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Slow Crack Propagation in Heterogeneous Materials
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Statistics and thermally activated dynamics of crack nucleation and propagation in a two-dimensional
heterogeneous material containing quenched randomly distributed defects are studied theoretically. Using
the generalized Griffith criterion we derive the equation of motion for the crack tip position accounting for
dissipation, thermal noise, and the random forces arising from the defects. We find that aggregations of
defects generating long-range interaction forces (e.g., clouds of dislocations) lead to anomalously slow
creep of the crack tip or even to its complete arrest. We demonstrate that heterogeneous materials with
frozen defects contain a large number of arrested microcracks and that their fracture toughness is
enhanced to the experimentally accessible time scales.
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FIG. 1. Left: Sketch of an arrested crack (solid ellipse) in a
random array of frozen dislocations (with cores represented by
symbols ? ); the dashed ellipse indicates a favorable region for
crack nucleation. Right: Typical realization of the effective force
��� Fx� fd�x�; see Eq. (2a), acting on the crack tip for short-
range correlated random forces fd�x� with � � 3.
Fracture mechanisms and their relation to the material
structure is a long-standing problem [1]. Ideal crystals are
subject to fast brittle fracture—as was first explained by
Griffith [2]—while homogeneously amorphous systems
exhibit slow ductile fracture controlled by the plastic de-
formation at the crack tip [1,3]. Real materials are neither
of the above. Real crystals do contain defects; but even in
the ultimately disordered substances the defects are not
distributed homogeneously but form spatially inhomoge-
neous aggregates such as inclusion clusters and/or dislo-
cation pileups [1,4,5]. It is intuitively plausible that defect
aggregates promote crack nucleation as the crack can settle
at an energetically favorable nucleation site. At the same
time one can expect that random heterogeneities impede
the subsequent crack propagation process as shown in
Fig. 1. This poses the important question about the ultimate
effect of frozen inhomogeneities on the fracture mecha-
nism and, in particular, whether frozen defects enhance or
degrade the fracture toughness of a material.

The inspiring work [5] discussed the disorder-stimulated
nucleation of critical cracks. In this Letter, we focus on the
dynamics of cracks in heterogeneous materials and inves-
tigate fracture probabilities and the statistics of the fracture
times. We consider both zero- and finite-temperature crack
dynamics, the latter being governed by thermal activation.
We restrict ourselves to the simplest case of cracks in a thin
(quasi-) two-dimensional (2D) ideally elastic plate con-
taining random heterogeneities. In two dimensions a crack
front is a point—the crack tip; thus the additional effects
arising from crack front roughening are absent. Building
on Griffith’s concept of energy balance [2], we consider
crack tip motion governed by the dynamic energy release
rate [3,6] and derive the equation of motion for the crack
tip. We include both dissipative and thermal forces, and the
position-dependent random forces acting on the crack tip
due to frozen material defects. We discuss three basic kinds
of frozen inhomogeneities: (i) bond strength variations,
(ii) random impurities resulting in local compression of
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the elastic medium, and (iii) frozen dislocations interacting
with the crack. The range of elastic interactions with the
crack tip increases when going from the type (i), to
types (ii) and (iii).

We find that the supercritical cracks can be arrested by
heterogeneities inducing long-range elastic forces, i.e., by
frozen dislocations (iii). We show that thermally activated
cracks exhibit anomalously slow dynamics with vanishing
mean velocity for all three types of disorder. We conclude
that quenched defects effectively slow down the crack
propagation and derive experimentally observable charac-
teristic material properties such as the statistics of the
critical stresses and the power-law distributions of crack
waiting times. This explains that in materials containing
long-range structural defects arrested microcracks are ex-
perimentally observable [7].

Crack tip equation of motion.—Let a single planar crack
extend from �x=2 to �x=2 along the x direction of a 2D
elastic medium of size L loaded in mode I by a uniform
external stress �. In a perfectly homogeneous elastic me-
dium the Griffith crack energy is the sum of the elastic
energy gain Eel�x� and the crack surface energy Es�x�. The
driving force for the crack tip advance is the release of the
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elastic energy quantified by the static energy release rate.
G�x� � �@xEel � ��2x=2Y � Fx [1], where Y � E=
�1� �2� is the 2D Young’s modulus. The energy release
is balanced by the specific fracture energy �, related to the
crack surface energy Es by � � @xEs. Griffith’s criterion
for the onset of crack growth givesG>Gc � � [2], where
Gc is the critical energy release rate that can be reached by
increasing the crack length beyond the critical value xc �
�=F � 2�Y=��2.

Material heterogeneities are described by the frozen
random forces fd�x� which are included into the
Griffith’s force balance. We adapt Gaussian distributed
random forces with zero mean value, fd�x� � 0, where
the overbar denotes the average over disorder, and consider
two types of forces: Short-range correlated forces (SRCF)
fd�x�fd�x0� � ��x��a�x� x0� (where a is a microscopic
cutoff length) and long-range correlated forces (LRCF)
fd�x�fd�x0� � ��x���1�=2x0���1�=2. �� is the strength of
the random forces proportional to the defect concentration,
and the exponent � characterizes the elastic interaction
between frozen defects and the crack. Note that for both
types of random forces the corresponding potential ener-
gies Ed�x� of the crack tip defined by the relation fd�x� �
�@xEd have the same correlations �Ed�x� z� � Ed�x��2 	
��z

��1 for z
 x. It was shown in Ref. [5] that random
bonds (random fracture toughness) result in SRCF with
� � 0, impurities produce SRCF with � � 1, and disloca-
tions induce LRCF with � � 3; i.e., � increases with the
range of the elastic interaction between the crack tip and
defects [8].

Dissipation occurs mostly near the crack tip, where the
elastic energy transforms into heat via plastic deformation
[6], and can thus be described as the local viscous force
exerted on the tip, �� _x, with � being the tip viscosity.
Including the thermal force ��t� acting on the crack tip into
the force balance, we obtain the overdamped equation for
the crack tip motion as � _x � G�x� � �� fd�x� � ��t�. As
we focus on slow crack dynamics thermal fluctuations
facilitate both transient crack healing and extension, and
the system is close to thermal equilibrium such that it is
justified to use h��t�i � 0 and correlations h��t���t0�i �
2�T��t� t0� (kB � 1) for thermal forces. In order to com-
plete the description of dynamics, the kinetic energy of the
elastic medium has to be taken into account via the dy-
namic energy release rate G�x; _x� [3]:

G�x; _x� � A� _x�G�x� � �1� _x=cR�G�x�: (1)

In general, A� _x� decreases monotonically with increasing
crack tip velocity _x, starting with A�0� � 1 in the static
limit and reaching zero A�cR� � 0 at the Rayleigh wave
velocity cR [3]. The approximation in Eq. (1) complies
with most experiments and will be used in what follows. In
a homogeneous material the dynamic force balance
G�x; _x� � � generalizes the Griffith’s criterion and de-
scribes the energy flux into the crack tip and its subsequent
conversion into crack surface energy. Including the viscous
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force �� _x, the thermal force ��t�, and the frozen random
forces fd�x� into the dynamic force balance, �� _x�
G�x; _x� � �� fd�x� � ��t�, one finally arrives at the fol-
lowing equation of motion:

� _x � B�x����� Fx� fd�x� � ��t��; (2a)

B�x� � �1� ��=�cR��x=xc��
�1 � �1� x=b��1; (2b)

which is a Langevin equation with multiplicative noise [9];
b � �cR=F is the characteristic crack length. For small
cracks x� b, B�x� � 1, and Eq. (2a) reduces to the usual
overdamped dynamics. On the other hand, for large cracks,
x
 b, B�x� vanishes as B�x� � b=x giving rise to a low
effective temperature.

Crack nucleation and propagation at T � 0.—In the
absence of flaws �fd�x� � 0�, cracks can be thermally
nucleated at temperatures T > 0 [10], but the material is
stable against crack formation at T � 0. However, there is
a nonzero probability that cracks of the critical size x	 xc
are ‘‘nucleated’’ by quenched disorder even at T � 0 if the
typical disorder energy gain E2

d�xc� 	 ��x1��
c , which

scales in the same way for both SRCF and LRCF, com-
pensates for the nucleation energy �Ec � �2=2F [5]. The
resulting probability for disorder-induced nucleation,

pnucl � prob��Ec � Ed�xc�< 0� 	 e��
3��F��1=�� ; (3)

increases with the increasing disorder strength ��.
After its nucleation, a growing crack can get arrested

by frozen disorder which, thus, can prevent fracture. Bal-
ancing the driving force and the typical random force de-

veloping over the distance x, �fd�x�2�1=2 	 ���=a�1=2x�=2

for SRCF, we find a crack arresting length x
 �
�F2a=���

1=���2� which characterizes the static force equi-
librium (we focus on supercritical cracks x
 xc and
neglect the crack surface energy �). For � < 2, the force
equilibrium is unstable against further propagation giving
rise to brittle fracture, whereas it is stable for � > 2 be-
cause sufficient driving forces become exponentially rare
at x > x
, which leads to a ductile fracture mechanism. For
LRCF, we find an arresting length x
 � �F2=���

1=���3�

and the force equilibrium becomes stable for � > 3.
The probability pprop for the crack propagation at T � 0

is given by the probability of finding a positive force on the
crack tip for all x > xc, pprop �

Q
xprob�Fx� fd�x�> 0�

[5]. SRCF show two qualitatively different behaviors de-
pending on the value of �:

pprop 	

(
e�x


=a 	 e��Fa=F�
2=�2���

; � < 2
�1� e��F=FL�

2
�L=a; � � 2

(4)

where Fa � ���a
��3�1=2 and FL � ���L

��2=a�1=2 are the
characteristic forces, defined by x
 � a and x
 � L, re-
spectively. For � < 2 the fracture mechanism is brittle, as
pprop is independent of the system size L and strongly
increases if x
 becomes comparable to the microscopic
length a, whereas for � � 2, the fracture is ductile because
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pprop decreases for large L and becomes appreciable only if
the stable crack of length x
 becomes comparable to L. For
LRCF, on the other hand, we find

pprop 	 1� e��F= ~FL�2 (5)

with ~FL � ���L��3�1=2, which lacks an exponential de-
pendence on L=a because the arresting forces are strongly
correlated. The case of frozen dislocations (iii) with � � 3
is marginal. Cracks are arrested for disorders �3 
 F2 or
up to high strain levels �=Y � b�fd�c

�1=2
�fd� 	 0:05 where

b�fd� and c�fd� are Burgers vector and 2D concentration of
dislocations and we used an estimate for strong disorder in
glass from Ref. [5]. Fracture will occur if a crack both
nucleates and propagates with the probability pfrac �

pnuclpprop. For SRCF with � < 2, i.e., random bonds (i)
or random impurities (ii), the fracture probability is finite
for large L. For LRCF with � � 3, i.e., frozen
dislocations (iii), we find a complementary behavior
pnucl 	 1� pprop, which enhances fracture toughness be-
cause at small defect densities the nucleation is unlikely,
whereas at large defect concentrations the propagation is
suppressed.

The fracture probability (as a function of F) equals the
probability that F is larger than the critical force Fc �
maxxf��� fd�x��=xg of the given crack, i.e., prob�Fc <
F� � pfrac�F�. For SRCF, cracks can nucleate at N 	
�L=xc�

2 statistically independent seed locations in the sam-
ple [5] with critical forces drawn from the distribution
pc�Fc� � @Fpfrac�Fc�. Then the fracture occurs at the
‘‘weakest link’’ if the applied load F exceeds the smallest
critical force of all N crack nuclei. The average fracture
force �Ffrac follows from the condition 1 � Npfrac� �Ffrac�.
For � < 2, we find �Ffrac 	 Fa�lnN�

��2���=2. Because
pfrac�Fc� and thus pc�Fc� decrease exponentially with
1=Fc, see Eq. (4), the resulting distribution of fracture
forces for � < 2 is an extreme value distribution of the
Gumbel type,

prob �Ffrac >F� 	 exp��c1Ne�c2�lnN��=2Fa=F� (6)

with constants c1 and c2. This result applies to random
bonds (i) and random impurities (ii) and generalizes pre-
vious findings for random fuse models [11], which corre-
spond to the special case of random bonds (i) with � � 0.
The probability prob�Ffrac >F� in (6) equals the probabil-
ity that the sample will not fracture and, thus, that all N
statistically independent cracks are arrested. For LRCF, on
the other hand, crack energies at different positions also
have long-range correlations; thus extreme value statistics
of fracture probabilities does not emerge and the fracture
probability is simply given by pfrac � pnuclpprop.

Dynamics of thermally activated crack propagation.—
Having established the conditions and probabilities for the
crack arrest by heterogeneities at T � 0, we address the
question of to what extent these findings have to be modi-
fied by thermal fluctuations. While at T � 0, any energy
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barrier leads to crack arrest, thermal fluctuations at T > 0
give rise to activated crack propagation. The equation of
motion (2a) for the crack tip resembles those for the over-
damped motion of a particle driven over the one-
dimensional disorder potential Ed�x� extensively reviewed
in Ref. [12]. At low temperatures, the particle exhibits slow
dynamics due to the wide distribution of energy barriers
giving rise to anomalously slow diffusion, creep, or even
particle arrest [13].

We consider an ensemble of cracks arrested at T � 0 by
the random forces and address the question whether it stays
arrested when the finite temperature, T > 0, is switched on.
To this end we analyze the dynamics of a typical crack
(since it is the typical crack that is arrested at T � 0, and
propagating cracks represent rare events as follows from
the previous section), which is described by the Fokker-
Planck equation for the probability density P�x; t� corre-
sponding to the equation of motion (2a) [14]:

@tP � �@xJ; (7)

�J � �T@x�B2�x�P� � B�x����� Fx� fd�x��P: (8)

After finding stationary solutions P�x� for a nonzero con-
stant current J and absorbing boundary conditions P�L� �
0, the normalization condition

R
L
0 dxP�x� � 1 determines

the fracture time �frac � 1=J [15],

��frac�
Z L

0
dx

�

TB2�x�

Z 1
0
dze�I�x;z�;

with I�x;z��
Z x�z

x
du�Fu=TB�u����u�=T2B2�u��; (9)

where we took the limit of infinite L and averaged over
disorder. The behavior of I�x; z� for large z governs the
fracture time and is identical for both SRCF and LRCF
[14]. Using the asymptotics for large u, B�u� � b=u, see
Eq. (2b), we find a finite mean fracture time ��frac for � < 0,
whereas it diverges for � > 0. For � � 0, the mean fracture
time is infinite for �0 >�0;c � FTb � T�cR, i.e., above
the threshold disorder strength �0;c, which is independent
of the driving force F.

Now we derive the distribution of random energy bar-
riers that govern the activated dynamics [16]. As follows
from the equation of motion (2a), the effective random
energy controlling thermal activation is 	�x� with @x	 �
��Fx� fd�x��=B�x�. Therefore, we have to find the dis-
tribution of barriers p�E� developing in the random energy
landscape	�x� of a particle located initially at x � xi. This
distribution evolves from the Gaussian distribution of ran-
dom forces fd�x� and can be written as path integral in the
‘‘energy space’’ applying the formalism that has been
developed in Ref. [16]. After some algebra, we finally
find the effective barrier distribution

p�E� 	 e�const��E=E0�
1��=3

(10)

for large cracks (x
 xi and x
 b) both for SRCF and
LRCF, where E0 � b�1�3=�3���

� F��3���=�3��� is the char-
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acteristic barrier energy. The distribution (10) attains a
simple exponential form for � � 0. For � > 3 large bar-
riers are no longer rare, and p�E� cannot be normalized.
Consider the crack tip starting at xi and traveling over a
distance xt 
 xi for the time t. For 0 � � < 3, the dynam-
ics is controlled by the highest barrier, Et, it meets, ob-
tained from the condition 1 � �xt=a�

R
1
Et
dEp�E�. Then

Et 	 E0ln3=�3���xt, and using the Arrhenius relation t	
eEt=T we find

xt 	 exp��T=E0�
1��=3ln1��=3t� for 0 � � < 3: (11)

For � � 0, i.e., random bonds (i), this represents anoma-
lously slow diffusion with the power-law dynamics xt 	
tT=E0 where E0 � �0=Fb. For T < E0 or above the thresh-
old disorder strength �0;c, we find the vanishing mean
velocity xt=t � 0 in agreement with our above result of a
diverging mean fracture time ��frac for � � 0; � < 0 leads
to fast brittle fracture xt 	 t agreeing with our conclusion
about the corresponding finite mean fracture time. For � >
0 the crack motion law is slower than any power with
xt=t � 0, representing the effective crack arrest (meaning
an infinite mean fracture time). For � � 3, the complete
crack arrest, xt � 0, occurs. Thus an ensemble of cracks
that was arrested at T � 0 remains effectively arrested (in
the sense of an infinite fracture time or zero average
velocity) for heterogeneities with � > 0, which include
frozen dislocations (iii) and random impurities (ii). For
random bonds (i) with � � 0 we find the anomalously
slow diffusion with the power-law dynamics.

Conclusion and discussion.—We have derived the equa-
tion of motion (2a) for the crack tip by incorporating
effects from dissipation, thermal fluctuations, and frozen
heterogeneities into the dynamic fracture criterion
G�x; _x� � �. The tip equation of motion is an overdamped
Langevin-type equation for a particle in a one-dimensional
disordered potential. We have obtained the conditions and
probabilities for crack arrest at zero temperature as a
function of the applied stress F and the type of heteroge-
neities involved as described by the exponent � [8] both for
the short-range and long-range correlated forces. For
SRCF, we find complete crack arrest for � � 2 and the
extreme value probability (6) of crack arrest for � < 2. For
LRCF, cracks get arrested for � > 3, and the fracture
probability is drastically reduced for hard-worked materi-
als [17] containing frozen dislocations (iii) (� � 3). Cracks
that are arrested at T � 0 can propagate by thermal acti-
vation at finite-temperatures T > 0. For heterogeneities
with � � 0, i.e., also for random fracture toughness (i)
and impurities (ii), the disorder potential leads to the slow
crack dynamics (11) with zero mean velocity as the crack
tip gets trapped in the deep potential minima. This trapping
mechanism is much more efficient than the crack capture
by crystal lattice effects [18] and explains the existence of
arrested metastable microcracks in heterogeneous materi-
als with sizes that can be considerably larger than the
critical crack length of the homogeneous material; this
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effect has been observed in a number of recent experiments
[7]. Experimentally observed fracture precursors in hetero-
geneous materials with power-law waiting time distribu-
tions [7,19,20] can also be explained in the framework of
our theory as characteristics of the case � � 0 of random
fracture toughness (i). It remains an open question for
future investigations whether the ensembles of arrested
microcracks become unstable with respect to microcrack
coalescence and slow crack growth by cyclic loading in
fatigue experiments.
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