider point disorder corre
tions of a short rangejab given by the size of the vortex
cores with and an integrable disorder correlatorDjab

(u) that

we normalize such that*d2uDjab
(u)51. Then we can ap-

proximateDjab
(u)'djab

(u) by a d function of rangejab .
For single-vortex pinning, however, the correlation functi
Djab

(u) can be weakly~logarithmically! nonintegrable. This
will only affect the thermal depinning behavior.45

A convenientpinning strength parameterd ~see Ref. 1! is
defined by the ratio of the mean-square pinning ene
Epin

2 (jc).gjab
2 jc for a small line element of lengthL.jc
1-10
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and with typical displacementu.jab and the square of the
corresponding tilt energyEtilt (jc).«0«2jab

2 /jc.«0jc ,

d

«
5

gjab
2 jc

~«0jc!
2

. ~34!

It should be noted that this expression hasno correction fac-
tors (12b) at high fields becauseg} f pin

2 }«0
2 , wheref pin is

the pinning force exerted by a single point defect;1,31 there-
fore corrections due to the replacement«0→ «̃05«0(12b)
in Eq. ~34! cancel.

In a layered material one can consider the analogous
ergies for a segment of lengthL.d, i.e., the mean-squar
pinning energyEpin

2 (d).Up
2 with the pancake pinning en-

ergy

Up5~gjab
2 d!1/2 ~35!

and the square of the corresponding tilt energyEtilt (d)
.« l(1/d)jab

2 /d.«0(«21«d
2)jab

2 /d, see Eq.~16!. Using this
we define an analogouslayered pinning strength paramete
dd as

dd5
Up

2

@«0~«21«d
2!jab

2 /d#2
. ~36!

From the definitions~34! and ~36! it is clear that collective
pinning theory applies to weak pinningd/«!1 anddd!1.
Whereas the former condition is usually fulfilled both in low
Tc materials such as NbSe and anisotropic HTSC’s such
YBCO, the latter condition is violated in layered HTSC
with strong disorder, e.g., in BSCCO. We will call pinnin
with dd.1 strong pinning. Experimental estimates for th
pinning strength can be obtained from measurements of
~single-vortex! critical current j c using the relation j c
. j 0(d/«)2/3, where j 0.c«0 /jabF0 is the depairing
current.1 Due to their larger anisotropy and the intrinsic do
ing typical values for the pinning parameterd/« are usually
higher in the high-Tc materials YBCO and BSCCO
Throughout this paper we assume valuesd/«'1022 for
YBCO ~corresponding to j c'107 A cm22) and much
smaller valuesd/«'1029 for the low-Tc material NbSe
~corresponding toj c / j 0;1026, see Ref. 47!, both well in the
weak pinning regime. For BSCCO we find indeed stro
pinning dd'104@1 using an estimateUp'10 K ~these val-
ues correspond tod/«'0.03).

There are two basic microscopic pinning mechanismsd l
pinning from variations in the mean free path anddTc pin-
ning from variations inTc , which give rise to a different
temperature dependence ofd/«. Without going into details
here it is found1,31 that

d}~12t !3/2 ~d l pinning!, ~37!

d}~12t !21/2 ~dTc pinning!. ~38!

Whereas for high-Tc materials~YBCO, BSCCO! the thermal
smearing of the pinning energy landscape above the de
ning temperatureTdp is much more important because it se
02450
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in at much lower temperatures (Tdp!Tc), the temperature
dependence through the microscopic parameters ofd plays
an important role in low-Tc materials~NbSe! where the de-
pinning temperature essentially coincides withTc .

A. Weak collective pinning

Within weak collective pinning theory the central cros
over length for a single-vortex is thecollective pinning or
Larkin length Lc which is defined as the length scale
which ^Du(Lc)&

25jab
2 at low temperatures. On smalle

scales perturbation theory applies and the disorder pote
can be expanded into random forces~RF!. In this regime the
roughness exponent iszRF53/2, i.e., ^Du(L)&2}L3. Seg-
ments longer thanLc , on the other hand, explore many a
most degenerate minima of the pinning energy landscape
this so-called random manifold~RM! regime we use the es
timate zRM'5/8 for the roughness exponent.49,50 Note that
slightly different estimates forzRM have been used in previ
ous Lindemann analysis; different estimates are discus
theoretically in Ref. 50. References 26 and 27 implicitly u
zRM'1/2 ~from a variational replica approach!, Refs. 28, 29,
31, and 32 usezRM'3/5, and Refs. 25 and 30 usezRM
'5/8 which gives practically identical results tozRM'3/5.
As pointed out in Sec. IV we only need to consider sing
vortex fluctuations with the nondispersive anisotropic J
sephson stiffness and fluctuations of single pancakes on
scaled if we are only interested in the upper branch of t
order-disorder transition between BrG and amorphous
phase.

For pinned single vortex lines with the anisotropic J
sephson stiffness we have at low temperatures the usua
isotropic collective pinning length1

Lc.«jabS d

« D 21/3

~39!

which hasno correction factors (12b) at high fields exactly
like d/«. The displacement fluctuations are given by

^Du~L !&2.jab
2 S L

Lc
D 3

for L,Lc , ~40!

^Du~L !&2.jab
2 S L

Lc
D 5/4

for L.Lc . ~41!

There are two important crossovers upon increasing the
order strength, the crossover from bundle pinning to sing
vortex pinning1 if Lc decreases below the single-vorte
length L0 set by the interaction between vortices and t
crossover from weak collective to strong pinning ifLc drops
below the layer spacingd and we have to consider the stron
pinning of individual pancake vortices.41

At higher temperatures the disorder gets effectively we
ened by thermal fluctuations within the pinning energy lan
scape as soon as^Du2(Lc)&T5jab

2 . This happens at the an
isotropic depinning temperature
1-11
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Tdp.««0jabS d

« D 1/3

~42!

above which an exponential increase of the pinning len
sets in1,45

Lc~T!.Lc

Tdp

T
eC(T/Tdp)a

~43!

with a numerical factorC and an exponenta. For point
disorder with an integrable disorder correlation functi
Djab

(u) one finds a53,1,45 and the numerical factorC

532/p has been determined in Ref. 46. For a weakly n
integrable functionDjab

(u), however, as in the case o
single-vortex pinning it has been shown in Ref. 45 that
exponential growth of the pinning length due to therm
smearing is slightly modified in the temperature rangeTdp
,T,Tdpln k where an exponenta51 is found whereas the
precise value ofC is unknown. The exponenta53 as for an
integrable disorder correlator only holds above the temp
tureTdplnk. The displacement fluctuations forL.Lc(T) be-
come

^Du~L !&2.jab
2 S 11

T

Tdp

Lc~T!

Lc~0! D S L

Lc~T! D
5/4

. ~44!

Note that thermal depinning plays no role in low-Tc materi-
als where««0jab;1000 K atT50, and the depinning tem
perature practically coincides withTc if the temperature de
pendence of the microscopic parameterslab andjab is taken
into account andTdp is calculated self-consistently from Eq
~42!.

B. Single vortex versus bundle pinning

For L0,Lc pinned vortices on the scale of the pinnin
length are already interacting and the collectively pinned
jects are vortex bundles rather than single vortices.1 The re-
gime L0,Lc is calledbundle pinningregime. For our pur-
poses bundle pinning simply means that on the scale of
single-vortex length, single-vortex displacements are s
treated correctly by the perturbative RF regime~40!. On the
other hand, forL0.Lc the pinned objects on the scale of th
pinning length are single-vortex lines rather than bund
The regimeL0.Lc is therefore calledsingle-vortex pinning
regime. In this regime the RF regime does no longer ap
on the single-vortex scaleL0 but we rather have to apply th
findings ~41! for the RM regime. For the following discus
sion of different materials it is crucial to know thesingle-
vortex pinning field bsv where the crossover between sing
vortex and bundle pinning happens within the pinni
diagram in theb-d plane. For our purposes, we can focus t
discussion on the dense regimea,lab , in the dilute regime
single-vortex pinning is dominant because interactions
come exponentially weak. AtT50 the conditionL05Lc for
bsv gives

bsv~12bsv!.2pS d

« D 2/3

~45!
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using Eqs. ~10! and ~39!. This equation produces two
branches for the single-vortex pinning fieldbsv . For b!1,
where the factor (12b) can be neglected in Eq.~45!, we find
for the lower branchbsv

l }(d/«)2/3 and close to the uppe
critical field 12b!1, where the factorb can be neglected in
Eq. ~45!, an upper branch 12bsv

u }(d/«)2/3, see Fig. 4. For
d/«,k23 the lower branch enters the dilute regimea.lab

wherebsv
l }k22ln22(k21d21/3); this is the generic situation

for NbSe. Ford/«.(8p)23/2'0.008 there is only single-
vortex pinning; typical disorder strengths for YBCO an
BSCCO have similar values.

Values for the pinning parameterd/« are higher in the
high-Tc materials YBCO and BSCCO and the amorphizati
transition line atT50 will lie in the single-vortex pinning
regime whereas they are much lower in the rather isotro
low-Tc materials such as NbSe where the amorphizat
transition line typically starts out in the bundle pinning r
gime at T50, see Fig. 4. For low-Tc materials the lower
branch of the single-vortex pinning boundarybsv

l is usually
in the dilute regimea.lab due to the small disorder strengt
whereas in the high-Tc materials it is in the dense regimea
,lab . This is the experimental situation that we will assum
throughout the following discussion of the different materia
and that is sketched in Fig. 4.

The temperature dependence of the linesbsv is rather dif-
ferent depending on whether the depinning temperatureTdp
is much smaller then the critical temperatureTc as in the
high-Tc materials YBCO and BSCCO or whether it prac
cally coincides withTc as in the low-Tc superconductor
NbSe, see Fig. 5. Therefore the thermal weakening of di
der above the depinning temperature, which gives an ex
nential increase of the pinning length, is the dominant eff
for high-Tc superconductors. The temperature depende

FIG. 4. Schematic pinning diagram in theb-d plane showing the
single-vortex pinning fieldbsv at low temperatures~the dilute re-
gime is enlarged!. Due to their larger anisotropy typical values fo
the pinning parameterd/« are usually higher in the high-Tc mate-
rials YBCO and BSCCO and lie in the single-vortex pinning regim
~right hatched region!. They are lower in the low-Tc materials such
as NbSe and lie typically in the bundle pinning regime~left hatched
region!. The linebt(d) shows the amorphization transition line i
the dense regime as described by Eq.~59! for bundle pinning and
Eq. ~61! for single-vortex pinning. For very weak pinningd/«
,cL

3 as in NbSe this line is in the bulk pinning regime, for strong
disorder as in YBCO and BSCCO it lies in the single-vortex
gime.
1-12
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FIG. 5. Schematic pinning diagram in theb-t
plane showing the temperature dependence of
single-vortex pinning fieldbsv for d l pinning
~solid lines! anddTc pinning ~dashed lines!. For
the high-Tc materials YBCO and BSCCO ther
mal smoothing above the depinning temperatu
Tdp governs the temperature dependence ofbsv .
For the low-Tc material NbSe the temperature d
pendence of the pinning parameterd(t) itself
@Eqs.~37! and ~38!# is most relevant.
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through the microscopic parameters~37! or ~38! can be ne-
glected for these materials as long asTdp /Tc is small. In this
situation we have to use the conditionL05Lc(T) with Lc(T)
from Eq. ~43! above the depinning temperatureTdp . This
gives in the dense regime

bsv~12bsv!.2pS d

« D 2/3S Tdp

T D 2

e22C(T/Tdp)a
~46!

from which we derive an exponentially decreasing low
branch bsv

l (T)5bsv
l (0)(Tdp /T)2exp@22C(T/Tdp)

a# @by
neglecting factors of (12b) in Eq. ~46!# and an exponent
ially increasing upper branch 12bsv

u (T)5@12bsv
u (0)#

3(Tdp /T)2exp@22C(T/Tdp)
a# @by neglecting factors ofb in

Eq. ~46!# as shown in Fig. 5. At temperatures slightly abo
Tdp the lower branch enters the dilute regimea.lab . Note
that for high-Tc materialsbsv

l (T) typically starts out in the
dense regime forT50. The thermal weakening of disorde
aboveTdp has been neglected in Ref. 32 although high-Tc
materials with potentially rather lowTdp have been consid
ered.

On the other hand,Tdp /Tc is no longer small for the low-
Tc superconductors whereTdp /Tc'1, and in these material
the temperature dependence of the pinning length comes
clusively through the temperature dependence of the pinn
strength~37! or ~38!. Using this in Eq.~45! we find bsv

l (t)
}(12t) and 12bsv

l (t)}(12t) for d l pinning andbsv
l (t)

}(12t)21/3 and 12bsv
l (t)}(12t)21/3 for dTc pinning in

the dense regime. Ifbsv
l (T) starts out in the dilute regime fo

T50 the lower branch for d l pinning is bsv
l (T)

}k22ln22@k21d21/3(12t)21/2# and stays in the dilute re
gime, see Fig. 5. FordTc pinning the lower branch will ente
into the dense regime at a temperature 12t.(d/«)2k6 in
this case, see Fig. 5. Note that these results are very diffe
from what has been obtained in Ref. 31 where factors
2b) in the expression forL0 have been neglected.

C. Pinning of pancake vortices

On the smallest scale in a layered superconductorL5d
we can no longer discuss fluctuations of vortexlines. Then
we have to consider the relative displacementsu[Du(d)
between single pancake segments of the vortex line in
neighboring layers and discuss the pinning of single panc
vortices.28,41,51,52For large disorder strength and weak J
sephson coupling as it occurs typically in BSCCO, it is po
sible thatdd.1, which is equivalent toLc,d as becomes
clear from the definition~36! of dd . In this case the pinning
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of pancake vortices becomes particularly interesting beca
we cross over to a regime where pinning is no longer a sm
perturbation but we havestrong pinningof pointlike pancake
vortices. To calculatêDu2(d)&T on the scale of the laye
distance, we consider as in Sec. V B a single pancake w
displacementu coupled to the pancakes in adjacent layers
a harmonic potential« l(1/d)u2/d, but with an additional pin-
ning potentialVd(u)5dV(0,u).

Using an Imry-Ma argument28,41,51,52 one can estimate
^u&2 for strong pinning (dd.1) at low temperatures as fol
lows. A vortex with displacementu can exploreN5u2/jab

2

pinning sites with statistically independent disorder config
rations. Doing so it can gain a pinning energyEpin(u)
.2Upln1/2(u2/j2) that can be determined from the cond
tion N*

2`
Epin(u)dE p(E);1. In the Imry-Ma argument the to

tal energy E(u)5Epin(u)1(1/d)« l(1/d)u2 is minimized.
The optimal disorder-induced displacement fluctuationu in
the ground state is

u2.
dUp

« l~1/d!
ln21/2S u2

j2D . ~47!

Solving the last equation iteratively yields

^u&2.jab
2 dd

1/2ln21/2~dd
1/2!. ~48!

The corresponding ground-state energyE0.Epin(u) is

E0.2Upln1/2~dd
1/2! ~49!

whereas the typical elastic energy sets an energy scaleU*
.(1/d)« l(1/d)u2,

U* .Upln21/2~dd
1/2!, ~50!

which is the typical size of elastic energy barriers betwe
different metastable states.

Equation~48! is a nonperturbative result which holds fo
^u&2.jab

2 , which is exactly the conditiondd.1 for strong
pinning. Otherwise perturbation theory applies and one fi

^u&2
RF.jab

2 dd , ~51!

which is the perturbative RF result for weakly pinned pa
cake vortices.

Thermal fluctuations weaken the pinning and lead to th
mal depinning of pinned pancakes. The characteristic de
ning temperatures, however, are different for the cases
strong pinning (dd.1) and weak pinning (dd,1). For
strong pinning the relevant depinning temperature is set
1-13
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JAN KIERFELD AND VALERII VINOKUR PHYSICAL REVIEW B 69, 024501 ~2004!
the typical barrier heightU* , and the depinning happen
in the temperature intervalU* ,T,uE0u.41,52 For weak
pinning thepancake depinning temperature Tdp,d is deter-
mined in the usual way by the condition^u2&T.jab

2 which
gives

Tdp,d.« l~1/d!jab
2 /d5Updd

21/2. ~52!

For weak pinning the resulting thermally weakened displa
ments are41

^u&2
RF'jab

2 ddS 11
T

Tdp,d
D 22

. ~53!

For strong pinning the result~48! is valid up to a temperature
T.U* at which the thermal energy becomes sufficient
overcome barriers between minima of the pinning ene
landscape. ThereforeU* is the depinning temperature fo
strongly pinned pancake vortices. ForU* ,T,uE0u there is
a crossover region where a modified random force result
plies that decreases exponentially with increasing temp
ture before it crosses over to the thermally weakened ran
force result~53!:41

^u&2
RF.5

jab
2 ddS 11

T

U*
D 22

expS 22
T

U*
D

for U* ,T,uE0u

jab
2 ddS Tdp,d

T D 2

for T.uE0u.

~54!

What remains to be considered for strong pinning are
displacements on scales larger thand, i.e., the caseL.d
.Lc . At low temperatures, we are in the RM regime at
scalesL.d such that

^Du&2~L !.^Du&2~d!S L

dD 2zRM

, ~55!

where ^Du2&(d) is given by Eq.~48!, and zRM'5/8. This
result stays valid up to temperaturesU* where the strongly
pinned pancakes thermally depin. At this temperature
thermally increased pinning length grows beyond the la
spacing Lc(U* )5d, increases~double! exponentially for
U* ,T,uE0u, and crosses over to the weak pinning res
~43! for T.uE0u. The details of the~double-! exponential
increase ofLc(T) in the temperature intervalU* ,T,uE0u
for strong pinning are given in Ref. 41. The displaceme
^Du&2(L) for U* ,T,uE0u are as in Eq.~44! given by

^Du&2~L !.^Du2&T@Lc~T!#S L

Lc~T! D
5/4

~56!

but with the altered strong pinning behavior of the pinni
lengthLc(T). For T.uE0u Eq. ~44! applies again.

VII. ORDER-DISORDER TRANSITION AT TÄ0

In the presence of quenched point disorder the Lindem
criterion ~4! for the stability of the BrG and thus the locatio
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of the order-disorder transition can be written as

^Du~L0!&25cL
2a2, ~57!

where we used Eq.~9!. As for thermal fluctuations we only
need to consider displacement fluctuations of single vorti
on scalesL,L0 using the results for pinned single vortice
introduced in the preceding section. In this section we w
to consider the caseT50 and study the order-disorder o
amorphization transition linebt(d) as function of the pinning
strength only. The resulting phase diagrams in theb-d plane
are shown in Fig. 6 for NbSe, YBCO, and BSCCO.

A. NbSe, YBCO

At T50 the anisotropic type-II superconductors YBC
and NbSe have essentially identical phase diagrams in
b-d plane if pinning is weak enough that a vortex is colle
tively pinned over distancesLc.d and the layered structur
of YBCO can be neglected.

For weak pinning in the dense regimea,lab we use the
weak collective pinning theory and the anisotropic stiffne
from the Josephson coupling, i.e., Eq.~40! for bundle pin-
ning or Eq. ~41! for single-vortex pinning to evaluate th
left-hand side~lhs! ^Du(L0)&2 of the above Lindemann cri
terion. For very weak pinning the transition line will be i
the bundle pinning regime where we useL0.«a(12b)21/2

from Eqs.~10! and ~40! to obtain

^Du~L0!&2.jab
2 S L0

Lc
D 3

.a2S b

2p D 21/2

~12b!23/2
d

«
.

~58!

This result is interesting because it means that the Lin
mann criterion~57! gives a order-disorder transition lin
bt(d) leading to areentranceof the amorphous VG within
the dense regimea,lab as long as we have bundle pinnin
We find upper and lower branches of the reentrant transi
line bt(d),

12bt
u.~2p!1/3cL

24/3S d

« D 2/3

,

bt
l.2pcL

24S d

« D 2

, ~59!

which meet atbt51/4 such that there is no transition line
the bundle pinning regime for disordersd/«.0.13cL

2 , see
Fig. 6. Using the conditionL05Lc for bsv , one finds that the
order-disorder transition linebt(d) intersects the single
vortex pinning linebsv(d) for cL

2a25^Du(Lc)&
25jab

2 and
thus leaves the bundle pinning regime at a fieldbt52pcL

2

and a disorder strengthd/«'cL
3 , see also Fig. 4. Therefore

the peculiar reentrant behavior can only be found forbt

52pcL
2,1/4 or Lindemann numberscL,(8p)21/2'0.2.

Note that our results for weak pinning in the dense regi
are very different from the results of Ref. 31 as we trea
high-field correction factors (12b) correctly. As indicated in
Fig. 6, NbSe typically has a very small pinning parame
such that the upper order-disorder transition field is given
1-14
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FIG. 6. Schematic phase diagram for NbSe and YBCO in theb-d/« plane, and for BSCCO in theb-dd plane ~the dilute regime is
enlarged, the reentrance of the amorphous VG at very low fields is shown for completeness but not discussed in the text!. The diagram also
contains the single-vortex pinning fieldbsv marking the boundary between single-vortex pinning and bundle pinning, cf. Fig. 4. The ha
regions indicate a range of realistic disorder strengths for each material, cf. Fig. 4. The BrG is stable in the dark shaded regions.
and YBCO the order-disorder transition linebt is given by Eq.~59! for bundle pinning and Eq.~61! for single-vortex pinning. Note that in
the bundle pinning regime there can be an upper and lower branch leading to a reentrant amorphous VG phase. For YBCO w
disorder we haveLc,d, and the upper branch of the order-disorder transition line in the single-vortex regime is given by Eq.~66! and~68!.
For BSCCO the order-disorder transition is given by Eqs.~69! and~70!. The decoupling transition linebdc , which is the continuation of the
order-disorder transition line above the 2D crossover fieldb2D .
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the bundle pinning result~59!. The lower transition field is
then located within the dilute regimea.lab , and not given
by Eq. ~59!.

For stronger disorderd/«.cL
3 , as it is typical for YBCO,

there will be another transition line in the dense regim
which lies in the single-vortex pinning regime at magne
fields bt,2pcL

2 , see Fig. 6. This part is found from Eq
~41! and ~10!,

^Du~L0!&2.jab
2 S L0

Lc
D 5/4

.a2S b

2p D 3/8

~12b!25/8S d

« D 5/12

.

~60!

For single-vortex pinning, the Lindemann criterion~57! only
gives an upper branch of the order-disorder transition
bt(d) at

bt
u.2pcL

16/3S d

« D 210/9

, ~61!

where we used 12b!1 becausebt
l,2pcL

2!1 in the single-
vortex regime. We conclude that there will be a reentranc
the amorphous VG and the BrG as function of the magn
field for disorder strengthscL

3,d/«,0.13cL
2 , see Fig. 6, if

the Lindemann numbercL is sufficiently small. Only the re-
sult ~61! for the order-disorder transition line in the singl
vortex pinning regime, which can be more generally writt
as

bt
u;cL

2/(12zRM)S d

« D 22zRM/3(12zRM)

, ~62!
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has been obtained in all previous Lindemann analysis25–32

which differ only in the estimates used forzRM .
On the continuation of the upper branch of the ord

disorder transition line into the dilute limita.lab fluctua-
tions on the scaleLd5«lab govern the displacement fluctua
tions in the Lindemann criterion~57!, i.e., ^Du(L0)&2

.^Du(«lab)&
2. Only for single-vortex pinning disorder is

strong enough (d/«.cL
24/5k9/5) that the upper branch of th

amorphization line lies in the dilute regime. Thus we u
Eqs.~41! and ~10! to obtain

^Du~«lab!&
2.jab

2 S «lab

Lc
D 5/4

.a2
b

2p
k25/4S d

« D 5/12

,

~63!

which gives with the Lindemann criterion the upper bran
of the order-disorder transition in the dilute regime,

bt
u.2pcL

2k25/4S d

« D 25/12

. ~64!

B. YBCO

The YBCO phase diagram in theb-d plane is qualita-
tively different from the NbSe diagram only for such stron
disorder that the collective pinning length drops below t
layer spacingLc,d, see Fig. 6. This happens ford/«
.(«j/d)35(«/«dk)3 @or dd5(d/«)(k«d /«)3.1, see Eqs.
~34! and ~36!# in the single-vortex pinning regime; for ge
neric disorder strengths in YBCO this also happens bef
the order-disorder transition line enters the dilute regime
1-15
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indicated in Fig. 6. ForLc,d we have to use our result
about strongly pinned pancake vortices from Sec. VI C!. In
particular, we have to use Eq.~55! together with Eq.~48! to
calculate the lhŝDu(L0)&2 in the Lindemann criterion~57!.

In the dense limita,lab the Josephson coupling and th
fluctuations on the scaleL0 dominate the displacements. N
glecting logarithmic corrections we find from Eqs.~55! and
~48!,

^Du~L0!&2.jab
2 dd

1/2S L0

d D 5/4

.a2S b

2p D 3/8S «d

«
k D 1/4S d

« D 1/2

,

~65!

which gives for the upper branch of the order-disorder tr
sition in the dense limit30

bt
u.2pcL

16/3S «d

«
k D 22/3S d

« D 24/3

. ~66!

Upon increasing the disorder strength, the order-disor
transition line enters the dilute limit @for d/«
.cL

4(«/«dk)1/2k3/2], see Fig. 6. In the dilute limit, fluctua
tions on the scaleLd5«lab cause the strongest displac
ments, for which Eqs.~55! and ~48! yield

^Du~«lab!&
2.jab

2 dd
1/2S «lab

d D 5/4

.a2
b

2p S «d

«
k D 1/4

k5/4S d

« D 1/2

~67!

and hence for the upper branch of the order-disorder tra
tion line in the dilute limit

bt
u.2pcL

2S «d

«
k D 21/4

k25/4S d

« D 21/2

. ~68!

This case has been previously studied in Ref. 28, the res
of which agree with Eq.~68!.

C. BSCCO

The strongly layered BSCCO has a weak Josephson
pling at low temperatures, and the 2D crossover fieldb2D is
slightly below the boundary to the dense regime accordin
Eq. ~21!. Consequently, the upper branch of the 3D am
phization transition line lies entirely in the dilute regim
where fluctuations on the scaleLd5d dominate on the lhs o
the Lindemann criterion~57!, ^Du(L0)&2.^Du(d)&2.

In a strongly layered material such as BSCCO it is m
convenient to use the parameterdd , see Eq.~36! for the
disorder strength and discuss the order-disorder trans
line in theb-dd plane. For weak pinning (dd,1) we use Eq.
~51! to calculate for the upper branch of the order-disor
transition line in the dilute limit

bt
u.2pcL

2dd
21 . ~69!

On the other hand, for strong pinning (dd.1) we use Eq.
~48! to obtain
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bt
u.2pcL

2dd
21/2, ~70!

which agrees with the corresponding result of Ref. 28. F
typical valuesk'200 for BSCCO it is clear that the orde
disorder transition line intersects the 2D crossover fieldb2D

.2pk22 in the strong pinning regime fordd.cL
4k4 ~which

usually entailsdd@1). Note that typical pinning strength
for BSCCO have similar values, as indicated in Fig. 6.
smaller disorder strengths the BrG phase will be stable u
a decoupling fieldbdc(dd) where the FLL decouples into 2D
pancake lattices. As already mentioned there is no stable
BrG phase and we thus conclude that at the decoupling fi
also the in-plane topological order is lost and we have
direct transition into a 2D amorphous VG. If the decoupli
transition is also described by a Lindemann criterion of
form

^Du~0,d!&25cL
2a2 ~71!

as proposed in Ref. 51 the same formulas~69! and~70! apply
to the decoupling transition linebdc(dd), which is the con-
tinuation of the order-disorder transition line into the regim
above the 2D crossover fieldb2D , see Fig. 6. It should be
stressed that the phase diagram of BSCCO in theb-d plane
looks qualitatively different from those of YBCO and NbS
in the dense regimea,lab at higher fields as the peculia
reentrance of the amorphous VG phase is absent for BSC
because fluctuations on the scale of the layer spacingd are
dominating for this material.

VIII. ORDER-DISORDER TRANSITION AT TÌ0

In this section we discuss the influence of thermal flu
tuations on the phase diagrams we derived in the prece
section forT50. To do so we choose a realisticT50 value
for the disorder strengthd/« or dd somewhere in the hatche
regions of Fig. 6. The results for the phase diagrams
NbSe, YBCO, and BSCCO in theb-t plane are summarized
in Fig. 7. Similar to what we found already for the singl
vortex pinning fieldbsv there are essential differences in th
temperature dependence of the order-disorder transition
bt(t) depending on whether the depinning temperatureTdp is
much smaller than the critical temperatureTc as in the high-
Tc materials YBCO and BSCCO or whether it practica
coincides withTc as in the low-Tc superconductor NbSe. In
the high-Tc materials the thermal weakening of the disord
which gives an exponential increase of the pinning length
Eq. ~43! is by far the dominant effect. On the other hand,
the low-Tc materialsTdp is very close toTc and the tempera-
ture dependence through the microscopic pinning parame
~37! or ~38! is most important.

A. NbSe

In a low-Tc such as NbSe we typically have weak bund
pinning at the order-disorder transition atT50, and the
1-16
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FIG. 7. Schematic phase diagram for NbSe, YBCO, and BSCCO in theb-t plane.~The dilute regime is enlarged, the reentrance at v
low fields is shown for completeness but not discussed in the text.! The BrG is stable in the dark shaded regions. The amorphous VG p
occurs in the light shaded regions. The diagrams contain both the thermal melting linesbm from Fig. 3 and the order-disorder transition line
bt . For YBCO and BSCCO the order-disorder transition line is shown for two different disorder strengths; for the smaller disorder
the stable BrG phase extends into the lighter shaded region. For NbSe the temperature dependence of the order-disorder transitio
from the temperature dependence through microscopic parameters. The stable BrG phase fordTc pinning is indicated by the dark shade
region, ford l pinning it extends also into the lighter shaded region to the right. For YBCO and BSCCO the temperature dependenc
stems from thermal smoothing above the depinning temperatureTdp . For YBCO the order-disorder transition line is temperature indep
dent belowTdp and given by Eq.~73! betweenTdp andTx , where it intersects the melting line and the single-vortex pinning linebsv . For
BSCCO the order-disorder transition line is generically temperature independent, i.e., horizontal and intersects the melting liTx

5U* (t* [U* /Tc).
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order-disorder transition fieldsbt
u,l are given by Eq.~59! at

T50. Thermal depinning from disorder can be neglect
and the temperature dependence of the order-disorder tr
tion line comes exclusively from the temperature depende
through the microscopic parameters entering the pinn
strengthd, i.e., Eq. ~37! or ~38!. Then, the order-disorde
transition line in theb-t plane is obtained from Eqs.~59!,
~61!, and~64! simply by substituting the correctd(t) accord-
ing to Eq.~37! or ~38!.

For d l pinning the disorder strength decreases with
creasing temperature}(12t)3/2 which gives together with
Eq. ~59! an upper branch of the order-disorder transition l
which stays in the bundle pinning regime and has a temp
ture dependence 12bt

u(t)}(12t). Therefore, the order
disorder transition line approachesb51 with increasing tem-
perature and has to intersect the melting linebm(t) where it
terminates, see Fig. 7. Because we used here the Lindem
criterion based on the scenario of two distinct instabilities
thermal and quenched fluctuations the phase diagram lo
qualitatively as in Fig. 1 on the right. For a cooperati
mechanism the transition line will be lower andnot intersect
the melting line as on the left in Fig. 1.

For dTc pinning the situation is rather different becau
the disorder strength increases with temperature}(1
2t)21/2 such that the BrG becomes always unstable su
ciently close toTc and the order-disorder transition line do
not intersect the melting line. Because the disorder stren
02450
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increases with temperature fordTc pinning the topology of
the phase diagram in theb-t plane is the same as that in th
b-d plane, as can be seen in Figs. 6 and 7. In particular
amorphous VG and the BrG are reentrant as a function of
magnetic field in the dense regime also in theb-t plane.
Using Eq.~59! we find within the bundle pinning regime th
two branches 12bt

u(t)}(12t)21/3 and bt
l(t)}(12t)21. In

the single-vortex pinning regime~61! gives bt
u(t)}(1

2t)5/9. Finally, the upper branch of the order-disorder tra
sition line enters the dilute regime and with Eq.~64! we
obtain bt

u(t)}(12t)5/24. These results are summarized
Fig. 7.

Our results for the case ofdTc pinning might give an
explanation for the experimental phase diagram measure
Ref. 23 where a reentrant amorphous VG phase was foun
the dense regime which does not intersect with the mel
line. This is exactly what we find fordTc pinning in the
bundle pinning regime, see Fig. 7. We also want to point
that our results are markedly different from what has be
obtained in Ref. 31 where high-field correction factors
2b) have been treated incorrectly.

B. YBCO

For the high-Tc materials YBCO and BSCCO the therm
smearing plays a much bigger role than the temperature
1-17



d

rd

e

-

e
tu

ov
m
te
o

w
u

m
d

lly

er-

ia-
s-

d

w
ten-

For

q.
la

e

be
lita-

ith
le
e

ed
two
ns
as
an-

a

ms
era-
ou-
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pendence through the microscopic parameters containe
the pinning strengthd. For YBCO effects from the layered
structure can be neglected unless at rather high diso
strengthd/«.(«j/d)3 or dd.1 whereLc(0),d. However,
typical disorder strengthsd/« for YBCO are bigger than for
NbSe~due to the intrinsic doping of HTSC and the increas
anisotropy! and the order-disorder transition fieldbt

u is lo-
cated within the single-vortex pinning regime at low tem
peratures.

For Lc(0).d collective pinning theory applies and th
thermal smearing sets in above the depinning tempera
Tdp . For T,Tdp the order-disorder transition linebt

u(t) is
horizontal and given by Eq.~61!, see Fig. 7. In high-Tc ma-
terialsTdp is typically well belowTc . Taking typical values
for YBCO as an anisotropic high-Tc superconductor with
strong Josephson coupling,lab'1500 Å, «'1/5, d
'12 Å, and a disorder strengthd/«'1022 @corresponding
to a critical currentj c. j 0(d/«)2/3.107 A cm22], we have
weak pinning@Lc(0).d# and findTdp.40 K for the depin-
ning temperature, which is indeed well belowTc'90 K. For
T.Tdp we have to use Eq.~44! to evaluate the lhs of the
Lindemann criterion~57! and obtain

^Du~L0!&2.jab
2 S L0

Lc~0! D
5/4S T

Tdp
D 5/4

e2(C/4)(T/Tdp)a

.a2S b

2p D 3/8

~12b!25/8S d

« D 5/12S T

Tdp
D 5/4

3e2(C/4)(T/Tdp)a
. ~72!

Pinning-induced displacements drop exponentially ab
Tdp , therefore the thermal smearing is by far the most i
portant effect of thermal fluctuations. The Lindemann cri
rion ~57! yields an exponentially increasing upper branch
the order-disorder transition line

bt
u.2pcL

16/3S d

« D 210/9S T

Tdp
D 210/3

e(2C/3)(T/Tdp)a
, ~73!

which will intersect the melting line at a temperatureTx ,
which can be determined from a simple argument as follo
According to the scenario where thermal and quenched fl
tuations cause independently instabilities of the BrG, ther
displacements should be of thesamesize as disorder-induce
fluctuations atTx , i.e., ^Du2(L0)&T5^Du(L0)&2. However,
this is exactly the definition of the pinning lengthLc(T)
above the temperatureTdp from which we conclude thatTx
is determined by the additional conditionLc(Tx)5L0. This
also means that the amorphization transition linebt

u(t) does
not leave the single-vortex pinning regime for therma
weakened disorder aboveTdp until it intersects also with the
single-vortex pinning boundarybsv(t) ~46! at Tx , see Fig. 7.
For the temperatureTx and the fieldbx[bm(tx)5bt

u(tx)
5bsv(tx) we find
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Tx.TdpS 2

C
ln@~d/«!1/3cL

21# D 1/a

, ~74!

bx.2pcL
4S d

« D 22/3S Tx

Tdp
D 22

. ~75!

The temperatureTx is only slightly aboveTdp due to the
exponential increase of the upper branch of the ord
disorder transition line. Using a disorder strengthd/«
'1022 andcL'0.15 we obtainBx'5.6 T for the intersec-
tion field in good agreement with experimental phase d
grams for YBCO.22 The characteristic exponentially increa
ing upper branch of the order-disorder transition line~73!
above the depinning temperatureTdp has also been obtaine
in Refs. 25, 27, and 30.

For Lc(0),d pancake vortices are strongly pinned at lo
temperatures and the thermal smearing of the pinning po
tial sets in at the higher temperatureU* ~50! which is the
characteristic depinning temperature for strong pinning.
T,U* the order-disorder transition linebt

u(t) is horizontal
and given by Eq.~66!, see Fig. 7. At the temperatureU* we
find Lc(U* )5d, and in the temperature intervalU* ,T
,uE0u pinning-induced displacements decrease~double! ex-
ponentially with increasing temperature according to E
~56!. For T.uE0u the results cross over to the above formu
~73!. The details of the~double! exponential increase of th
order-disorder transition linebt

u(t) for U* ,T,uE0u can be
easily obtained using the results of Ref. 41 but will not
presented here. The resulting phase diagram looks qua
tively as for weak pinning with the slightly highert*
5U* /Tc replacing the depinning temperaturetdp , see Fig.
7.

Regardless of whether we have strong disorder w
Lc(0),d or weak collective pinning, we find a remarkab
reentrant nonmonotonic BrG instability line if we follow th
order-disorder transition linebt

u(t) and after the intersection
further on the thermal melting linebm(t), see Fig. 7. This is
in agreement with experiments22 where a nonmonotonic BrG
instability line is clearly seen for YBCO. Because we us
here the Lindemann criterion based on the scenario of
distinct instabilities for thermal and quenched fluctuatio
the phase diagram of YBCO in Fig. 7 looks qualitatively
in Fig. 1 on the right. For a cooperative mechanism the tr
sition line bt

u(t) will be lower andnot intersect the melting
line as on the left in Fig. 1. However, also in this scenario
reentrant nonmonotonic behavior of the resulting curvebt

u(t)
is found.

C. BSCCO

For the strongly layered BSCCO several phase diagra
in theb-t plane are possible depending on the three temp
turesTd , below which BSCCO has a weak Josephson c
pling, the 2D melting temperatureTm

2D , and finally the char-
acteristic depinning temperatureU* . For pancake pinning
1-18
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LINDEMANN CRITERION AND VORTEX LATTICE . . . PHYSICAL REVIEW B 69, 024501 ~2004!
energiesUp betweenUp'10 K and Up'20 K one finds
values betweenU* '5 K and U* '10 K for the depinning
temperatureU* .

As for the thermal melting we will focus on the situatio
Tm

2D,Td that occurs for a realistic choice of material para
eters for BSCCO; in Sec. V B we found estimatesTd

'36 K andTm
2D'10 K. Then the upper branch of the 3

melting line lies entirely in the dilute regime as in Fig.
Typical disorder strengths for BSCCO are such that we ar
the strong pinning regimedd.1. For sufficiently strong dis-
order dd.cL

4k4 (@1), which corresponds toU* .Tm
2D ,

there is a genuine 3D amorphization transition atT50
whereas for smaller disorder 1,dd,cL

4k4, corresponding to
U* ,Tm

2D , we have found a decoupling transition that sim
taneously destroys topological in-plane order.

For strong disorderdd.cL
4k4 or U* .Tm

2D the 3D amor-
phization transition fieldbt

u lies in the dilute regime at low
temperatures and its disorder dependence is given by
~70!. Thermal fluctuations lead to a depinning of strong
pinned pancake vortices only above the temperatureU* at
which ^Du(d)&2.^Du(d)2&T .41 ThereforeU* is also the
temperature where the amorphization transition linebt

u(t)
intersects the melting line, i.e.,Tx5U* . For all T,U* the
amorphization transition line runs horizontally, see Fig. 7.
particular, this excludes a reentrant behavior. The horizo
order-disorder transition linebt

u(t) and, after intersecting, th
thermal melting linebm(t) are monotonously decreasin
with increasing temperature. This is unchanged also if
use the slightly different Lindemann criterion based on
cooperative mechanism of thermal and quenched fluc
tions. Indeed, experimental signs for a nonmonotonic B
instability line are much weaker for the BSCC
compound,21 and only recently a small ‘‘inverse melting
effect has been confirmed experimentally.53 Because the non
monotony is much smaller in BSCCO than in YBCO th
effect might be beyond the scope of the Lindemann criter
for BSCCO. Above the order-disorder transition linebt

u(t)
we can speculate that a 3D amorphous VG phase will
stable up to the thermal decoupling fieldbdc(t) that we dis-
cussed in Sec. V B. Atbdc(t) the FLL decouples by therma
fluctuations into 2D pancake lattices which are in a 2D am
phous VG phase as there is no stable 2D BrG phase. The
amorphous VG phase might be separated by another dyn
cal crossover, in which the dislocation mobility increases
thermal fluctuations, from the 2D VL phase but both pha
have no in-plane topological order.

For somewhat weaker disorder 1,dd,cL
4k4 or U*

,Tm
2D a slightly different sequence of transitions occurs as

low temperatures the BrG phase is stable up to a decoup
field bdc , which lies in the dense regime and the disord
dependence of which is also given by the right-hand side
Eq. ~70!. As there is no stable 2D BrG phase the FLL d
couples directly into the 2D amorphous VG atbdc . If the
locus of this line is as well determined by a Lindema
criterion such as Eq.~71!, we obtain as for the amorphizatio
transition line a temperature-independent, horizontal tra
tion line bdc(t) that intersects the thermal melting line at
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temperatureTx5U* , see Fig. 7. However, there will be n
subsequent thermal decoupling in this case but eventu
another temperature-driven crossover to the 2D VL phas

IX. CONCLUSION

In conclusion, we have presented a comparative and c
prehensive Lindemann analysis of the melting line and
stability boundaries of the Bragg glass phase, i.e., the am
phization transition line for the three superconducting ma
rials of most intense experimental interest: the high-Tc ma-
terials YBCO and BSCCO and the low-Tc superconductor
NbSe. We find that it is important to distinguish betwe
slightly different versions of the Lindemann criterion d
pending on whether quenched disorder-induced and the
fluctuations act cooperatively or independently in destroy
the lattice order. The two versions can actually be linked
different scenarios for the proliferation of topological defec
in the destruction of the Bragg glass phase.

Special attention is paid to the role of the electromagne
coupling for the strongly layered compound BSCCO and
the different mechanism of temperature dependence in
pinning strength. We find that in high-Tc materials thermal
smearing of the pinning potential is most important where
in the low-Tc material NbSe the temperature dependen
through the microscopics of the pinning mechanism de
mines the phase behavior. Taking also into account high-fi
corrections to the elastic moduli we obtain results regard
the phase diagram of the low-Tc material NbSe which are
markedly different from earlier findings31 and which give a
reentrant amorphous VG phase in the dense regime
similar to what has been observed in recent experiments23
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APPENDIX: MATERIAL PARAMETERS AND LIST
OF SYMBOLS

For the low-Tc compound NbSe we use the following s
of material parameters:

Tc'6 K,

«'1/3,

jab'100 Å,

lab'2000 Å, ~A1!
1-19
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TABLE I. List of symbols. Our notation is mostly adapted from Ref. 1.

a FLL spacing
bdc Decoupling transition field
bm Thermal melting field
bsv Single-vortex pinning field Eqs.~45! and ~46!

bt Order-disorder or amorphization transition field
bx Intersection field ofbm andbt

b2D 2D crossover field Eq.~21!

g Pinning strength parameter Eq.~33!

cL Lindemann number Eq.~1!

c44(K,q), c66 ~Dispersive! FLL tilt modulus, FLL shear modulus Eq.~11!

d Layer spacing
E0 Pancake ground-state energy Eq.~49!

d Pinning strength parameter Eqs.~34!, ~37!, and~38!

dd Layered pinning strength parameter Eq.~36!

«5lab /lc Anisotropy ratio
«d Layered anisotropy Eq.~18!

« l(q) ~Dispersive! single-vortex line tension Eq.~12!

«05(F0/4plab)
2 Characteristic line energy

Gi Ginsburg number Eq.~23!

Gi2D 2D Ginsburg number
j c Single-vortex critical current
j 0 Depairing current
lem Scale for onset of electromagnetic dispersion Eqs.~13! and ~15!

l̃ab
Effective magnetic penetration depth Eq.~14!

Lc Collective pinning or Larkin length Eqs.~39! and ~43!

Ld Dispersion length scale Eq.~17!

L0 Single-vortex length Eq.~6!

Td Crossover temperature to strong Josephson
coupling

Eq. ~19!

Tdp Depinning temperature Eq.~42!

Tdp,d Pancake depinning temperature Eq.~52!

Tm Thermal melting temperature
Tm

2D 2D melting temperature
Tx Intersection temperature ofbm andbt

Up Pancake pinning energy Eq.~35!

U* Pancake energy barrier Eq.~50!
which leads tok'20, Gi'1.731026. NbSe has no layered
structure which can be formally considered as the limit«d
'0. Pinning is typically weak withd/«'1029.

For the moderately anisotropic high-Tc compound YBCO
we use

Tc'90 K,

«'1/5,

jab'15 Å,

lab'1500 Å,

d'12 Å, ~A2!

which leads tok'100, Gi'1022, and «d'0.008!«. A
typical pinning strength isd/«'1022.
02450
For the strongly layered high-Tc material BSCCO we use

Tc'100 K,

«'1/200,

jab'100 Å,

lab'2000 Å,

d'15 Å, ~A3!

which leads to k'200, Gi2D'0.096, Tm
2D'10 K, «d

'0.0075.«, andTd'36 K. A typical value for the pinning
parameter isdd'104@1 corresponding toUp'10 K.
1-20
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