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Elasticity of Interfacial Rafts of Hard Particles with Soft Shells
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ABSTRACT: We study an elasticity model for compressed
protein monolayers or particle rafts at a liquid interface. Based
on the microscopic view of hard-core particles with soft shells,
a bead—spring model is formulated and analyzed in terms of
continuum elasticity theory. The theory can be applied, for
example, to hydrophobin-coated air—water interfaces or,
more generally, to liquid interfaces coated with an adsorbed
monolayer of interacting hard-core particles. We derive
constitutive relations for such particle rafts and describe the
buckling of compressed planar liquid interfaces as well as their
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apparent Poisson ratio. We also use the constitutive relations to obtain shape equations for pendant or buoyant capsules attached
to a capillary, and to compute deflated shapes of such capsules. A comparison with capsules obeying the usual Hookean elasticity
(without hard cores) reveals that the hard cores trigger capsule wrinkling. Furthermore, it is shown that a shape analysis of
deflated capsules with hard-core/soft-shell elasticity gives apparent elastic moduli which can be much higher than the original

values if Hookean elasticity is assumed.

B INTRODUCTION

Many soft matter systems exhibit elastic properties that go
beyond the Hookean linear elasticity. There are a number of
prominent examples of elastic materials with unique properties,
which require tailored elasticity models for an accurate
theoretical description. An early example is the Mooney-Rivlin
law for large deformations of incompressible, rubberlike
materials." To describe the bending of lipid membranes, the
Helfrich energy was introduced,” and Skalak et al. and Evans
developed a strain-energy function for deformed red blood cell
membranes.’”> Only the combination of both types of elastic
energy functionals with a Helfrich energy describing the lipid
membrane and a Skalak strain-energy function describing
the spectrin skeleton is able to describe the experimentally
observed sequences of red blood cell shapes successfully.®” The
correct sequence of shapes cannot be reproduced using a
simpler effective model, for example, of the Helfrich type by
choosing effective bending moduli properly.

In general, indications whether simple elastic models such as
a linear elasticity are sufficient to describe the deformation of a
certain material deformation can be found when comparing
experimental results to theoretical predictions. If, for example,
linear elasticity is assumed in the theoretical modeling but com-
parison with experimental data shows that the resulting elastic
moduli are apparently changing throughout the deformation,
this suggests that a more advanced and detailed elastic model
should be used.

In this Article, we develop an elasticity model tailored for
monolayers of particles or molecules at a fluid interface under
compression. Since the pioneering work of Pickering® it is
known that adsorbed particles at a liquid interface act as sur-
factants and can stabilize droplets in emulsions depending
on the wettability properties.” Adsorbed particles also stabilize
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foams.'® Colloidal particles adsorbing at a liquid droplet
interface form colloidosomes,'’ where particles arrange to
spherical colloidal crystals,'* or “armoured droplets” if particles
are jammed." A liquid interface coated with adsorbed particles
starts to exhibit elastic properties typical for a two-dimensional
solid or elastic membrane, such as resistance to shear, buckling,
wrinkling and crumpling.'*'® This has also been reported for
protein-coated bubbles,'® droplets'” or vesicles.'®

Hydrophobins are small proteins from fungal origin,"® which
adsorb strongly to the interface of an aqueous solution because
of their amphipathic nature with a hydrophobic patch on their
surface.”® Layers of hydrophobin can be used very efficiently to
stabilize bubbles and foams,”' ~>* which makes them interesting
as a model system for protein particle rafts at the air—water
interface and for applications.

Particles coating liquid droplets have applications in food
industry.”* Because of their strong amphipathic nature and bio-
compatibility, hydrophobins coating air—water interfaces have
various applications”"***® ranging from medical and technical
coatings26 to the production of protein glue and cosmetics, or
in the food industry in the stabilization of emulsion bubbles.*”

In a recently published experiment,28 the deformation of a
hydrophobin-coated bubble rising from a capillary was investi-
gated. As a result of deflating the bubble, wrinkles appeared on
the bubble surface proving that the protein layer has elastic
properties and a nonvanishing shear modulus. Furthermore, the
analysis of this experiment showed that the elastic response is
very nonlinear, and a steep increase in the measured elastic
modulus with increasing bubble deflation was observed. It was
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conjectured that this steep increase is related to the molecular
structure of the hydrophobin proteins consisting of a hard core
(a B barrel) with a softer shell (loop and coil structures). The
hard cores coming into contact could then be the cause for the
steep increase in the elastic modulus.

In order to verify this interpretation, we develop an
elasticity model based on the microscopic view of a particle
raft sketched in Figure 1: Globular particles interact by soft
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Figure 1. Bead—spring model with hard cores for interacting hard
particles at the air/water interface or a liquid interface. The springs
give the network a Hookean elasticity, and the hard cores (green disks,
diameter L) impose limits on the maximal admissible compression
(see configuration on the right). The lattice constant is normalized to
land L < 1.

springs (corresponding to an outer soft shell) and steric
interactions (corresponding to hard cores). From this micro-
scopic view, we derive continuum elastic laws, which can then
be used to analyze the deflated shapes of capsules with this type
of elasticity. The hypothesis underlying this approach is the
following: The steep increase in the surface Young or stretch
modulus that was obtained in ref 28 is a result of applying linear
Hookean elasticity in a situation where the proposed elasticity
model for the protein particle raft that includes hard cores
should be more appropriate. Therefore, we should be able to
describe the observed shapes of hydrophobin-coated bubbles
more exactly and with much less variation of the elastic moduli
along the deflation trajectory if the new hard-core/soft-shell
elasticity model is used.

The proposed elasticity model is quite generic: It is a
generalization of a standard bead—spring model for Hookean
elastic membranes,”® which also takes into account hard cores
of the beads. On the other hand, it generalizes a particle raft
elasticity model presented in ref 14, which considers exclusively
hard-core interactions. Therefore, our hard-core/soft-shell
elasticity model applies more widely than to monolayers of
the protein hydrophobin. We expect such contact interaction
to be relevant for many liquid interfaces decorated with inter-
acting hard particles,"> ranging from colloidal rafts covering
colloidosomes'' or “armoured droplets”™ to rafts of larger
particles.'*

Our results will show that the elastic properties of the
two-dimensional material are Hookean for small compression,
where only soft springs are loaded without hard-core contact
but strongly modify as soon as compression brings the hard
cores of particles into contact. The constitutive stress—strain
relations of the soft spring, which determine the material
properties for small compression, have to be properly con-
nected to stress relations, which are governed by force balance
for compressions that induce hard-core contact. The transition
between both regimes can take place between different regions
within the same material, as we will see in the analysis of shapes
of pendant or buoyant capsules attached to a capillary. A
detailed and quantitative understanding of shapes and
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deformations of such compressed particle-decorated liquid
interfaces therefore requires a model as presented here, which
properly connects Hookean elasticity of soft springs or soft
particle interactions with hard-core elasticity, and goes beyond
a simple effective description based on Hookean elasticity.

B CONTINUUM DESCRIPTION OF A BEAD—SPRING
MODEL WITH HARD CORES

We assume that the beads are arranged in the (x, y)-plane in a
hexagonal crystal with a lattice constant normalized to 1; see
Figure 1. Such an arrangement is the closest packing of spheres
and it behaves isotropically,® so that the continuum elasticity
of the membrane can be characterized by two elastic moduli,
for example the surface Poisson ratio v and surface Young
modulus E,p. On the microscopic level, the elastic response of
the membrane is governed by the spring constant k. By
evaluation of the deformation energy within one unit cell, it can
bezglsl?wn that the continuum elastic moduli are determined
by™

1
V= —

3

2
Ep=—k

NG (1)
Without the hard-core interactions, the membrane can thus be
described with the usual Hookean elasticity as specified by the
strain-energy density>>

and

1 E
W d) =3
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+ (4, - 1’1+ 247 @)
where 4, and A, denote the stretches in x- and y-direction,
respectively.

The strain energy density is measured per surface area of the
undeformed interface. The form of the surface energy density
in eq 2 is valid only for deformations where the x- and y-
directions are the principal directions of the strain tensor, which
we assume throughout this paper. This means that a line
element (dx,, dy,) is mapped to (dx, dy) = (4, dx,, 4, dy,) by
the deformation.

The term A,y accounts for an isotropic surface tension
y acting in the liquid surface.”® We assume that the corre-
sponding liquid interface covers the entire deformed area
AA,Ag where A, is the undeformed reference interface area. In
the presence of adsorbed particles, which are only partially wet,
a fixed area Ay 4 of the liquid surface is replaced by a liquid—
solid-interface with a surface tension ¥4, and the last term in
eq 2 becomes (4,4, —Aya/A0)Y + (Apara/Ao)Vhara- This shift by
a constant independent of the stretching factors changes
neither the interface stresses nor the resulting shape equations.

From the energy density eq 2, the stresses acting in the
interface can be derived.*> A superscript (s) indicates that this is
the contribution of the springs,

EZD

1 -2

19, A,) = [(4 = D) +v(2, — D] +7

1
/1)’
®3)
and with indices x and y interchanged for rﬁs). We note that
compression with 4; < 1 gives rise to negative elastic con-
tributions to the stresses, whereas the surface tension y always
provides a positive contribution, such that 7; < y.
Now we have to evaluate how these results from the spring
elasticity are modified by the steric interactions between the
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Figure 2. Forbidden domains (light gray) in the (4,, iy)—plane limited by ellipses. (a) Different orientations ¢, produce different forbidden domains.
Straight lines are degenerate ellipses with infinite major axis, and dashed lines with alternating color indicate if two of the three ellipses are identical.
The pictograms show the lattice orientation. (b) Choice of ¢, that minimizes the area of the forbidden domain. For easy identification, the
boundaries are labeled 1 and 2; and the point on both lines is termed B. There is an additional vertical and horizontal boundary at 4,/L = 1/ \/ 3
where next nearest beads come into contact. (c) Sketches of the different possibilities of contact between the beads, here for ¢, = 30°, that is, when

the compression is predominantly in x-direction.

hard cores. The springs in the lattice have a rest length of 1 and
can be oriented along three different directions i, which we
characterize by the angle ¢; to the x-axis. This angle can take
the values ¢, = ¢, + in/3, with i € {—1, 0, 1}, where ¢,
determines the overall orientation of the lattice in the (x, y)-
plane. Upon deformation, the length of a spring along direction
i changes from 1 to

A, cos (]5!
/1y sin d)l

d =

1

= \/le cos” ¢+ /1},2 sin” )
4)

The steric interactions enforce that the springs of the lattice
can be compressed at maximum to a minimal length of L (with
L < 1), which corresponds to the diameter of the hard cores,
measured in units of the lattice constant. Thus, we have three
conditions d; > L to be satisfied, or equivalently

A cos’(dhy — 7/3) + A7 sin*(¢h, — 7/3) > I
/Ixz cosz((ﬁo) + ﬂyz sin2(¢0) > 17

A2 cos’(, + m/3) + 4,7 sin*(¢h, + 7/3) > L )
In the (4, 4,)-plane, these conditions specify three ellipses to
be excluded from the admissible domain for the stretches; see
Figure 2a. All three ellipses contain the point (L, L).

The excluded or “forbidden” domain of stretches, shaded
light gray in Figure 2a and b, depends on the orientation ¢, of
the lattice. We choose this parameter according to the following
rule: If 4, < 4, then ¢y = 30° otherwise ¢, = 0°. With this
choice, the forbidden domain becomes as small as possible; see
Figure 2b. Choosing ¢, in dependence of the stress state means
that it may change during a deformation; for particle rafts
this seems plausible because the particles are not rigidly cross-
linked, but may rearrange to change their lattice orientation
from a 0° to a 30° state (see pictograms in Figure 2c). If the
stress state of the membrane becomes inhomogeneous, as it will
happen, for example, for capsules attached to a capillary as
considered below in more detail, we may encounter regions
of 0° and 30° orientation within a single membrane. Then,
problems might arise at the boundary separating two regions of
different orientation, because the lattices cannot be joined
properly. This could give rise to a line energy; we neglect these
complications in the following.

With our choice of ¢, the boundary line between the

forbidden and admissible domain of the stretch plane can be
described by (A", A%) = (A(4,), 4,) with
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2 2 .
AL /3 = 2,7/3 if A, > L (boundary 1)
JAL* =347 if A, < L (boundary 2)
(6)

Here we have introduced the terms boundary 1 and 2, which
have to be distinguished in most of the following calculations.
They are plotted in red and blue, respectively, in Figure 2b. The
point (4,, ly) = (L, L) which is on both boundary lines is
termed point B.

If the external loads try to push the membrane into the
forbidden domain, the hard-core interactions keep it on the
boundary by providing additional contributions to the stresses
7, and 7,. These hard-core contributions are denoted by 7 and
Tgc). The complete stresses then read

100,) =

7, =194, A,) + 79 and 7, = T;S)(ﬂx, A) + T;C)

™)
with (4, 4,) being a point on the boundary of the forbidden
domain as given by eq 6. Since 7{9 and T)(,C) are transmitted
through the “skeleton” of hard cores, they must satisfy certain
conditions of force equilibrium that can be derived from the
geometry of the lattice. In Appendix I, it is shown that force
balance prescribes the ratio of the hard-core stresses to

(c)
Y

©9  [322/2, if 4, < L (boundary 2)

2202
A,°/32" if 4, > L (boundary 1)

£

' <3
TJEC)

and — < ifd, = A, =1L (point B)

W |~

(8)

Note that (4, 4,) must always be a point on the boundary of
the forbidden domain when these equations are applied to
calculate the hard-core contributions to the stresses.

For strong compressive strains with 4, < 1/ \/ 3ord, <1/ \/ 3,
next nearest beads, which are not connected by springs, come
into contact; see Figure 2b, orange and violet lines. Such com-
pressive strains are not relevant for the applications discussed in
this Article.

The above results for our custom elasticity model for particle
rafts are summarized and illustrated in Figure 3. Figure 3a
and b shows a large view of the stretch plane and stress plane
with different regions. Figure 3c and d focuses on the regime
relevant for compressed membranes: 4, < 1 and 0 < 7; < 7.
The light green regions are the admissible regions, where the
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Figure 3. Admissible domains (light green) and hard-core interaction
domains for stretches (a, c¢) and stresses (b, d) for L = 0.95 and
E,p = S 7. The top row shows large views of the stress and stretch
planes, and the bottom row close-ups of the relevant region. In (b) and
(d), the straight thin lines indicate the stresses that can be reached
from a point on the boundary by adding the hard-core contributions to
the elastic stresses. The wrinkling region is shaded in gray in (d). The
arrow in (c) indicates the trajectory of uniaxial compression of a planar
layer considered below.

hard cores are not in contact. Here, the usual Hookean
elasticity (eq 3) is valid, and there is a bijective mapping
between (4, 4,) points in the stretch plane and (7, 7,)
points in the stress plane.

On boundaries 1 and 2, the hard cores come into contact.
In the stretch plane, this boundary cannot be trespassed
because of the geometric constraints imposed by the
undeformable hard cores: Even if the external forces try to
push the lattice beyond this line, the lattice will get stuck on
the boundary of the forbidden domain. In the stress plane,
however, the points beyond boundaries 1 and 2 can be
accessed by including the hard-core contributions 7 and Ty(c)
in the stresses because hard cores can transmit force even
though they are undeformable.

A point (AP, /l(b)) on the boundary in the stretch space is
mapped by Hooke’s law to a point (z), T(b)) on the boundar?r
in the stress space. From this point on, stresses (Tx, T) = (

(b)) + (79, T(C)) can be reached, where the hard core
contrlbutlons r( and T(C) must be negative (because the
skeleton can only support compressive stresses) and must obey
the force balance constraint (eq 8). The submanifold of stresses
which is accessible from the point on the boundary is, thus, a
straight line with a slope A?/34, starting from boundary
1 or 34 2//1 starting from boundary 2 in Figure 3d (see the
thin red and blue lines). The analogous discussion of the
boundaries where next nearest beads come into contact is
spared because it is not relevant for the applications presented
below.

For point B, with 4, = 4, = L, the ratio of the hard-core
stresses is not fixed to a certain value. Instead, it can range
from 1/3 to 3. In the plot of the stress plane, Figure 3d, this
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means that the whole white region is accessible from
point B.

B COMPRESSION OF PLANAR FILMS

To get a first impression of the elastic behavior of a particle
layer with hard cores at a fluid interface, we investigate a typical
compression experiment in a Langmuir trough.”>** In this
setup, a monolayer is spread on a water surface and sub-
sequently it is compressed in x-direction by moving the barriers
of the trough. A Wilhelmy plate can then measure the stresses
7, and 7,.

If we consider 4, = 1 as fixed and compress the layer with a
ratio 4, < 1, we expect the monolayer to wrinkle at sufficiently
high compression. The determination of the critical compres-
sion is a purely geometric problem. In the stretch space of
Figure 3c, we follow a horizontal line until we cross boundary 1
as indicated by the arrow. Then the layer must wrinkle because
the hard cores cannot be compressed.

On the other hand, if we consider the compressive stress
7, < 0 to be given, we can determine the critical stress from the
stability equation'***

Egd,*w(x) — 7,0 w(x) + pgw(x) = 0 (9)
where Eg is the bending stiffness of the layer, w(x) is the
displacement in the z-direction which is assumed to be
independent of y, and pg is the fluid density times acceleration
of gravity. The bending rigidity Ey can arise from an additional
bending stiffness of connecting springs. For hydrophobin layers,
this corresponds to a bending rigidity of the soft shell of the
protein. Assuming sinusoidal wrinkles of the form w ~ sin kx,
eq 9 gives a critical stress 7, which still depends on the wave-
number k of our ansatz. Minimizing the magnitude of the stress
with respect to k gives a critical wavelength and critical stress

14
of

A =2x(Ey/pg)* and 7, = —2,[Egpg
This is the same result as that for an elastic membrane without
hard cores. The result for A. differs from what has been
obtained in ref 14: we do not find a dependence on the packing
fraction of hard particles because the bending modulus corre-
sponding to the soft springs appears in eq 10 rather than an
effective modulus depending on packing fraction as in ref 14.

Differences between membranes with and without hard cores
can be found when the Poisson ratio of the layer is measured.
For uniaxial compressive strain in the x-direction (4, < 1,
A = 1), the Poisson ratio of a linear elastic material can be
measured as v = 7,/7,. Now let us apply this “measurement” to
the more complex total stresses in eq 7:

(10)

T;s) + Ty(c) -7 I,

gy I,

Lapp =

(11)

Here, we subtract the fluid surface tension y from the total
stresses, which provides a background tension and is typically
subtracted in measurements of the surface pressures Il, and
I,. 333% For 51m licity, we also neglect the 1/, prefactor in
relatxon 3 for r , which represents a geometrical nonlinearity.
In the regime where the hard cores are in contact, the apparent
Poisson ratio thus reads
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with A = (4L2/3 — 1/3)"/? and 79 = 7{/E, . The hard cores
have a nonvanishing contribution 7 only if the applied
compressive stress satisfies 7, < (E,p/(1 — 12))(A® = 1) so
that the hard cores are in contact. For larger 7, or weak
compression, the usual Hookean law is valid, which leads to
Vppp = V = 1/3. In the limit of strong compression where the
hard-core contribution dominates the stresses, we have v,,, =
1/3(A®) 2 = 1/(4L* — 1), which is always larger than 1/3 for
L < 1 and can even become larger than 1. For L < 1/ \/ 3, this
relation changes because next nearest beads come into contact.
This shows that contact of hard cores can give rise to a more
effective redirection of compressive stress into the perpendic-
ular direction, which gives rise to a stress-dependent Poisson
ratio increasing with compression. The crossover between
weak compression with the Hookean value v = 1/3 and the
increasing apparent Poisson ratio Vapp for strong compression is
shown in Figure 4 for different values of L. Our results differ

14k
1.2+
1.0}
0.8}
0.6 F
04
02}

Vapp

0 L L L 1 1 I L
-14-12-1.0-08 -0.6 -04 -0.2 0.0
Tz /Eap

Figure 4. Apparent Poisson ratio v,,, = I,/IL, in our elasticity model
for different values of L as indicated. At the kinks, the hard cores come
into contact and the hard-core contributions to the stresses begin to
influence this “measured” Poisson ratio.

from v, = 1/ \/ 3, which has been found in ref 14 for pure
hard-core particle rafts. In ref 36, on the other hand, it has been
argued that v,,, = 1/3 is correct also for pure hard-core particle
rafts. Our result (eq 12) for the more general elasticity model
explains that, for rafts of interacting hard particles, where the
interaction provides a “soft shell”, experimental measurements
such as those in refs 33 and 37 should be interpreted using
a stress-dependent Poisson ratio, which increases beyond 1/3
and up to v, = 1/(4L> — 1) if hard cores come into contact;
see Figure 4.

In ref 37, for example, an experiment is reported where a
monolayer of hydrophobin molecules is compressed in a
Langmuir trough. Two Wilhelmy plates were used to measure
the stresses in x- and y-directions, respectively, and from the
data one can calculate an apparent Poisson ratio of v,
0.6—0.7. This relatively large value can be well explained with
our elasticity model if L < 0.8 according to Figure 4. It is
tempting to compare this hard-core length to available
molecular information. In ref 34, it has been observed that
visual buckling, which could be due to hard-core contact,
happens at a molecular area of ayg. ~ 347 A> per HFBII
hydrophobin protein. Assuming closed-packed hard cores, this
corresponds to a diameter of 20 A, if HFBII is assumed to be
spherical. A value L = 0.8 then corresponds to a total diameter

~
~
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of 25 A of the protein. This value is consistent, for example,
with the dimensions 24 X 27 X 30 A® given for the whole
HFBII molecule as obtained from X-ray crystallography.*
Grazing-incidence X-ray diffraction and reflectivity results in
ref 38 hint, however, at smaller diameters 20—24 A and, thus,
larger values of L. In refs 37 and 39, plateaus in the surface
pressure isotherms have been observed, which can be
interpreted as a liquid—gas coexistence of a gas phase of
isolated hydrophobins and a dilute liquid where soft shells of
hydrophobins just start to make contact. Taking the area per
molecule ., at the high-density end of these plateaus, we
find values of L = (yjyteqn/ @pucte) * in the range L = 0.85—0.90.
Overall, a reliable estimate of L based on molecular information
appears difficult.

B SHAPE EQUATIONS IN THE PENDANT/RISING
CAPSULE GEOMETRY

We now apply the previously developed elasticity model to the
shape equations for axisymmetric capsules attached to a
capillary which have been developed in ref 28. This is a chal-
lenging problem because it turns out that the transition
between the elasticity regimes A, 1, 2, and B can take place
within the same material between different axisymmetric
regions along the capsule. Therefore, we have to generalize
the shape equations from ref 28 to include switching between
different constitutive elastic laws corresponding to the Hookean
regime A and the hard-core dominated regimes 1, 2, and B
along the capsule contour.

The shape equations are derived from nonlinear shell theory,
and their solution describes the shape and stress distribution of
a deformed pendant or rising capsule. Figure S shows the

a) 20 b) z c) z
a l
\Lw
Yo
v
50 S
To f T T

Figure S. Arc-length parametrizations in cylindrical coordinates of the
undeformed (ro(sy), zo(sy)), deformed (r(s), z(s)), and the wrinkled
midsurface. The wrinkled region of length L, is described by an
axisymmetric pseudosurface around which the real midsurface
oscillates.

parametrization of the undeformed and deformed capsule
shape. At its upper rim, the capsule is attached to a capillary of
diameter a. The reference shape (see Figure Sa) is a solution of
the Laplace—Young equation with an isotropic interfacial
tension y and a density difference Ap of inner and outer
fluid.*® This shape can be deformed, for example, by reducing
the internal capsule volume. Each point (ry(sy), 2zo(s,)) is
mapped onto a point (r(sy), z(s,)) in the deformed con-
figuration, which induces a meridional and circumferential
stretch, A, = ds/ds, and A, = r/r,, respectively. The arc length
element ds of the deformed configuration is defined by ds* =
(r's(s0)* + 2/ (50)%) dso™

The shape equations that determine the deformed configura-
tion describe force and torque balance within the capsule shell
and are given by”®
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r'(sy) = A cos
Z'(sy) = A, siny

ﬂS
w'(so) = 7(p — Apgz — Kk47y)

Td)—'l;

Z;/(SO) = )'s

cos

(13)

Here, y denotes the slope angle as defined in Figure S,
7, and 7, are the meridional and circumferential stress,
respectively, k, = siny/r is the circumferential curva-
ture, and p — Apgz is the hydrostatic pressure difference
exerted on the capsule membrane. In this formulation, the
bending stiffness has been neglected, since the typical
capsules used for these experiments are very thin and
bendable.*®

In order to solve this system of ordinary differential
equations numerically with a shooting method, the quantities
A and 7, occurring on the right-hand side of the system must
be calculated for given 44 and 7, by virtue of an elastic con-
stitutive law. For the simple Hookean elastic law in eq 3, this
was demonstrated in ref 28,

1-0°
A= - At —7) = vy —1) + 1

2D

Ep
1 - 1?

T¢—

1
Z(w - +v(A - 1) +y "

The boundary conditions for the system of shape equations
are (0) = z(0) =w(0) = 0 and r(L,) = a/2, where L, is the
contour length in the undeformed configuration and the
end-point of the integration. The starting value 7,(0) is free
and serves as a shooting parameter to satisfy the boundary
condition at L,.*®

Here, we want to use the elasticity model for particle rafts
developed above (eqs 3, 7 and 8), including the hard-core
interactions. Therefore, depending on the size of compressive
stresses, we have to switch between different constitutive elastic
relations corresponding to Hookean constitutive relations or
hard-core constitutive relations along the arc-length coordinate
so as explained in detail in Appendix II.

B WRINKLING AND MODIFIED SHAPE EQUATIONS

In our model, we neglect the bending stiffness of the
capsule membrane. The fact that the membrane is infi-
nitely easy to bend implies that it will immediately wrinkle
under compressive stresses. In ref 28, it was shown that
deflated pendant capsules exhibit wrinkles due to a com-
pressive hoop stress 7, < 0, as also indicated in Figure Sc.
The capsule membrane is not axisymmetric in the
wrinkled region, but can be approximated by an
axisymmetric pseudosurface around which the real mem-
brane oscillates. The shape of this pseudosurface is deter-
mined by setting 7, = 0 where the original shape equations
predict negative hoop stresses. The assumption 745 = 0
on the pseudosurface is common to various theories of
wrinkling, for example tension field theory*® or far-from-
threshold theory.*' This leads to a modified system of
shape equations
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7'(s,) = A, cosy
Z'(sy) = A, siny

AS
W' (so) = ;(p - Apgz)

7' (so) =

7
—A— cos
7 oV (15)
where 7 is the radial coordinate of the pseudosurface and 7, the
meridional stress measured per unit length of the pseudosur-
face, that is, 7, = 7, 4,/ 4, when 4, = 7/r, denotes the pseudo

hoop stretch. The system is closed by the equation
Ty + Eypp — 7(1 + 1)
Eyp — 2uy = (1 = v%)/Eyp

A=

S (16)
A discussion of these modified shape equations for the
pseudosurface and the automatic switching between normal
and modified shape equations during the integration can be
found in ref 28.

Wrinkling can also occur when the lattice is jammed on
boundary 2 or point B. As in ref 28, we handle wrinkling by
introducing a pseudosurface (indicated with an overbar) and
setting the hoop stress to zero. On boundary 2, we have 4, =
(4L%/3 — A2/3)""* (note that A, refers to the hoop stretch of
the real, wrinkled surface and is to be distinguished from the
pseudo hoop stretch A, = 7/r)). The condition 7, = 0 is
equivalent to

E
—y - 2D2
1—-v

7o) = li[(a(p D+ = 1)]

(17)
We further have 79 = TE/,C)(ASZ/3/1¢2). So the complete
meridional tension, measured per unit length of the pseudosur-
face, is determined by

: (c)
52 T¢C

p
21290, 2,) +
Ay

_ 1
T =
3 ’14) (18)

This is a quite complicated function of A, because T((/,C) and 1
herein also depend on A,. It must be solved for A to evaluate the
right-hand side of the shape equations (eq 15), which is done
numerically in each integration step of the shape equations.

When wrinkling occurs in point B, the shape equations for
the pseudosurface (eq 15) can also be used, and since A, = 4, =
L, the inversion of a stress—strain relation to obtain A; is not
necessary. In point B, the hard-core stresses 7 and Tgf) are
independent of each other, and the spring contributions 7
and TE;) are fixed because of 4; = Ay = L. From the wrinkling
condition 7, = 0, we can, thus, calculate ‘r((;). The meridional
hard-core contribution 79 must be calculated from the
differential equation for 7. Note that the geometry of the
pseudosurface is not fixed by the condition 4, = 4, = L because
the circumferential stretch 4 of the pseudosurface is free. This
is in contrast to the case of a lattice being stuck in point B
without wrinkling as discussed above.

B NUMERICAL INTEGRATION AND SWITCHING
BETWEEN THE SHAPE EQUATIONS

The modified shape equations are integrated from the apex
so = 0 to the attachment point sy = L, to the capillary. On this
way, the integration will run through different domains and
must switch to the appropriate shape equations discussed in the

DOI: 10.1021/acs.langmuir.5b00083
Langmuir 2015, 31, 5364—-5376


http://dx.doi.org/10.1021/acs.langmuir.5b00083

Langmuir
1.0 and on the boundary of 1, the stretches are continuous at this
O transition, only the hoop stress jumps.
08 [ B - BW — 2W— 2 — 1, Light Red. The first transition
— occurs again at a free position s, and the remainder of the
0.6 — course follows: BW — 2W is continuous and occurs when the
= ratio T&f) /7 becomes larger than 3; 2W — 2 is also continuous
B \— and happens when A, becomes larger than 4,; and 2 — 1,
04 which has a jump in 7, is determined by 1, becoming larger
o than L.

0.2 \— B — 2 — 1, Violet. Again, the transition out of region B
happens at a shooting parameter s;, and the second transition

0.0 ! : . : : — follows as explained in the previous trajectory.
00 02 04 06 08 1 A-2 - A, Dark Yellow. For this traject01'*y, tbe sh(?oting
o/ ) parameter is 7,(0) as usual, because we are starting in region A.

Figure 6. Trajectories in the stress plane for integrations at different
stages of deflation (see pictograms on the right). Thin dashed parts
of the trajectories are jumps in 7, The integration always starts
at the apex with 7, = 7, that is, on the angle bisector, and runs
through different domains of the stress plane. The parameters of
the elastic model are E,p/y =S, v =1/3, and L = 0.95. In the picto-
grams, thin horizontal lines indicate the transitions between the
regions.

previous section and Appendix II. Figure 6 shows typical
trajectories of the integration in the stress plane, that is,
parametric plots of (z,(sp), 7,(sp)) with s, € [0, L].

We name the different domains of the stress plane as follows:
The admissible domain (light green in Figure 6) is abbreviated
“A”, the red and blue ruled regions are termed “1” and “2”
(because they stem from boundary 1 and 2 in the stretch
plane), and the white region is termed “B”. Regions 2 and B
also appear in wrinkled form, and we then call them “2W” and
“BW”.

In the numerical integration, an event handler must be
introduced which detects when the integration runs from one
region into another. Changes from region A to regions 1, 2, or
B can be detected on the basis of strains, which are limited by
the boundary of the forbidden domain as given by eq 6. The
other direction, a change from a hard-core region into the
A domain, occurs when the hard-core stresses become positive.

Switching between the different hard-core regions is, how-
ever, a bit more complicated because the continuity conditions
are less obvious. An elaborate variational calculation*” shows
surprisingly that 7, may jump at transitions from B — BW,
B — 2,2 — 1, and BW — 1; see also Figure 6. The physical
reason behind this behavior is that 7, is constitutively
undetermined in region B: It may jump without requiring the
hoop stretch 4 to jump, which would be unphysical and would
lead to a ruptured shape. This jump is necessary when starting
in region B, where we see in Appendix II that the shooting
parameter is eliminated: The jump, or rather its arc-length
coordinate s, serves as a substitute shooting parameter. In the
following discussion of each trajectory shown in Figure 6, this
becomes more clear.

B —» BW — 1, Light Blue. The transition from B to BW
occurs at s; which can be chosen arbitrary (it just has to occur
before the trajectory reaches the wrinkling region 7,, = 0). This
is the shooting parameter that is adjusted to match the
boundary condition r(Ly) = a/2 at the end of integration. The
rest of the trajectory follows from the rules formulated above:
The jump from BW to 1 occurs when the wrinkling condition
14, < A4 becomes false. As the stretches are fixed to L in B, BW,
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The integration switches from A to 2 when the boundary in the
stretch plane is reached according to eq 6; and back to A when
the hard-core stresses become positive. Both transitions are
continuous. A transition from A to 1 is also possible and obeys
the same reasoning.

The dark green trajectory is trivial because it stays in region
A for the whole integration. More paths are possible and have
been worked out, but the presented ones were most commonly
met in the numerical investigations.

B ANALYSIS OF COMPUTED DEFLATED SHAPES

With the newly developed shape equations, we can compute
deflated shapes of capsules according to the hard-core/soft-shell
elasticity model. For the numerical analysis, we use y as the
tension unit and a as the length unit. Dimensionless quantities
are denoted with a tilde. Specifically, the shape equations
depend on the reduced density difference p = a*Apg/y, the
reduced pressure p = ap/y which controls the capsule volume,
and the reduced surface Young modulus E,;, = E,p/y. Their
dimensionless solutions contain the shape (% %) = (r/a, z/a)
and tensions %, = 7,/y with i € {5, ¢}.

Starting with a Laplace—Young shape®® with p = 0.25 and
Po = 2, the pressure is lowered from p = p, to p = 0.1p,. Figure 7

1.0
with hard cores
0.8
without
5 0.6 [ hard cores
3
N 04F — Eyp=5, L=0
— Ep=10,L =0
0.2 [ ~2D )
— FEyxp=5, L=095
0.0 ' ' : ‘
0.2 04 0.6 0.8
V/Viy

Figure 7. Wrinkle length as a function of the reduced volume for
deflated shells with and without hard-core interactions, for v = 1/3 and
E,p as indicated in the legend. The shapes on the right for V = 0.7V,
reveal differences not only in L,, but also in the overall shape (colors as
in the legend, thin gray line is the undeformed shape, integration
regions are indicated in the green contour). The five data points on the
green line in the diagram indicate the shapes and trajectories shown in
Figure 6.

shows the arc length L,, of the wrinkled region as a function of
the reduced volume for three such series of deflated shapes with
different elastic parameters. The curves without hard-core
interactions (red and blue, with L = 0) show that the onset of
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Figure 8. (al—a$) Fit results for theoretically generated capsule shapes of various area compression moduli K,

g Of the soft shells and hard-core

lengths L. The fits are performed using the usual Hookean elasticity (without hard cores) and come to differing results K, for the fitted Hookean
area compression modulus. In both shape generation and fits, the Poisson ratio is fixed to v = 1/3. Shapes exhibiting wrinkling are indicated by

circles, and unwrinkled shapes by squares. (b) Typical fit results for the dimensionless Kyp,/K,,

rig area compression modulus of a hydrophobin capsule

as obtained in ref 28. The jump in the elastic modulus coincides with the onset of wrinkling. (c) Fit results to theoretically generated capsule shapes

from subfigure (a4), normalized to Korig:

length L according to subfigures (al)—(a$).

(d) The relation between the plateau value I?Plat of the fitted Hookean modulus K,;, and the hard-core

wrinkling occurs earlier for higher elastic moduli. If hard-core
interactions are included and occur already for small
compressions (green curve, L = 0.95), the wrinkling sets in
early, even though the elastic modulus is small. Here, the
wrinkling is induced by hard cores coming into contact. After
hard-core contact, compressive stresses increase much more
quickly with decreasing volume, as it can also be seen in the
larger “stress loops” in regions 1, 2, and B in the trajectories
shown in Figure 6. If these stress loops touch the gray shaded
wrinkling regions, wrinkling is triggered (red and blue shapes in
Figure 6). The quickly increasing stress loops after hard-core
contact also give rise to the rather steep increase of the arc
length L,, of the wrinkled region as a function of the reduced
volume in the corresponding green line in Figure 7.

Thus, if one analyzes the shape of a deflated capsule, not
knowing that it obeys the hard-core/soft-shell elasticity model
but assuming that it is a usual Hookean membrane, the
Hookean elastic modulus will be overestimated considerably.
Figure 7 illustrates this, as the green line with E,, = Sand L =
0.95 is much closer to the red line with E, = 10 than to the
blue line with E,, = 5.

Shape Analysis of Theoretically Generated Shapes. In
ref 28, a shape analysis for deflated pendant capsules was
developed. From experimental images, the contours are
extracted and fitted with the solutions of the shape equations
(eq 13). This allows one to determine the elastic modulus of
the capsule membrane. The application of this method to
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bubbles coated with a layer of the protein hydrophobin
revealed a very nonlinear elastic behavior, and the fitted elastic
modulus as a function of the volume jumps at the onset of
wrinkling. The essential features of the Hookean elastic
modulus obtained in ref 28 are shown in Figure 8b, where
the area compression modulus K, = E,p/2(1 — v) is used
instead of the surface Young modulus.

We test whether this characteristic signature of the
hydrophobin layer elasticity can be explained by our hard-
core/soft-shell elasticity model. To this end, series of deflated
shapes are computed using our modified shape equations for a
given area compression modulus K, for the soft springs and a
given hard-core length L. Then each theoretically generated
shape is converted into a set of sampling points and fed to the
usual shape analysis algorithm developed in ref 28 which uses a
Hookean elasticity model without hard cores. The output of the
shape analysis algorithm is a fitted Hookean area compression
modulus K, for each capsule volume, which is shown in
Figure 8al—a$ and demonstrates that the fitted Hookean area
compression modulus K, can differ substantially from the
value I~<0,ig of the soft springs that has been used for the
theoretical shape generation and that the fitted Hookean area
compression modulus can change with volume although K,rig
and the hard-core length L are fixed. In principle, the shape
analysis algorithm using Hookean elasticity can also also give a
fit value for the Poisson ratio v. Alternatively, we can fix v in the
fit procedure to reduce the number of free parameters.
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The analysis is concentrated to soft shell area compression
moduli of Korig = 5—20 and hard-core lengths L = 0.95—0.99.
Only for hard-core lengths L > 0.95, we will reproduce the
jump in the fitted Hookean area compression modulus K,y in
the volume range V/V, > 0.95, where it is also found for
bubbles coated with a layer of the protein hydrophobin in
ref 28. This motivates our choice of the parameter range for L.
The range of hard-core lengths L > 0.95 is higher than the
above estimates L & 0.8—0.9 from the results of refs 34 and 39
for planar monolayers. These differences can be caused by
different surface densities of hydrophobin proteins in the
bubble geometry as compared to the planar geometry: In the
preparation of bubbles,***” hydrophobins can adsorb from the
surrounding bulk solution to the interface, which might lead to
an increased surface density (and, thus, an increased L) due to
the additional adsorption energy as compared to the planar
geometry,”*>” where a fixed amount of hydrophobin is spread
onto the surface. In the fits using the Hookean elasticity model,
we fix the Poisson ratio to the value v = 1/3, which is the
appropriate value for a Hookean spring network, that is, for
small compression if hard cores do not come into contact.

When small hard-core lengths are combined with large area
compression moduli, for example, L = 0.95 with f(orig =20, we
find that the hard-core interactions have no influence on the
capsule shape, because the capsule starts to wrinkle before the
hard-cores come into contact. The numerical integration then
takes a path A - AW — A, and produces a shape that can also
be produced by purely Hookean shape equations without hard-
core interactions. Consequently, such shapes can be perfectly
fitted with Hookean elasticity and the fitted Hookean area
compression modulus K, agrees with the correct soft shell area
compression modulus Koﬂg as expected (see, for example, L =
0.97 with f(orig = 1S in Figure 8a3). In particular, there is no
jump in the fitted Hookean modulus K, during deflation.
Therefore, these cases are mostly omitted from Figure 8al—aS.
There are some deflation series that are very close to the limit
where the hard-core interactions cease to influence the shape
(see L = 0.96 and f(oﬂg = 10 in Figure 8a2, for example), where
there are only small deviations between fitted Hookean and
original soft shell modulus.

For computed deflation series in Figure 8al—a$ where the
hard-core interactions profoundly influence the shape, the fitted
Hookean area compression modulus indeed shows similar
features as observed for hydrophobin capsules in ref 28 and
shown in Figure 8b. For small deformations, where the hard
cores are not yet in contact, the fitted Hookean modulus
reproduces the original soft shell value, K,p, = f(orig. When the
hard cores come into contact, the fitted Hookean modulus Ky,
exhibits a jump and can grow much larger than the original soft
shell value. For a better comparison between fit results for
theoretical and experimental shapes, we show the dimension-
less ratio R'ZD/Korig of fitted and soft shell area compression
moduli in Figure 8b and c (for the experimental fits in in
Figure 8b, we identify ng with the mean of the fitted area
compression modulus values before the jump). The peculiar
dip in the fitted Hookean modulus K, just before the jump is
an artifact of fixing v = 1/3 in the fits. Further tests with free v
show that these points can also be fitted with a Hookean
modulus Ky, close to the original soft shell value f(orig but
with the fitted v dropping to negative values; a result which
lacks an intuitive explanation. Generally, the interpretation of
the fitted value for v is not clear as it is obtained by using the
inappropriate Hookean elasticity model also in the regime,
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where hard cores come into contact. The characteristic deflated
volume, where the fitted Hookean modulus K, exhibits a
jump, increases with increasing hard-core length L but depends
only weakly on the original soft shell modulus f(orig. For hard-
core lengths L > 0.99 close to unity, unwrinkled shapes are
practically unobservable.

The deflation series in Figure 8al—a$ also shows that contact
of the hard cores triggers wrinkling (shapes exhibiting wrinkling
are indicated by circles, unwrinkled shapes by squares). After
the onset of wrinkling, the values for the fitted Hookean
modulus K,;, reach a plateau and increase only slightly for
increasing deflation in the computed shapes in Figure 8al—aS.
For large L > 0.97, the plateau value is independent of the
original soft shell modulus f(orig. The plateau value strongly
depends, however, on the hard-core length L as shown in
Figure 8d. We can describe the observed plateau values by
I~<plat ~ 0.3(1 — L)™". This can be explained by assuming that
both the fitted Hookean elasticity and the hard-core/soft-shell
elasticity have to describe the same sequence of shapes, the
most prominent feature of which is the onset of wrinkles at a
certain volume. If the onset of wrinkling is described by a fit
with Hookean elasticity, the wrinkling criterion is 74 = 0, which
gives KZD(/L/, —1) ~ —y; see eq 14 for the hoop stretch Ay at
wrinkling. For hard-core/soft-shell elasticity, wrinkling happens
along the boundaries 1 or 2 according to the criterion from
eq 6, which we approximate by 44 ~ L. If Hookean elasticity is
to describe the same shapes, 4 as a function of the volume has
to be identical, in particular, at the onset of wrinkling, which
results in 1 — Ay ~ l/I~<p1at ~1—1Lor Kplat ~ 1/(1 = L).
Consequently, the fitted Hookean modulus K, can exhibit a
pronounced jump at the onset of wrinkling if the original soft
shell modulus ng is small and the hard-core length L is large;
in Figure 8a$, it jumps to more than its 6-fold value for K, = S
and L = 0.99. The hard cores have an influence on the elastic
properties if an increased plateau value is observed, that is,
Kplat > Korig. Therefore, the domain of influence of hard cores
is given by K, < 0.3(1 — L) ~', which means sufficiently large
hard-core lengths.

We can use our findings for the plateau value of the fitted
Hookean modulues to extract the two hard-core/soft-shell
elasticity parameters, the soft shell modulus ng = K,yg/y and
the hard-core length L, from the Hookean fits of deflated
shapes. First, the fitted Hookean area compression modulus at
small deflation before wrinkling can be used as an approxi-
mation to the soft shell modulus K. For the hydrophbin
capsule analyzed in ref 28 and shown in Figure 8b, this gives a
value of K ,;,, = 342 mN/m. Second, we can use the above
relation K, 7% 0.3(1 — L) ~' to obtain the hard-core length L
from the plateau values of the fitted Hookean modulus.
The typical fit results for hydrophobin capsules as shown in
Figure 8b do not show a plateau but a gradual decrease of the
fitted modulus after the pronounced jump for large deflations
and differ in this respect from the fits of hard-core/soft-shell
capsules in Figure 8a. Extracting hard-core lengths L ~ 1 — 0.3/
Ky from these fit results (using y = 49.8 mN/m), we find
values of the hard-core length L which are decreasing from L =
0.99 at the jump to L = 0.98. This is a hint that the § barrel in
hydrophobin is not an ideal hard core but weakly compressible.

Moreover, hydrophobin capsules also feature an initial
increase of the fitted Hookean modulus for small deflation
(see Figure 8b) which is absent in all the fits of hard-core/soft-
shell capsules in Figure 8al—aS. This could reflect an additional
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nonlinear stiffening of the soft hydrophobin shells upon
compression.

B CONCLUSIONS

In this Article, we developed an elasticity model for particle
rafts at an interface which consist of hard-core/soft-shell
particles. Upon compression, the membranes formed by these
rafts first behave according to the Hookean elastic law of the
soft shells. Such “soft shell behavior” can be generated by any
additional interaction between hard-core particles, in principle.
If the hard cores come into contact, further compression is
impeded. Additional stresses are then transmitted through the
“skeleton” of hard cores, which must fulfill certain geometrical
force balance constraints; see eq 8. This strongly modifies the
elastic response, that is, the constitutive stress—strain relations
of the material, as soon as compression brings the hard cores
of particles into contact. The model is characterized by an
additional parameter L < 1, which is the ratio of hard core
diameter to the equilibrium lattice constant.

For a planar particle layer under compression, we find that
this rather general elastic model of a particle raft gives rise to a
stress-dependent apparent Poisson ratio, which increases upon
compression beyond 1/3 and up to v,,, = 1/(4L* —1) if hard
cores come into contact; see Figure 4.

Curved interfacial layers are important for the elasticity of
particle decorated capsules. We reviewed the shape equations
for capsules attached to a capillary and modified them in order
to include this hard-core/soft-shell elasticity model. This
enabled us to compute deflated shapes. We find that the con-
tact of hard cores by compression typically triggers wrinkling of
the capsule membrane because compressive stresses increase
quickly with decreasing volume after hard-core contact, as illus-
trated in the stress diagram in Figure 6 and the steep increase of
the wrinkle length for decreasing volume in Figure 7.

In a further analysis, theoretically generated shapes obeying
the hard-core/soft-shell elasticity model were fitted with simple
Hookean shape equations (without hard cores). The resulting
fitted Hookean area compression modulus K,p, as shown in
Figure 8al-a$ for several parameter combinations of soft shell
modulus and hard-core length, exhibits features which are
similar to the signatures obtained in ref 28 for hydrophobin
capsules as shown in Figure 8b. In particular we see a jump-like
increase of the fitted Hookean modulus K, at a characteristic
deflated volume and a plateau value of K, for all smaller
values. The jump in K, coincides with the volume where hard
cores start to come into contact, which also causes the onset of
wrinkling. This explains the observed pronounced jump in the
fitted Hookean area compression modulus at the onset of
wrinkling with the effect of the hard cores. The characteristic
deflated volume, where the jump in K, occurs, increases
with the hard-core length L approaching unity and is, thus,
correlated with an increasing plateau value K,p. This suggests
that the Hookean model is only sufficient in a rather small
volume range (above the jump in Kp), where shapes are
weakly deformed and unwrinkled. To describe wrinkled shapes
adequately, we need to introduce the hard-core/soft-shell
elasticity characterized by the hard-core length L and the
Hookean modulus K, of the spring network. Nevertheless,
the plateau value of K, characterizes the effective Hookean
compression resistance of the particle raft in situations, where
hard cores come into contact. We demonstrated that values of
the hard-core length L and the Hookean modulus K, can
already be inferred from a small set of distinct properties of the
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observed features of the fitted Hookean modulus K. For small
deformations, before wrinkling and the associated jump of the
modulus, we have K., & Kjp. The value of L can be found
from the plateau value of K, after the jump.

The hard-core/soft-shell model does not reproduce the
initial increase of the fitted Hookean compression modulus, nor
its final decrease as obtained in the hydrophobin fits. The initial
increase of the fitted compression modulus might be repro-
ducable if nonlinear spring interactions are included in the
elasticity model (springs that stiffen upon compression). The
decrease after the jump, on the other hand, might be con-
sidered as a decreasing hard-core length L, because for smaller L,
the plateau value is smaller. This could be modeled by cores
which can be slightly compressed. Replacing the hard-core
interactions by spring-interactions with relatively large spring
constant could achieve this.

In summary, with respect to modeling the elastic properties
of hydrophobin coated interfaces, there are several indicators
that the proposed elastic model is too simple in distinguishing
easily compressible domains and purely incompressible ones. A
softer transition might produce results closer to the hydro-
phobin elasticity, modeled for example by springs whose spring
constant slightly increases with compression, and then sharply
increases to a large but finite hard-core spring constant. Such a
model could even be theoretically more tractable because the
resulting elastic law might involve a bijective mapping between
stretches and stresses if the spring constant is a continuous
function of the compression.

The model is interesting not only with respect to hydro-
phobin coated liquid interfaces but also as a generic model for
rafts of interacting hard particles at liquid interfaces, where the
particle interactions give rise to the soft shell elasticity. Such
type of membranes will exhibit a pronounced compression-
stiffening after hard cores come into contact. For the capsules
attached to capillaries this effect induced wrinkling and led to a
corresponding jump in the apparent or fitted Hookean are
compression modulus.

The pronounced compression-stiffening of such membrane
materials could also be used to stabilize structure, for example,
closed capsules against compressive buckling.*> The shape
equations that we derived can be applied to the buckling
behavior of particle decorated liquid droplets in future work as
well. We expect that the interacting particle raft will give rise to
high resistance to buckling if it is engineered such that hard
cores come into contact at the critical buckling pressure.

B APPENDIX I: FORCE-EQUILIBRIUM OF THE
HARD-CORE STRESSES

We consider a jammed state of the lattice, that is, when (4, /1y)
is on the boundary of the admissible domain. Here, boundary
1 as specified by eq 6 and Figure 2b is considered, where 31,2/
4+ A/4=1"

On this boundary, the lattice (see Figure 9a) is compressed
predominantly in the x-direction. Not all hard cores of
neighboring beads are in contact with each other, only those
along the links that are drawn continuous in Figure 9b. The
dashed link in this figure is a spring interaction, not a hard-core
interaction, and is therefore ignored in the following. Figure 9c¢
shows that the force F, applied to a bead is split into
components F, tangential to the links. Trigonometric relations
give cos a = F,/2F, Analogous considerations give sin a = F,/
2F, for the splitting of F,. Thus, we have
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Figure 9. Calculation of the ratio of the hard-core stresses.

tan
E, (19)

as the condition that the skeleton is in static equilibrium.

With Figure 9d, we can relate the geometric angle o to the
lengths of the links. The hard-core links have, by definition,
length L. The vertical (dashed) link has a rest length of 1, and is
stretched (or compressed) by the deformation to a length 4, - 1.
We thus obtain

ly F

tano = ——— > —
ar-4 §

®

_ A
- JAL =42

Finally, we have to relate the forces F, and F, to the stresses 7\
and Tyc). Stresses are forces per length, and the investigated cell
of the lattice has a height [, = 4, and width I, = |, /tan a = (4L
- ﬂyz)l/ % see Figure 9¢. With 7© = F,/I, and rﬁc) = F,/l, we

thus arrive at

(20)

2
A;V

R S

()
Y

(1)

With the strain constraint from eq 6 on boundary 1, this is
equivalent to
(c) 2
T, A

T,@ B

E

W |~
~
13°)

x (22)

Thus, only the ratio between the hard-core stresses is

prescribed by the geometry of the lattice.
Analogous results can be obtained on boundary 2, with all
indices x and y interchanged. The complete result is therefore
(o)

ol A,2/34,% ford, > L

c 2,92
7 |84,2/27 fora, <L (23)

In point B with 4, = 4, = L, which lies on both boundaries
1 and 2, the lattice is uniformly compressed and all neighbouring
beads are in contact. Equation 23 then states that the ratio of
the hard-core stresses is either 3 or 1/3. In fact, due to the close
packing of spheres, any value in between can also be realized, so
that

<

W |~

2 (24)

Equations 23 and 24 give eq 8 in the main text.
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B APPENDIX Il: HARD-CORE/SOFT-SHELL
ELASTICITY AND CAPSULE SHAPE EQUATIONS

We want to use the elasticity model for particle rafts developed
above (eqs 3, 7 and 8), including the hard-core interactions,
in the shape equations (eqs 13) for capsules. Therefore,
depending on the size of compressive stresses, we have to
switch between different constitutive elastic relations corre-
sponding to Hookean constitutive relations (eqs 14) or hard-
core constitutive relations along the arc-length coordinate s,.

We identify the x-direction of the planar model with the
(meridional) s-direction of the axisymmetric shell, and the y-
direction with the (circumferential) ¢)-direction. With the help
of the plots of the stretch and stress planes in Figure 3c and d,
we construct a suitable algorithm to calculate 4, and 7, from
given 4, and 7;:

(i) We check if the point is in the admissible domain or on
the boundary by calculating 7{*)(1,;) with eq 6 and
(), 24) using eq 3, which is the smallest possible
stress in the admissible domain. If the given 7, is larger
(less compressive) than this value, the point is in the
admissible domain, if it is smaller (more compressive)
then the point is on the boundary to the forbidden
domain.

If the point is in the admissible domain, eqs 14 can be
used to calculate A and 7.

If the point is on the boundary, then we know that 4, =
7®)(2,) according to eq 6. In addition, we can calculate
the spring contributions 7 (), 1,) from Hooke’s law

(i)
(iii)

N

(eq 3). The hard-core contribution can then be obtained
as the difference between the given 7, and the spring
contribution, 7¥ = 7, — z{. This value should be
negative. The sought stress 7, can then be calculated
from the Hookean contribution z{{’ according to eq 3
and the hard-core contribution T,(/f) according to the force
balance condition (eq 8), so that 7, = Tgf)(rsb), Ap) + Sﬁc).
Thus, we can use the above shape equations (eqs 13) also for
the computation of deformed shapes for capsules obeying our
hard-core/soft-shell elasticity model. During the integration of
the shape equations, however, the closing relations (eqs 14)
that are necessary to compute the right-hand side must be
replaced by the above procedure (iii) in regions where the
lattice is on boundary 1 or 2.

This method does not work when the lattice is stuck in point B,
which must be handled separately in the shape equations. The
reason is that the confinement to 4, = 4, = L already deter-
mines the shape of the capsule: It is uniformly compressed. The
circumferential stretch r/r, = L directly implies r(sy) = L ro(s,)-
Inserting this solution into the differential equation for r in the
system of shape equations (eqs 13) then yields w(s,) = wo(so),
where y is the slope angle in the undeformed configuration.
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The differential equation for z then becomes z'(s,) = L siny,
and has the solution z(sy) = Lzy(s,) + ¢ with some constant ¢
depending on the starting value. From the differential equation
for w in the shape equations (egs 13), we can then deduce

K
T, = —lrs+ — Apgz|/x,
4 ( perP ’)g) ¢ (25)

by inserting the known solutions, where , is the meridional

curvature in the undeformed configuration. So in principle, only
7, must be determined by solving its differential equation. In
order to keep the code of the numerical implementation
consistent, however, we solve the full system of shape equations
(eqs 13) with the closing relations (eqs 14) modified to contain
the explicit result 25 just derived. This produces the correct
numerical solutions in the same “data format” as in all other
parts.

When the lattice is in the jammed state B already at the start
point of integration (at the apex), we need to evaluate the limits
of the explicit solutions for s, — 0. At the apex, the meridional
and circumferential curvatures coincide, k,(0) = K¢(0) =k,/L=

Po/2yL, where the last step can be derived from the Laplace—
Young equation and p, is the pressure inside the capsule in its
undeformed configuration. From the force balance, the
meridional and circumferential tensions follow as 7,(0) =
74(0) = pLy/p,. This finding has a remarkable impact: 7,(0) is
fixed by the external parameters, and cannot serve as a shooting
parameter. The problem of having lost the only shooting
parameter is resolved in the main text in the discussion of
continuity conditions.
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