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Buckling of spherical capsules
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We investigate buckling of soft elastic capsules under negative pressure or for reduced capsule volume.
Based on nonlinear shell theory and the assumption of a hyperelastic capsule membrane, shape equations for
axisymmetric and initially spherical capsules are derived and solved numerically. A rich bifurcation behavior is
found, which is presented in terms of bifurcation diagrams. The energetically preferred stable configuration is
deduced from a least-energy principle both for prescribed volume and prescribed pressure. We find that buckled
shapes are energetically favorable already at smaller negative pressures and larger critical volumes than predicted
by the classical buckling instability. By preventing self-intersection for strongly reduced volume, we obtain a
complete picture of the buckling process and can follow the shape from the initial undeformed state through the
buckling instability into the fully collapsed state. Interestingly, the sequences of bifurcations and stable capsule
shapes differ for prescribed volume and prescribed pressure. In the buckled state, we find a relation between
curvatures at the indentation rim and the bending modulus, which can be used to determine elastic moduli from
experimental shape analysis.
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I. INTRODUCTION

An elastic capsule consists of an elastic membrane enclos-
ing a fluid phase. Elastic capsules are commonly met in nature;
prominent examples are red blood cells or virus capsules.
Artificial capsules can be fabricated by various methods [1],
for example, by interfacial polymerization at liquid droplets
[2] or by multilayer deposition of polyelectrolytes [3], and
have numerous applications. Sizes of capsules vary from the
nanometer to the micrometer regime, and their mechanical
properties depend on the fabrication process. For various
applications, for example, if capsules are used as delivery and
release systems, there is a need to characterize mechanical
properties of capsules. The shape of capsules is approximately
spherical but capsules are easily deformed by shear flow
[4], rotation [5], in adhesion [6,7], or by the application of
local forces [8–10]. Their deformation behavior also exhibits
buckling instabilities upon decreasing the interior pressure or
the enclosed volume [8,10–12] or in adhesion [6]. All these
deformation modes can potentially be used in experiments to
infer material properties of capsules.

Changes of the pressure inside the capsule by osmosis
or mechanical means and changes in the capsule volume
represent the most basic deformation mechanisms for capsules
with spherical rest shape. In this article, we study the collapse
of a three-dimensional spherical capsule via the buckling
instability into a fully collapsed state under negative pressure
or for reduced capsule volume. The mechanical buckling
instability sets in at the classical buckling pressure, which is
well known within linear shell theory for small displacements
and an isotropic material [13] and has recently been extended
to shell materials with anisotropic shear response [14]. The
classical buckling pressure pcb ∝ −E(H0/R0)2, where E is
Young’s modulus, H0 the initial membrane thickness, and R0
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its initial diameter, can be used in experiments to determine
Young’s modulus of the capsule material [8,11].

While the classical buckling pressure only marks the onset
of the instability within linear shell theory and, thus, the limits
of stability of a spherical capsule, it is much more difficult to
calculate buckled shapes beyond the critical buckling pressure
because larger deformations require nonlinear theories and
contact between originally opposite capsule sides has to be
included in order to prevent self-intersections. Some nonlinear
theories have been applied to compute axisymmetric shapes
with large deformations, for example, in [15] under the
assumption of isotropic tensions and for a more general case
in [16]. Large buckling deformations have been considered
numerically based on triangulated surface models [6,17–19].
In the framework of shell theory, however, a complete picture
of the transition into buckled shapes as observed in the
experiments is still lacking.

In order to develop this picture for axisymmetric capsules,
we use a nonlinear shell theory [20,21] and assume hypere-
lastic capsule membranes. For hyperelastic materials, a strain-
energy function exists from which the tensions and bending
moments can be deduced. It can be shown in general that
solutions of the equations of force and moment equilibrium
render the functional of total energy stationary [20]. This
allows us to combine two tools, force equilibrium and principle
of minimal energy, in order to find different branches of
stationary deformed capsule shapes and then determine which
capsule shape among different branches represents the global
energy minimum. At the classical buckling instability the
branch corresponding to a spherical capsule loses stability and
a bifurcation to buckled shapes takes place. This bifurcation
is analyzed in detail beyond a linear stability analysis and in
energy (and enthalpy) bifurcation diagrams. We find that the
buckling transition is discontinuous in the energy diagrams
and that the buckled shape becomes energetically favorable
already at a smaller negative pressure |pc| < |pcb| than the
classical buckling pressure, where the spherical shape becomes
mechanically unstable.
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FIG. 1. (Color online) Parametrization of the undeformed (left;
always with index “0”) and deformed midsurface.

We extend our approach to capsules with opposite sides in
contact in order to prevent self-intersection at strongly reduced
capsule volume. As far as we know, this has so far only been
achieved for elastic rings [22] in two dimensions, but not for
spherical shells in three dimensions.

Furthermore, we analyze features of buckled shapes, in
particular, the maximal curvature occurring at the edge of
the indentation rim and find a relation between the maximal
curvatures and the bending modulus, which can be used in
experimental shape analysis.

II. FINITE STRAIN SHELL THEORY

A. Geometric setup

We consider axisymmetric capsules, which are undergoing
axisymmetric, torsionless deformations and whose membrane
thickness is small compared to the other capsule dimensions.
The midsurface of the undeformed capsule is parametrized
by the curvilinear coordinates s0 ∈ [0, L0] and φ0 ∈ [0, 2π )
denoting the arc length measured along the meridian and the
angle of revolution, respectively. Its shape is determined by
the functions r0(s0) and z0(s0) in cylindrical polar coordinates
(see Fig. 1).

In addition to the functions r0(s0) and z0(s0), the slope angle
ψ0(s0) is defined via the relations (see Fig. 1),

dr0

ds0
= cos ψ0 and

dz0

ds0
= sin ψ0. (1)

Using this parametrization we calculate the principal curva-
tures of the midsurface,

κs0 = dψ0

ds0
and κφ0 = sin ψ0

r0
. (2)

Here, κs0 denotes the curvature in the meridional direction, and
κφ0 the curvature in the circumferential direction.

For the special case of capsules with spherical resting shape,
the parametrization of the undeformed midsurface is known
analytically,

r0(s0) = R0 sin(s0/R0) and
(3)

z0(s0) = R0 [1 − cos(s0/R0)],

where the arc length s0 ranges up to L0 = π R0. Accordingly,
the slope angle and curvatures are given by

ψ0(s0) = s0/R0 and κs0 = κφ0 = 1/R0, (4)

respectively.

All quantities introduced so far in this section carry the
index “0” because they refer to the undeformed capsule
configuration. The midsurface of the deformed configuration
is parametrized using analogous quantities without indices
“0.” Specifically, its shape is determined by the sought-after
functions r(s), z(s), and the redundant ψ(s). These functions
have to satisfy the boundary conditions r(0) = r(L) = z(0) =
0, ψ(0) = 0, and ψ(L) = π , corresponding to a closed capsule
without kinks at its poles. The geometrical relations (1) and
(2) can be transferred directly to the deformed midsurface by
omitting all indices “0.”

B. Measures of deformation

Having defined the parametrization of the deformed and
undeformed midsurface, we can now introduce measures
of deformation. Fibers oriented along the meridional and
circumferential direction get stretched by the factors:

λs = ds

ds0
= s ′(s0) and λφ = r

r0
, (5)

respectively. The function s(s0) defined in this context de-
scribes the position s at which a particle can be found
that was originally located at s0. In order to center the
measures of stretch around zero, we define the meridional
and circumferential strains es = λs − 1 and eφ = λφ − 1. The
bending of the midsurface is measured by the meridional and
circumferential bending strains,

Ks = λs κs − κs0 and Kφ = λφ κφ − κφ0 . (6)

They are more suitable than a simple difference of deformed
and undeformed curvature because they lead to more simple
constitutive equations, as we will see below.

C. Elastic law

The strains measured by es , eφ , Ks , and Kφ give rise
to elastic tensions and bending moments in the capsule
membrane. Assuming that the capsule membrane consists of
a hyperelastic material, there exists a surface energy density
wS(es, eφ,Ks,Kφ), which measures the elastic energy that is
stored in an infinitesimal patch of the membrane divided by
the area that this patch takes in the undeformed configuration.
In this paper, we will use a Hookean model [20]:

wS = 1

2

E H0

1 − ν2

(
e2
s + 2 ν es eφ + e2

φ

)
+ 1

2
EB

(
K2

s + 2 ν Ks Kφ + K2
φ

)
, (7)

with a (three-dimensional) Young modulus E, a bending
modulus EB , and a Poisson ratio ν, for a shell of (ho-
mogeneous) thickness H0. Note that the Poisson ratio of a
two-dimensional membrane can take values −1 � ν � 1, with
ν = 1 corresponding to an area-incompressible membrane.
The product E H0 is frequently called the surface Young
modulus. In classical small strain theory of plates, the bending
modulus can be expressed as

EB = E H 3
0

12(1 − ν2)
. (8)
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The bending energy contribution in the elastic energy (7)
agrees to leading order in es and eφ (where Ks = κs − κs0 and
Kφ = κφ − κφ0 ) and for an incompressible membrane with
ν = 1 with the commonly used Helfrich bending energy (κs +
κφ − c0)2 (see, e.g., [18,19]) with a spontaneous curvature
c0 = κs0 + κφ0 . The Helfrich bending energy was originally
proposed for two-dimensional liquids like vesicles, which
differ qualitatively from the solid shells we are considering.

It can be shown [20] that the meridional tension τs and
bending moment ms derive from the surface energy density
via

τs = 1

λφ

∂wS

∂es

= EH0

1 − ν2

1

λφ

(es + ν eφ), (9)

ms = 1

λφ

∂wS

∂Ks

= EB

1

λφ

(Ks + ν Kφ). (10)

Likewise, we obtain the circumferential tension τφ and bending
moment mφ by analogous formulas with indices φ and s

interchanged. Tensions and bending moments are measured
per unit length of the deformed capsule, which is the reason
why prefactors 1/λφ appear in these constitutive equations.

Figure 2 shows on which faces of a membrane patch the
tensions and bending moments act. Figure 2 also shows an
additional transverse shear tension q which acts on the top (and
bottom) side of the patch. It is constitutively undefined in our
model because we did not incorporate deformations in which
the capsule’s cross section gets sheared (i.e., fibers normal
to the midsurface get rotated). However, the transverse shear
tension is necessary to achieve force and moment equilibrium.
Note that there does not act any transverse shear tension
on the right side of the patch because of the assumption of
axisymmetric, torsionless deformation.

D. Equilibrium conditions

In addition to the geometric relations and constitutive
equations presented so far, conditions of force and moment
equilibrium are needed to close the problem. There are
three differential equations for tangential and normal force

FIG. 2. (Color online) Tensions and bending moments acting on
the faces of a membrane patch.

equilibrium and moment equilibrium, which take the form
[20,21],

0 = −cos ψ

r
τφ + 1

r

d(r τs)

ds
− κs q, (11)

0 = −p + κφ τφ + κs τs + 1

r

d(r q)

ds
, (12)

0 = cos ψ

r
mφ − 1

r

d(r ms)

ds
− q, (13)

in the absence of external tangential force and torque densities
and for a constant pressure p inside the capsule.

III. PRINCIPLE OF STATIONARY ENERGY

A. Variation of energy functionals

Another approach to find stable configurations of capsules
for fixed but altered volume V �= V0 is to minimize the
functional of stored elastic energy F = ∫

wS dA0 by calculus
of variations. The constraint of fixed capsule volume V

is handled by introducing a Lagrange multiplier p and
extremizing the enthalpy G = F − p V instead. The principle
of stationary total energy [20] states that the solutions of
the equilibrium conditions (11) to (13) with given pressure
p render the enthalpy G stationary.

In the case at hand, this can be verified by using the
standard procedure of calculus of variations. Using dA0 =
2 π r0 ds0 for the area element of the undeformed midsurface
and V = ∫

π r2 dz = ∫
π r2 sin ψ ds = ∫

π r2 λs sin ψ ds0

as an integral expression for the capsule volume, we arrive at
the enthalpy,

G =
∫ L0

0
(2π r0 wS − p π r2 λs sin ψ) ds0, (14)

for which we have to find stationary points. The Euler-
Lagrange equations are derived in Appendix A and turn out
to be

0 = cos ψ

r
mφ − 1

r

d(r ms)

ds
− q, (15)

0 = 1

r

d(r τs)

ds
− cos ψ

r
τφ − κs q, (16)

q = −τs tan ψ + 1

2
p

r

cos ψ
. (17)

They coincide with the general equations of tangential force
and moment equilibrium (11) and (13), but the normal force
equilibrium Eq. (12) is replaced by the algebraic expression
(17) for q. Instead of three differential equations in the general
case, we now end up with only two differential equations
and one algebraic relation. This means we have found a first
integral of the general equations of equilibrium (which is
only valid for capsules with spherical resting shape under
uniform pressure). Inserting the algebraic expression (17) into
the differential Eq. (12) for q confirms that the solution found
here satisfies the general equations of force equilibrium.

B. Shapes with opposite sides in contact

Among the solutions for negative pressure, unphysical
solutions that exhibit self-intersection can occur. For two-
dimensional shells with circular resting shape (cylinder, ring),
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FIG. 3. (Color online) Ansatz for the configuration with opposite
sides in contact. Along the contour, the important coordinates s0 = Lc

and s0 = L0/2 are marked.

Flaherty et al. addressed this problem in [22]. They found that
the opposite sides of an elastic ring touch at one point when the
negative pressure reaches a certain threshold pc1. Lowering the
pressure further, the curvature at the point of contact decreases
until it finally becomes zero at a second critical pressure pc2.
For pressures lower than pc2, the contact area is a straight-line
segment, which increases in length with decreasing pressure.

In order to generalize these results to three-dimensional
spherical shells, we make the ansatz of a top-down symmetric
deformed configuration with flat circular areas around the
poles in contact with each other (see Fig. 3). Considering only
top-down symmetric solutions, it is sufficient to set up the
energy functional for the lower hemisphere only. The flat part
with 0 � s0 � Lc, is referred to as part I, and the remaining
part with Lc � s0 � L0/2 as part II. In order to treat variations
with respect to the boundary Lc between parts I and II properly,
the enthalpy functional is split up into two corresponding parts:

G = W − p V − μ
z =
∫ Lc

0
ds0(2π r0 wS)

+
∫ L0/2

Lc

ds0(2π r0 wS − p π r2 sin ψ λs − μλs sin ψ),

(18)

where the volume constraint and the condition 0 = 
z =∫
dz = ∫

λs sin ψ ds0 are already incorporated via the La-
grange multipliers p and μ.

Performing the first variation involves the following prob-
lems: In part I, the function r(s0) must be varied, and
in part II the functions r(s0) and ψ(s0). Additionally, the
integral boundary Lc must be varied, which yields continuity
conditions at s0 = Lc. The results can be summarized as
follows.

In part I, we obtain one Euler-Lagrange equation:

∂(r τs)

∂s
= τφ for s0 ∈ [0, Lc]. (19)

In part II we obtain a system of two Euler-Lagrange equations:

0 = cos ψ

r
mφ − 1

r

∂(r ms)

∂s
− q, (20)

0 = 1

r

∂(r τs)

∂s
− cos ψ

r
τφ − κs q, (21)

q = −τs tan ψ + 1

2
p

r

cos ψ
+ μ

2π

1

r cos ψ
, (22)

for s0 ∈ [Lc, L0/2]. The Euler-Lagrange equations for part
II are very similar to those obtained above for nonintersect-
ing shapes, except for the term μ

2π
1

r cos ψ
in the algebraic

expression for q(s0). Nevertheless, it can be easily shown that

relation (22) also satisfies the general equation (12), although
it differs from the previous solution by the additional term with
the Lagrange multiplier μ.

In order to fit the solutions of parts I and II together,
continuity conditions must be derived, which arise from the
variation with respect to the integral boundary Lc. It turns
out that most quantities of interest are continuous at s0 = Lc,
namely r , z, ψ , λi , κi , τi , mi where an index i stands for s or φ.
Only for the transverse shear tension q no continuity condition
derives because of the lack of a constitutive relation between
the shear tension q and elastic deformations in the present
formulation. We just know that the value q(Lc) depends via
the algebraic relation (22) on the Lagrange multiplier μ.

IV. SHAPE EQUATIONS

The shape of the deformed capsule is governed by the
equilibrium conditions, constitutive equations, and geometric
relations presented above. They can be rearranged to form a
system of first-order differential equations, known as the shape
equations,

r ′(s0) = λs cos ψ, z′(s0) = λs sin ψ, ψ ′(s0) = λs κs,

τ ′
s(s0) = λs

(
cos ψ

τφ − τs

r
+ κs q

)
,

(23)

m′
s(s0) = λs

(
cos ψ

mφ − ms

r
− q

)
,

q ′(s0) = λs

(
− κs τs − κφ τφ − cos ψ

q

r
+ p

)
.

The first three equations in this system follow from the
geometric relations (1) and (2) (without index “0”) and the last
three from the equilibrium conditions (11) to (13). The change
of variables from s to s0 was accomplished by the relation
ds = λs ds0 [see Eq. (5)]. Usage of the algebraic expression
(17) would reduce this system by one equation, but turns out
to be numerically impractical because of singularities when ψ

approaches π/2.
In order to close the above system of shape equations, all

functions appearing on the right-hand side must be expressed
in terms of the basic functions r , z, ψ , τs , ms , and q. Exploiting
geometrical relations, the definitions of the strains and the
constitutive equations, we find the set of relations:

κφ = sin ψ

r
, λs = (1 − ν2) λφ

τs

E H0
− ν(λφ − 1) + 1,

λφ = r

r0
, τφ = E H0

1 − ν2

1

λs

((λφ − 1) + ν (λs − 1)),
(24)

Kφ = sin ψ − sin ψ0

r0
, Ks = 1

EB

λφ ms − ν Kφ,

mφ = EB

1

λs

(Kφ + ν Ks), κs = Ks + κs0

λs

,

which close the system (23).
After changing variables from s to s0, the boundary

conditions for a closed capsule without kinks at its poles
are r(0) = r(L0) = z(0) = ψ(0) = 0 and ψ(L0) = π , while
the spherical reference shape satisfies (3) and (4). These
boundary conditions cannot be directly used to determine
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boundary values for all strains and curvatures using (24)
because some of the resulting expressions are ill-defined as
ratio of two vanishing quantities. These boundary values can
be evaluated analytically using L’Hôspital’s rule and symmetry
arguments (physically significant functions should be either
odd or even along the extended contour s0 ∈ [−L0, L0]) in the
limits s0 → 0 and s0 → L0. Using this procedure boundary
values at s0 = 0 and s0 = L0 can be written as

λs = λφ = E H0

E H0 − τs(1 − ν)
, q ′ = λs

(
p

2
− κs τs

)
,

(25)

κs = κφ = ms

EB (1 + ν)
+ 1

R0 λs

, τ ′
s = m′

s = 0.

Now, the system (23) can be solved numerically. In order to
introduce dimensionless quantities, we choose R0 as the length
unit and E H0 as the tension unit. A simple shooting method
and a multiple shooting method [23,24], both with parameter
tracing, were used to compute capsule shapes for progressively
lowered pressure p < 0.

For top-down symmetric configurations it is sufficient to
integrate from the south pole s0 = 0 to the equator s0 = L0/2.
In this case, the boundary conditions r(0) = 0, z(0) = 0,
ψ(0) = 0, q(0) = 0, ψ(L0/2) = π/2, and q(L0/2) = 0 must
be satisfied. Whereas the conditions concerning r , z, and ψ are
obvious from geometry, the condition q(0) = 0 holds because
of the algebraic relation (17), and q(L0/2) = 0 because of
the symmetry of the configuration: If q(L0/2) �= 0, the lower
hemisphere would pull the upper one to the inside [or outside,
depending on the sign of q(L0/2)], which contradicts the
top-down symmetry.

For solutions that are not top-down symmetric, we use
shooting to a fitting point [23] because it is numerically imprac-
tical to integrate into a removable singularity. The appropriate
boundary conditions are r(0) = 0, z(0) = 0, ψ(0) = 0, q(0) =
0, r(L0) = 0, ψ(L0) = π , and q(L0) = 0 in this case. The
apparent problem that there are seven boundary conditions to
a system of six first-order differential equations is resolved
by the algebraic relation (17). It effectively renders one of
the boundary conditions to q obsolete (in other words, the
differential equation for q with both boundary conditions
concerning q is obsolete, which leads to a system of five
differential equations with five boundary conditions).

In the case of top-down symmetric configurations with
opposite sides in contact, the solutions of parts I and II must
be fitted together according to the continuity conditions. In
part I, the only degree of freedom is the function r(s0) since
z(s0) = ψ(s0) = 0 because of the geometrical restrictions.
The shape equations for part I can be obtained from the
equilibrium condition (19), together with constitutive and
geometric relations,

r ′(s0) = λs,

λ′
s(s0) = (1 + ν)

R0

cos
(

s0
R0

) − 1

sin
(

s0
R0

) + r

R2
0 sin2

(
s0
R0

) ,

−
λs cot

(
s0
R0

)
R0

. (26)

For reasons of symmetry, λs(s0) must be an even function along
the extended contour s0 ∈ (−L0, L0). Therefore, λ′

s(0) = 0.

The boundary condition for this part of the shape equations is
r(0) = 0. The stretch at the pole, λs(0), is free and serves as a
shooting parameter.

After a numerical solution of (26) has been found, the
Hookean constitutive equations can be used to calculate
the tension τc ≡ τs(Lc) and bending moment mc ≡ ms(Lc),
which serve together with rc ≡ r(Lc) as initial values for the
integration on part II. The shape equations for part II can
be adopted from (23). Only the boundary conditions must be
changed to r(Lc) = rc, z(Lc) = 0, ψ(Lc) = 0, τs(Lc) = τc,
ms(Lc) = mc, z(L0/2) = 0, ψ(L0/2) = π/2, and q(L0/2) =
0. The shooting parameters to satisfy the three conditions at
the far end are λs(0), q(Lc), and Lc.

In the case of top-down asymmetric configurations with
opposite sides in contact, we assume the region in contact to be
a spherical cap with radius R. A region 0 � s0 � Lc around the
south pole has to change its curvature from 1/R0 to −1/R (note
the sign change) to match a region L0 − Lc2 � s0 � L0 around
the north pole. We allow the region around the south pole to
contract in the meridional direction by the factor λs(s0) = λd

(constant on 0 � s0 � Lc). The region around the north pole
is allowed to contract by the factor λs(s0) = λt (constant on
L0 − Lc2 � s0 � L0) which may be different from λd . Since
the deformed configurations of these two regions have to match
exactly, we have the constraint Lc2 = Lc λd/λt .

Thus, the shape of the contact region of the deformed
capsule is determined by the four parameters R, Lc, λb, and
λt . The shape of the noncontacting part of the capsule is again
described by the shape equations (23). Since it is a system
of six equations, and we have four additional parameters that
are not known a priori, we are able to satisfy 10 continuity
conditions in total. That is just enough for the most important
quantities r , z, ψ , τs , and ms at both ends Lc and L0 − Lc2 of
the integration interval.

The explicit boundary conditions for the shape
equations (23) are given by

r(Lc) = R sin(Lc λd/R),

z(Lc) = R (cos(Lc λd/R) − 1),

ψ(Lc) = −Lc λd/R,
(27)

τ (Lc) = EH0

1 − ν2

1

λφ

(λd − 1 + ν(λφ − 1)),

ms(Lc) = EB

1

λφ

(−λd/R − 1/R0 + ν(−λφ/R − 1/R0)),

with λφ = R sin(Lc λd/R)/(R0 sin(Lc/R0))

for the starting point and

r(L0 − Lc2) = R sin(Lc λd/R),

z(L0 − Lc2) = R (cos(Lc λd/R) − 1),

ψ(L0 − Lc2) = −Lc λd/R + π,
(28)

τ (L0 − Lc2) = EH0

1 − ν2

1

λφ

(λt − 1 + ν(λφ − 1)),

ms(L0 − Lc2) = EB

1

λφ

(λt/R − 1/R0 + ν(λφ/R − 1/R0)),

with λφ = R sin(Lc2 λt/R)/(R0 sin(Lc2/R0))

for the end point of integration.
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Note that taking λs to be constant in the regions in
contact is a strong simplification. A more involved theory
would incorporate equations similar to (26) to determine
the in-plane displacements. However, we observed that the
solution branches produced with this simplified method fit
neatly in the bifurcation diagrams.

V. BIFURCATION BEHAVIOR

As the surface Young modulus E H0 serves as the tension
unit, there are only two elastic parameters left to vary, the
Poisson ratio ν and the dimensionless bending modulus,

ẼB ≡ EB

R2
0 E H0

= H 2
0

12(1 − ν2)R2
0

, (29)

where we used (8) for the bending modulus of elastic plates.
We will present bifurcation diagrams for a Poisson ratio of
ν = 0.5 and dimensionless bending moduli of ẼB = 0.01 and
0.001. These values correspond to relative shell thicknesses of
H0/R0 = 0.3 and 0.095, respectively.

A. Spherical solution branch

The trivial branch of spherical solutions (branch 1 in
the bifurcation diagrams below) can be calculated analyti-
cally because of its high symmetry. Solving the equilibrium
equations (11) to (13) for a sphere with radius R, it is
straightforward to show that these equations reduce to the
modified Laplace-Young equation,

p = 2 κ τ, (30)

with κ = 1/R the isotropic curvature and τ ≡ τs = τφ the
isotropic tension. The Laplace-Young equation determines
the new radius of the capsule for given pressure. Using
the Hookean constitutive relation to express τ in terms of
the isotropic stretch λs = λφ = R/R0, this condition can be
rewritten as

R2 − 2 EH0

p (1 − ν)
(R − R0) = 0. (31)

The solution to this quadratic equation is the radius-pressure
relation of the spherical branch (called branch 1 below),

R1 = EH0

p (1 − ν)
±

√(
EH0

p (1 − ν)

)2

− 2 EH0

p (1 − ν)
R0, (32)

where the + branch holds for p < 0 and the − branch for p >

0, which can easily be inferred from requiring limp→0 R =
R0. This radius-pressure relation determines the deformed
configuration completely, and all physical properties, like
volume, strains, tensions, and stored elastic energy, can be
calculated in turn.

In the following we focus on buckling shapes for negative
pressure p < 0. For positive pressure p > 0, where capsules
are stretched, the spherical branch 1 represents the only
equilibrium shape.

B. Stability criteria

We have shown that the equations of force and moment
equilibrium render the functional of total energy stationary.

When the shape equations are solved for negative pressure,
various solution branches with reduced capsule volume
V < V0 can be found, which can represent local minima
or maxima of the energy functional. We display the total
energy or enthalpy of each solution branch in an energy
bifurcation diagram as a function of the capsule volume V

or the pressure p, respectively. The principle of minimal total
energy allows us to determine the globally stable branch as
the branch of minimal energy among all stationary shapes.
Shape transitions such as buckling occur where two branches
intersect.

If the capsule volume is given, the stored elastic energy,

F =
∫ L0

0
2π r0 wS ds0, (33)

must be minimal. This criterion has experimental significance
if the capsule volume cannot change because the encapsulated
liquid is incompressible and the membrane is impermeable.
In cases of a semipermeable capsule membrane, it is also
reasonable to consider the volume fixed because the relaxation
into the equilibrium shape happens on much shorter time scales
than the diffusion of the inner liquid through the membrane. In
the corresponding bifurcation diagram we display the stored
elastic energy F as a function of the volume V .

On the other hand, if the capsule is filled and surrounded
by gases, the pressure difference p is prescribed rather than
the capsule volume. In this case, configurations with minimal
enthalpy,

G = F − p V =
∫ L0

0
(2π r0 wS − p π r2 λs sin ψ) ds0,

(34)

are energetically preferable. In the corresponding bifurcation
diagram we display the elastic enthalpy G as a function of the
pressure p. Note that G(p) is the Legendre transform of F (V ),
since the relation p = dF/dV holds (which was verified
numerically for all solution branches presented here). Solution
branches that lie lowest in the F (V ) bifurcation diagrams need
not necessarily coincide with the lowest branches in the G(p)
diagrams.

Finally, it is also useful to analyze the relation between
pressure p and volume V for stationary capsule shapes.
Branches that exhibit an unusual pressure-volume relation
with dp/dV < 0 are inherently unstable if the pressure is
given instead of the volume [25]. To see that, we consider
a water-filled capsule connected to a reservoir of water. The
pressure in this system can be prescribed. Now, if we try to
change the capsule volume by lowering the pressure by an
amount dp < 0, the capsule grows by an amount dV > 0 (i.e.,
water flows from the reservoir into the capsule). The loss of
water in the reservoir typically leads to an even lower pressure
and thus, the equilibrium is unstable with respect to volume
changes. This instability is also reflected by a negative second
derivative of the free energy, d2F/dV 2 = dp/dV < 0, and a
horizontal p(V ) curve with dp/dV = 0 marks the onset of
such an instability.

Therefore, we have three criteria of stability for capsule
shapes: (i) minimal energy F for fixed capsule volume V ,
(ii) minimal enthalpy G for fixed pressure p, and (iii) a
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monotonously decreasing pressure-volume relation dp/dV <

0 is sufficient for an unstable shape for fixed pressure. Thus,
the criterion dp/dV � 0 is only a necessary condition for
stability: Configurations with dp/dV � 0 can still be unstable
with respect to deformation modes which do not change the
volume.

In fact, criterion (iii) can be generalized by using a general
bifurcation theorem that has been proven in Ref. [26]. This
allows us to make a further statement about the instability of
shapes beyond points where a monotonously decreasing p(V )
curve becomes vertical: If the p(V ) curve at such a point is
open to the left, that is, the following lower part of the p(V )
curve has again a positive slope dp/dV > 0, this lower part
must also be unstable. Furthermore, this is an instability with
respect to a volume-preserving mode. This generalization also
demonstrates that a positive slope dp/dV � 0 is not sufficient
for stability.

C. Bifurcation diagrams

With these criteria of stability, we analyze the bifurcation
behavior of elastic capsules by investigating the different
branches in three types of bifurcation diagrams: (1) In the
F (V ) diagram we study buckling by reducing the capsule
volume by using criterion (i). (2) In the p(V ) diagram we can
identify unstable shapes as monotonously decreasing branches
dp/dV < 0 according to criterion (iii). (3) In the G(p)
diagram the Legendre transform G(p) = F (V (p)) − pV (p)
allows us to investigate buckling under negative pressure
according to criterion (ii).

The nomenclature of solution branches is summarized in
Table I. In particular, we will compare our results to classical
buckling theory [13,20,27], which predicts a critical negative

TABLE I. Denomination of different branches in bifurcation
diagrams. Branches are classified according to the number of bulges
as buckled (one or two bulges) or crumpled (more than two bulges,
names with primes) and according to top-down mirror symmetry
(shapes 1,3,4 are top-down symmetric; shapes 2 are asymmetric).
Shapes with subscript c exhibit contact of originally opposite sides;
shape 3c develops an additional dimple at the sides as opposed to
shape 4c (for ẼB = 0.001).

Branch Configuration Example

1 Spherical

2 Simply buckled (asymmetric)

2’ Asymmetrically crumpled

2c Simply buckled with contact

3 Symmetrically buckled

3’, 3” Symmetrically crumpled ,

3c, 4c Symmetrically buckled with contact ,

buckling pressure,

pcb = −4
E H 2

0

R2
0

√
12(1 − ν2)

= −4
√

EH0 EB

/
R2

0, (35)

for a spherical capsule. A corresponding critical volume can
be obtained as

Vcb = 4π

3
(R1(pcb))3, (36)

by using pcb in the radius-pressure relation (32) of the spherical
branch 1.

We start with the bifurcation behavior of thin capsules with
ẼB = 0.001, as shown in the diagrams 4 to 6. The F (V )
diagram (Fig. 4) reveals that the simply buckled configurations
of branch 2 are energetically favorable for volumes V < Vc,
where Vc denotes a critical volume which is Vc ≈ 0.944 V0

in this case. At the critical volume Vc, the spherical branch
1 and branch 2 of simply buckled configurations intersect.
Note that this volume is larger than the critical volume Vcb

within classical buckling theory, which is Vcb ≈ 0.914 V0 for
this case. A shape transition between branches 1 and 2 at Vc is
discontinuous and involves an energy barrier. The upper part
of branch 2 most likely represents the unstable transition state
at V = Vc between a spherical shape and the stable lower part
of branch 2. Therefore, the energy barrier can be estimated by
the energy difference between the upper and lower parts of
branch 2 at V = Vc. More detailed stability considerations are
given in Sec. V D below.

For volumes V < 0.14 V0, these configurations start to
intersect themselves (dashed line). Simultaneously, a branch
2c starts to exist with simply buckled configurations with
opposite sides in contact. Although the method used to obtain
this branch incorporated some simplifications, branches 2 and
2c connect neatly in the diagrams. In this domain, the ansatz
with opposite sides in contact produces solutions with higher
energies (branch 2c compared to the dashed part of 2), that is,
the self-intersecting solution branch raises in the F (V ) diagram
when it is forced to satisfy the physical constraints.

For volumes V < Vc, the energetically next-best con-
figurations according to (i) are the symmetrically buckled
ones of branch 3. They exhibit self-intersection for volumes
V < 0.51 V0. At higher energies, crumpled configurations can
be found in branch 3’ that is connected to branch 3. They
correspond to local minima, saddle points, or maxima of the
energy functional. Several more crumpled shapes can be found
in this domain of the bifurcation diagram, but they are not
shown for the sake of clarity. Similar crumpled configurations
have been observed for small volumes in simulations using
triangulated surface models, in particular, at high compression
rates [17]. Trapping in metastable crumpled shapes can
contribute to this behavior.

For given pressure, the p(V ) diagram (Fig. 5) and G(p)
diagram (Fig. 6) can be analyzed in order to identify unstable
solutions according to criteria (ii) and (iii). The simply and
symmetrically buckled solutions of branches 2 and 3 (without
contact of opposite sides) exhibit a negative slope in the p(V )
diagram. This means that they are mechanically unstable with
respect to volume reducing deformations for given pressure
according to criterium (iii), although they are most stable
for fixed volume in the F (V ) diagram. According to the
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FIG. 4. (Color online) Bifurcation diagram for given volume of
a capsule with ẼB = 0.001. On the dashed lines of branch 2 and 3,
the capsule intersects itself. Branch 3’ continues winding up in the
diagram, as indicated by the ”etc...”.

FIG. 5. (Color online) Pressure-volume relation of a capsule with
ẼB = 0.001.

FIG. 6. (Color online) Bifurcation diagram for given pressure of
a capsule with ẼB = 0.001.

generalization of criterion (iii) based on Ref. [26] also the
lower part of branches 2 and 3, which lie beyond the turning
point and have a positive slope in the p(V ) diagram at volumes
V > Vcb, (see also inset in Fig. 5) are unstable, however,
with respect to volume-preserving modes. The energy diagram
G(p) confirms this result; the unstable branches 2 and 3 lie
above the trivial solution branch 1. On the other hand, the
buckled configurations 2c and 3c with opposite sides in contact
are mechanically stable again, with dp/dV > 0, and 2c is
energetically preferable.

At the critical pressure pc ≈ −0.23 |pcb|, the spherical
branch 1 and branch 2c of simply buckled configurations with
opposite sides in contact intersect in the G(p) diagram, and
shapes 2c become energetically favorable for given pressure.

The negative critical pressure |pc| is much smaller
than the classical buckling pressure |pcb|, which is pcb ≈
−0.126 EH0/R0 according to Eq. (35). However, the classical
buckling pressure fits very well to the point, where branches 2
and 3 emerge from the spherical solution branch in the p(V )
diagram (see inset in Fig. 5, where it is indicated by a horizontal
line). The classical buckling pressure pcb is the pressure where
the unbuckled spherical configuration 1 becomes unstable with
respect to buckling [13,14], and a spontaneous transition to the
unstable simply buckled branch 2 occurs.

At the critical pressure pc, on the other hand, shape 2c

becomes energetically favorable as compared to the spherical
branch 1. A shape transition between both branches at pc

is discontinuous and involves an energy barrier. The upper
unstable branch 2 of a simply buckled shape without contact
most likely represents the transition state between a spherical
shape and branch 2c at p = pc. Therefore, the energy barrier
can be estimated by the energy difference between the upper
unstable branch 2 and the lower stable branch 2c at p = pc.

The bifurcation diagrams for a thick capsule with ẼB =
0.01 (Figs. 7–9) look qualitatively similar. Again, the sim-
ply and symmetrically buckled solution branches 2 and 3,
respectively, are energetically preferable for given volume,
but exhibit a negative slope in the p(V ) diagram (Fig. 8),
and are unstable and energetically unfavorable for given
pressure.

For given volume V , the F (V ) diagram (Fig. 7) shows that
the simply buckled configurations of branch 2 are energetically
lower than spherical shapes for V < Vc with a critical volume
Vc ≈ 0.79 V0, which is again larger than the critical volume
Vcb ≈ 0.77 V0 from classical buckling theory.

For given pressure p, the G(p) diagram (Fig. 9) shows that
simply buckled configurations 2c with opposite sides in contact
are energetically favorable as compared to spherical shapes
of branch 1 for p < pc, where the critical pressure is pc ≈
−0.46 |pcb|. Also for ẼB = 0.01, the negative critical pressure
|pc| is much smaller than the classical buckling pressure |pcb|,
which is pcb ≈ −0.4 EH0/R0 in this case and the classical
buckling pressure fits to the point, where branch 2 emerges
from the trivial spherical solution branch (see inset in Fig. 8,
where it is indicated by a horizontal line).

For ẼB = 0.01, there is a visible gap between the buckled
branches 2 and 3 and their respective continuations 2c and 3c

with opposite sides in contact. This gap was already present in
the diagrams for ẼB = 0.001, but much smaller. It is assumed
to be closed by configurations with point contact of north and
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FIG. 7. (Color online) Bifurcation diagram for given volume of a
capsule with ẼB = 0.01. The dashed lines in the gaps between 2/2c

and 3/3c could not be calculated numerically, but we expect some
configurations to exist in these domains.

FIG. 8. (Color online) Pressure-volume relation of a capsule with
ẼB = 0.01. The dashed lines in the gaps between 2/2c and 3/3c could
not be calculated numerically, but we expect some configurations to
exist in these domains.

FIG. 9. (Color online) Bifurcation diagram for given pressure of
a capsule with ẼB = 0.01.

south pole. In the case of branch 3, an analogous behavior like
that of elastic rings is expected [22]. The curvature at the point
of contact is expected to decrease, until it finally becomes zero
and hence fulfills the continuity conditions for circular areas
in contact. However, the shape equations when point contact
of north and south pole is enforced turn out to be hard to solve
numerically, because the transverse shear tension diverges at
the poles.

At higher energies, there are again configurations with
several bulges (branches 3’ and 3”). In the F (V ) diagram
(Fig. 7), they lie lower than the trivial solution branch. In
contrast to the results for the capsule with ẼB = 0.001, branch
3” does not have multiple turning points and is not connected
to the continuation 3’ of the symmetrically buckled branch
within the scope of our diagrams. However, branches 3’ and
3” might join at higher energies and lower pressures. Notably,
these solution branches lie lower than branch 1 in the G(p)
diagram (Fig. 9), which is a qualitative difference from the
results for ẼB = 0.001.

The F (V ) and p(V ) diagrams are in good agreement
with previous work based on triangulated surface models: In
Ref. [19], a p(V ) relation has been obtained, which also shows
a uniform shrinkage of the capsule (our branch 1) for small
volume reduction followed by a jump into an axisymmetric
simply buckled configuration (our branch 2) with the same
p(V ) behavior as branch 2. Furthermore, Ref. [18] contains
an F (V ) diagram in which the spherical and simply buckled
solution branches are shown. They reveal qualitatively the
same F (V ) relation as our branches 1 and 2.

D. Buckling bifurcation

The key features of the bifurcation diagrams presented
above are drawn schematically in Fig. 10. They allow one
to construct a complete picture of the bifurcation behavior at
the buckling transition.

On the left of Fig. 10, two different bifurcation scenarios
in the domain where branch 2 emerges from 1 are drawn
schematically. We see that the part of branch 2 with an inward
dimpled south pole emerges continuously from the spherical
branch 1 and first runs to the right (i.e., to higher capsule
volumes). After a turning point, the branch runs to the left (i.e.,
to lower capsule volumes), while the south pole buckles more
and more inward. The upper part of branch 2 up to the turning
point (shaded dark red) lies at higher energies than the spherical
branch and consists of unstable stationary shapes. This can be
seen from the p(V ) diagram where it corresponds to the lower
part of branch 2 beyond the vertical turning point and which
are unstable with respect to a volume-preserving deformation
mode according to the generalization of criterion (iii) [26].

Branch 2 intersects the spherical branch 1 at the critical
volume V = Vc. For V < Vc the lower part of branch 2 is the
energetically preferable solution branch. A shape transition
between branches 1 and 2 at Vc is discontinuous. If the capsule
wants to switch from the metastable branch 1 to 2 for V <

Vc (vertical arrow) an energy barrier must be overcome. The
upper part of branch 2 represents the unstable transition states
between a spherical shape and the stable lower part of branch
2. Therefore, the energy barrier can be estimated by the energy
difference between the upper and lower parts of branch 2.
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FIG. 10. (Color online) (Left) Schematic drawing of two different bifurcation phenomena (indicated by the arrows) for given volume
V < Vc. (Middle and right) Schematic drawing of a realistic buckling process for given pressure. The critical pressure pc is defined by the
crossing of branches 1 and 2c in the G(p) diagram. As a consequence of the Legendre transformation, the two regions shaded gray in the p(V )
diagram have the same area at p = pc (Maxwell construction).

The behavior when branch 2’ emerges from the spherical
branch 1 at the volume V = Vcb is quite different. It emerges
with egglike configurations continuously from the trivial
branch and runs directly to the left. If the capsule passes this
point in the bifurcation diagram during a progressive reduction
of its volume along the metastable branch 1, it is allowed to
switch from branch 1 to 2’ continuously. Thus, there is no
energy barrier to be overcome in this scenario, and the trivial
branch is supposed to be unstable.

Details of a realistic buckling process for given pressure
can be constructed from the p(V ) and G(p) diagrams. The
middle and right parts of Fig. 10 schematically show the key
features concerning the simply buckled states 2 and 2c. The
decreasing part of branch 2 with dp/dV < 0 is mechanically
unstable with respect to volume reduction (shaded light red).
According to the generalization of criterion (iii) based on
Ref. [26] also the lower part of branch 2 (shaded dark
red), which has a positive slope for a small volume range
V > Vcb in the p(V ) diagram, is unstable with respect
to a volume-preserving deformation mode. It corresponds
to the unstable upper branch 2 in the F (V ) diagram. In
the G(p) diagram both corresponding unstable parts of
branch 2 join to give the energetically unfavorable upper
branch.

Therefore, the spherical shapes of branch 1 become me-
chanically unstable at the classical buckling pressure pcb,
where the unstable branch 2 and branch 1 merge in the
p(V ) diagram. Then, a small dimple caused by fluctuations
or agitations can grow spontaneously and the capsule finally
ends up in a fully collapsed stable configuration 2c at the given
pressure running along the dashed path in the p(V ) diagram.
The same process is indicated in a schematic G(p) diagram
on the right of Fig. 10 as a dashed line.

Shape 2c becomes energetically preferable already at a
much smaller negative pressure pc (i.e., |pc| < |pcb|), where
branches 1 and 2c intersect in the G(p) diagram. A shape
transition between branches 1 and 2c at pc is discontinuous:
Changing onto branch 2c at p = pc does not correspond to
a spontaneous snap-through into a fully buckled shape 2c

because shape 1 remains mechanically (meta)stable in that
region, because dp/dV > 0 and no other branches are merging
or intersecting in the p(V ) diagram at pc. A finite dimple
has to form by fluctuations or agitations to induce buckling,
and this is associated with an energy barrier. The unstable

transition state of this process can be the unstable shape 2
at the same pressure. This process is shown as a solid path
in the p(V ) diagram. We note that, as a consequence of the
condition of equal enthalpies G at p = pc, this solid path
can be obtained by a Maxwell construction: At p = pc, the
two regions shaded gray in the p(V ) diagram have the same
area.

We conclude this section by providing estimates for
buckling pressures for some synthetic and biological capsules.
For synthetic capsules made from typical soft materials we
expect a Young’s modulus in the range E ∼ 100 − 1000 MPa,
thicknesses H0 ∼ 10 − 50 nm, and micrometer sizes R0 ∼
500 nm; see, for example, Refs. [8,10] for different synthetic
capsules. This results in typical classical buckling pressures
|pcb| ∼ 0.1 − 1 GPa (in accordance with measurements in
[8]). Such materials have a small dimensionless bending
modulus ẼB ∼ 0.00005–0.001 corresponding to thin shells
(see Figs. 4–6).

Many biological materials, such as virus capsids have
very similar material characteristics but can be smaller: In
Ref. [14] E = 1 GPa, H0 = 2 nm, and R0 = 10 nm has been
used for virus capsids, which gives similar dimensionless
bending modulus ẼB ∼ 0.004 and a similar buckling threshold
|pcb| = 0.5 GPa.

Somewhat different are soft biological capsules such as
red blood cells with a shell made from lipid bilayers, which
governs the bending rigidity. Red blood cells have a bend-
ing rigidity EB ∼ 10 kBT , an area stretching modulus K ∼
EH0 ∼ 10 μN/m [28], and sizes R0 ∼ 4 μm, which results in
a smaller dimensionless bending modulus ẼB ∼ 0.0005 and
a much smaller classical buckling threshold |pcb| ∼ 0.2 Pa in
accordance with the fact that red blood cell shapes are buckled
at ambient conditions.

From our above result pc ≈ 0.23 pcb for thin shells with
ẼB ∼ 0.001, we expect critical values |pc|, which are smaller
by a factor of at least 5 compared to the classical buckling
pressure |pcb| for all of these capsules.

VI. ANALYSIS OF SIMPLY BUCKLED SHAPES
AND BENDING MODULUS

Smaller bending resistances allow sharper bends in buck-
led configurations. Hence, the minimal radius of curvature
1/κedge ≡ mins(1/κs) (in s direction along the contour), which
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FIG. 11. (Color online) Minimal radius of curvature 1/κedge

plotted against the reduced bending resistance ẼB . Dots, computed
shapes for V = 0.8 V0; line, power-law fit for ẼB � 0.004.

occurs close to the edge of the indentation of a simply buckled
shape 2 (see Fig. 12), should depend sensitively on the reduced
bending resistance ẼB and represent an adequate observable
to infer the reduced bending modulus ẼB .

Figure 11 shows a double logarithmic plot of the minimal
radius of curvature as a function of the reduced bending
modulus. It was obtained from a series of simply buckled
shapes with fixed volume V = 0.8 V0. For bending moduli
ẼB � 0.004, a power law can be fitted to the data:

1

κedge
∼ R0 Ẽ0.2356

B . (37)

The power law (37) can be confirmed by a scaling
argument, where we balance bending and stretching energies.
We consider a small dimple with radius r 
 R0 and depth h

as depicted in Fig. 12. The elastic energy is mainly located at
the edge of this dimple, which spans the width d 
 r .

Since the dimple is assumed to be mirror inverted to its
original shape, its radius and depth are determined by the
angle α (see Fig. 12). To leading order, they are given by r ∼
R0 α and h ∼ R0 α2, respectively. By that, the volume change
with respect to the unbuckled configuration is approximately

V ∼ h r2 ∼ R3

0 α4.
The energies of bending and stretching are of the order,

Fb ∼ EB

ζ 2

d4
r d and Fs ∼ EH0

ζ 2

R2
0

r d, (38)

respectively [13], where ζ is the typical radial displacement
of the membrane near the edge of the dimple. Because the
direction of the meridian changes about α within the width d,

FIG. 12. (Color online) Geometry of an axisymmetric dimple in
a simply buckled shape 2.

we have ζ ∼ α d ∼ d (
V/R3
0)1/4. The total elastic energy for

a given volume reduction 
V therefore takes the form,

F ∼ EH0
d3 r 
V 1/2

R
7/2
0

+ EB

r 
V 1/2

d R
3/2
0

. (39)

Minimizing the total elastic energy with respect to d we find
the equilibrium width of the dimple edge,

d ∼
(

EB

EH0
R2

0

)1/4

∼ R0 Ẽ
1/4
B , (40)

which can also be written in the form d ∼ √
H0 R0 as in

Ref. [13]. Confining the directional change α of the meridian
to a width d of the edge of the indentation (see Fig. 12) results
in an edge curvature,

κedge ∼ α

d
∼ 
V 1/4

R
7/4
0

Ẽ
−1/4
B . (41)

When the critical buckling pressure |pc| is small (compared to
the pressure unit defined by EH0/R0), the unbuckled region
outside the dimple remains roughly spherical with a radius
close to the original radius R0, as can be seen from Eq. (31).
Therefore,


V = V0 − V = (1 − v)V0 (42)

holds to a good approximation, where v ≡ V/V0 is a reduced
volume. Using this in (41), we find a scaling law,

κedge ∼ (1 − v)1/4

R0
Ẽ

−1/4
B , (43)

which is of the same form as the above fit (37) with an exponent
1/4 matching the fit result 0.2356 from (37) quite well.

It is evident from the assumption d 
 r , which corresponds
to a sharp edge of the indentation, that the scaling law holds
only for sufficiently small bending resistances, ẼB � 0.004 in
this case. The assumption r 
 R0 implies that the scaling law
holds for sufficiently small volume changes. Indeed, analyzing
the scaling behavior for several capsule volumes using (43),
we find that the fitted exponent matches the theoretical value
1/4 very well for V = 0.9 V0 or 0.8 V0, but starts to deviate for
V = 0.67 V0 or 0.5 V0 (see Table II). We can also determine
that the numerical prefactor in (43) is of the order of unity and
only weakly volume dependent. In contrast to these findings
for simply buckled shapes 2 without contact of opposite
sides, we observe that κedge is nearly independent of ẼB for

TABLE II. Fit parameters for different capsule volumes. The fit
model for the radius of curvature at the dimple edge is 1/κedge =
c (1 − v)−1/4 R0 Ẽb

B [see Eq. (43)]. For small volume changes, the
theoretical exponent 1/4 agrees best.

Reduced volume v Prefactor c Exponent b

0.9 0.73 0.246
0.8 0.63 0.236
0.75 0.59 0.229
0.67 0.54 0.221
0.5 0.50 0.217
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buckled conformations of branch 2c with opposite sides in
contact.

The results of the fits presented in Table II could be used to
quantitatively analyze experimental shapes of simply buckled
elastic capsules without opposite sides in contact as shown,
for example, in Refs. [8,10,12,18], provided the radius of
curvature at the edge of the dimple can be measured accurately.
We note that the calculated shapes as shown in Fig. 11 are
in qualitative agreement with some of the experimentally
observed shapes [8,10,12,18]. From a measurement of the
curvature at the edge of the buckling dimple κedge the
dimensionless bending modulus ẼB = EB/(R2

0 E H0) can be
determined using (41) and the numerical prefactor from
Table II. In combination with an independent measurement
of Young’s modulus E, for example, via a measurement of
the classical buckling pressure pcb, this type of shape analysis
provides a method to obtain the bending modulus of a capsule,
which is hard to measure otherwise.

VII. CONCLUSIONS

We applied nonlinear shell theory to the problem of ax-
isymmetric deformations of an initially spherical capsule. The
elastic properties of the capsule membrane were modeled with
a quadratic strain-energy function. This approach to Hooke’s
law allowed us to use the methods of force and moment
equilibrium and a least-energy principle simultaneously.

Bifurcation diagrams for reduced capsule volume and
negative pressure were presented. The least-energy principle
gave information about the preferred configurations and
allowed one to obtain a complete picture of the transition into
the fully buckled state. If the capsule volume is controlled,
simply buckled configurations turned out to be energetically
preferable below a certain critical volume Vc, but an energy
barrier must be overcome in order to leave the trivial solution
branch. The transition at Vc is thus discontinuous. If the internal
negative pressure is controlled, spherical shapes become
mechanically unstable at the classical buckling pressure pcb.
However, buckled shapes with opposite sides in contact be-
come energetically favorable at a much lower negative pressure
pc (i.e., |pc| < |pcb|). Also at controlled negative pressure, the
transition at pc is discontinuous and involves an energy barrier.
With the methods presented here, also configurations with
opposite sides in contact could be computed and incorporated
in the bifurcation diagrams; fully buckled configurations
with opposite sides in contact (branch 2c in the bifurcation
diagrams) actually have the lowest energies at small vol-
umes or low negative pressures and determine the critical
pressure pc.

For buckled shapes, the maximal curvature κedge at the edge
of inward buckled dimples was found to depend strongly on
the ratio of bending resistance to surface Young modulus,
with smaller ratios leading to sharper bends. A power law
κedge ∝ (EH0/EB)1/4 was found for sufficiently small bending
resistances and sufficiently small volume changes. This rela-
tion may be used to analyze experimental shapes of buckled
elastic capsules and extract the bending modulus of the capsule
membrane from the capsule shape.
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APPENDIX A: CALCULUS OF VARIATIONS

In this appendix we derive the first variation and the result-
ing Euler-Lagrange equations for the enthalpy functional,

G =
∫ L0

0
(2π r0 wS − p π r2 λs sin ψ) ds0. (A1)

The integrand has to be regarded as a function of s0. In
functions like r(s), a change of variables from s to s0 can
be performed by the function s(s0) introduced in (5).

Two of the functions r(s0), z(s0) and ψ(s0) determine the
capsule configuration completely. As the integrand of (14) and
the geometrical relations contain mainly r and ψ , we choose
r(s0) and ψ(s0) as the two basic fields. Variations δr(s0) and
δψ(s0) have to fulfill the boundary conditions,

δr(0) = δr(L0) = 0 and δψ(0) = δψ(L0) = 0. (A2)

The first variation δG of G[r, ψ] is obtained as

δG =
∫ L0

0
(2π r0 δwS − p π δ(r2 λs sin ψ)) ds0. (A3)

The variation δwS of the surface energy density introduces
tensions and bending moments with the help of the constitutive
equations (10),

δwS = ∂wS

∂es

δes + ∂wS

∂eφ

δeφ + ∂wS

∂Ks

δKs + ∂wS

∂Kφ

δKφ

= λφ τs δes + λs τφ δeφ + λφ ms δKs + λs mφ δKφ.

(A4)

Now, the variations of the strains must be expressed in terms
of δr , δψ and its derivatives with the help of strain definitions
and geometrical relations,

es = r ′(s0)

cos ψ(s0)
− 1 ⇒ δes = δr ′

cos ψ
+ λs tan ψ δψ,

eφ = r

r0
− 1 ⇒ δeφ = 1

r0
δr,

(A5)
Ks = ψ ′(s0) − κs0 ⇒ δKs = δψ ′,

Kφ = sin ψ

r0
− κφ0 ⇒ δKφ = cos ψ

r0
δψ.

In a similar fashion, the variation of the second term can be
calculated as

δ(r2 λs sin ψ) = δ(r ′ r2 tan ψ)

= 2 r λs sin ψ δr + r2 tan ψ δr ′ + λs r2

cos ψ
δψ.

(A6)

Inserting everything into (A3), and sorting according to δr ,
δr ′, δψ , δψ ′ yields a rather long expression. Using integration
by parts to transform δr ′ into δr and δψ ′ into δψ (note that the
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boundary terms vanish) results in the following result for the
first variation of G,

δG =
∫ L0

0
ds0

(
δr

{
2π λs τφ − 2π p r λs sin ψ

− 2π
d

ds0

(
r τs

cos ψ

)
+ π p

d

ds0
(r2 tan ψ)

}

+ δψ

{
2π r τs λs tan ψ + 2π λs mφ cos ψ

−π p
λs r2

cos ψ
− 2π

d(r ms)

ds0

})
. (A7)

For a stationary shape, δG = 0 for arbitrary variations δψ and
δr , and the terms in curly braces have to vanish. This gives
the Euler-Lagrange equations describing stationary states.

Rearranging the term next to δψ by a change of variables
ds = λs ds0, we obtain

0 = cos ψ

r
mφ − 1

r

d(r ms)

ds
− q, (A8)

with q = −τs tan ψ + 1

2
p

r

cos ψ
, (A9)

which are Eqs. (15) and (17) in the main text. With this
definition of the transverse shear tension q, the term next to δr

can be simplified to

0 = 1

r

d(r τs)

ds
− cos ψ

r
τφ − κs q, (A10)

which gives Eq. (16) in the main text.
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