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PACS 46.32.+x – Static buckling and instability
PACS 46.70.De – Application of continuum mechanics to structures: Beams, plates and shells
PACS 46.25.-y – Static elasticity

Abstract – When a spherical elastic capsule is deflated, it first buckles axisymmetrically and
subsequently loses its axisymmetry in a secondary instability, where the dimple acquires a polyg-
onal shape. We explain this secondary polygonal buckling in terms of wrinkles developing at the
inner side of the dimple edge in response to compressive hoop stress. Analyzing the axisymmetric
buckled shape, we find a compressive hoop stress with parabolic stress profile at the dimple edge.
We further show that there exists a critical value for this hoop stress, where it becomes favorable
for the membrane to buckle out of its axisymmetric shape, thus releasing the compression. The
instability mechanism is analogous to the formation of wrinkles under compressive stress. A sim-
plified stability analysis allows us to quantify the critical stress for secondary buckling. Applying
this secondary buckling criterion to the axisymmetric shapes, we can determine the critical volume
for secondary buckling. Our analytical result is in close agreement with existing numerical data.

Copyright c© EPLA, 2014

Introduction. – All spherical elastic shells, such as
sports and toy balls or microcapsules, exhibit a qualita-
tively identical deformation behaviour upon deflation: At
small deflation, the capsule remains spherical. Below a
critical volume, the classical buckling instability occurs,
and an axisymmetric dimple forms [1–3]. Finally, this
dimple loses its axisymmetry in a secondary instability,
resulting in a polygonal buckled shape (see fig. 1). This
deformation behaviour is seen on the macroscale for elas-
tomer balls, on the microscale in experiments on microcap-
sules [4–8] and for pollen grains [9], as well as in computer
simulations based on triangulated surfaces [6,10,11] or
finite element methods [12–14]. The same sequence of an
axisymmetric buckling instability followed by a secondary
polygonal buckling instability also occurs when a dimple is
formed by indenting the capsule with a point force [13–15],
when the capsule is pressed between rigid plates [14]
or when the capsule adheres to a substrate [16]. Even
droplets with a colloidal shell, which are initially fluid and
not elastic, show similar buckling phenomena [17–19].

The first buckling transition, where an axisymmetric
dimple forms, is well understood. Linear shell theory
can be successfully used to calculate the onset of insta-
bility of the spherical shape [2,3]. Furthermore, nonlinear
shell theory has been used to investigate the post-buckling
behaviour, which revealed that the buckled shape is unsta-
ble with respect to further volume reduction if the pressure

Fig. 1: During deflation an elastic capsule first buckles into an
axisymmetric shape and then undergoes a secondary buckling
where the dimple acquires a polygonal shape.

is controlled [2,20,21]. Numerical analyses of nonlinear
shape equations have been used to characterise the bi-
furcation behaviour of axisymmetric shapes [21,22]. The
results of ref. [21] show that the first buckling transition
exhibits a bifurcation behaviour that is analogous to a
first-order phase transition, with the volume for the onset
of instability (the spinodal) differing from the critical vol-
ume where the elastic energy branches of spherical and
buckles shapes cross.

In contrast, the theory of the secondary buckling
transition, where the dimple loses its axisymmetry, has
remained mostly phenomenological based on the exist-
ing results from computer experiments [6,11]. A theory
rationalizing the underlying mechanism and predicting
the critical volume of secondary buckling is still lack-
ing. In this letter, we show that secondary buckling is
caused by compressive hoop stresses that occur in the
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inner neighbourhood of the dimple edge after axisymmet-
ric buckling. In order to release the compressive stress, the
circumferential fibres buckle out of their circular shape if
the hoop stress reaches a critical value; this instability is
similar to wrinkling under compressive stress [1] or com-
parable to the Euler buckling of straight rods [2]. The
quantitative investigation of the secondary buckling tran-
sition therefore consists of two steps: Firstly, determining
the stress distribution in the axisymmetric buckled con-
figuration, and secondly, finding the critical compressive
stress at which the axisymmetric configuration loses its
stability.

The first task can be accomplished by numerical inte-
gration of the shape equations derived from nonlinear shell
theory [21] or by an analytic approach based on the ideas
of ref. [23]. The second task necessitates an analysis of
the stability equations of shallow shells [3]. In this letter,
we focus on the mechanism of secondary buckling and the
resulting parameter dependences of the critical buckling
volume. Detailed calculations and numerical work will be
published elsewhere [24].

Axisymmetric buckling of capsules. – All axisym-
metric capsule shapes can be obtained as solutions of
shape equations derived from the nonlinear shell the-
ory [21]. Figure 2 shows the parametrisation of the
capsule midsurface. The spherical reference configura-
tion is given by r0(s0) = R0 sin(s0/R0) and z0(s0) =
−R0 cos(s0/R0) in arclength parametrisation. Curva-
tures in meridional and circumferential direction are equal:
κs0

= κϕ0
= 1/R0.

Upon axisymmetric deformation, the midsurface under-
goes stretching and bending. We measure the stretches in
meridional and circumferential direction by λs = ds/ds0

and λϕ = r/r0, respectively, with the corresponding
strains es = λs − 1 and eϕ = λϕ − 1. The bending strains
are defined as Ks = λsκs − κs0

and Kϕ = λϕκϕ − κϕ0
.

The deformation results in a meridional tension and
bending moment

τs =
EH0

1 − ν2

1

λϕ

(

es+νeϕ

)

, ms =
EB

λϕ

(

Ks+νKϕ

)

. (1)

The corresponding relations for the circumferential tension
and bending moment are obtained by interchanging
all indices s and ϕ. In these equations, E is the
(three-dimensional) Young modulus, H0 the membrane
thickness, ν the (three-dimensional) Poisson ratio which
confined to −1 ≤ ν ≤ 1/2, and EB = EH3

0/12(1− ν2) the
bending stiffness.

The shape is determined by the equations of force and
torque equilibrium:

0 = −cosψ

r
τϕ +

1

r

d(rτs)

ds
− κsq, (2)

0 = −p + κϕτϕ + κsτs +
1

r

d(rq)

ds
, (3)

0 =
cosψ

r
mϕ − 1

r

d(rms)

ds
− q. (4)

r0
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Fig. 2: Geometry of the axisymmetric midsurface. (a) Un-
deformed shape (always with index “0”); (b) deformed
shape; (c) Pogorelov model: close-up of the smooth final shape
(black) with small displacements (u, v) to the isometric shape
(grey).

In these equations, q is the transversal shear force, and
p the applied normal pressure, which can also be inter-
preted as a Lagrange multiplier to control the capsule vol-
ume. Together with geometrical relations, these nonlinear
differential equations —called shape equations— can be
solved numerically [21].

For the analysis, it is convenient to introduce dimen-
sionless quantities by using EH0 as the unit for tensions
and R0 as the unit length. Specifically, this results in
a dimensionless bending stiffness ẼB ≡ EB/EH0R

2
0 =

H2
0/R2

012(1 − ν2), which is the inverse of the Föppl-von-
Kármán-number γFvK = 1/ẼB.

For a qualitative understanding of the shape and stress
distribution of an axisymmetric buckled capsule we start
with vanishing bending stiffness EB = 0. Then, the equi-
librium shape consists of a mirror inverted spherical cap
(see fig. 2(c), gray lines), which is isometric to the initial
spherical shape and, therefore, unstrained. For EB > 0,
the sharp edges of the inverted cap give rise to an infinitely
large bending energy. Hence, these sharp edges must be
smoothed out.

Upon smoothing, see fig. 2(c), the inner neighborhood
of the edge is shifted to the inside, towards the axis of sym-
metry, and the outer neighborhood is shifted to the out-
side. Circumferential material fibers will be compressed in
the inner neighborhood and stretched in the outer neigh-
borhood; but far away from the dimple edge, we expect
the deformation to decay. This draws a qualitative picture
of the circumferential stress distribution τϕ(s0) along the
arc length: It has a zero at sD (the arc length position of
the edge, see fig. 2), a positive maximum for s0 > sD and
a negative minimum for s0 < sD; it approaches zero for
s0 → 0 and s0 → ∞ (cf. fig. 3).

Along these lines, Pogorelov constructed an analytic
model for axisymmetric buckled shapes [23]. To describe
this deformation from the isometric shape to the final
smooth shape, he introduced a displacement (u(s0), v(s0))
in r- and z-direction, respectively, see fig. 2(c). Assum-
ing u and v to be small, linear shell theory can be em-
ployed to calculate the bending and stretching energies in
the final shape by means of calculus of variations with re-
spect to δu and δv (with some simplifications). From the
approximate solutions u(s0) and v(s0) presented in [23],
analytical expressions for curvatures, tensions and stresses

24004-p2
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Fig. 3: (Colour on-line) Stress distribution (a) and shape (b) for
a numerical solution of the shape equations at ẼB = 10−5 and
ΔV/V0 = 0.048. The hoop tension τϕ is compressive (negative)
in a narrow strip along the inner side of the dimple edge where
we can expect wrinkles to occur. (c) Simplification of the com-
pressed strip as a plate.

of the final shape can be deduced, which are generally
in good agreement with numerical solutions of our shape
equations. The total elastic energy is found to be

UPog = 8πJ
21/4

33/4
EH0R

2
0

(

ẼB
ΔV

V0

)3/4

(1 − ν2)−1/4, (5)

where V0 is the volume of the spherical (initial) shape, ΔV
the volume difference between the buckled shape and V0,
and J ≈ 1.15092 a numerical constant.

Figure 3 presents the circumferential stress distribution
τϕ(s0) for an axisymmetric buckled shape from the nu-
merical solution of the shape equations; results from the
Pogorelov model are in good agreement [24]. The course of
τϕ confirms our above qualitative prediction and shows a
negative peak in a narrow strip along the inner side of the
dimple edge. The narrow strip is the region where wrinkles
will form in order to release the compressive stress [25,26],
and it coincides with the location of wrinkles observed in
simulations [6,10,11].

For the simplified stability analysis presented in the next
section, the shape and stress distribution are reduced to
the key features, see fig. 3, dashed lines. The slightly
curved midsurface is approximated by a cubic parabola,
which is fitted to the point where the exact midsurface has
vanishing curvature κs(sc) = 0 (see fig. 3). In the vicinity
of this point, the real midsurface shows a linear increase in
curvature, κs(s0) ≈ ac(s0 − sc). The cubic parabola shall
have the same slope ac of curvature. The negative peak
in the hoop stress can be approximated by a parabola. It
is chosen to have the same minimum value −τ0 and the
same integral

∫

τϕ ds0 over the compressive part (between
its roots) as the exact numerical function τϕ(s0). Its centre
is shifted to the point sc of vanishing meridional curvature,
which is close to the minimum of the exact numerical τϕ

function (see fig. 3(a)). In the following, we will neglect
the meridional tension τs, since it is small compared to τϕ,
and the curvature κϕ.

Secondary buckling as wrinkling under locally

compressive stress. – On the basis of these re-
sults, we will now consider the stability of a weakly
curved rectangular plate (the x-direction corresponding
to the ϕ-direction, the y-direction corresponding to the
s-direction; the plate is curved in the y-direction). The
plate is subject to a localised compression in the form of a
parabolic stress profile τx = −τ0(1−apy

2) in a strip along
the inner side of the dimple edge, see fig. 3(c).

Before presenting a more detailed stability analysis, we
start with a scaling argument. Here we neglect curvature
effects completely and approximate the compressed region
by a rectangular strip of width Δy ∼ 1/

√
ap (identical to

the compressed region) under a homogeneous compressive
stress τx ∼ −τ0. For clamped long edges, the wrinkling
wavelength is given by the width, λ ∼ Δy [1], and the re-
sulting critical Euler buckling stress is τ0 = τc ∼ EB/λ2 ∼
EBap. This result turns out to give the correct parameter
dependence in leading order, see eq. (7) below.

A more detailed stability analysis is based on the
stability equations of shallow shells and allows to ob-
tain a quantitative result including effects from a weak
plate curvature. In this approach, the curved plate (or
shallow shell) is described by its height profile z(x, y) =
acy

3/6 which results in curvatures κx = 0 and κy = acy.
The state of stress reads τy = 0, τxy = 0 and
τx = −τ0(1 − apy

2). The numerical values of the param-
eters of the stress parabola and the cubic shape parabola
(τ0, ap and ac) will be calculated below from the axisym-
metric buckled solution. The stability of the axisymmetric
buckled solution can then be investigated by using shell
stability equations [3], which are a set of partial differen-
tial equations for the the normal displacement w(x, y) and
Airy stress function φ(x, y),

Δ2φ = −EH0∇
2
κw,

EBΔ2w = ∇
2
κφ + τx∂xxw + 2τxy∂xyw + τy∂yyw,

(6)

where Δ = ∂xx + ∂yy is the Laplacian and ∇
2
κ = κy∂xx +

κx∂yy is the Vlasov operator. The existence of a non-
trivial solution of these stability equations indicates the
existence of an unstable deformation mode for the axisym-
metric buckled solution (i.e. a negative eigenvalue of the
second variation of the elastic energy).

In the numerical analysis, we assume wrinkles of har-
monic shape in the x-direction, w(x, y) = W (y) sinkx and
φ(x, y) = Φ(y) sin kx. The y-dependent amplitude func-
tions are to be determined, as well as the wave number k
of the mode which becomes unstable first. Inserting this
Ansatz and the expressions for tensions and curvatures re-
sults in two coupled linear ordinary differential equations
which can be solved numerically by a shooting method on
the interval y ∈ [0, ymax) when we specify boundary con-
ditions. Due to the symmetry of the problem, we expect
W (y) to be an even function, and from (6) follows directly
that Φ(y) must be an odd function. Thus the starting con-
ditions are Φ(0) = Φ′′(0) = 0, W ′(0) = W ′′′(0) = 0 and

24004-p3
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Fig. 4: Numerical results for the non-dimensional critical ten-
sion τ̂c = τc/EBap and wavelength λ̂c = λc

√

ap as a function

of the curvature parameter âc =
√

EH0/EBac/a
3/2

p . The in-
crease of τ̂c with increasing curvature parameter reflects the
fact that curved plates are harder to bend in the transverse
direction than flat plates (which have âc = 0).

W (0) = 1 (the last choice is arbitrary since the differen-
tial equations are homogeneous). We may let the plate
be infinitely large, so that the wrinkles are not confined
by the plate edges but by the locality of the compres-
sion. Thus, the wrinkle amplitude W must approach 0 for
y → ∞, as well as the tensions and, thus, the slope of the
stress potential, Φ′(y)|y→∞ = 0. In practice, we impose
W (ymax) = W ′(ymax) = 0 and Φ′(ymax) = Φ′′(ymax) = 0
for a sufficiently large ymax.

For the shooting method, there are only three shooting
parameters among the initial conditions but four bound-
ary conditions at the far end because the differential equa-
tions are homogeneous and, thus, the choice of W (0) is
arbitrary and cannot serve as a shooting parameter. In-
stead, we have to use one of the parameters in (6) as a
shooting parameter. In fact, we can interpret (6) as an
eigenvalue problem: For given k, ap and ac, find τ0 so
that the differential equation has a non-trivial solution.
Thus we add τ0 to the shooting parameters and have four
in total, sufficient to satisfy the four boundary conditions
at ymax.

Using this procedure, we solve (6) for given EB , EH0, k,
ap and ac and determine the wrinkle amplitude W (y), the
stress potential Φ(y) and the critical value τ0 for which
a non-trivial solution exists. The wave number k from
our ansatz is not fixed. Since we assume the plate to be
infinitely long in the x-direction, k is continuous. For our
purpose, only the wrinkling mode which becomes unstable
first is relevant, i.e. we can minimise τ0 with respect to
k, which yields the critical tension τc = mink τ0(k) and
the corresponding critical wave number kc or wavelength
λc = 2π/kc.

The numerical results are plotted in fig. 4. Nondimen-
sionalisation shows that the dimensionless critical stress
τ̂c = τc/EBap can only depend on one other dimension-
less parameter, âc [24], which describes the magnitude of
the initial plate curvature. The final result of our stability
analysis of a curved plate under locally compressive stress

is the critical stress at which wrinkling occurs,

τc = apEB τ̂c(âc) with âc =
√

EH0/EBaca
−3/2
p , (7)

where the function τ̂c(âc) is known numerically, see fig. 4.
Our analysis also shows that the secondary buckling

transition is a continuous transition in the sense that the
wrinkle amplitude W at the transition can remain arbi-
trarily small [24]. This is in contrast to the primary buck-
ling transition, which is a discontinuous transition with
metastability above and below the transition [21] and with
an axisymmetric dimple of the buckled state which always
has a finite size.

Phase diagram for deflated spherical capsules. –

The function τ̂c(âc) generated this way can now be ap-
plied to the stability analysis of the axisymmetric buckled
capsule shapes. For a given numerical solution of the ax-
isymmetric shape equations, we have to compute the pa-
rameters ap and ac, calculate the critical buckling stress
according to (7) and compare it to the minimum value
τmin = mins0

τϕ(s0) of the hoop stress in the compres-
sive region. If τmin < −τc, then the capsule cannot bear
the compression and will form polygonal wrinkles, losing
its axisymmetry.

The curvature parameter ac is, by definition, ac =
κ′

s(sc) where sc is the root of κs. As mentioned be-
forehand, the parameter ap for the parabola of the stress
profile is to be determined by the condition that the ap-
proximating parabola has the same integral over the com-
pressive region as the original stress function τϕ(s0). Let
F =

∫ s2

s1

τϕ(s0)ds0 denote this integral, which has the
physical interpretation of the net force in the compres-
sive region s0 ∈ [s1, s2]. It can be evaluated numeri-
cally for a given solution. For a parabola of the form
τϕp = −τ0

(

1 − ap(s0 − sc)
2
)

, one finds ap = (4τ0/3F )2,
which is to be inserted into (7).

In our numerical analysis, we applied this scheme to
axisymmetric buckled shapes with different bending stiff-
nesses ẼB and reduced volumes ΔV/V0. We control the
volume rather than the pressure, since for given pressure
the capsule buckles through [21]. In this case, the sec-
ondary buckling might take place in a modified form. For
each value of ẼB , the critical capsule volume, where the
criterion τmin < −τc for polygonal buckling is fulfilled, is
determined numerically. This critical volume for the sec-
ondary buckling transition is shown in the phase diagram,
fig. 5 (red dots). Fitting the data points with a power
law (i.e. a straight line in the double logarithmic phase
diagram) yields

(ΔV2nd/V0)|shape eqs. = (2550 ± 50)Ẽ0.946±0.002
B (8)

with an exponent close to −1.
Analysing the Pogorelov model with our secondary

buckling criterion, we can also derive a simple analyti-
cal expression for the critical volume where the secondary
buckling occurs. We find the following analytical results

24004-p4
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Fig. 5: (Colour on-line) Phase diagram of deflated spherical
capsules with Poisson ratio ν = 1/3 in the plane of reduced
bending stiffness ẼB and reduced volumes ΔV/V0 (double log-
arithmic). Dots represent results from the shape equations.
The blue and red lines represent the critical volumes of first and
secondary buckling, respectively, according to the Pogorelov
model. The green line is the classical result for axisymmetric
buckling. Dashed lines are results for the secondary buckling
according to computer simulations (refs. [6,11]).

for the three parameters of the plate buckling criterion,

τ0 ∼ EH0

1 − ν2

[

ẼB(1 − ν2)
ΔV

V0

]1/4

,

ap ∼ R−2
0

[

ẼB(1 − ν2)
]−1/2

, ac ∼
[

1 − ν2

ẼB

ΔV

V0

]1/4

.

Using these scaling results in the secondary buckling
criterion (7) (treating τ̂c(âc) as a numerical factor) yields
ΔV/V0 ∼ ẼB(1 − ν2). A detailed calculation which in-
cludes the prefactors yields

(ΔV2nd/V0)|Pog = 3706 ẼB, (9)

where the exponent 1 is exact [24]; the prefactor still
weakly depends on ν and is given here for ν = 1/3. This
result is very close to the results from the shape equations
(see fig. 5, red line).

For both models, the number of wrinkles can be ob-
tained by comparing the critical wavelength λc (fig. 4) to
the perimeter 2πr(sc) of the parallel on which the wrin-
kles form. In the Pogorelov model we obtain 5 wrinkles,
independent of the bending stiffness; using the shape equa-
tions, we find between 8 (for small ẼB) and 6 wrinkles (for
larger ẼB). In experiments on deflated microcapsules, a
wider range of wrinkle numbers can be observed, from
three (or even two, corresponding to an elongated dim-
ple) up to at least eight [4–6]; however, these shapes were
not observed at the onset of the secondary buckling but
showed well-developed wrinkles. Numerical simulations
in ref. [6] produced three to six wrinkles at the onset of
buckling; with three and four wrinkles appearing only in
simulations of the re-inflation of a wrinkled shape. A more
detailed discussion is postponed to ref. [24].

Figure 5 also shows, in dashed lines, results of com-
puter simulations for the critical volume of the secondary

buckling, which can be fitted by power laws ΔV/V0 =
3400 ẼB [6] and ΔV/V0 = 8470 Ẽ1.085

B [11] with exponents
close to 1. Results from our secondary buckling crite-
rion match the simulation results fairly well, although the
parabolic stress profile is only a rough approximation of
the real circumferential stress. In ref. [24] we will present a
numerical stability analysis of the full axisymmetric shape,
without the parabolic approximation, which confirms the
present results.

The phase diagram is supplemented by corresponding
lines for the first buckling transition from a spherical to
an axisymmetrically buckled shape. The classical buckling
line (green line in fig. 5) is derived from the well known
classical buckling pressure pcb = −4

√
EH0EB/R2

0 [1–3].
It describes the pressure at which the spherical config-
uration becomes unstable and is equivalent to a volume
difference

ΔVcb/V0 ≈ 6(1 − ν)Ẽ
1/2

B (10)

with an exponent 1/2 [11]. This line coincides very well
with the data points from the shape equations (green
points in fig. 5), which were taken at the volume where
the axisymmetric buckled shapes branch off the spherical
shapes [21].

The axisymmetric buckled state is unstable if pressure
is controlled instead of volume [2,20,21], because the load
that the capsule can bear is getting smaller when the dim-
ple grows. Thus, for given pressure, the dimple that forms
at the classical buckling pressure pcb grows spontaneously
until a shape with stable pressure-volume relation is found.
For all bending rigidities considered in ref. [21], this only
happens if the dimple gets in contact with the opposite
side of the capsule.

Already for volume differences ΔV/V0 smaller than that
of the classical buckling transition (10), the spherical
shape is only metastable. From the solutions of the shape
equations, we can compute the smallest volume difference
where the branch of axisymmetric buckled shapes becomes
energetically favourable to the spherical solutions (blue
points in fig. 5) [21]. For small ẼB , this critical volume
difference is substantially smaller than that of the clas-
sical buckling transition, thus leaving a large volume re-
gion (between the two lines) where the spherical shape
is metastable and the axisymmetric dimpled shape is the
global energy minimum. Koiter’s stability analysis [20]
suggests that the buckling transition of real (imperfect)
shells occurs somewhere in this region, depending on the
severity of imperfections.

Pogorelov’s model can also be used to calculate the vol-
ume where the elastic energies of the dimpled shape (5)
and spherical shape (see ref. [6]) are equal, which gives

ΔV1st

V0

∣

∣

∣

∣

Pog

= 6J4/5(1 − ν)4/5(1 − ν2)−1/5Ẽ
3/5

B (11)

for the critical volume of the first buckling transition
with an exponent 3/5. This result is in close agreement
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with the data points from the shape equations (see fig. 5,
blue line).

Conclusions. – In this letter, we explained the mech-
anism underlying the secondary buckling instability of an
intially spherical elastic capsule including a quantitatively
correct value for the critical capsule volume. This com-
pletes our theoretical understanding of the generic de-
formation behaviour of spherical capsules upon volume
reduction, which starts with a spherical shape for small
volume changes, then jumps to an axisymmetric buck-
led shape in a primary buckling transition, and finally re-
sults in a non-axisymmetric shape with polygonal wrinkles
along the inner neighbourhood of the dimple edge after the
secondary buckling transition.

So far, the secondary buckling transition has only been
observed in experiments or simulations but was lacking a
physical explanation. The key ingredient underlying the
secondary buckling is a locally compressive hoop stress,
with a characteristic negative peak near the edge of the ax-
isymmetric dimple. We conducted a quantitative analysis,
in that we approximated the profile of the compressive
hoop tension τϕ by a parabola. This led to a derivation of
a critical compressive stress, quite analogous to the crit-
ical force in the Euler buckling of bars: When the crit-
ical stress is reached, the membrane cannot support the
compression any more and buckles out of its symmetric
shape in order to release the compressive stress. Our anal-
ysis also showed that the secondary buckling transition
is continuous as opposed to the primary buckling transi-
tion, which is discontinuous. This allows us to obtain a
complete phase diagram (fig. 5) which contains the sta-
bility regimes of all three relevant shapes (disregarding
higher-order mestastable shapes which are obtained from
the shape equations [21]).

The transition from spherical to axisymmetric buckled
shape occurs at a capsule volume between the first buck-
ling volume and the classical buckling volume. The first
buckling volume is defined by the requirement that the
elastic energies of the spherical and buckled shape are
identical and depends on the reduced bending stiffness

via ΔV/V0 ∼ Ẽ
3/5

B . At the classical buckling volume, the

spherical shape gets unstable; it reads ΔV/V0 ∼ Ẽ
1/2

B . Be-
tween these two critical volumes, the axisymmetric buck-
led shape is the stable, energetically favourable state, and
the spherical shape is metastable.

Applying our secondary buckling criterion to numerical
axisymmetric solutions of the shape equations and to the
analytic model proposed by Pogorelov, we found that the
critical volume for the secondary buckling is proportional
to ΔV/V0 ∼ ẼB . These results are in good agreement
with all existing numerical simulation data except numer-

ical results in ref. [10], where ΔV/V0 ∼ Ẽ
3/4

B is found.
This differing result might be caused by using a vanishing

equilibrium curvature κs0
= κϕ0

= 0 in the elastic energy
of the simulation model in ref. [10].
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