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1 Contour Analysis of Images
Consider an image of a pendant capsule which has to be compared to a theoretical contour given by a
parametrisation r(s0), z(s0) with s0 ∈ [0, L0]. The length unit of the theoretical contour is chosen as
the capsule diameter a at its upper rim, which coincides with the inner diameter of the capillary.

Extracting Sampling Points. The steps to find sampling points on the contour in an image are visu-
alized in Fig. 1 and can be described as follows:

1. The images are imported as png files into Mathematica and converted into a matrix of greyscale
values, which range from 0 (dark) to 1 (bright).

2. An edge detection algorithm (Canny’s method, which is implemented in Mathematica) is used to
find edges in the image.

3. The position of the end of the capillary is found by searching a horizontal jump in the upper part
of the outermost edge (horizontal blue line).

4. All outermost points are detected. At the capillary (blue), they are used to determine the length
scale of the image: The outer capillary diameter b(px) is measured in pixels. Its real dimensions
(in mm) are known. At the capsule, the points (yellow) capture the contour.

5. Sampling points (red) are distributed equidistantly (each 5 pixels) along the contour.

(1) (2) (3) (4) (5)

Figure 1: The five stages of the contour detection using the example of an OTS capsule, as described
in the enumeration in the text.

Deviation from Axisymmetry. In some cases, the capsule in the image is inclined, because of a mal-
adjusted camera or tilted table. Thus it does not seem to be axisymmetric with respect to the vertical
axis. To compensate for this, the image has to be rotated by a certain angle, which is determined by
minimizing the deviation from axisymmetry defined as follows (see Fig. 2):
For each pixel row, the difference between the center (xL + xR)/2 in this row and the x-coordinate

xcm of the center of mass of all contour points (yellow) is squared and added to the error,

δaxi = 1
n

∑
all rows

(
xcm −

xL + xR
2

)2
. (1)

If necessary, each image is rotated by the angle that minimizes this error.
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Figure 2: Left: Principle for calculating the deviation from perfect axisymmetry. Right: Measure of
deviation between the theoretical contour (green line) and the sampling points (red). The
shortest connections of the sampling points to the theory line (red lines) are squared and
summed up.

Measure of Deviation between Theory and Image. All computed contours are nondimensionalised.
Specifically, the length unit is given as the diameter of the capsule’s upper rim. In order to compare
a computed contour to the sampling points, we have to determine a conversion factor a(px) measuring
the diameter in pixels. The contour measured in pixels is then given by(

r(px)

z(px)

)
= a(px)

(
r(s0)
z(s0)

)
. (2)

Now we can define a measure of how much a given theoretical curve r(px), z(px) deviates from the set
of sampling points x

(px)
i . In a geometrical language, the procedure can be described as follows.

• Lay the theoretical contour over the image, aligning its upper rim with the end of the capillary
and the origin of the r-axis with the center of mass of the sampling points.

• Sum up the squares of the distances di between x
(px)
i and the theoretical contour (see Fig. 2) and

calculate the root mean square deviation (RMS deviation) over all n sampling points:

RMS ≡

√√√√ 1
n

n∑
i=1

d2
i . (3)

b

a

Figure 3: Capillary
measures

Scaling Factors. Unfortunately, a(px) cannot be measured directly from the im-
ages because the point of attachment between capillary and capsule frequently
accumulates dirt like patches of the polymerized material. So we decided to de-
termine a(px) indirectly with the Laplace Young fits: We adjust a(px) so that
the Laplace-Young fits have the lowest remaining RMS deviation, i.e. we use
the scaling factor as an additional fit parameter. The mean value

〈
a(px)〉 of all

Laplace-Young fits is then kept for all following fits of the elastic shape equations.
In addition to the conversion factor a(px) between theory length unit and pixels,

we need to know the diameter in real length units, e.g. in millimeters. Since the
outer diameter b(mm) (see Fig. 3) of the capillary is specified by the manufacturer, we can calculate the
inner diameter as

a(mm) =
〈
a(px)/b(px)

〉
· b(mm), (4)

where the average 〈·〉 is taken over all pictures that are used for the Laplace-Young fits.
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Estimating errors coming from the contour detection. Our contour detection has a resolution of ±1
pixel. The worst case would be that the points are shifted systematically. In order to estimate how
strong this worst-case error in the contour detection influences the fit results, we repeat the fits with
misplaced contour points in the image of the deformed capsule. The misplacements are done in four
different modes:

• Shift all contour points by 1 pixel outward.

• Shift all contour points by 1 pixel inward.

• Shift the points on the side inward, and the points at the bottom downward (so that the capsule
appears more slender).

• Shift the points on the side outward, and the points at the bottom upward (so that the capsule
appears more chubby).

The error bars for the points in the V -K2D- and V -ν2D-diagrams (Fig. 4 in the main text) are generated
by taking the maximum deviation from the original results. If the maximum deviation is still smaller
than the grid spacing on the K2D or ν2D axes, we take the grid spacing as the smallest possible
error bar. Hence, they are worst-case-estimates. Typically, the inward/outward modes produce the
largest deviations in V/V0, whereas the slender/chubby modes produce the largest errors in the elastic
constants.
We expect the modes described above to reveal the worst case systematic errors of the method. Since

they describe a possible systematic mistake of the camera, for example caused by lighting effects, we
expect that all images are affected by the same mode. It follows that each point in the diagrams (Fig.
4 in the main text) has to be shifted in the same direction if they are corrected. Thus, the positions
of the points relative to each other are mainly conserved. This ensures that the trends observed in the
diagrams are well resolved; only the overall scale of the plot may vary within the error bars.
Another systematic error comes from the fact that the pseudo-surface deviates from the detected

outermost contour about 1 wrinkle amplitude. Especially for OTS capsules, where the wrinkle amplitude
grows larger than 1 pixel during deflation, it has to be checked that this error is smaller than the observed
drift of the compression modulus.
For given wavelength Λ, the s0-dependent wrinkle amplitude is determined by the consideration that a

circumferential fibre of real lengthW (s0) = 2πr0λφ must be deposited on the perimeter U(s0) = 2πr0λ̄φ
of the pseudo-surface. In the wrinkling region where λ̄φ < λφ, there is an excess lengthW (s0)−U(s0) >
0 which has to lie in the wrinkles. For sinusoidal wrinkles with small amplitude A, the excess length is
given as

W − U =
∫ U

0

1
2

(
d

dx
(A sin(2πx/Λ)

)2
dx (5)

=
∫ U

0

2π2A2

Λ2 cos2(2πx/Λ) dx = π2A2U

Λ2 , (6)

where the integration was performed with the assumption that U is a multiple of a full period of the
cos2 term. This gives the relation

2πr0(λφ − λ̄φ) = π2A22πr0λ̄φ
Λ2 (7)

so that the amplitude reads

A(s0) = Λ
π

√(
λφ(s0)
λ̄φ(s0)

− 1
)
. (8)

Now, instead of measuring the RMS deviation between midsurface (r(s0), z(s0)) and sampling points,
we measure it between the outermost surface (r(s0) +A(s0), z(s0)) and sampling points.
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Surprisingly, the influence on the resulting fit parameters is small compared to the four misplacement
modes discussed above, although the maximum amplitude is 5 pixels. Only the capsule volume is
affected significantly, so that the points in the V -K2D-diagram (Fig. 4 in the main text) would be
shifted to the left and would change the slope of the linear fit a bit. For clarity, this error mode is not
presented in detail in the main text since it is less significant than the modes mentioned before.

2 Results for OTS and HFBII capsules
Step 1: Laplace-Young fits and conversion factors. In both OTS and HFBII measurements, four
images of the undeformed capsule were fitted with the Laplace-Young equation with the interfacial
tension γ, internal pressure p0 and scaling factor a(px) as fit parameters. The averaged surface tensions
and conversion factors are listed in the table below.

γ mm ↔ px theor. length unit ↔ px
OTS 11.2 mN/m 1 mm=̂135 px 1=̂194 px
HFBII 49.8 mN/m 1 mm=̂146 px 1=̂139 px

Whereas the Laplace-Young fits for HFBII match the detected contour nearly perfectly, small sys-
tematic deviations (±1 px) can be observed for the Laplace-Young fits to the initial OTS capsule. These
deviations can be explained by the polymerization process and might affect the results of the following
elastic fits, especially for small deformation.

Step 2: Shape Analysis. In this section, we will discuss a representative set of plots (Fig. 4) of the
fit results for OTS and HFBII capsules.
A visual check whether the fits have been successful can be done by plotting the fitted contour over

the capsule image (upper left figure in each panel of Fig. 4). Evidently, the capsule shapes are re-
produced very well. For the OTS capsule, even the boundary of the wrinkled region predicted by the
theory (horizontal green lines) matches the experimental result; although the position of the horizontal
green lines was not incorporated in the RMS deviation. The fact that they coincide with the exper-
imental observations proves that the elastic model captures the wrinkling behavior accurately. For
the hydrophobin capsule, the wrinkled region cannot be seen in the image, because the wrinkles have
sub-pixel dimension. The visible folds are only secondary structures.
In order to check whether the RMS deviation minimum is found correctly, we present a plot of the

RMS deviation distribution in the (K2D, ν2D)-plane (upper right figure in each panel of Fig. 4). The
plots show that the minimum is nicely located inside the refined area of the parameter space. That
was facilitated by choosing the area compression modulus K2D instead of the surface Young modulus
Y2D on the horizontal axis. The reverse mapping Y2D = 2(1 − ν2D)K2D would stretch the circular
minimum to a long and narrow ellipse, which would be harder to analyze with our rudimentary grid
based minimization method.
Finally, the fit residual along the contour (bottom figure in each panel of Fig. 4) reveals whether there

are systematic deviations between fitted contour and sampling points. In both cases, the systematic
deviations are relatively small, though visible. For the OTS capsule, the largest deviations are at the
right attachment point to the capillary, and other maxima at the point where the wrinkles end (around
the 50th sampling point, see upper left figure). At this point, the capsule even seems to have a small
kink, which cannot be reproduced by the model according to the continuity conditions of the slope
angle. In case of the HFBII capsule, this effect is much smaller since the wrinkle amplitude is smaller.
Consequently, the fit residual shows a less systematic behaviour.

Step 3: Wrinkle analysis. As described in the main text, the wrinkle analysis was only possible for
the OTS capsule since the wrinkles on the HFBII capsule could not be resolved without microscopy.
For OTS, the resulting bending stiffness is EB ≈ (2.5 ± 0.7) · 10−14 Nm. We can use the well known
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Figure 4: Fit result for a deflated OTS (upper panel) and hydrophobin (lower panel) capsule. On the
upper left in each panel, the fitted contour (in green) is plotted over the image; the sampling
points of the RMS deviation are shown in red in the background. The theory predicts the
capsule to wrinkle between the horizontal green lines. On the upper right, the RMS deviation
distribution in the (K2D, ν2D)-plane is plotted. Dark squares correspond to small deviation,
light squares to large deviation. In the refinements, the colors are rescaled to cover the whole
range. A green dot indicates the best result found. At the bottom, the fit residual along the
contour (starting at the capillary, left side) is plotted to reveal possible systematic deviations.
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relation from classical shell theory

EB = Y2DH
2
0

12(1− ν2
3D) ⇒ H0 =

√
12(1− ν2

3D)EB/Y2D (9)

to calculate the membrane thickness H0 from the values for EB , Y2D and ν. This formula is valid
for shells composed of a thin sheet of isotropic material, for which ν2D = ν3D. However, the Poisson
ratio ν2D ≈ 0.6 obtained for OTS capsules indicates that this cannot be the case, since ν3D < 1/2
for stability reasons. Hence the membrane thickness H0 ≈ (0.77± 0.07)µm obtained from (9) should
rather be considered as an effective thickness.
The results for the effective membrane thickness can be confirmed by raster electron microscopy

measurements with another OTS capsule produced according to the same protocol (Fig. 5). During the
preparation for the REM measurements, the membrane was dried and teared in consequence. At some
gaps (numbered 1-4 in Fig. 5), values of 1.4µm, 0.98µm, 0.83µm and 0.86µm were obtained for the
thickness. This agreement of the fitted and measured membrane thickness suggests that our method
works accurately.
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Figure 5: Raster electron microscopy image of a dried and torn OTS membrane. The numbered red
lines indicate thickness measurements.
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