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Abstract. We theoretically explain the complete sequence of shapes of deflated spherical shells. Decreasing
the volume, the shell remains spherical initially, then undergoes the classical buckling instability, where an
axisymmetric dimple appears, and, finally, loses its axisymmetry by wrinkles developing in the vicinity of
the dimple edge in a secondary buckling transition. We describe the first axisymmetric buckling transition
by numerical integration of the complete set of shape equations and an approximate analytic model due
to Pogorelov. In the buckled shape, both approaches exhibit a locally compressive hoop stress in a region
where experiments and simulations show the development of polygonal wrinkles, along the dimple edge.
In a simplified model based on the stability equations of shallow shells, a critical value for the compressive
hoop stress is derived, for which the compressed circumferential fibres will buckle out of their circular
shape in order to release the compression. By applying this wrinkling criterion to the solutions of the
axisymmetric models, we can calculate the critical volume for the secondary buckling transition. Using
the Pogorelov approach, we also obtain an analytical expression for the critical volume at the secondary
buckling transition: The critical volume difference scales linearly with the bending stiffness, whereas the
critical volume reduction at the classical axisymmetric buckling transition scales with the square root of
the bending stiffness. These results are confirmed by another stability analysis in the framework of Donnel,
Mushtari and Vlasov (DMV) shell theory, and by numerical simulations available in the literature.

1 Introduction

When spherical shells, such as sports and toy balls or
microcapsules, are deflated, they always go through the
same sequence of shapes, see fig. 1. At small deflation,
the capsule remains spherical. Upon reducing the volume,
an axisymmetric dimple forms in an abrupt transition.
For sufficiently thin shells, this dimple finally loses its ax-
isymmetry upon further volume reduction, resulting in a
polygonally buckled shape. This is shown by daily life ex-
perience, microcapsule experiments [1–3], and computer
simulations [1, 4, 5] based on triangulated surfaces (e.g.
with the surface evolver) or finite element methods [6–8].
This generic behaviour also applies to other types of defor-
mation, for example when a dimple is formed by indenting
the capsule with a point force [6, 7, 9], when the capsule
is pressed between rigid plates [7] or when the capsule
adheres to a substrate [10].

The first buckling transition, where an axisymmetric
dimple forms, is a classical problem in continuum mechan-
ics, which is very well understood. Linear shell theory can
be used to calculate the onset of instability of the spherical
shape, see references [11,12]. Furthermore, nonlinear shell
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Fig. 1. (Colour on-line) Typical course of a capsule deflation.

theory has been used to investigate the postbuckling be-
haviour [13], which revealed that the buckled shape is un-
stable with respect to further volume reduction if the pres-
sure is controlled. Numerical analyses of nonlinear shape
equations have been used to obtain bifurcation diagrams
for the axisymmetric deformation behaviour [14, 15]. In
this paper, we will approach this classical axisymmetric
buckling using two different models for axisymmetric de-
formations. The first model is based on nonlinear shell
theory, which leads to a complete set of shape equations
which are to be solved numerically [15]. The second model
is an approximate analytical model which has been pro-
posed by Pogorelov [16].

In contrast, the secondary buckling transition, where
the dimple loses its axisymmetry, has been merely
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observed experimentally or in computer experiments so
far. A theoretical approach which explains the mecha-
nism underlying this instability and which can predict the
corresponding critical volume for the secondary buckling
transition is still lacking. Here we will offer an explana-
tion within continuum elasticity theory. This also demon-
strates that polygonal capsule shapes can also occur in
the absence of any discretisation effects. For crystalline
elastic capsules, defects in the triangulation gives rise to
additional faceting effects upon deflation [17].

Analysing the results of the axisymmetric models, we
get a hint on the physical mechanism of the secondary
buckling transition: We observe a region of compressive
hoop stress, which is located in the inner neighbourhood
of the dimple edge, just in the place where the secondary
buckling occurs in experiments and simulations. In order
to release the compressive stress, the circumferential fi-
bres buckle out of their circular shape if the hoop stress
reaches a critical value; quite comparable to the Euler
buckling of straight rods [11]. A quantitative investigation
of the secondary buckling transition therefore consists of
two steps: Firstly, quantifying the stress distribution in the
axisymmetric buckled configuration, and secondly, finding
the critical compressive stress at which the axisymmetric
configuration loses its stability.

The first task is readily accomplished by the two ax-
isymmetric models, the approach by nonlinear shape equa-
tions or Pogorelov’s approximate analytical model. For the
second task, we will develop a simplified model which cap-
tures the essential features of the geometry and stress dis-
tribution of the axisymmetric buckled shape, and derive a
critical compressive stress by using the stability equations
of shallow shells [12].

We verify our results by a second approach in which
we conduct a stability analysis of the full shape, where
the exact geometry and shape distribution is taken into
account. The framework to do this is the nonlinear DMV
(Donnel, Mushtari and Vlasov) theory of shells [12,18].

The resulting critical volumes for the primary and sec-
ondary buckling transition are presented in a phase or
stability diagram in fig. 12, from which the state of a de-
flated capsule with given bending stiffness and volume dif-
ference can be read off and which is the main result of the
paper. A short account of these results focusing on the
secondary buckling mechanism and the parameter depen-
dencies of the critical buckling volumes has been given
elsewhere [19].

2 Axisymmetric primary buckling of shells

2.1 Nonlinear shape equations

Figure 2 shows the parametrisation of the capsule midsur-
face. The undeformed shape is parametrised in cylindri-
cal polar coordinates by the functions r0(s0) and z0(s0),
where s0 ∈ [0, L0] is the arc length. The slope angle ψ0,
defined by the two relations

dr0

ds0
= cos ψ0 and

dz0

ds0
= sinψ0, (1)

Fig. 2. (Colour on-line) Geometry of the axisymmetric mid-
surface. a) Undeformed shape (always with index “0”), b) def-
inition of the slope angle ψ0, c) deformed shape.

see fig. 2b), permits simple calculation of the principal cur-
vatures of the midsurface. These are found in meridional
and circumferential direction, respectively, and read

κs0
=

dψ0

ds0
and κϕ0

=
sin ψ0

r0
. (2)

In our case, the spherical reference configuration is ex-
plicitly given by r0(s0) = R0 sin(s0/R0) and z0(s0) =
−R0 cos(s0/R0), and the principal curvatures reduce to
κs0

= κϕ0
= 1/R0. The geometrical relations (1) and (2)

also hold for the deformed midsurface when all indices “0”
are omitted.

Upon deformation into a different axisymmetric shape,
the midsurface undergoes stretching and bending. We
measure the stretches in meridional and circumferential
direction by

λs = ds/ds0 and λϕ = r/r0, (3)

respectively. The function s(s0) defined in this context de-
termines the position s at which a shell element originally
located at s0 can be found after deformation. The strains
that correspond to these stretches are centred around 0
and are defined as es = λs − 1 and eϕ = λϕ − 1. To
measure the change in curvature, the bending strains

Ks = λs κs − κs0
and Kϕ = λϕ κϕ − κϕ0

(4)

are defined [20,21].
The deformation results in an elastic energy which is

stored in the membrane. This elastic energy can be calcu-
lated as the surface integral over an elastic energy density
(measured per undeformed surface area), which we assume
to be of the simple Hookean form

wS =
1

2

EH0

1 − ν2

(

e2
s + 2 ν es eϕ + e2

ϕ

)

+
1

2
EB

(

K2
s + 2 ν Ks Kϕ + K2

ϕ

)

. (5)

In this expression, E is the (three-dimensional) Young
modulus, H0 the membrane thickness, ν is the (three-
dimensional) Poisson ratio which is confined to −1 ≤ ν ≤
1/2, and EB = EH3

0/12
(

1−ν2
)

is the bending stiffness. It
can be shown [20] by the principle of virtual work that the
meridional tension and bending moment can be derived as

τs =
1

λϕ

∂wS

∂es
=

EH0

1 − ν2

1

λϕ

(

es + ν eϕ

)

,

ms =
1

λϕ

∂wS

∂Ks
= EB

1

λϕ

(

Ks + ν Kϕ

)

. (6)
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from the energy density. The corresponding relations for
the circumferential tension and bending moment are ob-
tained by interchanging all indices s and ϕ in these equa-
tions. Note that the tensions and bending moments are
measured per unit length of the deformed midsurface,
whereas the energy density is measured per unit area of
the undeformed midsurface —this is the reason why the
factors 1/λϕ occur in (6).

To close the problem of determining the deformed
shape, we need equations of equilibrium. These read, for
the tangential force, normal force and bending moment,

0 = −cos ψ

r
τϕ +

1

r

d(r τs)

ds
− κs q, (7)

0 = −p + κϕ τϕ + κs τs +
1

r

d(r q)

ds
, (8)

0 =
cos ψ

r
mϕ − 1

r

d(r ms)

ds
− q. (9)

In these equations, q is the transversal shear force, and p is
the applied normal pressure, which can also be interpreted
as a Lagrange multiplier to control the capsule volume.

For a numerical treatment, the equilibrium equations
should be written as a system of first-order differential
equations, which are called shape equations. They follow
from (1), (2) and (7)-(9), see [15]. Boundary conditions
must be imposed which assure that the capsule is closed
and has no kinks at the poles. In ref. [15], a detailed discus-
sion of this issue is given, as well as numerical procedures
that are suitable for solving the shape equations.

For the further analysis, it is convenient to introduce
dimensionless quantities by measuring tensions in units of
EH0 and lengths in units of R0. Specifically, this results in
a dimensionless bending stiffness ẼB which is the inverse
of the Föppl-von-Kármán-number γFvK,

ẼB ≡ EB

EH0R2
0

and γFvK =
1

ẼB

. (10)

2.2 Analytic Pogorelov model

The second approach to axisymmetric buckled shapes is
based on a model of Pogorelov [16]. The basic idea is that
for small bending stiffness, the shape of the axisymmet-
ric dimple will be close to an isometric deformation of
the sphere: a shape where a spherical cap is mirror in-
verted (see fig. 3, grey lines). For vanishing bending stiff-
ness, EB = 0, this shape has vanishing elastic energy and,
thus, represents the stable equilibrium shape, since it is
free of stretching. It only involves bending to invert the
curvature of the cap. However, the bending strain at the
edge of the inverted cap is infinitely large, which gives
rise to infinitely large bending energy for EB > 0. Thus,
switching from EB = 0 to EB > 0, the sharp edge of the
dimple has to be smoothed out.

In order to describe the deformation from the isomet-
ric shape to the final smooth shape, we follow the ideas
of Pogorelov and introduce displacements u(s0) and v(s0)
in r- and z-direction, respectively, see fig. 3. Assuming

Fig. 3. (Colour on-line) Midsurface geometry in the analytic
model. a) The isometric deformation, where a spherical cap of
radius rD and depth h is mirror inverted. b) The final shape
(green line) differs from the isometric shape by small displace-
ments (u, v).

that u and v are small (and some further simplifications),
we use linear shell theory to calculate the bending and
stretching energies in the final shape. This technique is
quite remarkable because it enables us to describe large
deformations with linear shell theory by choosing not the
undeformed shape as reference state, but the isometric
buckled shape. In the following, we will summarise this
procedure and results from [16] regarding the axisymmet-
ric primary buckling because the results will provide the
basis for a quantitative theory of the secondary buckling
transition.

First, there are geometric relations for isometric defor-
mations of spheres, which are obtained by mirror reflec-
tion of a spherical cap, see fig. 3a). The resulting dimple
is characterised by its opening angle α, from which we can
calculate the dimple radius rD, depth h and volume differ-
ence ∆V . For later use, we already introduce a first-order
approximation in α, since we will assume that the dim-
ple is small compared to R0. The exact and approximated
relations then read

rD = R0 sin α ≈ αR0, (11)

h = R0 − R0 cos α ≈ α2R0/2, (12)

∆V = 2h2π(3R0 − h)/3 ≈ πα4R3
0/2. (13)

In order to evaluate the elastic energies in the final
shape, we split it into different regions which are investi-
gated separately. We define the inner neighbourhood Gi

and outer neighbourhood Go of the dimple edge (see fig. 3)
as the regions in which the displacements (u, v) are signif-
icant. This is only the case in a narrow strip to both sides
of the dimple edge, see (20) below. Outside these regions,
the displacements are negligible; these regions are referred
to as G2 (for the rest of the dimple) and G1 (for the rest
of the undeformed part).

The elastic energies that we have to evaluate consist
of the bending needed to invert the curvature in G2, and
the bending and stretching due to the displacements in Gi

and Go. The uniform compressive strains in G1 and G2,
which result from the negative inner pressure and which
are already present in the spherical (pre-buckled) shape,
are neglected.

The bending energy in G2 is readily written down.
From the spherical shape to the isometric deformed shape,
the curvatures change from 1/R0 to −1/R0, thus giving
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bending strains Ks = Kϕ = −2/R0, where the stretches
in the definition (4) are neglected. The energy density (5)
is integrated over the area of the inverted spherical cap.
We neglect that the area of the dimple should be reduced
by the area of Gi since we assume that Gi is much smaller
than G2, and hence the area of G2 is A(G2) = 2πhR0 ≈
πα2R2

0. Thus, the bending energy in G2 reads

UB(G2) =
1

2
EB

∫

G2

dA
{

K2
s + 2νKsKϕ + K2

ϕ

}

= 4πα2EB(1 + ν). (14)

In the region Go, the deformation energy is governed
by the displacements u(s0) and v(s0) (where s0 is the un-
deformed arc length). From “graphic considerations” [16]
Pogorelov concludes that a meridian will not stretch or
compress very much: es ≈ 0. Using our nonlinear shape
equations, we checked that this assumption holds at the
secondary buckling transition if the Poisson ratio is not
too large; in fact, the magnitudes of es and eϕ (in a
root mean square sense) are found to behave roughly as
es/eϕ ∼ ν at the secondary buckling transition. At the
first buckling transition, we find that es/eϕ depends on

ẼB , and that our assumption holds for small reduced
bending rigidities. The stretching of circumferential fibres
(cf. eq. (3)) results in the strain eϕ = u(s0)/r0(s0) ≈
u(s0)/rD, where the approximation holds when Go is suf-
ficiently narrow. The integration of the stretching energy
is performed over the area element dA ≈ 2πrDds0 with
s0 ∈ [0, ε]. Here the arc length coordinate was centred
around the dimple edge and runs up to a point ε where the
displacements have decayed sufficiently to be neglected.
The stretching energy of the outer neighbourhood is thus
given by

US(Go) =
1

2

EH0

1 − ν2

∫

Go

e2
ϕ dA

=
πEH0

(

1 − ν2
)

rD

∫ ε

0

u(s0)
2 ds0. (15)

Pogorelov approximates the bending strains as Ks =
v′′(s0) and Kϕ = v′(s0)/αR0. In the integral of the bend-
ing energy, a term v′(s0)v

′′(s0) occurs, which can be read-
ily integrated to v′(s0)

2/2, and we need to specify bound-
ary conditions for the displacement v to proceed. We re-
quire the dimple to have a horizontal tangent at the dim-
ple edge s0 = 0, hence −v′(0) = α. At the other end
s0 = ε, the displacement shall have decayed and we en-
force v(ε) = v′(ε) = 0. The resulting expression for the
bending energy is

UB(Go) = πEBrD

∫ ε

0

v′′(s0)
2 ds0 − παEBνrD/R0. (16)

In total, the elastic energy of the outer neighbourhood Go

is therefore given by

U(Go) =

∫ ε

0

ds0

{

πEBrDv′′(s0)
2 +

πEH0
(

1 − ν2
)

rD

u(s0)
2

}

−παEBνrD/R0. (17)

Analogously, the elastic energy of the inner neighbour-
hood Gi can be calculated. The stretching energy is the
same as for the outer neighbourhood. But note that the
sign of eϕ is negative in this case because we have hoop
compression in the inner neighbourhood and hoop stretch-
ing in the outer neighbourhood (we already anticipate that
the result for u(s0) will be positive in the outer neigh-
bourhood, see fig. 3). The bending strains have to be
modified because we have to take into account that the
curvature of the inverted cap is already inverted, and we
get Ks = v′′(s0) − 2/R0 and Kϕ = −v′(s0)/αR0 − 2/R0.
The resulting elastic energy of the inner neighbourhood is
given by

U(Gi) =

∫ 0

−ε

ds0

{

πEBrDv′′(s0)
2 +

πEH0
(

1 − ν2
)

rD

u(s0)
2

}

−4παEB(1 + ν)rD/R0 + παEBνrD/R0. (18)

The integrand coincides with the result (17) for the outer
neighbourhood; only the constant terms differ.

To find the functions u(s0) and v(s0) which represent
the final shape, we have to minimise the functional of total
elastic energy with respect to u and v. During the varia-
tion u → u+δu and v → v+δv we keep the parameters α,
h, rD and ∆V of the isometric shape constant. Since the
volume change due to u and v can be neglected (compared
to the large ∆V due to the isometric deformation), this
corresponds to a variation at constant capsule volume,
and we do not need to introduce a Lagrange multiplier
controlling the volume. As the integrals in the elastic en-
ergies of the inner and outer neighbourhood are identical,
we expect a symmetric shape of the dimple, with an odd
function u(s0) and an even function v(s0). It is thus suf-
ficient to determine the solution on the interval s0 ∈ [0, ε]
by minimising (17).

During the minimisation we have to impose a con-
straint on u and v, because the energy functional was
set up under the assumption of vanishing (or negligible)
meridional strain es = 0. The final solution must satisfy
this condition, which can be written as

u′(s0) + αv′(s0) +
1

2
v′(s0)

2 = 0. (19)

Furthermore, the variation has to respect the boundary
conditions, which are evident from geometrical considera-
tions: u(0) = 0 so that the capsule is not ripped apart at
the dimple edge, v′(0) = −α for a horizontal tangent at
the dimple edge, and u(ε) = v(ε) = v′(ε) = 0 because the
displacements must have decayed at s0 = ε.

The number of parameters in the problem can be
greatly reduced with a suitable non-dimensionalisation by
introducing characteristic length and energy scales. In-
spection of the integrand in (17) and the constraint (19)
shows that the substitutions

s0 = ξs̄0, ξ ≡
[

ẼB

(

1 − ν2
)

]1/4
(

R0rD

α

)1/2

, (20)

u = ξα2ū, (21)

dv/ds0 = αw̄, (22)
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with a typical arc length scale ξ prove useful. For small
ẼB ≪ 1, the length scale ξ ≪ R0 is also small, which
proves that the regions Gi and Go are indeed narrow
strips. The substitutions lead to a dimensionless form of
the energy (17),

U(Go) = Uξ

∫ ε̄

0

ds̄0

{

w̄′(s̄0)
2 + ū(s̄0)

2
}

+ const, (23)

Uξ ≡ πα5/2r
1/2
D R

3/2
0

EH0
(

1 − ν2
)1/4

Ẽ
3/4
B , (24)

with an energy scale Uξ. Using the geometric rela-
tions (11)-(13), the scaling parameters ξ, Uξ, and α can be
expressed as functions of the elastic moduli, the reduced
volume difference ∆V/V0, and the capsule radius R0,

α ≈
(

8

3

∆V

V0

)1/4

, (25)

ξ ≈
[

ẼB

(

1 − ν2
)

]1/4

R0, (26)

Uξ ≈ π

(

8

3

)3/4
EH0

(

1 − ν2
)1/4

(

ẼB
∆V

V0

)3/4

R2
0, (27)

where we used the first-order approximations in α.
Both the arc length scale ξ and the energy scale Uξ

emerge from the competition of stretching and bending
energies in (17) (under the constraint (19)): ξ gives the
typical arc length size of the neighbourhoods Gi and Go

and Uξ gives the typical energy of the buckled configura-
tion. The final result for the Pogorelov buckling energy,
which is obtained after minimisation of the total energy
with respect to u and v will differ from Uξ only by a nu-
merical prefactor, see eq. (34) below.

For the minimisation of the total energy, the integral
term in eq. (23) has to be minimised. Note that the limit
ε̄ of the integral has been rescaled, too, according to (20).

Following Pogorelov, we consider the case of small ẼB ,
where ε̄ → ∞ because ξ → 0 according to (26). Thus
our task for the calculus of variations is to minimise the
functional

J [ū, w̄] =

∫ ∞

0

ds̄0

{

w̄′2 + ū2
}

(28)

subjected to the constraint (19) which reads

ū′ + w̄ +
1

2
w̄2 = 0 (29)

in rescaled variables and with boundary conditions

ū(0) = 0, w̄(0) = −1, ū(∞) = 0, w̄(∞) = 0. (30)

Pogorelov solved the constrained variational problem
analytically. His results for the minimising functions ū(s̄0)
and w̄(s̄0) are presented in appendix A. These functions
are defined piecewise, due to some simplifications, on two
intervals s̄0 ∈ [0, σ) and s̄0 ∈ [σ,∞), where the optimal

choice for σ is σmin = 1.24667. The minimal value of the
functional is found to be Jmin = 1.15092.

Now we can switch back from the non-dimensionalised
quantities to physical quantities in order to analyse the
features of Pogorelov’s model, plot solutions and compare
them to our results from the nonlinear shape equations.
The rescaling of the functions u and v describing the cap-
sule shape is obviously given by (20)-(21). We also have
to take into account that the origin of s0 was shifted to
the dimple edge. In the coordinate system of the nonlin-
ear shape equations, the origin of s0 starts at the south
pole of the capsule, and the dimple edge (of the isometric
deformation) is located at sD = αR0. When comparing
these solutions, the functions from the Pogorelov model
must be shifted.

The displacements u(s0) and v(s0) can be used to plot
the deformed capsule shape and to calculate further prop-
erties, like curvatures and tensions. With the strain def-
initions es = 0 and eϕ = u/rD, we obtain tensions from
the linearised Hookean law, see (6),

τϕ =
EH0

1 − ν2

u(s0)

rD
and τs = ν τϕ. (31)

The definitions of the bending strains imply curvatures

κs =

{

−1/R0 + v′′(s0), s0 < sD,

1/R0 + v′′(s0), s0 ≥ sD,
(32)

and

κϕ =

{

−1/R0 + v′(s0)/αR0, s0 < sD,

1/R0 + v′(s0)/αR0, s0 ≥ sD.
(33)

The total elastic energy is obtained by adding U(G2)+
U(Go)+U(Gi). We see that the constant terms cancel each
other, and only the integral terms of U(Gi) and U(Go)
survive. Each integral term gives JminUξ. Thus, our final
result for the elastic energy of an axisymmetric buckled
capsule with a given volume difference is

UPog = 2JminUξ

= 2πJmin

(

8

3

)3/4
EH0

(

1 − ν2
)1/4

(

ẼB
∆V

V0

)3/4

R2
0.

(34)

2.3 Comparison of the two models

Figure 4 shows a plot of the capsule shape and tension
distribution in a solution of the shape equations and a so-
lution of the analytic Pogorelov model. The shape is very
well captured by the analytic model. Only in the close-up,
deviations from the solution of the shape equations can
be recognised. The behaviour of the hoop tension τϕ(s0)
also agrees well in both models. We see a characteristic re-
gion of strong compression, which is located in the inner
neighbourhood of the dimple edge, in which the models
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Fig. 4. (Colour on-line) Comparison of a) shape and b)
tension between a solution of the shape equations (continu-
ous lines) and Pogorelov model (dashed lines). The grey line
shows the isometric shape. The solutions were calculated for
∆V/V0 = 5%, ẼB = 10−5, ν = 1/3. The vertical lines indicate
the position sD of the dimple edge and sD ± σminξ.

even agree quantitatively. In this region, the compressive
hoop tension has a parabolic profile to a good approxi-
mation. In the outer neighbourhood of the dimple edge,
a corresponding region of strong hoop stretch is present.
The meridional tension τs is quite badly captured by the
Pogorelov model, which is a consequence of the strong
simplification of vanishing meridional strain es = 0.

A simple explanation why hoop compression arises in
the inner neighbourhood and hoop tension in the outer
neighbourhood of the dimple edge is evident from the
close-up in fig. 4a): After smoothing of the dimple edge,
the inner neighbourhood is displaced horizontally to the
left, and the outer neighbourhood to the right. Thus,
the circumferential fibres of the inner neighbourhood are
compressed and those of the outer neighbourhood are
stretched.

Now, let us turn to the comparison of the elastic en-
ergies of the deformed shapes, from which the bifurcation
behaviour can be deduced (see [15] for bifurcation dia-
grams of spherical shells). First of all, there is the trivial
(spherical) solution branch, which can be handled ana-
lytically. If the deformed capsule is a sphere with radius
R, the strains are uniform and homogeneous, es = eϕ =

R/R0 − 1 = (V/V0)
1/3 − 1. The bending strains vanish.

The elastic energy density (5) must be integrated over the
undeformed surface, which has an area 4πR2

0. Hence, the
elastic energy for a spherical shape is given by

Usph = 4π
EH0

1 − ν
R2

0

[

(

V

V0

)1/3

− 1

]2

. (35)

Fig. 5. (Colour on-line) Elastic energies of the axisymmetric
buckled shapes for the shape equations (red points with light
red interpolation) and Pogorelov model (dashed line), and for
the spherical shapes (blue line). The elastic moduli are ẼB =
10−4 and ν = 1/3. In the inset, the critical volume of classical
buckling Vcb according to (37) and of the first buckling V1st

are marked.

This function is plotted in fig. 5 and increases rapidly with
decreasing capsule volume V .

The energy of a buckled solution of the shape equations
can be calculated by numerical integration of the surface
energy density wS of eq. (5). The data points for numeri-
cal solutions are shown in fig. 5. At a critical volume Vcb,
the classical buckling volume, this solution branch starts
to separate from the spherical branch (see inset in fig. 5).
At first, it runs to the right and lies at slightly higher en-
ergies than the spherical solution branch (see the inset).
These shapes correspond to unstable energy maxima. But
after a return, the buckled branch crosses the spherical
branch at a volume V1st. From there on, the axisymmet-
ric buckled configuration is energetically favourable to the
spherical shape, representing the global energy minimum.
The spherical shape is still metastable between V1st and
Vcb and represents a local energy minimum. Koiter’s sta-
bility analysis [13] suggests that the buckling transition
of real (imperfect) shells occurs somewhere in this re-
gion, depending on the severity of the imperfections. For
V < Vcb, however, the spherical branch is unstable. This
bifurcation scenario with metastable spherical and buck-
led branches below and above V1st, respectively, is typi-
cal for a discontinuous shape transition. This summarises
briefly the discussion of the buckling behaviour presented
in ref. [15].

In [15], we also showed that our findings for the clas-
sical buckling volume coincide with the literature results
for the classical buckling pressure pcb = −4

√
EH0EB/R2

0

(see, for example, [11, 12, 22]). To show that, we need to
convert the pressure into a volume, by using the pressure-
volume relation of the spherical solution branch. This can
be derived from the elastic energy (35) via

p =
∂Usph

∂V
= 2

EH0

1 − ν

1

R0

[

(

V

V0

)1/3

− 1

]

(

V0

V

)2/3

. (36)
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Inverting this relation between p and V and inserting p =
pcb results in the classical buckling volume

Vcb

V0
=

(

1

2
+

√

1

4
+ 2(1 − ν)

√

ẼB

)−3

(37)

or equivalently, for small ẼB [5],

∆Vcb

V0
≈ 6(1 − ν)Ẽ

1/2
B . (38)

This volume coincides very well with the point where the
branch of axisymmetric buckled shapes separates from the
spherical solution branch (see inset in fig. 5).

The elastic energy UPog derived in the Pogorelov
model, eq. (34), is also incorporated in the bifurcation di-
agram fig. 5. For volumes smaller than V1st, it agrees well
with the data points from the shape equations. Deviations
start to develop for large deformations (V < 0.8V0), which
is due to the simplification that the dimple was assumed to
be small in the Pogorelov model. For shapes with too small
dimples, V > V1st, the model is also inaccurate, for two
reasons. Firstly, it was assumed that the neighbourhood of
the dimple which is deformed, Gi and Go, is narrow. For
too small dimples, this condition is not satisfied since the
size of the inner neighbourhood becomes as large as the
dimple itself. Secondly, for shapes with small dimples, the
pre-buckling deformation (that is, the uniform contraction
due to the negative inner pressure) cannot be neglected as
it was done in the Pogorelov model. This is also the reason
why the tensions τs and τϕ do not reach the correct limits
far away from the dimple edge (see fig. 4b).

However, the inset in fig. 5 suggests that the Pogorelov
model can be successfully used to calculate the first buck-
ling volume V1st by setting UPog = Usph. Doing so us-
ing (34) and (35), we obtain for small ∆V/V0 the critical
volume difference for the first buckling,

∆V1st

V0

∣

∣

∣

∣

Pog

= 6J
4/5
min

(1 − ν)4/5

(

1 − ν2
)1/5

Ẽ
3/5
B . (39)

Equations (38) and (39) define two lines in a phase
or stability diagram, see fig. 12, which is set up in the
(ẼB ,∆V )-plane. In the phase diagram, the line of the
first buckling transition is represented by a continuous line
according to the Pogorelov model (39) and data points
which were derived from the shape equations by requiring
equal energies of the spherical and buckled shape. Both
approaches are in good agreement. The data points can
be fitted with a power law (see fig. 12),

∆V1st

V0

∣

∣

∣

∣

shape eqs.

= (4.78 ± 0.03) Ẽ0.6127±0.0006
B . (40)

This must be compared to (39) (evaluated at ν = 1/3 as

used in fig. 12), which is 4.97 Ẽ0.6
B and thus very close. The

classical buckling transition is also represented by a con-
tinuous line, according to (37), and data points from the
shape equations in the phase diagram fig. 12. In the space

between the lines of first and classical buckling, spherical
shapes and axisymmetric buckled shapes can both exist,
since the spherical shapes are metastable and the buckled
shapes stable.

With that we close our investigation of the axisym-
metric shapes. In conclusion, we have shown that the hoop
tension τϕ(s0) has a negative peak in the inner neighbour-
hood of the dimple edge. This is the region where wrinkles
will develop when the compressive tension exceeds a crit-
ical value. Furthermore, we have established two critical
volumes for the transition from the spherical shape to the
axisymmetric buckled shape. These are the first buckling
volume V1st, at which the buckled shape becomes energet-
ically favourable to the spherical shape, and the classical
buckling volume Vcb where the spherical shape loses its
(meta)stability.

3 Secondary buckling as wrinkling under

locally compressive stress

3.1 Simplification of geometry and stress state

One main result of the previous section is that close to the
dimple edge, a region of compressive hoop tension τϕ with
a parabolic profile occurs, see fig. 4b). This motivates our
analysis of wrinkling or buckling of an elastic plate under
a locally compressive parabolic stress in this section: We
expect wrinkles to occur in the region of compressive hoop
stress because the formation of wrinkles can release the
compressive stress, which is energetically favourable [23,
24]. Within this relevant region, the capsule is shallow,
and we can approximate it as a shallow shell or curved
plate.

The specific plate geometry and the state of stress we
impose are shown in fig. 6. The key features of the stress
distribution and midsurface geometry in the wrinkling re-
gion can be reduced to the following simple functions:
The stress distribution τϕ(s0) can be approximated by a
parabola (dashed red line), and the section through the
midsurface by a cubic parabola (dashed blue line). Note
that these approximations only have to hold in the wrin-
kled region, i.e. the region of compressive τϕ, or, at the
end of our analysis, the region with a large wrinkle am-
plitude. We need three parameters to describe the state
of stress and the plate geometry in the following: The pa-
rameters τ0 and ap characterise the depth and width of
the parabolic stress profile, and the parameter ac the cur-
vature of the section through the midsurface.

The cubic parabola describing the midsurface is fitted
to the point where the exact midsurface has vanishing
curvature κs(sc) = 0 (see fig. 6). In the vicinity of this
point, the real midsurface shows an approximately linear
increase in curvature, κs(s0) ≈ ac(s0 − sc). To obtain a
cubic parabola with the same slope of curvature, we choose
a height profile

z(x, y) =
1

6
acy

3 (41)

to describe the approximated midsurface. Here we have
oriented the y-coordinate along the original s0-coordinate
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Fig. 6. (Colour on-line) Shape and stress distribution for a
numerical solution of the shape equations at ẼB = 10−5, ν =
1/3 and ∆V/V0 = 5%. The hoop tension τϕ is compressive
(negative) in a narrow strip along the inner side of the dimple
edge, marked light red, where we can expect wrinkles to occur.
The dashed lines show the simplifications made for the stability
analysis, namely a parabolic stress profile and a cubic parabola
for the approximated midsurface.

and centred it at the point of vanishing curvature. By writ-
ing down (41), we have neglected the radius of curvature
1/κϕ of the axisymmetric solution, because we assume
that the wrinkles have shorter wavelength. Therefore, we
consider a curved rectangular plate with the ϕ-coordinate
corresponding to the uncurved x-coordinate. Since the rel-
evant portion of the shell is shallow, differences in the
metric for the description with s0 or y as a coordinate can
also be neglected [12]. So we can calculate ac by simple
differentiation of κs(s0) with respect to s0 instead of y,
which can be done numerically for a given axisymmetric
solution,

ac =
dκs

ds0

∣

∣

∣

∣

sc

. (42)

The parabola to approximate the hoop tension is cho-
sen to have the same minimum value −τ0 and the same
integral

∫

τϕ ds0 over the compressive part as the exact

numerical function τϕ(s0). Let F =
∫ s2

s1

τϕ(s0) ds0 denote

the exact numerical integral, which has the physical in-
terpretation of the net force in the compressive region
s0 ∈ [s1, s2]. We can evaluate it by numerical integration
for a given solution. A parabola of the form

τx(x, y) = −τ0

(

1 − apy
2
)

(43)

has the roots y = ±1/
√

ap. The integral over the parabola
between its roots is −4τ0/3

√
ap and must equal F . Thus

we have

ap = (4τ0/3F )2, with F =

∫ s2

s1

τϕ(s0) ds0, (44)

Fig. 7. (Colour on-line) The simplified stability problem: A
plate (curved in y-direction) is subjected to a parabolic stress
profile τx and will wrinkle in the region of compressive stress.

to determine the parameter of the parabola from a given
axisymmetric shape. Note that the parabola is centred at
y = 0, corresponding to the point s0 = sc of vanishing
meridional curvature. This point does not exactly agree
with the minimum of the exact hoop tension τϕ(s0), but
is very close (see fig. 6).

In the following, we will neglect the meridional tension
τs, since it is small compared to τϕ, see fig. 4. Furthermore,
there are no shear tensions in the axisymmetric configura-
tion. Hence the stress state to which the plate is subjected
reads τy = 0, τxy = 0 and τx according to (43).

Figure 7 summarises our simplified model. We want to
investigate the wrinkling (or buckling) of a curved plate in
the (x, y)-plane with height profile (41), subjected to a lo-
cally compressive stress (43). The appropriate tool for this
task are the stability equations of shallow shells. The result
of this analysis will be a wrinkling criterion in the form of
a critical tension τc such that for compressive stress lev-
els τ0 > τc the plate wrinkles. The critical tension τc will
depend on the parameters ap characterizing the width of
the parabolic stress profile and ac characterizing the cur-
vature of the midsurface section, and the elastic moduli of
the shell.

3.2 Wrinkling criterion for the curved plate

Before presenting a more detailed stability analysis, we
start with a scaling argument. Here we neglect curvature
effects completely and approximate the compressed region
of the plate by a rectangular strip of width ∆y ∼ 1/

√
ap

(identical to the compressive part of the parabola) under
a homogeneous compressive stress τx ∼ −τ0. For clamped
long edges, the wrinkling wavelength is given by the width,
λ ∼ ∆y [22], and the resulting critical Euler buckling
stress is τ0 = τc ∼ EB/λ2 ∼ EBap. This result turns
out to give the correct parameter dependence in leading
order, see eq. (52) below.

The stability equations are partial differential equa-
tions for the normal displacement w(x, y) and Airy stress
function φ(x, y) and are given by [12]

∆2φ = −EH0∇
2
κw, (45)

EB∆2w = ∇
2
κφ + τx∂xxw + 2τxy∂xyw + τy∂yyw, (46)

see appendix B for a derivation. Here, ∆ = ∂2
x + ∂2

y is the

Laplacian and ∇
2
κ = κy∂2

x + κx∂2
y is the Vlasov opera-

tor. Note that the tensions τi and curvatures κi occurring
in these equations are the tensions and curvatures of the
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initial state, prior to wrinkling. The Airy stress function,
or stress potential, permits the calculation of the addi-
tional stresses in the plate, which arise because of the

wrinkling, by the relations τ
(1)
x = ∂2

yφ, τ
(1)
xy = −∂x∂yφ

and τ
(1)
y = ∂2

xφ [12]. The existence of a non-trivial solution
of these stability equations indicates the existence of an
unstable deformation mode for the axisymmetric buckled
solution (i.e. a negative eigenvalue of the second variation
of the elastic energy).

In the present geometry and stress state, some terms
vanish in the stability equations. We solve the equations
using an ansatz

w(x, y) = W (y) sin kx, φ(x, y) = Φ(y) sin kx. (47)

The wrinkle shape function w(x, y) represents a wrin-
kle pattern consisting of wrinkles extending in y-direction
with an amplitude function W (y) for each wrinkle, which
are arranged in a periodic pattern in x-direction with a
wave number k. Wrinkle shape W (y) and wave number k
are to be determined. Inserting this ansatz as well as the
expressions for tensions and curvatures into the stability
equations results in two coupled linear ordinary differen-
tial equations for the amplitude functions,

0 =

(

∂4
y − 2k2∂2

y + k4 − k2

EB
τ0

(

1 − apy
2
)

)

W +
ack

2y

EB
Φ,

0 =
(

∂4
y − 2k2∂2

y + k4
)

Φ −
(

acyk2EH0

)

W. (48)

For a numerical solution, it is necessary to non-
dimensionalise the equations, which gives useful informa-
tion on the relevant parameters. At first, we choose a
length unit 1/

√
ap, which is the root of the parabolic stress

profile, so that we can expect W (y) to decay on this scale.
Substituting y = ŷ/

√
ap and ∂y =

√
ap ∂ŷ in (48) induces

further substitutions for the parameters of the differential
equations such that they can finally be written in the form

0 =
(

∂4
ŷ − 2k̂2∂2

ŷ + k̂4 − k̂2τ̂0

(

1 − ŷ2
)

)

Ŵ +
(

âck̂
2ŷ

)

Φ̂,

0 =
(

∂4
ŷ − 2k̂2∂2

ŷ + k̂4
)

Φ̂ −
(

âck̂
2ŷ

)

Ŵ . (49)

The substitutions included here are

ŷ =
√

apy, k̂ =
k

√
ap

, âc =

√

EH0

EB

ac

a
3/2
p

,

τ̂0 =
τ0

apEB
, Φ̂ =

Φ

EB
, Ŵ =

√

EH0

EB
W. (50)

A shooting method [25,26] can be applied to solve the
differential equations numerically, when boundary con-
ditions are provided. Because of the symmetry of the
problem, we expect Ŵ (ŷ) to be an even function. Then,

from (49), it follows that Φ̂(ŷ) is an odd function. Thus,
it is sufficient to solve the differential equations on an in-
terval 0 ≤ ŷ ≤ ŷmax. The boundary conditions at the
left end of this interval, the start-point of integration, fol-
low from the symmetry conditions, Φ̂(0) = Φ̂′′(0) = 0,

Ŵ ′(0) = Ŵ ′′′(0) = 0 and Ŵ (0) = 1. The latter choice
is arbitrary, since the differential equations are homoge-
neous. We imagine the plate to be infinitely large, so that
the wrinkles are confined by the local nature of the com-
pression rather than plate edges. For ŷ → ∞, the wrinkle
amplitude Ŵ has to approach 0, as well as the slope Φ̂′ of
the stress potential because the additional tension derived
from Φ shall approach 0. In practice, we integrate up to a
sufficiently large ŷmax and impose the boundary conditions
Ŵ (ŷmax) = Ŵ ′(ŷmax) = 0 and Φ̂′(ŷmax) = Φ̂′′(ŷmax) = 0.
When the shooting method must satisfy four boundary
conditions at the endpoint of integration, it needs to vary
four independent shooting parameters, which are typically
the starting values of integration. But in the present case,
due to the homogeneity of the differential equations, there
are only three free starting conditions, Ŵ ′′(0), Φ̂′(0) and

Φ̂′′′(0); the choice of W (0) is arbitrary and cannot serve
as a shooting parameter. Thus, the shooting method must
be allowed to vary one of the additional parameters of the

differential equations, k̂, âc or τ̂0.
In fact, the differential equations can be interpreted as

an eigenvalue problem, where one of the three parameters

k̂, âc or τ̂0 plays the role of an “eigenvalue” and must be
chosen so that the equations do have a non-trivial solution.
In our case, we choose τ̂0 as the eigenvalue, because this
has the simplest physical interpretation: We increase the
stress on the plate until a non-trivial solution in form of
wrinkles exists. Then, this value is the critical stress τ̂0

which the plate can bear; for larger loads it will wrinkle.
Obviously, the critical stress will depend on the other two

parameters, τ̂0 = τ̂0(âc, k̂). The value of âc is known when
an axisymmetric solution is given, see (44) and (42). The

wave number k̂, however, is unknown. We are interested
in the wrinkling mode which becomes unstable first, i.e.
for the smallest possible load. To find this critical mode
and the corresponding critical stress, we can minimise τ̂0

with respect to k̂,

τ̂c(âc) = min
k̂

τ̂0(âc, k̂), (51)

so the non-dimensional critical stress only depends on âc.

The wave number k̂c of the minimum is related to the
wavelength of the wrinkles, λ̂c = 2π/k̂c. Due to bound-
ary conditions in x-direction, the wavelength is quantised,
and thus the minimisation also has to be performed on a

quantised space for k̂. For simplicity, however, we will ne-
glect the quantisation, which corresponds to an infinitely
long plate (in x-direction) on which all wavelengths are
permitted.

A numerical analysis along the lines just presented re-
veals the function τ̂c(âc), which is shown in fig. 8a) to-
gether with the critical wavelength. The critical tension
increases with increasing curvature parameter âc. This re-
flects the well known fact that bent surfaces (like corru-
gated cardboard) are harder to bend in the perpendicu-
lar direction than flat surfaces. In addition, our numeri-
cal procedures return the shape of the wrinkles, that is,
the amplitude function Ŵ (ŷ). As shown in fig. 8b), the
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Fig. 8. (Colour on-line) a) Numerical results for the non-
dimensional critical tension τ̂c = τc/EBap and wavelength

λ̂c = λc
√

ap as a function of the curvature parameter âc =
p

EH0/EBac/a
3/2

p . b) Numerical solution for the wrinkle am-
plitude functions for âc = 20.

amplitude indeed decays rapidly outside the compressive
region, i.e. for |ŷ| > 1, as it is required for the approxima-
tion to be accurate.

The main result of this section is the formula for the
critical compressive stress on which a curved plate will
start to wrinkle,

τc = apEB τ̂c(âc), with âc =

√

EH0

EB

ac

a
3/2
p

. (52)

The function τ̂c(âc) is known numerically (see fig. 8a). For
a given axisymmetric solution of the shape equations (or
the Pogorelov model), the parameters ac and ap can be
calculated according to (42) and (44), respectively, and
inserted into (52). This gives the critical tension which
the capsule can bear in the axisymmetric state. If the
minimum value τmin = mins0

τϕ(s0) in the compressive
region exceeds the critical stress, i.e. if |τmin| > τc, the
axisymmetric capsule shape is unstable with respect to a
wrinkling mode with wavelength

λc =
1

√
ap

λ̂c(âc), (53)

where the function λ̂c(âc) is also known numerically (see
fig. 8a). This is our secondary buckling criterion according
to the curved plate model.

Our further analysis also shows that the secondary
buckling transition is a continuous transition, see ap-
pendix B. We checked that the fourth-order terms in the
elastic energy are positive, and that the energy change
upon wrinkling reads ∆Û ∼ −(τ̂0 − τ̂c)Ŵ

2
0 + Ŵ 4

0 for a

given wrinkle amplitude Ŵ0 ≡ Ŵ (0) (all numerical prefac-
tors have been omitted). Thus, if the compressive tension
exceeds the critical tension, τ0 > τc, the formation of wrin-
kles lowers the elastic energy in second order, which yields
a wrinkle amplitude growing like Ŵ0 ∼

√
τ̂0 − τ̂c when

the critical tension is exceeded. At the secondary buckling
transition the system thus undergoes a supercritical pitch-
fork bifurcation. The continuity of the secondary buckling
is also observed in the numerical simulations [5]. This is
in contrast to the primary buckling transition, which is
a discontinuous transition with metastability above and

Fig. 9. (Colour on-line) Wrinkle shape according to the curved
plate model for ẼB = 10−5 and ν = 1/3 at the critical volume
for the secondary buckling, the wrinkle amplitude is arbitrary.
a) Section through the midsurface. Axisymmetric midsurface in
grey, approximating cubic parabola in dashed blue, and wrinkle
amplitude W in dashed red. b) A three-dimensional view, the
blue frame indicates the position and orientation of the section
shown in a).

below the transition as discussed above and with an ax-
isymmetric dimple of the buckled state which always has
a finite size.

3.3 Secondary buckling transition threshold

We will now apply the secondary buckling criterion to
buckled shapes from the shape equations and from the
Pogorelov model in order to quantify the threshold for
secondary buckling.

For the shape equations, we exemplarily discuss a cap-
sule with elastic parameters ẼB = 10−5 and ν = 1/3 (see
fig. 9). Our numerical analysis shows that the critical vol-
ume difference for the secondary buckling is 4.8%, for the
dimensionless curvature parameter we find âc = 20.86,
and the wrinkle wavelength is λc = 0.396R0. The wrin-
kle wavelength can be converted into a wrinkle number:
Since the wrinkles are centred at sc where the radius of the
axisymmetric midsurface is r(sc) = 0.476R0, the number
of wrinkles is given by n = 2πr(sc)/λc = 7.55, so either
n = 7 or n = 8. These results are illustrated in fig. 9 in
a meridional section and in a three-dimensional view. In
fig. 9a), the same section as in fig. 6 is shown, but addi-
tionally the normal displacement, or wrinkle amplitude,
is plotted. The results show that the wrinkle amplitude is
very small outside the compressive region (compare with
fig. 6), and that the approximated midsurface is quite ac-
curate in the region of large wrinkle amplitude. This indi-
cates that our approximations are justified, because their
inaccuracies lie in regions where the wrinkles do not de-
velop.

We have applied this analysis to a whole range of dif-
ferent bending stiffnesses ẼB , and thus generated a new
line for the phase diagram fig. 12 which represents the
critical volume of the secondary buckling transition (red
data points). The data points can be fitted by the power
law

∆V2nd

V0

∣

∣

∣

∣

shape eqs.

= (2550 ± 50) Ẽ0.946±0.002
B . (54)

Now, the secondary buckling criterion will be applied
to the Pogorelov model. Because we have an approximate
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analytic expression for the compressive hoop stress profile
within the Pogorelov model, we can obtain an analytic
result for the secondary buckling threshold. At first, the
parameters ap and ac must be determined, so that we can
evaluate the critical hoop tension (52). In the Pogorelov
model, the hoop tension τϕ is given by (31). Its minimum
value is

τ0 =
σmin

3

EH0

1 − ν2

ξα

R0
, (55)

and the integral between its roots can be calculated as

F =
EH0

1 − ν2

ξ2α

R0

[

5

24
σ2

min +
σmin

3

(

e−3π/4 +
√

2
)

]

. (56)

Using eq. (44), it can be shown that

ap =
āp

R2
0

[

ẼB

(

1 − ν2
)]1/2

, with āp ≈ 0.33955, (57)

where, for convenience, the numerical constants have been
reduced to āp, and the linearised scaling parameters (25)-
(27) were used.

Calculating the curvature parameter ac is a bit more
difficult and cannot be done explicitly. The problem is
that the root of the meridional curvature according to (33)
cannot be found analytically. It is implicitly determined
by the equation

w̄′(s̄c) −
ξ

αR0
= 0. (58)

Inserting the linearised scaling parameters and introduc-
ing the substitution X = (∆V/V0ẼB)1/4, this equation
reads

w̄′(s̄c) −
(

3

8

)1/4
(

1 − ν2
)1/4 1

X
= 0 (59)

and implicitly defines the function s̄c(X), which can be
evaluated numerically, for example by using a Newton
method. The curvature parameter ac, see (42), can then
also be evaluated numerically for given X,

ac(X) =
α

ξ2
w̄′′(s̄c(X)). (60)

This leads to the non-dimensionalised curvature parame-
ter, see (52),

âc(X) =

(

8

3

(

1 − ν2
)

)1/4
X

ā
3/2
p

w̄′′(s̄c(X)). (61)

After these steps, the critical tension τc (52) can be
evaluated, as a function of X. The critical volume differ-
ence for the secondary buckling requires τc = τ0 with τ0

from (55), which is equivalent to

τ̂c(âc(X)) =
σmin

3āp

(

8

3

)1/4
(

1 − ν2
)−1/4

X. (62)

Solving this equation numerically results, for ν = 1/3,
in X = 7.8024. Thus, with the original definition X =

(∆V/V0ẼB)1/4, we have derived the secondary buckling
volume

∆V2nd

V0

∣

∣

∣

∣

Pog

= 3706 ẼB (63)

for the Pogorelov model with the curved plate buckling
criterion. In the phase diagram fig. 12, this line (in red)
is close to the secondary buckling line (54) of the shape
equations, but has a slightly different exponent. The expo-
nent 1 is exact in the Pogorelov model, but the prefactor
in (63) is still weakly ν-dependent.

From these results, the wrinkle wavelength can also
be calculated. At X = 7.8024, we have (always for ν =
1/3) a curvature parameter of âc(X) = 15.14 and a non-

dimensional wavelength of λ̂c(âc) = 4.366 (see fig. 8). This
results in a real wavelength of

λc =
λ̂c√
ap

= R0

[

ẼB

(

1 − ν2
)]1/4 λ̂c√

āp
. (64)

For the number of wrinkles which are distributed along
the perimeter 2πrD we then get1

n =
2πrD

λc
= 2π

(

8

3

)1/4 X
√

āp

λ̂c

(

1 − ν2
)1/4

≈ 8.6. (65)

Thus, in this combination of simplified models (Pogorelov
model for the axisymmetric shape and buckling criterion
from the curved plate model), the number of wrinkles

seems fixed over the whole range of ẼB .

4 Secondary buckling from a stability analysis

of the full axisymmetric buckled shape

To confirm the results for the secondary buckling transi-
tion just presented, we also followed another, more rig-
orous approach. The stability equations of shallow shells,
which we already used for the secondary buckling criterion
for the curved plate, can also be directly applied to the full
axisymmetric shape. In comparison with the curved plate
model, this is an improvement because now, also the less
prominent features like the meridional tension τs �= 0 and
circumferential curvature κϕ �= 0 are contained in the sta-
bility analysis. However, it might be problematic that the
dimple is not shallow for large volume differences. In the
curved plate model, this problem was avoided because we
only looked at a small section of the shell, which was even
for large dimples quite shallow.

4.1 Stability equations of shells of revolution

The stability equations of shallow shells presented in
sect. 3.2 are formulated for Cartesian coordinates, which
are not appropriate for our case of an axisymmetric shape

1 The result n ≈ 8.6 corrects an erroneous statement in
ref. [19].



Page 12 of 21 Eur. Phys. J. E (2014) 37: 62

(before wrinkling). We did not find a formulation of the
stability equations in general coordinates in the shell the-
ory literature. However, the derivation of the Cartesian
stability equations (appendix B) can be transferred to
a suitable coordinate system. The basis is formed by
the strain-displacement relations of the nonlinear DMV
theory, a simplified shell theory named after Donnel,
Mushtari and Vlasov. A formulation of this theory in gen-
eral coordinates can be found in ref. [18]. Appendix C
shows that the stability equations can be formulated again
in the normal displacement w and stress potential φ and
are formally very similar to the Cartesian case,

EB∆2w = (κsDϕϕ + κϕDss)φ + (τsDss + τϕDϕϕ)w,

1

EH0
∆2φ = −(κsDϕϕ + κϕDss)w. (66)

Only the derivative operators must be re-defined accord-
ing to

Dss ≡ ∂2
s , Dϕϕ ≡ cos ψ

r
∂s +

1

r2
∂2

ϕ,

and ∆ = Dss + Dϕϕ. (67)

The functions for curvature (κs, κϕ), tension (τs, τϕ) and
geometric properties (ψ, r) occurring in the stability equa-
tions (66) are properties of the axisymmetric buckled con-
figuration that is to be tested for its stability with respect
to non-axisymmetric deflections. They are, thus, known
numerically when (66) is solved.

The stability equations are applicable under the same
conditions as the DMV theory [18]. These prerequisites
are i) the typical length scale of the deformation is much
smaller than the smallest radius of curvature of the refer-
ence shape, ii) the displacements are predominantly nor-
mal to the surface and iii) the stresses due to bending are
smaller than the stresses due to stretching. They are sat-
isfied in many shallow shell problems; but also for shells
which are closed, as in the present case and, therefore,
essentially non-shallow as long as the “relevant” part of
the shell, which is subjected to the largest deformation,
is shallow. Thus, we can expect the theory to be accu-
rate for small dimples, but not for large dimples where
the meridian makes a 180◦ turn at the dimple edge. The
dimple size at secondary buckling varies with ẼB , and
sufficiently small dimples are found for small ẼB .

In the following, we are searching for non-axisymmetric
solutions in the form of wrinkles. They are captured by an
ansatz

w(s, ϕ) = W (s) cos(nϕ), φ(s, ϕ) = Φ(s) cos(nϕ), (68)

where n is the number of wrinkles in circumferential direc-
tion and W and Φ are, as in sect. 3.2, amplitude functions.
Inserting this ansatz into (66) results in ordinary differen-
tial equations for the amplitude functions; the only change
in the equations is ∂2

ϕ → −n2.
The boundary conditions for the amplitude functions

are similar to the ones in sect. 3.2: The normal displace-
ment and the additional stresses shall approach 0 far out-
side the deformed region. In the present case, this means

Fig. 10. (Colour on-line) Normalised determinant of the co-
efficient matrix of the discretised stability equations for differ-
ent wrinkle numbers n for successively deflated, axisymmetric
buckled shapes. For n = 6, the root of the determinant occurs
for the smallest deformation. The elastic moduli of the capsule
are ẼB = 10−5 and ν = 1/3.

that we choose a sufficiently large smax, where we require
W (smax) = W ′(smax) = 0 and Φ(smax) = Φ′(smax) = 0.
At the point s = 0, there are, in principle, no boundary
conditions at all, since this is not a point on a boundary.
However, the point s = 0 causes problems, since some
terms in the differential equations diverge here, for ex-
ample the 1/r terms in (67). This problem will be cir-
cumvented by choosing a suitable discretisation scheme
(see appendix D). Considering the ansatz (68), we have
to enforce W (0) = Φ(0) = 0 at least, in order to obtain
continuous fields of displacement and stress potential.

4.2 Results for the secondary buckling transition

The discretisation that we use to transform the differen-
tial equations into a linear system is documented in ap-
pendix D. The solution is then represented by the values
W (i) = W

(

s(i)
)

and Φ(i) = Φ
(

s(i)
)

of the amplitude func-

tions evaluated on the grid s(i) = i · h, with 0 ≤ i ≤ N
and a step size h = smax/N .

Since the linear system is homogeneous, a non-trivial
solution only exists if the determinant of the coefficient
matrix vanishes. Thus, the stability equations turn out
to be similar to an eigenvalue problem, as in the curved
plate model, where the eigenvalue is “hidden” in the ax-
isymmetric buckled shape. Plotting the determinant along
the axisymmetric buckled branch, for example as a func-
tion of the pressure p, the determinant has a root at a
critical pressure which is the onset of the wrinkling in-
stability, see fig. 10. A similar procedure has been suc-
cessfully applied to the unsymmetrical buckling of shal-
low shells [27, 28]. We use the pressure as the parameter
to run through the branch of deflated shapes, because it
directly enters the shape equations as a Lagrange param-
eter. The branch consists of shapes which are unstable
in experiments with prescribed pressure; however, these
shapes are accessible in volume controlled experiments.
The first root of the determinant functions occurs, in the
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Fig. 11. (Colour on-line) Solution for the wrinkle amplitude
W for a capsule with ẼB = 10−5 and ν = 1/3 at the secondary
buckling transition. The vertical line marks sD, the position of
the dimple edge where the curvature κs is at its maximum.
The inset shows a three-dimensional view when this wrinkle
profile is added as a normal displacement to the axisymmetric
buckled shape, with wrinkle number n = 6.

example of fig. 10, for a wrinkle number n = 6 at ap-
proximately p = −0.00107EH0/R0, which corresponds to
a volume reduction of 5.5%. These are the results for the
critical wrinkle number, critical pressure and critical vol-
ume difference for the secondary buckling for the specific
capsule of fig. 10.

At the critical volume, the stability equations have a
non-trivial solution, which can easily be found by standard
methods for linear systems. The resulting wrinkle ampli-
tude W (s), as the interpolation of the W (i) points, is plot-
ted in fig. 11 for the same capsule as used for fig. 10. In
comparison with the curved plate model we find a qualita-
tive agreement (cf. figs. 8 and 9): The wrinkle amplitude
has a prominent peak which is centred in the region of
compressive hoop stress, and decays rapidly outside this
region. In contrast to the curved plate model, the wrinkle
amplitude is not symmetric with respect to its maximum;
instead we observe an overshoot only in the outer region,
and not towards the centre of the dimple. The most obvi-
ous difference in the three-dimensional views is the differ-
ent wrinkle number, which will be discussed later.

Repeating the above procedure to calculate the criti-
cal volume of the secondary buckling for different ẼB , we
obtain a further line for the phase diagram fig. 12 (or-
ange data points). For sufficiently small bending stiffness,

ẼB < 10−5 in the present case, the data points can be
fitted with a power law

∆V2nd

V0

∣

∣

∣

∣

DMV

= (19000 ± 900) Ẽ1.110±0.004
B (69)

and are close to the previously generated secondary buck-
ling line according to the curved plate model, see fig. 12.
Only for too large bending stiffnesses, the data points de-
viate from the power law fit and the previous line. This is
due to the violation of the assumption that the character-
istic length of the deformation is small compared to the
radius of curvature, on which the DMV theory is based,
but which is not justified for large dimples.

5 Discussion of results

5.1 The complete phase diagram

The complete phase diagram in the (ẼB ,∆V )-plane, i.e.,
for buckling under volume control containing all transition
lines derived by the various models discussed in this paper
is shown in fig. 12. In addition, literature results for the
secondary buckling transition, which are all based on nu-
merical simulations, are shown [1,5,29]. For completeness,
the line of auto-contact, where opposite sides of extremely
deflated shells touch each other, is also shown [29].

We will discuss the deflation behaviour of a spherical
shell under volume control by following an imaginary ver-
tical line in this phase diagram. Starting at the bottom, at
small volume difference, there is only one possible shape
for the shell: it is spherical, with a radius smaller than the
initial radius.

Upon deflation, the shell will cross the critical vol-
ume of first buckling, ∆V1st (blue in fig. 12). From there
on, there are two possible shell configurations: a spherical
shape and an axisymmetric buckled shape, of which the
axisymmetric buckled shape is stable and the spherical
shape only metastable. Thus, without external perturba-
tions, the shell will remain spherical. However, it is also
possible to indent the shell manually, and the dimple will
remain on the shell. Thermal fluctuations or imperfections
in the geometry or material, as they are inherent to real
shells, may also cause a sudden transition to the dim-
pled shape, although the spherical shape is theoretically
(meta)stable.

Deflating the shell further, we will cross the line of
classical buckling (green in fig. 12). At this critical vol-
ume ∆Vcb, the spherical configuration becomes unstable.
Thus, if this volume difference is exceeded, the shell must
buckle. In the range of ẼB investigated here, the buck-
led shape is axisymmetric at first; but extrapolating the
lines to smaller ẼB suggests that this will not be the case
for very small ẼB . The transition from spherical to ax-
isymmetric buckled shape is, in any case, a discontinuous
abrupt transition as the energy diagram (fig. 5) shows:
the dimple will have a finite size when it is formed; shapes
with infinitesimal dimples are energy maxima lying above
the energy of the spherical branch and represent a possible
transition state at the discontinuous transition [15].

The axisymmetric buckled shape will lose its stabil-
ity with respect to non-axisymmetric deformations when
we cross the line of secondary buckling at ∆V2nd. Due
to a region of strong hoop compression in the inner neigh-
bourhood of the dimple edge, circumferential wrinkles will
appear in this region. The circumferential fibres release
the strong compression by buckling out of their symmet-
ric shape, similar to a straight rod in the case of Euler
buckling [11], trading compression energy for additional
bending energy. We calculated the line of this secondary
buckling transition via three different routes: i) deriving a
wrinkling criterion for a curved rectangular plate and ap-
plying this criterion to the numerical results of the axisym-
metric shape equations, ii) applying the same criterion to
the approximate analytical results in the framework of the
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Fig. 12. (Colour on-line) Phase diagram of deflated spherical shells with Poisson ratio ν = 1/3 and varying bending stiffness
ẼB (which is related to the Föppl-von-Kármán-number γFvK = 1/ẼB). Dots represent results derived from numerical solutions
of the axisymmetric shape equations, continuous semi-transparent lines (blue, red, orange) fits to those data points, solid lines
(blue, green, red) analytic results, and dashed lines results from numerical simulations. The legend to the right indicates the
appropriate equation numbers or literature references.

Pogorelov model, and iii) by a linear stability analysis of
the full form in the framework of the DMV shell theory.
The results of all three approaches agree well within the
regimes of their respective validity. Literature results for
the secondary buckling line, based on simulations with the
program surface evolver [1,5] or a spring-bead model for a
triangulated sphere [29], are also in good agreement with
our findings. They are plotted by their power laws

∆V2nd/V0 = 3400 ẼB from ref. [1], (70)

∆V2nd/V0 = 8470 Ẽ1.085
B from ref. [5], (71)

∆V2nd/V0 = 4764 Ẽ1.020
B from ref. [29], (72)

as obtained from fitting the simulation results. In fact, the
different secondary buckling lines are so close that some
of them cannot be distinguished. Figure 13 shows a detail
plot, in which the different lines have been “normalised”
by the line of the Pogorelov model (63) in the sense of
plotting

∆V2nd|i
∆V2nd|Pog

(73)

for each line i as a function of ẼB . This plot shows that the
secondary buckling volume differences obtained in numer-
ical simulations (dashed lines) are typically smaller than
our results, which might be due to the fact that the sim-
ulated shells are imperfect because of the triangulation.
Furthermore, fig. 13 makes clear that the stability analy-
sis of the full form in DMV theory (orange data points and

fit) is in very good agreement with the linear ẼB depen-

dence from the Pogorelov model for small ẼB , but deviates
for larger ẼB . The reason is, as mentioned before, that for
large ẼB the dimple grows too large before the secondary
buckling, so that the DMV theory is inaccurate. Indeed,

Fig. 13. (Colour on-line) The secondary buckling lines, nor-
malised by the secondary buckling volume of the Pogorelov
model. For the legend, see fig. 12.

fitting only the seven data points with smallest bending
stiffness ẼB < 2 ·10−6 results in ∆V2nd|DMV ∝ Ẽ1.05

B with
an exponent very close to the analytic exponent 1.

5.2 The number of wrinkles in secondary buckling

Although the critical volume of the secondary buckling
transition agrees fairly well in all models, there are sub-
stantial differences in the predicted number of wrinkles at
the onset of secondary buckling, see fig. 14. In deriving the
wrinkling criterion (52) for the curved plate we also ob-
tained the unstable wrinkling wavelength at the onset of
secondary buckling in eq. (53). Applying this result to the
Pogorelov model, we have seen that the wrinkle number
is fixed at 8.6, see eq. (65) and the red horizontal line in
fig. 14. Applying the curved plate result (53) to the shape



Eur. Phys. J. E (2014) 37: 62 Page 15 of 21

Fig. 14. (Colour on-line) Number of wrinkles as a function of
the bending stiffness at the onset of secondary buckling. The
red data points represent the result (53) from the curved plate
model applied to the shape equations and should be rounded
to an integer. The red line shows the constant wrinkle number
n = 8.6 as obtained from the eq. (53) applied to Pogorelov
model. The orange data points represent the results from the
DMV theory.

equations (red data points), we observe a slight decrease in
the wrinkle number for increasing bending stiffness. This
is contrary to the wrinkle number in the DMV theory (or-
ange data points), which slightly increases with increasing
bending stiffness.

The question whether the wrinkle number n at the
onset of the secondary buckling should depend on ẼB is
difficult to answer from intuition, because there are two
opposing effects at work: On the one hand, we expect the
wrinkle wavelength λ to become smaller for smaller bend-
ing stiffness; but on the other hand, the dimple size rD at
the onset of the secondary buckling also becomes smaller
(see the phase diagram, fig. 12). The number of wrinkles
is n = 2πrD/λ, and both effects can cancel out.

Let us investigate the scaling laws, which provide more
insight, also into the evolution of the number of wrinkles
beyond the onset of secondary buckling. In the simple scal-
ing argument of sect. 3.2 we used that the wrinkle wave-
length is given by the width of the compressive part of
the stress parabola, λ ∼ 1/

√
ap. In the Pogorelov model

we saw that the coefficient ap of the stress parabola scales
with the reduced bending stiffness, but is independent of
the volume reduction, see (57). This leads to the scaling

λ ∼ R0Ẽ
1/4
B ∼

√

H0R0, (74)

which is consistent with previous findings [5,8]. From the
geometrical relations (11) and (13) it follows that the ra-
dius of the dimple is related to the volume difference by
rD ∼ R0(∆V/V0)

1/4.
This results in a wrinkle number scaling

n ∼ rD/λ ∼ Ẽ
−1/4
B (∆V/V0)

1/4. (75)

When we control the bending stiffness and volume reduc-
tion independently, we find that for fixed volume differ-
ence, the wrinkle number decreases with increasing bend-
ing stiffness which is in accordance with simulation re-
sults [1,5]. Following the deflation of a single capsule with

fixed ẼB , we find that the wrinkle number should increase
with ∆V , which is in accordance with the simulations in
ref. [1]; in ref. [5] an initial decrease of the wrinkle number
just after the onset (followed by an increase) is reported
that is not captured by this scaling law.

However, when we investigate the wrinkle number di-
rectly at the onset of secondary buckling, the volume dif-
ference is determined by the bending stiffness and scales
linearly with ẼB , see (63) and the phase diagram fig. 12.

Inserting ∆V/V0 ∼ ẼB into (75) shows that the number
of wrinkles at the onset of secondary buckling does not
scale with the bending stiffness. If there are significant
variations of the wrinkle number at the onset, the depen-
dence on ẼB comes from more subtle effects. This possibly
explains why our different approximate models, which all
have their flaws, predict slightly different results.

Comparison with previous simulation results is dif-
ficult since most results are given for highly deflated
shells, and not at the onset of secondary buckling. In
ref. [1], four different deflation trajectories are reported,

for ẼB ≈ 8.6 · 10−6 to 1.1 · 10−4. They all exhibit 5 wrin-
kles at the onset, except the one with smallest ẼB , which
starts to wrinkle with 6 wrinkles. This affirms that the
wrinkle number at the onset is quite unaffected by the
bending stiffness. In other simulations based on triangu-
lated surface models [29, 30] we also observed that the
number of wrinkles depends sensitively on the triangula-
tion, specifically on the position and type of disclinations.

6 Conclusions

We investigated the deformation behaviour of spherical
elastic shells upon deflation under volume control and
developed a complete theory for the generic sequence of
equilibrium shapes. For small volume changes, the shell
remains in a spherical shape, then jumps to an axisym-
metric buckled configuration in a primary buckling tran-
sition, and finally undergoes a secondary buckling transi-
tion where the dimple loses its axisymmetry. These three
shapes represent the possible stable equilibrium states and
are, thus, practically most relevant, although many other
metastable shapes exist, as shown earlier by a bifurca-
tion analysis of axisymmetric shapes [15]. We obtained
quantitative results for the critical volumes of both buck-
ling transitions using different approaches based on elas-
ticity theory of shells. Our results are in mutual agreement
and in agreement with previous literature results and are
summarised in the shape or phase diagram in fig. 12 in
the plane of reduced volume difference and reduced bend-
ing rigidity ẼB (equal to the inverse Föppl-von-Kármán-
number).

The axisymmetric buckling, out of the spherical shape,
occurs at a volume difference somewhere between the first
buckling line, ∆V1st ∼ Ẽ

3/5
B , and the classical buckling

line, ∆Vcb ∼ Ẽ
1/2
B . The first buckling line is defined as

the volume difference (in dependence on the bending stiff-
ness) where the elastic energies of the spherical solution
branch and the axisymmetric buckled branch cross, so
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that the axisymmetric buckled shapes are energetically
favourable for larger volume differences [15]. The classi-
cal buckling line is defined by the onset of instability of
the spherical shapes. We investigated two different mod-
els for the axisymmetric buckling: Firstly, shape equa-
tions based on nonlinear shell theory which have to be
solved numerically, and secondly, an analytic model which
has been introduced by Pogorelov, but which has been
rarely used to derive practical and quantitative results so
far.

The main focus of this paper is on the secondary buck-
ling transition, because this phenomenon is lacking a theo-
retical explanation, but has been observed in experiments
or simulations. The dimple’s loss of axisymmetry occurs
by wrinkling along the inner side of the dimple edge. The
physical explanation for this instability is a hoop stress
which is highly compressive in this region, a feature that
is well captured by the nonlinear shape equations and the
analytic Pogorelov model. An expression for the critical
compressive tension was derived in a simplified geometry
and stress state, where the midsurface was approximated
as a curved plate with a height profile in form of a cubic
parabola and a parabolic stress profile to approximate the
locally compressive hoop stress. Application of this sec-
ondary buckling criterion to the axisymmetric solutions of
the shape equations and Pogorelov model gave a line for
the secondary buckling transition in the phase diagram,
∆V2nd ∼ ẼB . The results were verified by a linear sta-
bility analysis in the framework of nonlinear DMV shell
theory, where the full geometry and state of stress was
taken into account. For small ẼB , where the dimples are
quite small at the secondary buckling transition and the
DMV theory is therefore accurate, our previous results
were confirmed. Our results are also in good agreement
with numerical simulations found in the literature.

Finally, our analysis showed that the primary buck-
ling transition is discontinuous, i.e., we find metastability
above and below the transition volume V1st and the buck-
led state has a dimple of finite size, whereas the secondary
buckling transition is continuous with a wrinkling ampli-
tude which becomes arbitrarily small at the transition.

We also obtain results for the wrinkle number n at
the onset of secondary buckling and beyond. Scaling ar-

guments give n ∼ Ẽ
−1/4
B ∆V 1/4, see eq. (75), for the num-

ber of wrinkles. At the onset of secondary buckling, where
∆V2nd ∼ ẼB , the wrinkle number becomes approximately
independent of the reduced bending rigidity in accordance
with our more detailed analysis, see fig. 14. Beyond the
onset of secondary buckling the wrinkle number increases
n ∼ ∆V 1/4 in accordance with numerical simulations in
the literature.

There are still open questions on the secondary buck-
ling of spherical shells. When the pressure inside the
shell is prescribed, rather than the volume, large parts of
the axisymmetric buckled branch become unstable, and
the capsule is likely to buckle through, until opposite
sides are in contact [15]. In these self-contacting shapes,
the secondary buckling may also occur, but in modified
form. Furthermore, we currently cannot calculate wrinkled
shapes beyond the secondary buckling threshold. Thus, in

this regime a quantitative result for the wrinkle number
beyond the scaling result (75) is still missing.

We thank Jens Hohage and Christian Wischnewski for their
numerical simulation results.

Appendix A. Analytic solution of the

variational problem

The analytic solution of Pogorelov’s variational problem
proceeds as follows. The coordinate range [0,∞) is divided
into two parts I1 = [0, σ) and I2 = [σ,∞). On the inter-
val I1, the function w̄ is of the order of unity (since its
starting value is 1) and it shall have a root at s̄0 = σ.
From there on, w̄ is assumed to stay small, that is, we
can neglect w̄2 as compared to w̄ on I2, which will sim-
plify the constraint (29). On I1, Pogorelov argues that w̄′

should be approximately constant, because the curvature
κs ∝ w̄′ has a maximum at the dimple edge and therefore
varies little in its vicinity. With this simplification and the
boundary conditions (30) we have

w̄1(s̄0) = (s̄0 − σ)/σ, (A.1)

and the constraint (29) and boundary conditions further
dictate

ū1(s̄0) = − 1

2σ
(s̄0 − σ)2 − 1

6σ2
(s̄0 − σ)3 +

σ

3
(A.2)

as the solution on I1. On I2, the constraint simplifies to
w̄2 = −ū′

2, which can be inserted directly into the energy
functional (28). The complete functional, on I1 and I2,
reduces with these two simplifications to

J =

∫ σ

0

ds̄0

{

w̄′2
1 + ū2

1

}

+

∫ ∞

σ

ds̄0

{

w̄′2
2 + ū2

2

}

=
1

σ
+

17

315
σ3 +

∫ ∞

σ

ds̄0

{

ū′′2
2 + ū2

2

}

. (A.3)

With the Ansatz on I1, the functions ū1 and w̄1 are fixed
by (A.1) and (A.2), respectively. A variation is only pos-
sible by varying the parameter σ. On I2, the function ū2

can be subjected to arbitrary variations which respect the
boundary conditions. At s̄0 = σ, the boundary condition
is given by the continuity condition ū2(σ) = ū1(σ) = σ/3.
To find the minimum of (A.3), we first keep σ fixed and
variate with respect to ū2. The solution will depend still
on σ, and we then minimise with respect to σ.

Requiring a vanishing variation δJ [ū2] = 0 results in
the differential equation

ū′′′′

2 + ū2 = 0. (A.4)

It can be solved with an exponential ansatz, and the so-
lution which conforms the boundary conditions is given
by

ū2(s̄0) = − σ

3
√

2

(

ω1e
ω1(s̄0−σ) + ω2e

ω2(s̄0−σ)
)

, (A.5)



Eur. Phys. J. E (2014) 37: 62 Page 17 of 21

with ω1 = −(1 − i)/
√

2 and ω2 = −(1 + i)/
√

2. From the
constraint w̄2 = −ū′ it follows immediately that

w̄2 =
iσ

3
√

2

(

−eω1(s̄0−σ) + eω2(s̄0−σ)
)

. (A.6)

With eqs. (A.1), (A.2), (A.5) and (A.6), the complete so-
lution is determined,

ū(s̄0) =

{

ū1(s̄0), 0 ≤ s̄0 < σ,

ū2(s̄0), s̄0 ≥ σ,
(A.7)

w̄(s̄0) =

{

w̄1(s̄0), 0 ≤ s̄0 < σ,

w̄2(s̄0), s̄0 ≥ σ.
(A.8)

Evaluating the functional J for this solution, we get

J(σ) =
1

σ
+

√
2

9
σ2 +

17

315
σ3. (A.9)

We can now perform the final minimisation with respect
to σ, which gives a numerical value of

σmin = 1.24667 and Jmin = 1.15092. (A.10)

Appendix B. Wrinkling of curved plates

In this appendix, we show how the stability equations of
shallow shells (45) and (46) can be derived from an en-
ergy functional. These energy considerations also serve to
classify the secondary buckling as a continuous transition.

We consider a shallow shell above the (x, y)-plane with
curvatures κx and κy. It is subjected to in-plane stresses
τx, τy and τxy, and an external normal load p. We do
not make any assumptions on the in-plane stresses; they
may be generated from linear or nonlinear elasticity, ther-
mal stresses, residual stresses from plastic deformations or
inhomogeneous growth, or whatever we can think about
—as long as they satisfy certain equilibrium conditions
as presented below. This general framework is necessary
in order to capture the specific case analysed in sect. 3,
because the parabolic stress state does not satisfy the com-
patibility conditions of linear elasticity.

When we add small displacements u, v, w (in x, y and
z direction, respectively) to the given state of the shallow
shell, its elastic energy will change. If we can find a dis-
placement field which lowers the elastic energy, the given
state is unstable. The fields u and v are not to be confused
with the fields in the Pogorelov model; the notation in this
appendix is chosen as in ref. [12].

The strains and bending strains induced by the dis-
placement field are given by

εx =
∂u

∂x
− κxw +

1

2

(

∂w

∂x

)2

, Kx =
∂2w

∂x2
, (B.1)

εy =
∂v

∂y
− κyw +

1

2

(

∂w

∂y

)2

, Ky =
∂2w

∂y2
, (B.2)

εxy =
1

2

(

∂u

∂y
+

∂v

∂x
+

∂w

∂x

∂w

∂y

)

, Kxy =
∂2w

∂x∂y
, (B.3)

(cf. ref. [12], p. 523). The total energy variation can be
written as a surface integral

∆W =

∫

dA {wstretch + wbend + wext} (B.4)

over the energy densities

wstretch =
1

2

EH0

1 − ν2

(

ε2
x + 2νεxεy + ε2

y + 2(1 − ν)ε2
xy

)

+ τxεx + 2τxyεxy + τyεy, (B.5)

wbend =
1

2
EB

(

K2
x + 2νKxKy + 2(1 − ν)K2

xy

)

, (B.6)

wext = pw. (B.7)

We sort the energy functional by different orders of the
displacement fields, ∆W = ∆W (1) + ∆W (2) + ∆W (3) +
∆W (4).

The first variation contains all terms linear in u, v and
w and reads

∆W (1) =

∫

dA
{

u [−∂xτx − ∂yτxy] + v [−∂yτy − ∂xτxy]

+w [−κxτx − κyτy + p]
}

(B.8)

after integration by parts has been used (we omit the
boundary terms). Linear stability requires the contents
of the three square brackets to vanish, which gives the or-
dinary stability equations for membranes (without bend-
ing).

The second variation contains all quadratic terms, in-
cluding terms mixing different fields. Integration by parts
can be used to write the integrand in a symmetric form.
This results in

∆W (2) =

∫

dA
{

(u, v, w)Ĥ(u, v, w)T
}

, (B.9)

with an operator Ĥ which is a 3× 3 matrix that contains
differential operators in its components. It is self-adjoint
and, therefore, has an eigenbasis. Thus, Ĥ is positive def-
inite if all its eigenvalues are positive. When the lowest
eigenvalue falls below zero, Ĥ is not positive definite and,
thus, a deformation mode exists which lowers the elas-
tic energy. This is exactly the critical point where wrin-
kling can occur. We can find the critical point by setting
Ĥ(u, v, w)T = (0, 0, 0)T . These three equations are equiv-
alent to

EB∆2w = τx
∂2w

∂x2
+ 2τxy

∂2w

∂x∂y
+ τy

∂2w

∂y2

+κxτ (1)
x + κyτ (1)

y , (B.10)

0 = ∂xτ (1)
x + ∂yτ (1)

xy , (B.11)

0 = ∂yτ (1)
y + ∂xτ (1)

xy . (B.12)
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Here, we introduced the additional tensions, which de-
velop due to the strains in linear order,

τ (1)
x =

EH0

1 − ν2

(

ε(1)
x + νε(1)

y

)

, ε(1)
x =

∂u

∂x
− κxw, (B.13)

τ (1)
y =

EH0

1 − ν2

(

ε(1)
y + νε(1)

x

)

, ε(1)
y =

∂v

∂y
− κyw, (B.14)

τ (1)
xy =

EH0

1 + ν
ε(1)
xy , ε(1)

xy =
1

2

(

∂u

∂y
+

∂v

∂x

)

. (B.15)

Equations (B.11) and (B.12) can be solved by introducing
the Airy stress function φ [11,12], defined by the relations

τ
(1)
x = ∂2

yφ, τ
(1)
xy = −∂x∂yφ and τ

(1)
y = ∂2

xφ. Additionally,
we must assure that the tensions derived from the stress
function are compatible with Hooke’s law, (B.13)-(B.15).
With Hooke’s law, the strains can be expressed in terms
of the stress function

1

EH0

(

∂2φ

∂y2
− ν

∂2φ

∂x2

)

= ε(1)
x =

∂u

∂x
− κxw, (B.16)

1

EH0

(

∂2φ

∂x2
− ν

∂2φ

∂y2

)

= ε(1)
y =

∂v

∂y
− κyw, (B.17)

−1 + ν

EH0

∂2φ

∂x∂y
= ε(1)

xy =
1

2

(

∂u

∂y
+

∂v

∂x

)

. (B.18)

As the strains are derivatives of the displacements, they
must satisfy certain integrability conditions. We can
find these conditions, also known as compatibility con-
ditions [12], by eliminating the in-plane displacements u

and v from (B.16)-(B.18) using the combination ∂2
yε

(1)
x +

∂2
xε

(1)
y − 2∂x∂xε

(1)
xy . With the six equations (B.16)-(B.18)

we can derive from this combination

∆2φ = −EH0

(

κx∂2
yw + κy∂2

xw
)

, (B.19)

which is (45) in the main text. When the Airy stress func-
tion is introduced in (B.10), we obtain

EB∆2w = τx∂2
xw + 2τxy∂x∂yw + τy∂2

yw

+κx∂2
yφ + κy∂2

xφ, (B.20)

which is (46) in the main text. The solution of these stabil-
ity equations determines the shape of the wrinkles when
the instability sets in. As the stability equations are ho-
mogeneous, the amplitude of the wrinkles is arbitrary, in
a mathematical sense. In practice, we have to take into
account higher-order terms in the elastic energy for large
amplitudes; from these higher-order terms we may also
obtain the magnitude of the wrinkle amplitude as we will
demonstrate below.

The third variation of the energy functional shall be
calculated for a given wrinkling mode (w, φ) which satisfies
the stability equations (B.10)-(B.12). Under this assump-
tion, the third-order terms in the energy functional can be
simplified to

∆W (3) = −1

2

∫

dA w ·
{

∂2w

∂x2

∂2φ

∂y2

−2
∂2w

∂x∂y

∂2φ

∂x∂y
+

∂2w

∂y2

∂2φ

∂x2

}

. (B.21)

In our case discussed in the main text, the solution (47)
is symmetric, that is, inverting the amplitude and shift-
ing the wrinkles by half a wavelength in x direction
results in exactly the same shape. Thus, ∆W (w, φ) =
∆W (−w,−φ), and the odd orders vanish: ∆W (3) = 0.

For the fourth variation of the energy we obtain

∆W (4) =
1

8

EH0

1 − ν2

∫

dA

[

(

∂w

∂x

)2

+

(

∂w

∂y

)2
]2

. (B.22)

Evidently, this term is positive and limits the magnitude
of the wrinkle amplitude.

In the following, we will calculate the wrinkle am-
plitude as a function of the compressive tension for the
case discussed in the main text. This case is specified by
τx = −τ0(1− apy

2), κy = acy and τy = τxy = κx = p = 0,
which is linearly stable, cf. (B.8). From (B.9) we obtain,
by introducing the Airy stress function

∆W (2) =
1

2

∫

dA w
{

EB∆2w

+τ0

(

1 − apy
2
)

∂2
xw − acy∂2

xφ
}

. (B.23)

We checked with our numerical solutions (w, φ) that this
integral vanishes at the critical point τ0 = τc (52). To cal-
culate the energy decrease for τ0 > τc, we will use the
same functions (w, φ) which were calculated at the crit-
ical point. This is analogous to the first-order perturba-
tion theory used in quantum mechanics. Since our plate is
infinitely long in x-direction, it is appropriate to discuss
the energy decrease per length, and so the integrals in x-
direction over the trigonometric functions are replaced by

their respective averages, i.e.
∫ L

0
sin2(kx)/L = 1/2, etc.

Furthermore, we will switch to the non-dimensional quan-
tities introduced in (50). We finally obtain

∆Û (2) =
∆Ŵ (2)

L

=
1

2
(τ̂0 − τ̂c)Ŵ

2
0

∫ ŷmax

0

dŷ ŵ
{

−k̂2
(

1 − ŷ2
)

}

ŵ.

(B.24)

In this equation, the function ŵ has a fixed amplitude of
ŵ(0) = 1, and Ŵ0 denotes the actual wrinkle amplitude.
The integral is negative since ŵ decays rapidly for ŷ > 1.
For âc = 20, for example, the integral has a numerical
value of −b2 = −1.0188.

From (B.22) we obtain analogously, with
∫ L

0
sin4(kx)/L = 3/8 and

∫ L

0
cos2(kx) sin2(kx)/L = 1/8,

∆Û (4) =
1

32

1

1 − ν2
Ŵ 4

0

∫ ŷmax

0

dŷ
[

3
(

k̂ŵ
)4

+
(

k̂ŵ∂ŷŵ
)2

+ 3
(

∂ŷŵ
)4

]

, (B.25)

where the integral evaluates to b4 = 9.34 for âc = 20.
So in total we have an elastic energy

∆Û = −1

2
b2(τ̂0 − τ̂c)Ŵ

2
0 +

1

32
b4

1

1 − ν2
Ŵ 4

0 . (B.26)
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Fig. 15. (Colour on-line) Bifurcation behaviour for the com-
pressed plate. The elastic energy ∆U shows, as a function of
the wrinkle amplitude W0, either one minimum at W0 = 0
(for τ0 ≤ τc) or two minima and one maximum (for τ0 > τc).
For the equilibrium configuration, which resides in one of the
minima, we get a behaviour that changes at τc: The flat shape
(W0 = 0) splits at τc into two stable wrinkled shapes, and the
flat shape becomes unstable.

The optimal wrinkle amplitude is obtained by minimising
this function with respect to Ŵ0, which gives

Ŵ0 = ±
√

8b2

b4
(1 − ν2)(τ̂0 − τ̂c) , (B.27)

for τ̂0 > τ̂c. The energy function and the position of the
(un)stable extrema can nicely be visualised, see fig. 15.

The wrinkling of the shallow shell thus represents a
supercritical pitchfork bifurcation. In contrast to the first
buckling transition, the wrinkling is hence a continuous
transition.

Appendix C. Stability equations of shells of

revolution

In this appendix, the derivation of the Cartesian stability
equations of the previous section is transferred to axisym-
metric shells. The procedure is analogous, but mathemat-
ically more involved, and we present only the main steps
of the derivation here.

The reference shape for our energy considerations is
the axisymmetric buckled shape, characterised by its ge-
ometry (the functions r, z, ψ, κs and κϕ, see sect. 2.1)
and its stress state (τs, τϕ, ms and mϕ). This shape
is perturbed by displacement fields u(s, ϕ), v(s, ϕ) and
w(s, ϕ) in meridional, circumferential and normal direc-
tion, respectively. The displacements induce strains ac-
cording to the strain-displacement relations of the DMV
theory [12,18]

εs = ∂su − κsw +
1

2
(∂sw)2, (C.1)

εϕ =
cos ψ

r
u +

1

r
∂ϕv − κϕw +

1

2r2
(∂ϕw)2, (C.2)

εsϕ =
1

2

(

1

r
∂ϕu − cos ψ

r
v + ∂sv +

1

r
(∂sw)(∂ϕw)

)

(C.3)

and bending strains

Ks = ∂2
sw ≡ Dssw (C.4)

Kϕ =
cos ψ

r
∂sw +

1

r2
∂2

ϕw ≡ Dϕϕw (C.5)

Ksϕ =
1

r
∂s∂ϕw − cos ψ

r2
∂ϕw ≡ Dsϕw, (C.6)

which are justified if the displacements are predominantly
normal to the surface, i.e. w is larger than u and v. The
energy change due to these strains is

∆W =

∫

dA {wstretch + wbend + wext} , (C.7)

with the energy densities

wstretch =
1

2

EH0

1 − ν2

(

ε2
s + 2νεsεϕ + ε2

ϕ + 2(1 − ν)ε2
sϕ

)

+ τsεs + τϕεϕ, (C.8)

wbend =
1

2
EB

(

K2
s + 2νKsKϕ + 2(1 − ν)K2

sϕ

)

+ msKs + mϕKϕ, (C.9)

wext = pw. (C.10)

Collecting the first-order terms (in u, v, w) and re-
quiring them to vanish for arbitrary displacement fields
reproduces the equilibrium equations of the DMV theory.
They coincide with (7)-(9), except that the effect of the
transverse shearing force q is neglected in the meridional
force balance (7), which is typical for the DMV theory [18].

Here we are mainly interested in the second-order
terms. They can be simplified and symmetrised by inte-
gration by parts. The Jacobian determinant in the area
element dA = rdsdϕ must be incorporated in the integra-
tion by parts, and we obtain as a general rule [31]

∫

f · (∂sg) dA = −
∫

1

r
∂s(rf) · g dA, (C.11)

where boundary terms are omitted. As a simplification, we
assume that the angle ψ is varying slowly (in comparison
to u, v, w and r), so that its derivative ∂sψ ≈ 0 can be
neglected. This limits the DMV theory to the case where
the typical length scale of the non-axisymmetric pertur-
bation is much smaller than the radii of curvature of the
axisymmetric buckled shape.

After a quite involved calculation, the energy change
in second order can be written as

∆W (2) =

∫

dA
{

(u, v, w)Ĥ(u, v, w)T
}

. (C.12)

Following the rationale of appendix B, the critical point
for the loss of stability of the axisymmetric shape is
when the lowest eigenvalue of Ĥ is zero. The equations
0 = Ĥ(u, v, w)T can be recasted into the form

0 = EB∆2w − τsDssw − τϕDϕϕw − κsτ
(1)
s − κϕτ (1)

ϕ

0 =
1

r

∂
(

rτ
(1)
s

)

∂s
− cos ψ

r
τ (1)
ϕ +

1

r

∂τ
(1)
sϕ

∂ϕ

0 =
1

r

∂τ
(1)
ϕ

∂ϕ
+

1

r2

∂
(

r2τ
(1)
sϕ

)

∂s
. (C.13)
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Here, ∆ = Dss + Dϕϕ as in the main text, and

τ (1)
s =

EH0

1 − ν2

(

ε(1)
s + νε(1)

ϕ

)

,

τ (1)
sϕ =

EH0

1 + ν
ε(1)
sϕ ,

τ (1)
ϕ =

EH0

1 − ν2

(

ε(1)
ϕ + νε(1)

s

)

, (C.14)

are the additional tension, which are functions the lin-
earised versions of the strains (C.1)-(C.3). The last two
equations of (C.13) are the in-plane equilibrium equations
of the general linear membrane theory of shells of revolu-
tion [12]. Analogous to the Cartesian case, they are sat-
isfied automatically by using the stress potential φ, from

which the tensions derive as τ
(1)
s = Dϕϕφ, τ

(1)
ϕ = Dssφ

and τ
(1)
sϕ = −Dsϕφ. The governing equation for the stress

potential is

∆2φ = EH0 (−κϕDssw − κsDϕϕw) . (C.15)

This equation and the first equation of (C.13) form the
stability equations of axisymmetric shells and are (66) in
the main text.

Appendix D. Discretisation and numerical

solution

For the numerical solution of the DMV stability equations,
we discretise the differential equations (66) to obtain a
system of linear equations.

For the non-dimensionalisation of the equations, we
use the same convention as in sect. 2.1, i.e. we take R0

as the length unit and EH0 as the tension unit. A useful
discretisation can be adopted from the literature on the
numerical solution of the Poisson equation in polar co-
ordinates [32–34], because the Poisson equation involves
the same problems at s = 0 concerning divergences in
the Laplacian. So we divide the domain 0 ≤ s ≤ smax

into N intervals, separated by the points s(i) = i · h, with
0 ≤ i ≤ N and a step size h = smax/N . The functions
W (s) and Φ(s) are then represented by its values on these
sampling points, W (i) = W

(

s(i)
)

and Φ(i) = Φ
(

s(i)
)

.
In the stability equations (66), derivatives with respect

to s up to fourth order occur. In the discretised equations
they are approximated by central finite differences

f ′
(

s(i)
)

=
−f (i−1) + f (i+1)

2h
,

f ′′
(

s(i)
)

=
f (i−1) − 2f (i) + f (i+1)

h2
,

f ′′′
(

s(i)
)

=
−f (i−2) + 2f (i−1) − 2f (i+1) + f (i+2)

2h3
,

f ′′′′
(

s(i)
)

=
f (i−2) − 4f (i−1) + 6f (i) − 4f (i+1) + f (i+2)

h4
.

At the boundaries of the integration region, this involves
problems since these formulas are “overlapping” the in-
tegration region. Thus, to evaluate the third and fourth

derivatives at i = N , for example, we need to introduce
two “phantom points” i = N + 1 and i = N + 2. That
induces four further degrees of freedom in our equations,
W (N+1), W (N+2), Φ(N+1) and Φ(N+2), and thus necessi-
tates four extra equations: the boundary conditions. As
discussed before, we impose a vanishing function value
and derivative value at smax for both functions W and Φ.
In the discretised formulation, this means W (N) = 0 and
W (N+1) − W (N−1) = 0, and the same for Φ.

The boundary i = 0 is more difficult to handle, since
some terms of the stability equations diverge. This prob-
lem can be circumvented by transforming the differential
equations into a weak form by integrating them in the
(s, ϕ) space over a disc of radius ε → 0, i.e. integrating
over the range 0 ≤ s ≤ ε and 0 ≤ ϕ < 2π. In the vicinity of
s = 0, the axisymmetric solutions satisfy κs = κϕ ≡ κ and
τs = τϕ ≡ τ [15]. Furthermore, cosψ ≈ 1 and thus r ≈ s,
so that the Laplacian reduces to ∆ = ∂2

s + 1
s∂s + 1

s2 ∂2
ϕ,

the usual Laplacian for flat polar coordinates. Thus, the
second of the stability equations (66) reads

0 = ∆2φ1 + EH0κ∆w1. (D.1)

Integrating both sides over the disk and using Gauss’s
theorem to transform the surface integral into a contour
integral, we obtain

0 =

∫ 2π

0

dϕ cos(nϕ0)

{

sΦ′′′ + Φ′′ − n2 + 1

s
Φ′

+
2n2

s2
Φ + EH0κW ′

}∣

∣

∣

∣

s=ε

. (D.2)

For the other stability equation, we obtain analogously

0 =

∫ 2π

0

dϕ cos(nϕ)

{

EB

(

sW ′′′ + W ′′ − n2 + 1

s
W ′

+
2n2

s2
W

)

− κΦ′ − τW ′

}∣

∣

∣

∣

s=ε

. (D.3)

As the integral over a full period of the cosine vanishes,
these two equations are satisfied when the terms in curly
braces do not diverge. This is, for the limit ε → 0, the
case if

W (0) = W ′(0) = 0 and Φ(0) = Φ′(0) = 0. (D.4)

This has the same form as the boundary conditions at the
other end of the integration region; but in this case, it is
the expression of the differential equations to be satisfied
at s(0). Thus, the differential equations (66) must be im-
posed only at the points s(1), s(2), . . . , where all terms are
regular; at s(0) we impose (D.4). By that, we have avoided
the problem of diverging terms in the Laplacian.

Hence, we only need one phantom point s(−1), at which
the function values are fixed by the conditions (D.4) to
W (−1) = W (1) and Φ(−1) = Φ(1). For the solution of the
linear system, we can even spare this phantom point, be-
cause the differential equations at the other points do not
use this point: It can be shown that in the Laplacian,
evaluated at s(1), the terms using function values at s(−1)

cancel out. Hence, the problem is closed by the boundary
conditions W (0) = Φ(0) = 0.
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