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ABSTRACT
Modern pendant drop tensiometry relies on the numerical solution of the Young–Laplace equation and allows us to determine the surface
tension from a single picture of a pendant drop with high precision. Most of these techniques solve the Young–Laplace equation many times
over to find the material parameters that provide a fit to a supplied image of a real droplet. Here, we introduce a machine learning approach
to solve this problem in a computationally more efficient way. We train a deep neural network to determine the surface tension of a given
droplet shape using a large training set of numerically generated droplet shapes. We show that the deep learning approach is superior to the
current state of the art shape fitting approach in speed and precision, in particular if shapes in the training set reflect the sensitivity of the
droplet shape with respect to surface tension. In order to derive such an optimized training set, we clarify the role of the Worthington number
as a quality indicator in conventional shape fitting and in the machine learning approach. Our approach demonstrates the capabilities of deep
neural networks in the material parameter determination from rheological deformation experiments, in general.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0018814., s

I. INTRODUCTION

Tensiometry is a technique to determine the surface or inter-
facial tension of a fluid interface. Many tensiometry methods are
based on the shape analysis of liquid drops suspended in air or
another liquid. Available tensiometric methods include the drop
weight method1–4 and the oscillating drop method;5,6 the by far
most frequently used tensiometric technique is the pendant drop
method, which is also closely related to the sessile droplet method
as both methods rely on the shape analysis of a gravity-deformed
droplet based on the Young–Laplace equation. In the pendant
drop setup, the droplet typically hangs from the tip of a capillary.
Variants can include, for example, additional spherical particles
attached to the droplet.7 Pendant liquid drops have been investigated
extensively since the 18th century; however, only in the late 20th cen-
tury, numerical solution techniques made it possible to extract the
surface tension from a single picture of a pendant drop with high
precision.

Before the rise of fast and accessible computer technology,
the main way to determine interfacial tension from a pendant

drop experiment has been the use of precomputed tables in which
experimentally accessible dimensionless shape parameters, such as
the ratios of the maximum width DE of the droplet and the droplet
width DS a distance DE from the apex, are listed with the correspond-
ing interfacial tension.8–10

In recent years, numerical solution schemes that determine the
interfacial tension from the whole droplet profile became more pop-
ular and viable solution techniques because of the rapid rise in com-
puter speed.11–16 Several implementations exist, where only a single
image of a pendant drop and some reference length scale have to
be supplied to get a fully automated fit and a surface tension esti-
mate.16–18 At the core of this approach is a numerical shape fitting
scheme that solves the Young–Laplace shape equations of the drop
many times until optimal parameters are found, which provide the
best match of the calculated shape to the supplied image. The pre-
cision of these methods is often limited by the resolution of the
supplied image not allowing for a better fit.16

The shape fitting problem is, thus, a classical inverse prob-
lem of finding a material parameter set that minimizes a suitably
defined distance metric between measured and calculated shape.
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FIG. 1. Visualization of the structure of
the deep neural network employed for
pendant drop tensiometry. The neural
network is trained to solve the inverse
problem to determine the surface tension
(which is contained in the dimensionless
density difference Δρ̃) from a pending
drop shape.

In a Bayesian sense, we maximize the likelihood of the material
parameters, given the measured shape. The forward problem to
calculate a droplet shape, given the surface tension, gravity, pres-
sure, and the diameter of the capillary, can be easily and stably
solved by solving the shape equations, which are a set of ordinary
differential equations based on the Young–Laplace equation. The
corresponding inverse problem of determining the surface tension
and pressure, given an observed shape, is often ill-conditioned if
the shape becomes insensitive to parameter changes. In this sense,
pendant drop tensiometry is a paradigm for many similar inverse
problems in rheology. It has only recently been demonstrated that
machine learning (ML) approaches can be useful to solve such ill-
conditioned inverse problems.19 To our knowledge, an implementa-
tion of a machine learning approach for the pendant drop problem
has never been discussed before and offers a novel way to think about
the general solution of inverse problems in rheology. So far, machine
learning applications to rheological problems are limited to solving
viscoelastic forward problems with the help of neural networks to
replace full finite element calculations.20,21

The way a deep neural network learns correlations between
input data and output data is especially helpful if a supervised learn-
ing scenario can be created. For problems in rheology and physics, in
general, this is often the case, since the forward problem may be suf-
ficiently easy to solve and to compute; the inverse problem, however,
can be exponentially hard to solve. Generating a large training set by
solving the forward problem many times and training a deep neural
network with this dataset to learn the necessary correlations to solve
the inverse problem can lead to results that even outperform sophis-
ticated conventional shape fitting (CSF) approaches. Additionally,
deep neural networks are lightweight and fast once the network
has been trained, which is essential if high-throughput analysis is
required. We want to explore the capabilities of a machine learning
approach to the inverse Young–Laplace problem as a way to com-
bine the precision of a forward numerical solution scheme with the
speed and low hardware demands of a lookup table technique that
is working on the entire shape space of droplets and not just a few
selected shape parameters.

The article is organized as follows: In Sec. II, we first address the
underlying physics of pendant drops and present a derivation of the
shape equations that a pendant drop needs to fulfill. We also classify
all possible pendant drop shapes under pressure and volume control
to find the experimentally relevant shapes and the parameter regimes
where they exist in nature. Numerically solving the forward problem
for the relevant shapes provides the basis for the design and training
of a deep neural network that solves the inverse problem to deter-
mine the surface tension from a pending drop shape, as indicated in
Fig. 1. This machine learning approach is presented in Sec. V. Results
from conventional shape fitting and machine learning tensiometry
are compared in Sec. VI.

II. PHYSICS OF PENDANT DROPS
A. Arc length parameterization

A sensible parameterization of an axisymmetric hanging
droplet shape is the arc length parameterization for which the first
two shape equations can be found by purely geometric arguments,

dr
ds
= cosΨ, (1)

dz
ds
= sinΨ, (2)

where we use cylindrical coordinates (r, z) with the z-axis as the
axis of symmetry and Ψ is the angle of the drop normal with the
z-axis (see Fig. 2). The principal curvatures in this parameteriza-
tion are given by the circumferential curvature κϕ = sinΨ/r and the
meridional curvature κs = dΨ/ds.

The boundary conditions for a drop hanging from a capillary
with diameter a are given by r(s = 0) = 0, Ψ(s = 0) = 0, z(s = 0) = 0,
and r(s = L) = a/2, where L is the total length of the arc. The boundary
conditions at s = 0 describe the apex of the drop, where the radius,
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FIG. 2. Visualization of a liquid drop in the arc length parameterization.

the arc angle, and the height are fixed to zero. Only the last boundary
condition at s = L describes the attachment to the capillary.

B. Young–Laplace equation from local
force balance

We consider a droplet with a density difference Δρ = ρint − ρext
across the interface, attached to the capillary and pulled down by
gravity. The problem can be discussed for the given Laplace pressure
pL at the apex of the drop or the prescribed drop volume V. For the
prescribed drop volume, pL is introduced as a Lagrange multiplier to
fulfill the volume constraint. In both cases, the Young–Laplace equa-
tion follows from a vanishing first variation of the droplet energy,
which is a necessary condition that stationary droplet shapes have to
fulfill.

There are several ways to derive the Young–Laplace equation
based on the concept of energy minimization or, equivalently, local
force balance. Here, we consider the forces along the z-axis. We cut
the drop at height z and consider the z-components of the total
forces on the lower part of the drop. There are four forces act-
ing on every horizontal slice of the drop, the surface tension force
component in the z-direction Fz

γ, the pressure force Fp, the gravita-
tional force Fg caused by the mass hanging below height z, and the
buoyancy force caused by the difference in density FB,

Fz
γ(z) = 2πr(z)γ sinΨ, (3)

Fp(z) = −p(z)πr2
(z), (4)

Fg(z) + FB(z) = −Δm(z)g, (5)

with

Δm(z) = πΔρ∫
z

0
dz′r2

(z′), (6)

the mass difference below height z and the hydrostatic pressure
p(z) = pL − Δρgz, where pL is the pressure at the apex of the drop.
The force balance condition then states at any height z ∈ [0, zcap],

p(z)πr2
(z) = 2πr(z)γ sinΨ −m(z)g. (7)

Taking the derivative d/dz on both sides

d
dz
(r2
(z)p(z)) = 2γ

d
dz
(κϕ(z)r2

(z)) − gρr2
(z)

and using

dκϕ
dz
=

cotΨ(z)
r(z)

(κs − κϕ),

dr
dz
= cot(Ψ)

lead to the Young–Laplace equation

p(z) = pL − Δρgz = γ(κs + κϕ), (8)

where the interfacial tension γ, the apex pressure pL, and the density
difference across the interface Δρ are constant along the interface.
On the contrary, the force balance Fz

γ(z)+ Fg(z)+ FB(z)+ Fp(z) = 0
from (7) is a first integral of the Young–Laplace equation. At the
apex, we have κs = κϕ by axisymmetry. Therefore, the apex Laplace
pressure pL is experimentally observable via the radius of curvature
R0 in the apex, pL = 2γ/R0.

Inserting κs and κϕ as the principal curvatures into (8) leads to
the final shape equation of the pendant drop,

dΨ
ds
=

pL

γ
−
Δρgz
γ
−

sinΨ
r

. (9)

The shape equation (9) has a numerical singularity at r(s = 0) = 0,
which can be circumvented by applying de L’Hôspital’s rule and
using the axisymmetry in the apex, yielding the limit dΨ/ds(s → 0)
→ pL/2γ.

Solutions to the shape equations with z(0) = 0 and the attach-
ment boundary condition r(s = L) = a/2 will have a variable droplet
height zcap = z(s = L) and, thus, also a variable pressure pcap = pL
− Δρgzcap at the capillary. While the apex pressure pL is experimen-
tally observable via the apex curvature and a theoretically convenient
control parameter, the experimental situation is usually such that the
capillary is at a fixed position (i.e., zcap is fixed) and, if working under
pressure control, the capillary pressure pcap is controlled rather than
the apex pressure pL.

C. Non-dimensionalization and control parameters
We choose the length scale a for non-dimensionalization as the

diameter of the capillary leading to the definitions z̃ ≡ z/a, r̃ ≡ r/a,
s̃ ≡ s/a, and κ̃s,ϕ ≡ κs,ϕa. The non-dimensional form of the Young–
Laplace equation (8) is given by

p̃L − Δρ̃z̃ = κ̃s + κ̃ϕ, with (10)
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p̃L ≡
pLa
γ

and Δρ̃ ≡
Δρga2

γ
, (11)

where we introduced the non-dimensional apex pressure p̃L and the
non-dimensional gravitational control parameter Δρ̃.

Note that setting the length scale for non-dimensionalization to
the radius of curvature in the apex of the drop R0 further eliminates
the non-dimensional apex pressure from the system of differential
equations, since pLR0/γ = 2, leading to the often used definition of
the Bond number9,16,22,23

Bo =
ΔρgR2

0

γ
=

4Δρgγ
p2

L
(12)

as a single non-dimensional control parameter. For free-standing
droplets without attachment to a capillary, the Bond number Bo is
the only shape control parameter. As soon as an attachment bound-
ary condition, e.g., r(s = L) = a/2, is applied, a second control param-
eter must be defined, which involves the attachment length scale a.
When using R0 for non-dimensionalization, this additional control
parameter is hidden in the attachment boundary condition itself.
We choose the non-dimensionalization length scale a such that the
attachment boundary condition is parameter-free and, thus, get the
Laplace pressure p̃L in the apex and the dimensionless density differ-
ence Δρ̃ = Δρga2

/γ, which can also be interpreted as a dimensionless
measure for the square of the capillary diameter, as two indepen-
dent non-dimensional shape control parameters. For water droplets
in air with γ = 72 mN/m, a value of Δρ̃ = 1 corresponds to a capillary
diameter of a = 2.7 mm.

Note that we limit our focus to pendant drops, so Δρ̃ is always
positive. When considering setups where the drop rises from a
capillary, Δρ̃ can also be negative.

From fitting the pendant drop shape (either conventionally or
by machine learning), we will obtain a guess for the two dimen-
sionless parameters p̃L and Δρ̃. If pressure is not measured in the
experiment, the surface tension has to be extracted from the param-
eter Δρ̃ for the known density contrast Δρ and capillary diameter
a. In this sense, Δρ̃ is the more important parameter to determine.
From the second parameter p̃L, we can then obtain a measurement
of the actual apex pressure.

D. Droplet shapes classified by bulges and necks
We will discuss droplet shapes either under apex pressure con-

trol (parameter p̃L) or under volume control (with pL as a Lagrange
multiplier). Even these two non-dimensional shape control parame-
ters are not sufficient to fully characterize the pendant drop’s shape.
The Young–Laplace equation with height-dependent hydrostatic
pressure (8) has no closed analytical solutions; solutions for pen-
dant drops are distorted unduloids.24 An unduloid is an axially
symmetric constant mean curvature surface with a curvature ratio
|κs/κϕ| < 1. This curvature condition is also fulfilled for the droplet
profiles, but the mean curvature is decreasing for z > 0 because
of the decreasing hydrostatic pressure p(z). Therefore, similarly to
an unduloid, the droplet profile radial distance function r̃(s̃) con-
tains several maxima (bulges) and minima (necks) for larger p̃L such
that the attachment boundary condition may be fulfilled at a num-
ber of different total dimensionless arc lengths L̃ along the same
solution of the shape equations leading to different shapes for the

same choices of p̃L and Δρ̃. This gives rise to several possible classes
of solution shapes, which can be characterized by their number of
bulges and necks and the first three of which are shown in Fig. 3.
The number of bulges and necks is counted by another discrete
parameter

Ω ≡ 1 + #necks + #bulges, (13)

which indicates the class of a solution.
The first class of solutions, Ω = 1, is a simple convex shape with

r̃(s̃) < 1/2 for all 0 ≤ s̃ < L̃; this class has a monotonically increasing
radius with r̃(s̃ = 0) = 0 in the apex and r̃(L̃) = 1/2 at the capillary.

The second class of solutions, Ω = 2, are convex shapes for
which there exists exactly one bulge, where we define a bulge as a
point where r̃(s̃) has a local maximum [such that sinΨ(s̃) = 1; see
(1)]. The Ω = 2 shapes are convex and always bulge out, i.e., the bulge
is wider than the capillary. The shape class Ω = 2 will be the most
important class for shapes under volume control.

The third solution class, Ω = 3, is the first class of non-convex
solutions. These solutions have exactly one bulge and one neck,
where a neck is defined as a point where r̃(s̃) has a local minimum
[such that also sinΨ(s̃) = 1; see (1)]. The Ω = 3 solutions have a neck
at the capillary and always cross the capillary boundary condition
from left to right, i.e., dr̃(s̃)/ds̃∣s̃=L̃ ≥ 0.

Continuing this scheme, there also exist higher classes Ω > 3
of shapes, in principle, which are characterized by their increasing
number of bulges and necks. While all shape classes up to Ω = 3
can actually be observed in experiments, higher classes Ω > 3 are
not observed because they are energetically unfavorable and unsta-
ble both under volume and pressure control, as we will show in
Sec. II E.

E. Shape bifurcations and shape diagram
for pendant drops

For the tensiometry analysis, we first discuss where the differ-
ent shape classes can be found in the p̃L–Δρ̃ parameter plane under
pressure control and in the Δρ̃–Ṽ parameter plane under volume
control, which leads to the shape diagrams (Figs. 4 and 5). This will

FIG. 3. Comparison of valid solution shapes for solution classes Ω ∈ {1, 2, 3} for
parameters: p̃L = 2 and Δρ̃ = 0.3. The gray dashed lines indicate the capillary.
Higher class solutions always contain the shapes of all lower class solutions, since
all classes are constructed from the same general solution shape that is cut off at
different heights.
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be important for identifying the experimentally relevant parame-
ter regions and to rationalize parameter sensitivity of shapes and
the selection of the relevant shapes for the training of the neural
network.

We will first discuss all possible shapes under apex pressure
control. This means that we integrate the shape equations (1), (2),
and (9) in dimensionless form starting at the apex with the given
p̃L and Δρ̃ and ignoring the attachment boundary condition at the
capillary. At every intersection with the capillary, where r̃(s̃) = 1/2,
the remaining attachment boundary condition can be fulfilled with
a different arc length. This means for a solution that intersects
n-times with the capillary, all shape classes Ω = 1, . . ., n can occur
in the shape diagram for this choice of parameters.

For small pressure, there is only one intersection and only
shapes with Ω = 1 exist. For increasing apex pressure pL, the cur-
vature of droplet shapes increases and higher order shapes Ω > 1
with more bulges and necks become possible in a sequence of
bifurcations, which are shown in the bifurcation diagram (Fig. 4).

We follow the sequence of bifurcations for fixedΔρ̃ and increas-
ing apex pressure pL. In a first simple fold bifurcation, a bulge and
neck pair is formed via a saddle point configuration of the droplet. At
this bifurcation, an Ω = n shape transforms into an Ω = n + 2 shape.
The first bulge/neck pair is formed at the left red bifurcation line in
the shape diagram (Fig. 4) (transition Ω = 1→ 3); higher order lines

exist but are not shown. We find numerically that the red dotted
bifurcation lines are parabolas with Δρ̃ ≃ 0.15 p̃2

L and Δρ̃ ≃ 0.054 p̃2
L.

There is a critical value Δρ̃c1 ≃ 3.37, where the first saddle
forms exactly at the capillary radius r̃ = 1/2. For Δρ̃ > 3.37, the
first saddle forms at a radius smaller than the capillary radius [at
r̃ < 1/2, see Fig. 4, shape (a)]; for Δρ̃ < 3.37, it would form above
the capillary opening and “outside” the capillary [see Fig. 4, shape
(b)], i.e., the saddle would form in the region r̃(s) > 1/2 and for
s > L, it would form above the only possible attachment point to
the capillary, where r̃(L) = 1/2. Therefore, the bifurcation at the
red line is unobservable in an actual experiment for Δρ̃ < 3.37
(red dotted line). Likewise, there is a critical value Δρ̃c2 ≃ 2.07 for
the formation of the second saddle, and for Δρ̃ > 2.07, the second
saddle forms inside the capillary, while it forms above and outside
for Δρ̃ < 2.07 (red dotted line). These critical values also exist for the
higher order lines, in principle. The critical values Δρ̃c1 ≃ 3.37 and
Δρ̃c2 ≃ 2.07 define critical points on the respective bifurcation lines.
Because a saddle configuration has vanishing curvature κs = 0, a sad-
dle configuration right at the capillary has a capillary Laplace pres-
sure p̃cap = κ̃ϕ = 2, which is thus the capillary pressure for all critical
points.

For capillary widths smaller than the critical values (Δρ̃ < 3.37
for the first bulge/neck pair or Δρ̃ < 2.07 for the second), bifurca-
tions occur only after a bulge/neck pair has formed “outside” the

FIG. 4. Shape diagram in the p̃L–Δρ̃ parameter plane for apex pressure control. Shapes corresponding to black points in parameter space are shown on the left and top. At
the yellow lines, two additional droplet shapes Ω = n + 1, n + 2 appear, and at the blue lines, two droplet shapes Ω = n, n + 1 annihilate in bifurcations (n = 1, 3, . . .). Blue and
yellow lines terminate in a critical point at Δρ̃ = 3.37 for n = 1 and Δρ̃ = 2.07 for n = 3. At the red lines, shapes develop saddle points; the lower dashed part of the red line is
not observable as the saddle develops in continuation of the shape to the region above the capillary opening and outside the capillary. At the green line, the maximal volume
is reached for increasing pressure. Droplets detach at this line, either in shape Ω = 1 for Δρ̃ > 5.02 or in shape Ω = 3 for Δρ̃ < 5.02. Example shapes (a)–(e) illustrating the
bifurcations are shown for Δρ̃ = 4 [green dashed line, shape (a)], Δρ̃ = 2.2 [yellow dashed line, shapes (b)–(e)], and Δρ̃ = 0.5 [blue dashed line, shape (f)].

J. Chem. Phys. 153, 094102 (2020); doi: 10.1063/5.0018814 153, 094102-5

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 5. Shape diagram in the Δρ̃–Ṽ parameter plane for volume control. At small
volumes, only shape Ω = 1 is possible. Almost up to the detachment volume, both
shapes Ω = 2, 3 are possible. Where both shapes (or even higher classes) are
possible, the bulged shape Ω = 2 is the global energy minimum. Only in a small
region close to the maximal volume, the necked shape Ω = 3 is the global energy
minimum. The green upper line marks the maximal volume, where the droplet
detaches. For Δρ̃ > 5.02, it detaches in shape Ω = 1, and for Δρ̃ < 5.02, it
detaches in the necked shape Ω = 3. According to the approximative Tate’s law,
detachment happens at Ṽ = π/Δρ̃ (red dashed line).

capillary (at r̃ > 1/2). Then, the bulge and neck “move inwards”
toward the symmetry axis upon increasing the pressure further, and
droplet shapes bifurcate if a neck moves inwards and touches the
capillary radius [i.e., the neck is at r̃ = 1/2, see shape (c) in Fig. 4].
Coming into this bifurcation with the highest possible shape Ω = n
(n = 1, 3, . . . odd), a pair Ω = n + 1, n + 2 of additional shapes become
possible in a simple fold bifurcation [at the yellow bifurcation lines
in the shape diagram (Fig. 4), illustrated for n = 1 with shape (c)].
Right at these bifurcation lines, both shapes Ω = n + 1, n + 2 are
identical, and the droplet has a vertical tangent at the capillary.

Likewise, if a bulge moves inwards and touches the capillary, a
pair Ω = n, n + 1 of shapes annihilates again in a simple fold bifur-
cation [at the blue bifurcation lines in the shape diagram (Fig. 4),
illustrated for n = 1 with shape (d)]. Beyond the blue bifurcation
lines, Ω = n + 2 is the lowest possible order of shapes. Right at these
bifurcation lines, both shapes Ω = n, n + 1 are identical and also have
a vertical tangent at the capillary. As a result, in the magenta and
green shaded areas between the yellow and blue bifurcation lines,
classes Ω = 1, 2, 3 are possible; in the green and gray shaded areas,
classes Ω = 3, 4, 5 are possible; and so on [see shape (f) in Fig. 4].

At the first blue bifurcation line, where shapes Ω = 1, 2 anni-
hilate, these shapes are approximately half-spherical [see shape (d)
in Fig. 4]. They are exactly half-spherical for Δρ̃ = 0 with radius
R̃0 = 2/p̃L = 1/2 and volume Ṽ = π/12. Along the blue bifurca-
tion line, the maximal dimensionless Laplace pressure increases to
p̃L > 4 for Δρ̃ > 0 because the shape elongates and the apex acquires
a higher curvature.

Both at the yellow and blue bifurcation lines [for example, for
shapes (c) and (d) in Fig. 4], the force equilibrium (7) holds at
z = zcap with r(zcap) = a/2 and sinψ = 1 (vertical tangent), resulting
in the exact bifurcation condition

Δρ̃
Ṽ
π
= 1 −

p̃cap

4
, (14)

which holds along the entire boundary of the magenta, green, and
gray shaded areas in the shape diagram (Fig. 4).

The birth of bulge/neck pairs outside the capillary radius (at the
red dashed lines), and their subsequent inward motion with increas-
ing pressure with first the neck crossing the capillary radius (at the
yellow bifurcation lines) and then the bulge moving through the cap-
illary radius (at the blue bifurcation lines) explains the structure of
the pressure shape diagram (Fig. 4) for Δρ̃ < 3.37, i.e., for sufficiently
narrow capillaries. Here, we have several possible shape sequences
Ω = 1 → 1, 2, 3 → . . . [see shapes (b)–(e) or shape (f) in Fig. 4].
For Δρ̃ > 3.37 or wide capillaries, the birth of the first bulge/neck
pair inside the capillary radius [at the solid red line, see shape (a) in
Fig. 4] with Ω = 1→ 3 is the only bifurcation event.

We can obtain a corresponding volume shape diagram in
the Δρ̃–Ṽ parameter plane, which is shown in Fig. 5. Again, for
Δρ̃ < 3.37, there are several possible shape sequences Ω = 1 → 2,
3 → . . ., whereas for Δρ̃ > 3.37, there is only one bifurcation
Ω = 1→ 3 possible.

In the shaded areas in the shape diagrams between the yel-
low and blue bifurcation lines, several shape classes Ω are possible.
Which shape class is actually assumed because it is stable and ener-
getically favorable and which class is only metastable depend on the
dimensionless energy (measured in units of aγ)

F̃ = ∫
L̃

0
ds̃(2πr̃(s̃) + πΔρ̃z̃(s̃)z̃′(s̃)r̃2

(s̃)) (15)

of the shape for volume control or the enthalpy

G̃ = F̃ − p̃LṼ = F̃ − p̃Lπ∫
L̃

0
ds̃z̃′(s̃)r̃2

(s̃) (16)

for apex pressure control. The first term in F̃ is the surface energy,
and the second term is the gravitational energy [measured with
respect to the apex z̃(0) = 0]. At fixed volume, F̃ is minimized in
a stationary state, while at fixed apex pressure p̃L, the enthalpy G̃
is extremized, resulting in p̃L = dF̃/dṼ . If several shape classes are
possible, the shape with the minimal energy F̃ is stable for volume
control, while the shape with minimal enthalpy G̃ is stable for apex
pressure control.

A shape must have dp̃L/dṼ > 0 to be stable under apex pres-
sure control; otherwise, it could increase volume without limit at a
given maintained pressure. This implies a convex energy F̃(Ṽ) or
a concave enthalpy G̃(p̃L) as a necessary stability condition under
pressure control. Stability under volume control can be deduced
from the properties of the p̃L(Ṽ)-relation using the criteria derived
by Maddocks.25 Thus, it is necessary to know the G̃(p̃L)-, F̃(Ṽ)-, and
p̃L(Ṽ)-relations to decide on the stability of shapes.

Therefore, we follow the evolution of all shapes in terms of
apex pressure p̃L, droplet volume Ṽ, and droplet energy F̃ as well as
enthalpy G̃ = F̃ − p̃LṼ through all bifurcations in Fig. 6 for the four
values Δρ̃ = 0.5, 2.2, 4.0, and 10.0 [also indicated in the shape dia-
gram (Fig. 4)]. The bifurcation points, where shapes Ω = 1, 2 vanish
and where additional shapes Ω = 2, 3 appear, are marked with black
dots, and the shapes with maximal volume are marked with green
diamonds.

For Δρ̃ = 4.0, 10.0, i.e., wide capillaries Δρ̃ > 3.37, there is only
a single bifurcation Ω = 1 → 3 of the shape upon increasing the
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pressure, namely, when a bulge/neck pair is created [marked with
a red dot in Fig. 6 corresponding to the red line in the shape dia-
gram (Fig. 4)]. Figure 6 shows that the p̃L(Ṽ)-curve is monotonously
increasing up to the maximal volume. Therefore, shapes Ω = 1 and
Ω = 3 are stable under pressure and volume control up to the shape
of maximal volume. The maximal volume shape is attained in a
shape Ω = 3 for Δρ̃ = 4.0, but in a shape Ω = 1 for Δρ̃ = 10.0.

For Δρ̃ = 2.2, i.e., in the regime 2.07 < Δρ̃ < 3.37 of narrower
capillaries, there are two observable bifurcations upon increasing the
pressure. Shapes Ω = 2, 3 appear when a neck appears at the cap-
illary (yellow bifurcation line in Fig. 4), and shapes Ω = 1, 2 meet
and vanish when a bulge appears at the capillary (blue bifurcation
line in Fig. 4). Both bifurcations are marked by black dots in Fig. 6.
The p̃L(Ṽ)-curve is monotonously increasing for shape Ω = 1 up
to the bifurcation, where shapes Ω = 1, 2 vanish. In addition, there
is an increasing p̃L(Ṽ)-curve for shape Ω = 3 up to the shape with
maximal volume (green diamond).

For small Δρ̃ < 2.07, even five or more shapes can coexist
in certain parameter regimes. For Δρ̃ = 0.5, there is a sequence
Ω = 1 → 3 → 1, 2, 3 → 3, 4, 5 → 1, 2, 3, 4, 5 → 3, 4, 5 → 5 via six

bifurcations. The p̃L(Ṽ)-curve is monotonously increasing for shape
Ω = 1 up to the bifurcation, where shapes Ω = 1, 2 vanish. For all
higher shapes, the p̃L(Ṽ)-curves are almost everywhere decreasing,
except for very small pieces around the maximal volumes of these
shapes.

We conclude that Ω = 1 is the only shape that always has an
increasing p̃L(Ṽ)-relation and is generally stable under pressure and
volume control. Under pressure control, shape Ω = 1 always has the
lowest enthalpy G and is the energetically preferred state where it
exists [see Fig. 6(b)]. Because the p̃L(Ṽ)-curves are S-shaped, we can
deduce from the theorems derived by Maddocks25 that shape Ω = 2
is unstable under pressure control but stable under volume control.
Under volume control, shape Ω = 2 always has the lowest energy
and is the energetically preferred state where it exists [see Fig. 6(c)].
Shape Ω = 3 is stable under pressure and volume control in a small
regime from the bifurcation 1 → 1, 2, 3 where it appears together
with shape Ω = 2 up to the maximal volume (green diamonds in
Fig. 6); in this regime, it has an increasing p̃L(Ṽ)-relation and is
the energetically preferred state under volume control. Beyond the
shape of maximal volume, shape Ω = 3 becomes unstable under

FIG. 6. (a) Volume–pressure relationship, (b) enthalpy as a function of pressure, and (c) energy as a function of volume for four shapes with Δρ̃ = 0.5 (blue), Δρ̃ = 2.2
(yellow), Δρ̃ = 4.0 (green), and Δρ̃ = 10.0 (red). We marked where the bifurcations Ω = 1→ 1, 2, 3 (yellow line in Fig. 4) and Ω = 1, 2, 3→ 3 (blue line in Fig. 4) occur and
the shapes of maximal volume with green diamonds.
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pressure control but remains metastable under volume control.
Shapes Ω ≥ 3 are, however, always energetically unfavorable as
higher order shapes have higher energy and enthalpy, as can be seen
in Figs. 6(b) and 6(c). Under volume control, shapes Ω = 1, 2, 3
are stable up to the maximal volume. All higher order shapes Ω ≥ 3
beyond the maximal volume are energetically unfavorable, as shown
in Figs. 6(b) and 6(c).

Experimentally, the standard situation is volume control. For
this situation, the sequence Ω = 1→ 2→ 3 is the sequence of energet-
ically preferred states with shape Ω = 2 being the global energy min-
imum in a large volume range (everywhere, where it exists). There-
fore, we will focus on the shape classes Ω = 2, 3 in the tensiometry
part of this paper (starting with Sec. III).

F. Droplets detach at the maximal droplet volume
The pressure and volume shape diagrams are limited by

the maximally possible droplet volume before detachment. From
Figs. 6(a) and 6(c), it is apparent that, regardless of how complicated
the bifurcation sequence might be, there always exists a maximal vol-
ume Ṽmax that a pendant drop can accommodate for all values of Δρ̃
(green diamonds in Fig. 6). This maximal volume marks the end of
the existence of energetically stable droplet shapes in Figs. 6(a) and
6(c). This maximal volume is also essential for the stability under
gravity. If the droplet is loaded with more than the maximal volume,
no stationary state can exist, and the droplet has to start moving
downwards by gravity. This leads to gravitational detachment of the
droplet during which it dynamically breaks up into a stable pendant
drop of lower volume and a satellite droplet,4,26 which is the basis
of the drop weight method. We only consider stationary droplet
shapes and, thus, have only access to the maximal stationary droplet
volume before detachment, as it has also been used for tensiometry
in Ref. 27.

We calculated the shapes of maximal volume numerically and
marked them by a green line in the shape diagram in the p̃L–Δρ̃ plane
in Fig. 4. This green line intersects the red line where the bifurca-
tion Ω = 1 → 3 occurs via the formation of a bulge/neck pair. This
intersection happens at a value of Δρ̃ ≃ 5.02. Therefore, the maximal
volume is attained in a shape Ω = 3 for narrow capillaries Δρ̃ < 5.02
and in a shape Ω = 1 for wider capillaries Δρ̃ > 5.02.

For small Δρ̃ ≲ 1, the detachment (green line) happens almost
at the same volume as the bifurcation where shapes Ω = 2, 3
appear (yellow line), as can be seen in Figs. 4 and 6. In this regime,
detachment happens with an almost vertical tangent at the capil-
lary. Therefore, the bifurcation condition (14) also gives an excellent
description of the detachment volume in this regime. The similar-
ity to the well-known Tate law is obvious: if we can approximate
p̃cap
≪ 4, we recover Tate’s law1

Ṽ ≈
π
Δρ̃

(17)

for gravitational detachment. In the shape diagram (Fig. 5) in the
Δρ̃–Ṽ parameter plane, Tate’s law is shown as the red dashed line,
and the exact numerical detachment condition is the green line.
We clearly see that Tate’s law overestimates the detachment volume
leading to the known underestimation of the surface tension by the
drop weight method.2,3 We also observe in Fig. 5 that for narrow
capillaries Δρ̃ < 5.02, the droplets detach in a necked shape Ω =

3, while they detach in a simple shape Ω = 1 for wider capillaries
Δρ̃ > 5.02.

III. NUMERICAL APPROACH
In the following, we study two tensiometry approaches to

extract the two control parameters p̃L and Δρ̃ from an experimen-
tal image of a droplet shape, conventional shape fitting (CSF) as
compared to a novel machine learning (ML) approach, where we
train a deep neural network to determine the control parameters. To
test both methods, we numerically generate droplet shapes with the
known parameters p̃L and Δρ̃ (the “forward problem”) and then re-
determine these parameters by shape fitting or by the neural network
(the “inverse problem”). From now on, we only consider shapes of
classes 2 and 3, since they are predominantly used in tensiometry
and provide high fitting accuracy, in general.16 We start by only
considering class 2 shapes and discuss the generalized approach to
class 2 and 3 shapes afterward. This means we consider shapes in the
shape diagram (Fig. 4), which lie in the magenta and green “trian-
gles” enclosed by the yellow and blue bifurcation lines, where shape
classes 2 can exist.

To numerically generate shapes for the given parameters p̃L and
Δρ̃, we make use of a discretization of the shape equations (1), (2),
and (9) to solve them iteratively in space. For this, a fourth order
Runge–Kutta algorithm is used because it provides a good mix of
accuracy and speed. We use a modified version of OpenCapsule18,28

for the numerical fitting and forward solution of the Young–Laplace
problem. The output data from the numerical forward solution are
evenly spaced in the arc length s̃ of the shape.

IV. SOLVING THE INVERSE PROBLEM
BY CONVENTIONAL SHAPE FITTING

The goal of shape fitting is to numerically generate a shape that
has the least square distance to a set of sample points along the
contour of an input shape. The numerically generated optimal fit
will then make the parameters p̃L and Δρ̃ of the input shape avail-
able. In CSF, we start with an initial guess for the parameters of the
shape {p̃initial

L ,Δρ̃initial
L }. Second, we determine the Jacobian matrix

for the supplied parameters by giving every parameter a notch to
either side, comparing the resulting errors and numerically calcu-
lating the derivatives this way. Finally, the parameters get updated
with an update vector that points along the steepest descent in error-
parameter space. Generally, this is the way most existing numerical
implementations perform the fitting. After some iterations, a shape
emerges that best fits the points from the contour of the input shape
for a pair of best fitting material parameters p̃L and Δρ̃.

V. MACHINE LEARNING APPROACH
FOR THE INVERSE PROBLEM

A ML approach provides a way to solve the computationally
taxing task of numerically fitting the shape in a more efficient way by
training the neural network weights and biases with many training
samples in a supervised learning approach. The network fits corre-
lations between the input data and the output labels, i.e., the two
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parameters p̃L and Δρ̃. This correlation can then be used to solve
for the input never seen before. The main difference to CSF is that
we do not directly adjust the parameters p̃L and Δρ̃ for each new
shape separately, but we rather adjust the weights and biases of the
neural network once by training with many shapes and can then
obtain parameters p̃L and Δρ̃ almost instantly for any new shape
without further adjustment. ML has recently been used to solve
many complex problems and is growing in popularity among sci-
entists; there is, to the best of our knowledge, no research showing
the capabilities of a ML approach for parameter extraction from
shape data of pendant drops. As a ML framework, we use Keras29

and Tensorflow.30

A. Architecture of the network
The architecture of the neural net for pendant drop tensiometry

is shown in Fig. 1. The input to the network is essentially the same
as the input to the numerical fitting scheme—a discrete set of points
along the contour of a drop’s shape. For the ML approach, we fix the
number of sample points along the shape to a specific sample count
d because the input shape of a Dense-layer has to be of fixed size.
The resulting d × 2 input matrix, consisting of the r̃- and z̃-values of
the d sample points along the shape, then gets flattened into a 2d × 1
input vector. If the input data contain less than d samples, the input
vector gets zero padded, and if the input data contain more than d
samples, the input is truncated while keeping the apex coordinates.
We use a sample count of d = 226 since an arc length step of 10−2

between shape point samples gives shapes of class 2 that generally
have less shape sample points than 226. Increasing the sample count
d increases the complexity of the network and will slow the learning
process.

The input vector is processed by a fully connected deep neural
network with Dense neurons and Leaky-RELU activation functions.
The Leaky-RELU activation function aims to fix unwanted behavior

occurring with regular RELU activated neurons by replacing the flat
negative region of the RELU function with a linear function that has
a finite slope m≪ 1.31

The first layer has an input dimension of 2d and outputs 512
continuous parameters, the second layer takes the 512 outputs from
the first layer and processes them into 1024 outputs, which the third
layer processes into 256 outputs. The fourth layer has 16 outputs,
and finally, the fifth layer has 2 output parameters, which are the
fitting parameters p̃L and Δρ̃. The layer dimensions emerged from
testing and show no overfitting with the training data we use.

B. Training of the network
The drop shapes for training are generated using the numerical

forward solution to the Young–Laplace problem with OpenCapsule.
First, we select training shapes randomly and uniformly from the
relevant shaded “triangle” enclosed by the yellow and blue bifurca-
tion lines in the shape diagram (Fig. 4) in the p̃L–Δρ̃ plane, where
shape classes 2 and 3 can exist. This choice of training set aims to
obtain a neural network with uniformly good performance in this
whole parameter range. An alternative choice of training set will be
discussed below.

As a performance metric, we pick the mean-square error
(MSE) between the output guess and the corresponding labels
of the input data. An alternative error metric is the mean abso-
lute error (MAE), which does not penalize rare high amplitude
errors as much as MSE does. We train the network with the
MSE 1

2N ∑
N
n=1[(p̃L,in, n − p̃L,out, n)

2 + (Δρ̃in, n − Δρ̃out, n)
2
] of N train-

ing shapes as an objective function. The network is trained in batches
of N = 100 by backpropagation using the Adadelta32 gradient
descent method with an adaptive learning rate.

During the training period, the network was trained for ∼90 000
epochs, where one epoch consists of 0.5 × 106 drop shapes and
corresponding parameters p̃L,in n and Δρ̃in n. On standard hardware

FIG. 7. Evolution of the MSE objective function (log-scale) with training time.
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(i3-CPU with a GTX 970 GPU), this training took ∼3 weeks (see
Fig. 7). The objective function is evaluated with an independent set
of 100 000 shapes between training epochs. The final test set for the
error comparison (see Sec. VI) comprises another 0.9 × 106 shapes.

The network initially trains fairly quick, and as the preci-
sion increases, the learning rate decreases. In total, we see a steady
sub-exponential learning process, which we stop at a precision of
MSE = 2 ⋅ 10−7 because the precision gain per training time dimin-
ishes.

VI. RESULTS AND COMPARISON
The precision of the inverse solution by CSF depends on how

the accuracy is set up in the numerics, and more precision will take
more time to compute. The inverse fitting of the generated train-
ing data with the CSF algorithm takes between 0.25 s/shape and
0.75 s/shape to compute on an i7-CPU with 4.1 GHz with the chosen
settings of a target parameter step of 10−2, i.e., an absolute resid-
ual change of 10−2 in p̃L and Δρ̃ during minimization of the fitting
error.

Once it is trained, the neural network takes mere seconds to
analyze all of the training data images, only taking ∼30 ms/shape on
a single GTX 970 GPU. Further precision can be gained by extending
the learning process, changing the set of training shapes, or chang-
ing the network’s architecture. We will explore the possibility of
adapting the training shape set below.

For the comparison of the fitting accuracy, both CSF and
ML approaches are directly fed with “synthetic” numerical droplet
shapes from the output of the forward solution. This creates a “best
case” scenario for the inverse solution. Additionally, to calculate
the performance of the CSF implementation, we only use those fits
for which the numerical inverse solution converged, including the
shapes for which the inverse algorithm failed will worsen the mean
error for the numerical fitting. The ML approach is more robust and
has no problems with failed inverse solutions: it generates a parame-
ter guess for any input shape. We now want to compare the precision
for both of these approaches.

First, we compare the actual parameters p̃L and Δρ̃ of a given
input shape with the guesses from the network and the results from
the CSF by their absolute errors in Fig. 8. We find that the absolute
errors of the ML approach are roughly one order of magnitude lower
for both parameters on average, as intended by selecting training
shapes uniformly from the relevant parameter region. The relevant
parameter for the determination of interfacial tension γ is Δρ̃, since
the dimensional parameters in its definition (11) are commonly
accessible in experiment. There are, however, phenomena in the
errors from the physics of pendant droplet shapes via the parame-
ter sensitivity or insensitivity of these shapes. The inverse problem of
determining the two fitting parameters can become ill-conditioned if
the shape becomes insensitive to changes in one of the parameters, or
it can become very well-conditioned if shapes are very sensitive. We
find that CSF performs exceptionally well in the well-conditioned
case, whereas ML outperforms CSF in all other cases.

We observe in Fig. 8 that the determination of the dimension-
less pressure p̃L is generally unproblematic and has a much smaller
absolute error. The reason is that the characteristic shape features,
such as the apex curvature radius, are uniquely determined by p̃L via
the Young–Laplace equation with good sensitivity. CSF is produc-
ing smaller errors for low p̃L corresponding to larger apex curvature
radii, whereas the ML approach has uniform errors, which is due to
the uniform selection of training shapes from the first shaded “tri-
angle” enclosed by the yellow and blue bifurcation lines in the shape
diagram (Fig. 4). As a result, there are relatively few shapes in the tip
of the triangle corresponding to small p̃L. ML can reach the perfor-
mance of CSF by increasing the training set density in this region as
we will show below.

A. The Worthington number as quality indicator
Figure 8 also shows that the absolute errors in the parameter

Δρ̃ are generally larger because the shape is less sensitive to changes
in Δρ̃. A uniform absolute error in Δρ̃ will result in a relative error
scaling as MREΔρ̃ ∼ Δρ̃−1. Deviations from this scaling point to
particularly sensitive or insensitive shapes. In Ref. 16, it has been

FIG. 8. Comparison of the absolute errors for parameters p̃L and Δρ̃ between conventional shape fitting and machine learning for class 2 shapes. The dashed lines indicate
the total mean absolute error (MAE) of all fits/guesses and labels. The relevant parameter for the determination of the interfacial tension γ is Δρ̃.
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proposed on a purely phenomenological basis that the relative error
in the fitting accuracy of γ, which is proportional to the relative error
in Δρ̃, is best described by a parameter Wo (Worthington number),
which is proportional to Δρ̃,

Wo ≡ Δρ̃
Ṽ
π
=
ΔρgV
πγa

. (18)

This parameter measures the distance to the detachment volume
according to Tate’s law (17) such that Wo < 1 is bounded and Wo
≃ 1 corresponds to a droplet close to detachment, while Wo ≪ 1
corresponds to droplets far from detachment. For a uniform abso-
lute error inΔρ̃, we thus expect a scaling MREΔρ̃ ∼Wo−1. The scaling
of the relative error MREΔρ̃ for CSF and ML approach is shown in
Fig. 9. We find a power law scaling MREΔρ̃ = aWoν, and a fit in
the linear region of the log–log plot in Fig. 9 gives the relative error
scaling exponent and the scaling factor for CSF and ML,

νCSF = −1.00 , νML = −0.95,
aCSF = −0.72 , aML = −1.71,

(19)

i.e., the exponent ν is indeed close to unity.
There is, however, the region of high Wo numbers Wo > 0.1

where CSF performs significantly better. Focusing on this region,
Berry et al. found an exponent νCSF ≈ −2 indicating exceptionally
small relative errors. Based on the shape diagram (Fig. 5), we can
actually rationalize this finding and provide a theoretical basis for
the use of the Worthington number Wo as a quality indicator in
CSF. Close to a bifurcation, such as the bifurcation 1 → 1, 2, 3,
where shapes Ω = 2, 3 appear (at the yellow lines), shapes are most
susceptible for parameter changes. This is evidenced, for example,
by the vertical tangent in the Ṽ(p̃L) relation in Fig. 6 at this bifur-
cation. Similarly, there is a vertical tangent in the the Ṽ(Δρ̃) rela-
tion. Therefore, we expect exceptional shape sensitivity and, thus, a
very well-conditioned shape fitting problem in the vicinity of this
bifurcation. We already pointed out that this bifurcation happens
almost at the same volume as detachment for Δρ̃ ≲ 1 [see the shape

FIG. 9. Scaling of the total mean relative error (MRE) of Δρ̃ with the Worthington
number (18).

diagram (Fig. 5)]. Therefore, a parameter Wo ≲ 1 corresponds to
a regime close to the detachment volume and, thus, close to the
bifurcation where shapes Ω = 2, 3 appear and, therefore, to the
regime of a very well-conditioned shape fitting problem (at least
for Δρ̃ ≲ 1). Obviously, CSF works very well in exactly such well-
conditioned parameter regions. This rationalizes the use of the Wor-
thington number as a quality indicator in CSF. Interestingly, the
critical points at the tip of the shaded “triangles” enclosed by the yel-
low and blue bifurcation lines in the shape diagram (Fig. 5) always
lie at Wo = 1/2 according to the bifurcation condition (14) and
p̃cap = 2. Therefore, all shapes above the blue dashed line containing
the critical points in the shape diagram (Fig. 5) in the Δρ̃–Ṽ param-
eter plane have high Wo numbers, Wo ≥ 1/2. CSF should work very
well and give the best results in this region of the shape diagram.
Figure 8 shows that only in this region, CSF can outperform the ML
approach.

ML gives a uniform absolute error over the full range of Wo
numbers, resulting in an exponent νML ≈ −1. Therefore, the Wor-
thington number Wo is less indicative for the performance of the ML
approach, at least with the present set of training shapes uniformly
distributed in the p̃L–Δρ̃ plane. For smaller Wo numbers, ML gives
on average a full order of magnitude more accurate estimates than
CSF, while being four orders of magnitude faster.

B. Adapting the training of the network
Finally, we want to try to improve the ML approach such that it

can handle all class 2 and 3 shapes while outperforming CSF for all
Wo numbers. We can improve the performance of the ML approach
selectively in the regions of high Wo numbers by adapting our train-
ing set such that it contains more shapes in this region. Sampling the
training set uniformly from the shaded “triangle” enclosed by the
yellow and blue bifurcation lines in the shape diagram (Fig. 4) in the
p̃L–Δρ̃ plane leads to a training set biased toward small Wo numbers.
Therefore, we adapt our training set such that it samples uniformly
in the p̃L–Wo plane depicted in Fig. 10. In the new training set, we
include all class 3 shapes up to detachment (green sampling region
in Fig. 10) as well as all class 2 shapes (blue sampling region in
Fig. 10).

Generating a set of shapes sampled uniformly in the p̃L–Wo
plane poses a problem, since the relationship between the control
parameters of the simulation p̃L and Δρ̃ and the sampling parameter
Wo is not known analytically. From data analysis, we can extract
a phenomenological dependency between Δρ̃ and the sampling
parameters Wo and p̃L,

Δρ̃(p̃L, Wo) ≈
π
43

Wo0.91p̃
π(1−Wo

4 )
L . (20)

This relation is based on an ansatz Δρ̃ ∼ Wo1−ϵp̃δL motivated by the
definition of the Worthington number (18), Δρ̃ ∼ WoṼ−1, and an
ansatz Ṽ ∼ p̃−δL for the pressure–volume relationship. While (20)
provides a good mapping for p̃L < 3, it lacks in accuracy for higher
p̃L, where it cannot be used for the generation of an evenly sampled
training dataset.

We ultimately generate the training set by the following algo-
rithm, which does not use relation (20). First, we pick Wo and
p̃L from a uniform distribution. Second, we algorithmically search
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FIG. 10. The training data sampling can be adjusted to be uniform in the p̃L–Wo
plane. In the blue area, only shapes of class 2 are sampled. In the green area,
only shapes of class 3 are sampled. We use the detachment condition discussed
above to limit the sampling for class 3 shapes to the pre-detachment shapes
only.

for the upper and the lower boundary of the shape diagram for
Ω = 2 at the picked p̃L. Third, we numerically calculate the upper
boundary shape and from it the upper boundary WoΩ=2

max . If the
picked Wo is bigger than WoΩ=2

max , we search for a solution with
Ω = 3. Should the picked Wo be smaller than WoΩ=2

max , we search for a
solution with Ω = 2. Finally, the search for the target Wo is achieved
by bisecting the interval between the upper and lower boundary of
the corresponding valid parts of the shape diagram (Fig. 4) in the
p̃L–Δρ̃ plane and determining the corresponding value of Wo until a
numerically defined precision for Wo is reached.

This algorithm provides an evenly sampled training dataset in
the p̃L–Wo plane, which we use to train a new neural network for
which the training process is shown in Fig. 11.

The new sampling produces shapes that have a longer total arc
length L on average; thus, we also modify the input sample count of
the neural network to be d = 512, and we append the pre-processed
volume of the shape to the input vector, providing a new fea-
ture that could help reduce the complexity caused by the increased
sample count. Other pre-processed features available from the raw
shape data could also be provided to further increase accuracy while
reducing the complexity of the network.

The resulting network performs well over the full range
Wo ∈ [0, 1], as can be seen in Fig. 12. The absolute error is decreas-
ing as Wo increases, and the network gets extremely accurate for
Wo ∼ 0.8. While the previous network performs better for small
Wo, the adapted network is a full order of magnitude better than
the previous network for Wo ∼ 0.8.

The new network can also accurately solve the inverse problem
for class 3 solutions up to detachment. In a comparison between CSF
and the newly trained neural network for class 3 solutions, we can
see that the accuracy advantage of the CSF for high Wo melts away
by including class 3 solutions up to detachment. This has to do with

FIG. 11. Training process of the adapted network in the first 300 h of training.

the fact that shapes become extraordinarily sensitive at the bifurca-
tion between shapes 2 and 3, but as the class 3 solutions approach
the detachment condition, their Wo gets larger while the shape gets
increasingly insensitive because class 3 shapes move away from the
bifurcation line while increasing Wo up to detachment.

The ML approach provides good accuracy for all input shapes
and, thus, gives a more reliable predicted set of shape parame-
ters. The shape parameters predicted by the ML approach may also
be improved further by using them as an initial guess in a CSF
algorithm if needed.

C. Noise tolerance comparison
Comparing the ideal scenario of providing perfect input to

both approaches might give an insight into the capabilities of both

FIG. 12. The absolute error of the adapted machine learning approach compared
to the absolute error of the conventional shape fitting. Now, class 2 and 3 solutions
are used to train the network; however, only class 2 is shown. We omit all CSF fits
with an absolute error that is higher than 10−1 while considering all ML predictions.
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FIG. 13. Comparison of the absolute
error of class 2 shapes with increas-
ing Gaussian blur amplitudes added to
the shape data. The shaded regions
visualize the standard deviation of the
mean absolute error. Because of the log-
arithmic scale, only the upper bound is
shown.

approaches in a best case scenario, it is, however, not realistic. Any
given solution technique has to work with imperfect data in the
real world. These imperfections might arise from a limited camera
resolution, from an imperfect edge detection software, or by imper-
fections in the rest of the experimental setup. We want to discuss
how both approaches can handle noisy input data. For this, we apply
a Gaussian blur to all shape coordinates x⃗i to transform them into
a set of distorted shape coordinates x⃗′i . The Gaussian blur is cen-
tered around the origin, so its mean is given by μ = 0 and the stan-
dard deviation σ can be adjusted to create different noise amplitude
scenarios.

When comparing the performance of both methods in Fig. 13,
we can observe that the ML approach that has been trained on undis-
torted data performs very well for low noise amplitude scenarios
but is outperformed by CSF for high noise amplitude scenarios.
Again, we can adapt the training set to improve the ML approach.
To increase the real world performance of the ML approach, we can
use noisy input data to train a new network that can handle noise
better. We do this by training on a set of ∼500 000 shapes with a
Gaussian blur applied to all shape coordinates, leading to a much
improved noise resistance, as can be seen in Fig. 13, while also main-
taining an almost equal precision in low noise amplitude scenarios.
We also note that changing from MSE to MAE as a training met-
ric of the network improves the accuracy for noisy data even further
because the large individual errors do not dominate the overall mean
error and the gradients in backpropagation are less noisy, leading to
improved precision.

VII. DISCUSSION AND CONCLUSION
We introduced a novel ML approach to pendant drop ten-

siometry where we train a deep neural network with numerically
generated training shapes (solutions of the forward problem) for the
given pressure and interfacial tension in order to solve the backward
problem of interfacial tension determination for a measured (or syn-
thetically generated) droplet shape. We compare the performance
of this ML approach to the CSF approach to tensiometry. The ML
approach benefits from our ability to generate an arbitrarily large set
of droplet training shapes numerically by solving the Young–Laplace
equation (solving the forward problem) and control the distribution
of training shapes in parameter space, which creates an ideal setting
for supervised deep learning.

In order to rationalize the structure of shapes in parameter
space, we first discussed the physics of pendant drops and developed
a simple classification of solution classes Ω = 1, 2, 3, . . . by the num-
ber of bulges and necks. We obtained shape diagrams as functions
of dimensionless apex pressure p̃L, dimensionless density difference
Δρ̃ (which is also a measure of the capillary diameter), and volume
Ṽ, i.e., shape diagrams in the p̃L–Δρ̃ parameter plane under pres-
sure control (Fig. 4) and in the Δρ̃–Ṽ parameter plane under volume
control (Fig. 5). We identified the regions of existence of all shape
classes and their bifurcations within the shape diagram. For pendant
drops under volume control, the shape sequence Ω = 1 → 2 → 3
is the sequence of energetically preferred states with shape Ω = 2
of a pendant drop with one bulge being the global energy min-
imum in a large volume range, i.e., everywhere where it exists.
We also identified the detachment line of maximal volume within
the shape diagrams and obtained the bifurcation condition (14),
which also gives an excellent description of the detachment vol-
ume. Based on the shape diagrams, we can propose several train-
ing strategies for supervised learning in the ML approach. We start
with training shapes chosen uniformly in the p̃L–Δρ̃ parameter
plane.

The ML approach we provide is novel and performs well on
this specific problem. It is not only more accurate than the tested
conventional fitting scheme in large parts of the parameter space,
but it is also orders of magnitude faster. Note that the precision
of the inverse solution by CSF is bound by the precision target we
provide and can outperform the precision of a neural network in
the discussed “best case” fitting scenario, in principle, but this will
also take much longer. The hardware needed to execute a once
trained neural network is miniscule in comparison to the hard-
ware needed to perform numerical fitting of datasets in a reasonable
time.

We chose a standard accuracy for the CSF approach and find
that it outperforms the ML approach only in the regime of high Wor-
thington numbers Wo close to unity. We can rationalize the use of
the Worthington number as a quality measure in conventional fit-
ting approaches based on the shape diagrams by showing that high
Wo numbers indicate a very well-conditioned shape fitting problem,
where shapes are sensitive to parameter changes because they are
closed to the shape bifurcation, where shapes Ω = 2, 3 appear.

This is the motivation to adapt the training set for the ML
approach further to contain shapes that are sampled with the
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uniformly distributed Wo number. Using this strategy, the ML
approach’s precision for high Wo numbers is increased further.

This improvement by adaptation of the training set shows
that there is certainly more potential for improvement in the ML
approach either via the choice of training set or by further optimiz-
ing the network architecture, which was a relatively simple five layer
deep network (see Fig. 1). Recurrent neural networks (RNNs) could
also be tested to further improve performance and reliability, as
well as convolutional neural networks for full image input analysis.
These network types are generally more demanding on the hardware
and could thus reduce the throughput of the network drastically.
For rheological problems that consider a series of images—like a
deflation experiment to determine the viscoelastic moduli—a long–
short-term-memory (LSTM) input layer can be used to process the
time component of the information in an efficient way to reduce the
dimensionality of the data for the attached fully connected part of the
network, as we will show in later work. Further improvement to the
fully connected network type we provided can always be achieved by
hyperparameter optimization and testing.

Because of the orders of magnitude faster computation time,
the ML approach can also be used for high-throughput analysis of
droplet shapes in a short amount of time or—provided a fast pre-
processing algorithm—even real time video analysis in a dynamic
experimental setting. Further investigations into the capabilities of
neural networks in computationally taxing numerical fitting proce-
dures, such as pendant capsule elastometry28,33 or even viscoelas-
tometry, are the next step in future work, as the conventional fitting
approach for those problems can be exponentially more demanding.

DATA AVAILABILITY

The deep neural network developed and trained within this
work is publicly available via GitHub34 for further use in pendant
drop tensiometry. All other data that support the findings of this
study are available from the corresponding author upon reasonable
request.
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