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ABSTRACT Traction patterns of adherent cells provide important information on their interaction with the environment, cell
migration or tissue patterns and morphogenesis. Traction force microscopy is a method aimed at revealing these traction patterns
for adherent cells on engineered substrates with known constitutive elastic properties from deformation information obtained
from substrate images. Conventionally, the substrate deformation information is processed by numerical algorithms of varying
complexity to give the corresponding traction field via solution of an ill-posed inverse elastic problem. We explore the capabilities
of a deep convolutional neural network as a computationally more efficient and robust approach to solve this inversion problem.
We develop a general purpose training process based on collections of circular force patches as synthetic training data, which
can be subjected to different noise levels for additional robustness. The performance and the robustness of our approach against
noise is systematically characterized for synthetic data, artificial cell models and real cell images, which are subjected to different
noise levels. A comparison to state-of-the-art Bayesian Fourier transform traction cytometry reveals the precision, robustness,
and speed improvements achieved by our approach, leading to an acceleration of traction force microscopy methods in practical
applications.

SIGNIFICANCE Traction force microscopy is an important biophysical technique to gain quantitative information about
forces exerted by adherent cells. It relies on solving an inverse problem to obtain cellular traction forces from image-based
displacement information. We present a deep convolutional neural network as a computationally more efficient and robust
approach to solve this ill-posed inversion problem. We characterize the performance and the robustness of our approach
against noise systematically for synthetic data, artificial cell models and real cell images, which are subjected to different
noise levels and compare performance and robustness to state-of-the-art Bayesian Fourier transform traction cytometry.
We demonstrate that machine learning can enhance robustness, precision and speed in traction force microscopy.

INTRODUCTION
Many cellular processes are intrinsically connected to mechan-
ical interactions of the cell with its surroundings. Mechanical
surface forces control the shape of single cells or groups of
cells in tissue patterns and morphogenesis (1). Forces alter
cell behavior via mechanotransduction (2) and affect cell
migration and adhesion. Gaining access to the forces (or trac-
tions, i.e., forces per area) exerted by the cell during critical
processes like migration or proliferation can give insight into
biophysical processes underlying force-generation and aid the
development of novel medication and treatment, e.g. by identi-
fying changes of cellular forces in diseased states. Altered cell
behavior is present for diseases (3) like atherosclerosis (4),
deafness (5), or tumor metastasis (6).

Traction Force Microscopy (TFM) is a modern method
to measure tractions exerted by an adherent cell by deducing
them from the cell-induced deformations of an engineered
external substrate of known elastic properties (7–9). Beyond

adherent cells it has applications to a broader range of bio-
logical and physical systems where interfacial forces are of
interest (10). TFM thus constitutes a classic inverse problem
in elasticity, where tractions or forces are calculated from dis-
placement for given material properties. This inverse problem
turns out to be ill-posed, i.e., noise or slight changes in dis-
placement input data induce large deviations in traction output
data because of singular components of the elastic Green’s
tensor. This technical problem has been addressed by different
regularization schemes that have been developed over the
last two decades (11–15). Recent studies show that Machine
Learning (ML) can be an elegant alternative to numerical
schemes when the inverse problem to a bounded problem is
ill-posed in the context of elasticity or rheology. This has been
explored for other rheological inverse problem classes such
as in pendant drop tensiometry (16). ML-aided traction force
determination can thus provide an elegant way to improve
TFM as a method, as recent studies have already begun to
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show (17, 18). A systematic investigation of ML-aided TFM
with respect to an optimal general purpose training set that
allows the machine to predict tractions accurately across many
experimental situations as well as a systematic investigation
of accuracy and of robustness with respect to noise, which is
present in any experimental realization, are still lacking.

The first implementation of TFM was achieved by Harris
and coworkers in the early 1980s, where thin silicone films
are wrinkled by compressive surface stresses, inflicted by the
traction field of the cell (19). Due to the inherent non-linearity
of wrinkling and the connected difficulties solving the inverse
elastic problem, this method has been superseded by linear
elastic hydrogel marker based TFM introduced by Dembo et
al. (20). Due to the simplicity of the hydrogel marker based
approach, it is the most commonly used and most evolved
method. Alternative techniques and extensions include micro-
needle deformations (21), force microscopy with molecular
tension probes (22), and 3D techniques (23). Wrinkling based
TFM has recently been re-explored with generative adversarial
neural networks with promising results (18).

In this paper, we focus on the hydrogel marker based tech-
nique and train a deep Convolutional Neural Network (CNN),
which has the capabilities to solve the inverse elastic problem
reliably, giving fast and robust access to the traction pattern
exerted by the cell onto a substrate. Specifically, we do this by
numerically solving the elastic forward problem, where we
prescribe generic traction fields and solve the governing elastic
equations to generate an associated displacement field. The
“synthetic” displacement field generated this way is used as a
training input for our NN, while we use the prescribed traction
field as the labels for our training set. This way the network
learns the mapping between displacement and traction fields
and is able to generate traction fields for displacement fields
never seen before, while still respecting the relevant governing
elastic equations. Complete knowledge of the prescribed trac-
tions for the synthetic training data enables a training process
that directly minimizes deviations in the predicted tractions.
This contrasts conventional TFM techniques which determine
traction forces indirectly by minimizing deviations in the re-
sulting displacement field. We use traction force distributions
generated from collections of circular force patches as training
data, which seems a natural general choice to allow the NN to
predict generic force distributions in cell adhesion but should
also cover other future applications. We show that the proper,
“physics-informed” choice of training data and inclusion of
artificial noise is a similarly important step in the ML solution
of the inverse problem as the proper choice of regularization
in conventional TFM techniques, in order to achieve the best
compromise between accuracy and robustness.

MATERIALS AND METHODS
Hydrogel Marker Based TFM
The hydrogel marker approach to TFM can be described as
follows. First, a cross-linked gel substrate, often Polydimethyl-
siloxane (PDSM) or Polyacrylamide substrates (PAA) (24), is
cultivated. The cross-linked gel can be classified as an elastic
substrate with long linkage lifetimes compared to the imaging
process (25).

Second, the substrate is coated with proteins prevalent in
the extracellular matrix like collagen type I, gelatin, laminin,
or fibronectin, allowing the cell to adhere to the substrate.
Fluorescent marker beads embedded in the gel substrate aid
the determination of cell-induced substrate deformations. The
reference and stressed positions of the marker beads can be
determined via various microscopy techniques, ranging from
confocal to optical microscopy (19).

Third, to infer the displacement field from the marker bead
positions, a particle tracking velocimetry (PTV) algorithm, a
particle image velocimetry (PIV) algorithm or a CNN particle
tracker (26) is used, which calculates the discrete displacement
field.

The information about the displacement field, combined
with the predetermined constitutive properties of the hydrogel
substrate gives access to the traction field of the cell via the
inverse solution of the elastic deformation problem. For homo-
geneous, isotropic, and linear elastic solids the displacement
field ®𝑢 satisfies the equations of equilibrium in the bulk (27)

(1 − 2𝜈)Δ®𝑢 + ®∇( ®∇ · ®𝑢) = 0 , (1)

while the force balance at the surface is modified to account
for external tractions ®𝑡 (forces per area applied to the surface)

𝜎®𝑛 = ®𝑡 , (2)

where ®𝑛 is the surface normal vector and 𝜎 the stress tensor.
The TFM gel substrate can be considered sufficiently thick

to be modelled as an elastic half-space (𝑧 > 0), bounded by
the 𝑥-𝑦-plane, at which traction forces ®𝑡 = ®𝑡 (𝑥, 𝑦) are applied.
The displacements are a solution of the boundary problem
eqns. (1), (2), which is given by the spatial convolution of the
external traction field ®𝑡 (𝑥, 𝑦) with the Green’s tensor G over
the boundary of the surface 𝑆 (27):

®𝑢(𝑥, 𝑦, 𝑧) =
∬

𝑆

G(𝑥 − 𝑥 ′, 𝑦 − 𝑦′, 𝑧)®𝑡 (𝑥 ′, 𝑦′)d𝑥 ′d𝑦′ . (3)

Up to this point both tractions and displacement are three-
dimensional vectors. The full three-dimensional Green’s ten-
sor G(𝑥 − 𝑥 ′, 𝑦 − 𝑦′, 𝑧) is given in the Supporting Material.

In TFM, it can be assumed that adherent cells exert in-
plane surface tractions (𝑡𝑧 = 0), and we are interested in
in-plane displacement ®𝑢 = (𝑢𝑥 , 𝑢𝑦) only because out-of-plane
𝑧-displacements are hard to quantify by microscopy. More-
over, out-of-plane displacements are small for incompressible
materials (see Supporting Material). These assumptions make
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the problem eqn. (3) quasi-two-dimensional in the plane 𝑧 = 0,
such that the Green’s tensor is given by the 2x2 matrix (20)

G(𝑥, 𝑦) = 1 + 𝜈
𝜋𝐸𝑟3

(
(1 − 𝜈)𝑟2 + 𝜈𝑥2 𝜈𝑥𝑦

𝜈𝑥𝑦 (1 − 𝜈)𝑟2 + 𝜈𝑦2

)
. (4)

It solves the elastic boundary problem for in-plane tractions
and displacements if the tractions vanish at infinity.

TFM is essentially a technique to provide a numerical
solution for the inverse elastic problem posed by asking to
recover the traction field ®𝑡 = (𝑡𝑥 , 𝑡𝑦) from eqn. (3) via a
deconvolution of the right hand side surface integral. This can
be done in real space (11, 12, 20) or in Fourier space (28).

Employing the convolution theorem for the Fourier-transform
FT of a convolutional integral, the deconvolution problem en-
countered in eqn. (3) can equivalently be stated as performing
two Fourier-transforms and one inverse Fourier-transform

FT (®𝑢) (𝑢, 𝑣) = FT (G) (𝑢, 𝑣) F T
(®𝑡) (𝑢, 𝑣) (5)

®𝑡 (𝑥, 𝑦) = FT −1 {(F T (G))−1FT (®𝑢)
}
(𝑥, 𝑦) , (6)

which is named Fourier-Transform-Traction- Force-Cytometry
(FTTC) (28).

Common iterative techniques used for numerical decon-
volution can become unstable when subjected to noisy data,
which is why conventional approaches to the ill-posed in-
verse elastic problem rely on regularization techniques (e.g.
Tikhonov(L2)- or Lasso(L1)-regularization) coupled with
iterative minimization schemes (11–14, 29). This applies both
to real space and Fourier space methods. These methods min-
imize deviations in the resulting displacement field subject
to suitable regularization constraints on the traction forces.
Regularization improves stability while accuracy might suffer.
The optimal choice of regularization parameters is impor-
tant but subjective. In Bayesian Fourier Transform Traction
Cytometry (BFTTC) the regularization parameters need not
be picked manually and heuristically, but they are inferred
from probability theory, making an easy to use and objective
FTTC method (15, 30).

The shortcomings of most conventional approaches are
systematic under-predictions and edge smoothing of the con-
structed traction field, caused by the regularization (31), as
well as elevated computational effort, inflicted by the compu-
tationally demanding iterative deconvolution techniques and
transformations at play.

A recent trend in many fields, including the natural sci-
ences, has shown the capabilities of ML-based approaches in
such ill-posed and ill-conditioned scenarios (32, 33), often
outperforming complex algorithms by orders of magnitude
in computing time and precision, and thus allowing for new
and more accessible workflows with reduced computational
overhead. ML based approaches to TFM (17) and wrinkle
force microscopy (18) have recently been discussed and find
that deep CNNs can perform the deconvolution of eqn. (3),
by learning the mapping from strain-space to surface traction-
space in training. The existing NN approaches show a promis-
ing proof-of-concept which we want to extend further in the

present article by systematic studies of accuracy and robust-
ness to noise. While regularization is particularly important
in conventional TFM approaches for accuracy and stability,
accuracy and robustness to noise of deep CNNs crucially
depend on the choice of training data.

“Physics-informed” ML methods have also been applied
to directly solve general partial differential equations with
boundary conditions, such as eqns. (1) and (2) that are un-
derlying TFM (34–36). In TFM we can solve the elastic
problem analytically up to the point that the Green’s tensor
eqn. (4) is exactly known but proper inversion is difficult.
We want to solve this inversion problem by deep CNNs with
a “physics-informed” choice of training data and learning
metric.

Machine Learning the Inverse Problem
If we want to teach a machine to solve an inverse problem for
us, counter-intuitively, we do not need to know how to solve
the inverse problem itself. We only need to know how to solve
the corresponding forward problem i.e., we only need to know
how to precisely formulate the learning task for the network
and provide sample data that characterize the problem well
enough. In training, the machine detects correlations in the
data and uses it to solve for arbitrary non-linear mappings from
input space to output space. This is one of the groundbreaking
traits deep learning offers and which, in combination with
hardware acceleration, allows to solve problems not feasible
or traceable before (16, 32, 33).

Thus, we are interested in formulating the learning task in
the most precise way. A first step to this is a solid understanding
of the forward problem and all involved quantities including
the proper, “physics-informed” choice of training data. Since
we generate our training data numerically, the second step is a
robust numerical framework, which outputs physically correct
data. The third step is to find a sensible data representation,
which contains all the relevant information. The final step
is to find a network architecture with enough capacity for
the problem, to train it and to evaluate its performance and
robustness. We will address these points in the following and
finally compare our network with state-of-the-art approaches.

Understanding the forward problem for traction patches

The forward problem we are trying to solve involves cell trac-
tions on elastic substrates. Thus, essential to the performance
of our NN is the accurate interpretation of cell-characteristic
deformations of the substrate. Cells generate forces exerted
onto the substrate via focal adhesion complexes with sizes in
the 𝜇m-range and tractions in the range nN 𝜇m−2 = kPa (37).
Forces are generated by tensing acto-myosin stress-fibers that
attach to the focal adhesions and, therefore, have a well-defined
direction over a focal adhesion complex. Therefore, typical
cellular traction patterns consist of localized patches, which
can comprise single or several focal adhesion complexes and
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are anchored to the substrate at positions ®𝑟𝑖 = (𝑥𝑖 , 𝑦𝑖)T. Within
these patches tractions have a well-defined in-plane angle 𝛾𝑖
with the 𝑥-axis resulting in a traction pattern

®𝑡𝑖 (®𝑟) = 𝑡𝑖 (|®𝑟 − ®𝑟𝑖 |)
(
cos 𝛾𝑖
sin 𝛾𝑖

)
. (7)

These tractions are applied to circular patches of variable
radius 𝑅𝑖 at the anchored nodes (see Fig. 1), such that

𝑡𝑖 ( |®𝑟 − ®𝑟𝑖 |) =
{
𝑡0,𝑖 , for |®𝑟 − ®𝑟𝑖 | < 𝑅𝑖
0, else.

(8)

We model typical traction patterns as a linear superposition
of traction patches eqn. (7) localized at different anchoring
points. Within linear elasticity, the resulting displacement
pattern is also a linear superposition of all the displacement
patterns ®𝑢𝑖 caused by all traction patches 𝑖.

For a single traction patch, we solve the forward elastic
problem by exploiting the convolution theorem

FT {®𝑢𝑖} = FT {𝐺}F T {®𝑡𝑖} (9)

where the Fourier transform of the Green’s kernel in polar
coordinates 𝜌 and 𝜙 is known (28),

𝐺̃ (𝜌, 𝜙) ≡ FT {𝐺}(𝜌, 𝜙)

=
2(1 + 𝜈)
𝐸𝜌

(
(1 − 𝜈) + 𝜈 sin2 (𝜙) −𝜈 sin(𝜙) cos(𝜙)
−𝜈 sin(𝜙) cos(𝜙) (1 − 𝜈) + 𝜈 cos2 (𝜙)

)
,

(10)

and the Fourier transform of the traction spot is given by the
Hankel transform

FT {𝑡𝑖}(𝜌) = 2𝜋
∫ ∞

0
d𝑟 𝑡𝑖 (𝑟)𝑟𝐽0 (𝜌𝑟)

=
2𝜋𝑡0,𝑖𝑅𝑖

𝜌
𝐽1 (𝜌𝑅𝑖), (11)

where 𝐽𝑛 are the Bessel functions of the first kind.
The Fourier transformed displacement field FT {®𝑢} is

now accessible and can be converted back to the displacement
field by performing the inverse Fourier transform ®𝑢𝑖 (𝑥, 𝑦) =
FT −1{F T { ®𝑢𝑖}(𝜌, 𝜙)}. The inverse Fourier transform can be
performed analytically in polar coordinates centered around
the corresponding anchored node with a scaled radial compo-
nent 𝑟𝑖 ≡ |®𝑟 − ®𝑟𝑖 |/𝑅𝑖 and an angle 𝜃 with the 𝑥-axis,

𝑢𝑖𝑥 =
𝑅𝑖𝑡0,𝑖 (1 + 𝜈)

𝜋𝐸
[((1 − 𝜈)𝑁1 (𝑟𝑖) + 𝜈𝑁2 (𝑟𝑖 , 𝜃)) cos(𝛾𝑖)

−𝜈𝑁3 (𝑟𝑖 , 𝜃) sin(𝛾𝑖)] (12)

𝑢𝑖𝑦 =
𝑅𝑖𝑡0,𝑖 (1 + 𝜈)

𝜋𝐸
[((1 − 𝜈)𝑁1 (𝑟𝑖) + 𝜈𝑁4 (𝑟𝑖 , 𝜃)) sin(𝛾𝑖)

−𝜈𝑁3 (𝑟𝑖 , 𝜃) cos(𝛾𝑖)] (13)

where 𝑁1,2,3,4 (𝑟𝑖 , 𝜃) are specific functions, that describe the
geometric dependence of the displacement field, and are

obtained by explicitly solving the occurring inverse Fourier
transforms in the Appendix (see eqns. (19), (20), (21), (22)).
Strictly speaking, this analytical solution of the forward elastic
problem for a single traction patch anchored at 𝑅𝑖 is valid
on an infinite substrate. We will neglect finite size effects in
the following, and use this analytical solution also on finite
substrates. The solution for many traction patches anchored
at different points is obtained by linear superposition.

Numerically solving the forward problem

We consider a square substrate of size 𝐿 × 𝐿, in which
displacements are analyzed (the total substrate size can be
larger). Typical sizes are in the range 𝐿 ∼ 10−100𝜇m. We use
the size 𝐿 to non-dimensionalize all length scales: 𝑢̄ ≡ 𝑢/𝐿,
𝑟 ≡ 𝑟/𝐿 and 𝑅̄𝑖 ≡ 𝑅𝑖/𝐿, such that the substrate in which
displacements are observed always has unit size. Typical focal
adhesion patch sizes 𝑅𝑖 are in the range of several 𝜇m (15, 37);
in dimensionless units, we take 𝑅̄𝑖 ∼ 0.05 as typical value. The
above dimensionless coordinate 𝑟 remains unchanged by non-
dimensionalization. Furthermore, we use the elastic constant
𝐸 as traction scale: 𝑡 ≡ 𝑡/𝐸 . Typical hydrogel substrate elastic
moduli of 𝐸 ∼ 10kPa (15) and tractions in the range up to
5kPa (37) imply typical dimensionless tractions up to 𝑡 ∼ 0.5.

We create a 𝑁 × 𝑁 square grid, on which we discretize
the solution of eqns. (12) and eqn. (13) for a supplied traction
patch 𝑡0,𝑖 with direction 𝛾𝑖 and use superposition of the
individual patch solutions for all anchored nodes, such that
we get the full displacement field for a number of 𝑛 circular
traction patches of variable radius 𝑅1,...,𝑛.

We discretize both displacement and traction fields on the
same 𝑁 × 𝑁 square grid. While generating the displacements
in eqns. (12) and (13) on a discrete grid is simple, we note that
the discretization of the traction field needs to be performed
with great care. A naive approach for the discretization of the
circular traction patches onto a square pixel grid with indices
𝑖, 𝑗 ∈ {1, ..., 𝑁} would be the direct discretization of eqn. (7),
i.e., to check whether any square segment center point ®𝑐𝑖 𝑗 is
contained in the circular traction patch of radius 𝑅𝑡 and center
point ®𝑐𝑡 . If the center point is contained, the grid segment 𝑖, 𝑗
is assigned the traction 𝑡0 of the circular patch. This naive
discretization suffers from a critical artifact: it is not force
conserving, i.e., does not conserve the total traction force
exerted by the patch, which is given by the area-integrated
tractions. This violates the fundamental physical requirement
of force balance.

In the Supporting Material, we discuss improvements and
present an exactly force conserving traction discretization
procedure by calculating the exact overlap area 𝐴ov of each
square grid segment (with side lengths 𝑎 = 𝐿/𝑁) and the
circular traction spots. Then we assign a corresponding frac-
tion 𝑡0𝐴ov/𝑎2 of the traction to each square grid segment.
In the Supporting Material, we also quantify the accuracy
gain by the force conserving traction discretization method
by computing the errors in the displacement field of a large

4 Manuscript submitted to Biophysical Journal



Machine Learning Traction Forces

Traction Prediction Traction Truth

0.0 0.2 0.4 0.6 0.8 1.0

x̃

0.0

0.2

0.4

0.6

0.8

1.0
ỹ
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Figure 1: A model cell with circular focal adhesion points. The model cell perturbs the elastic substrate it is resting on by
generating tractions (red arrows) at the focal adhesion spots (red circles), resulting in the color coded displacement field;
tractions (red arrows) are generated based on a contractile network model (see text). Red arrows are the “true” average tractions
generated by the cell model over the red circles, while the black arrows indicate the local tractions that the NNlow network
predicts at the discrete grid spots.

circular patch that is discretized.
We want to emphasize the relevance of these findings to

our approach: As the NN will be trained with the discretized
traction fields and we are ultimately interested in an accurate
discretized traction prediction by our machine, we are forced
to deliver as accurate discrete traction field representations as
“truths” for training as possible.

Generating arbitrary traction fields via superposition

Because of the underlying linearity of the elastic problem
at hand we are able to construct displacements for arbitrary
traction patterns via superpositions of the circular traction
patch solutions. While this might seem obvious, it has far
reaching implications for our approach and implies that a
solver with the ability to reconstruct traction fields constructed
from circular traction patches will also be able to reconstruct
arbitrary traction fields if the solver preserves the linearity of
the elastic problem.

Because we will present our NNs with an arbitrary super-
position of circular traction spots, discretized to a finite grid,
it is trained to exploit the linearity of the problem explicitly,
and we thus expect the networks to be able to solve the more
general problem of predicting an arbitrary superposition of

traction patches. In a sense, generating superpositions of the
analytical circular traction patch solutions is an optimization
we employ to reduce the computational effort for generating
displacement fields for training, while retaining the relevant
properties of the problem, as we will show.

Another implication of this observation is that we are
able to check the predicted discretized traction fields for con-
sistency with a supplied displacement field by constructing
a superposition of displacement fields for circular traction
spots with radius 𝑅𝑡 = 𝑎/

√
𝜋 for each grid point, where 𝑎

is the distance between grid points. The choice 𝑅𝑡 = 𝑎/
√
𝜋

assures conservation of the total traction force. We implement
this method along with our solver to generate the displace-
ment fields from arbitrary superpositions of circular traction
patches.

Architecture of the deep convolutional neural network

We choose to employ a Unet structure (38) consisting of an
input encoder, which extracts and compresses the relevant
information from the high-dimensional input displacement
field into a lower-dimensional representation. From the lower-
dimensional and compressed displacement information we
inflate the dimensionality again with a decoder, such that we
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Input
104x104x2

Convolution
104x104x10

Convolution
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Convolution
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ConvolutionT
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Figure 2: The network we employ is a Unet Convolutional Neural Network with a discretized displacement field as an input and
a discretized traction field as an output. The mapping from input to output is learned in training by adapting the parameters
of the convolutional and transposed convolutional layers of the network. Eventually the network will be able to reconstruct
the traction field for displacement fields never seen before. We do not enforce a strict bottleneck, rather we allow for skip
connections from the encoding process to the decoding process (blue arrows). The skip connections thus offer a way for the
network to manipulate the decoding process with selected information gathered during encoding, increasing the capacity of the
network.

finally receive the representation of a traction field in the
output of the network, as shown in Fig. 2. The motivation for
this choice is the conceptual similarity of image procession
tasks such as segmentation, which involve local classification
of an image, to the assignment of local “traction labels” to
each grid point of the “displacement image”. Furthermore, the
elastic problem has long range interactions, where a localized
traction spot causes large scale displacements. The layered
structure of a Unet is well suited to handle this problem, as
the high-dimensional layers process short scale information
and the increasingly lower-dimensional layers will be able to
handle longer range correlations. Finally, through the process
of compressing and reinflating dimensionality we might loose
spatial precision and, thus, use the skip connections to provide
the upsampling layers with additional spatial information.
Additionally, skip connections have been demonstrated to
improve generalization potential and stability when used in
combination with batch normalization (which is also used in
our networks) (39).

Our network (as shown in Fig. 2) is a fully convolutional
NN, where the encoding part is a stack of convolutional
blocks, and max-pooling layers, while the symmetric decod-
ing part consists of transposed convolutional layers, skip
connections and convolutional blocks. Each convolutional
block consist of two convolutional layers, with one Dropout
layer and LeakyReLU activation functions, which introduce

non-linearity. Specially, the last layer uses a linear activation
function, ensuring that the output maps to the domain of a
traction field. The encoding part uses size 3 kernels and size
1 strides, while the decoding part uses size 4 kernels and size
2 strides to avoid checkerboard effects that would otherwise
negatively impact performance.

Training data sampling and the training process

To train our NN we choose a 104 × 104-grid (𝑁 = 104)
which holds the discrete representation of the dimensionless
displacement and traction fields. We will later show that our
networks are still able to work on arbitrary grid sizes (with
proper scaling of the input), since they are fully convolutional.
The training data is generated by numerically solving the
explicit forward problem in dimensionless form as outlined
in the section Numerically solving the forward problem.

The traction distribution ®̄𝑡 (𝑥, 𝑦) is generated by a random
number (uniformly sampled in [10, 50]) of traction spots
𝑡𝑖 (𝑥, 𝑦), where the radius 𝑅̄𝑖 is drawn uniformly in the range
[0.01, 0.05] with a random center point {𝑥𝑖 , 𝑦𝑖} ∈ [𝑅̄𝑖 +
0.05, 1− 𝑅̄𝑖 − 0.05]2. The traction magnitude 𝑡0,𝑖 is uniformly
distributed in the range [0, 0.5] and the polar angle 𝛾𝑖 is
uniformly distributed in [0, 2𝜋].

While traction values and patch sizes are typical for
adherent cells, our training data is more general in the sense
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that other important characteristics of cellular force patterns,
such as the occurrence of force dipoles at the end of stress
fibers, are not contained in our training data. This makes our
approach more general compared to Ref. (17), where training
was performed on traction patterns typical for migrating cells.
In combination with non-dimensionalization, this will allow
us to easily adapt the training process to other applications of
TFM in interfacial physics (10) in future applications. Below,
we will demonstrate the ability of the CNN to specialize from
our general patch-based training set to artificial and real cell
data. As a convenient model to generate realistic cell traction
data artificially we use the contractile network model of Ref.
(40).

We expect a NN trained with noisy data to also perform
better when confronted with noisy data. To test this hypothesis,
we add different levels of background noise to the displacement
field 𝑢̄ in our training data. In order to evaluate the effects on
robustness we train two types of NN:

• A network NNlow is trained with a low level of back-
ground noise: To each dimensionless training displace-
ment field value ®̄𝑢 a spatially uncorrelated Gaussian
noise with a variance 𝜎̄ that is 0.5% of the average
variance of the dimensionless displacement field over
all training samples,

𝜎̄ = 0.005〈𝜎𝑢̄〉, (14)

where 〈...〉 is an average over all training samples.

• A network NNhigh is trained with a high level of back-
ground noise that is 5% of the average variance of
the dimensionless displacement field over all training
samples,

𝜎̄ = 0.05〈𝜎𝑢̄〉. (15)

We want to emphasize that we use uniform Gaussian noise
for the training. The assumption of uniform Gaussian noise
is used as the central assumption in BFTTC to evaluate the
likelihood. The training data can easily be adapted to contain
different types of noise if there is a concrete experimental
motivation to do so.

As a loss or performance metric we use the mean-square
error (MSE) between the output guess for tractions and the
corresponding labels of the input traction data averaged over
𝑀 training batches,

MSE =
1
𝑀

𝑀∑︁
𝑚=1

∑︁
(𝑥,𝑦) ∈grid

|®̄𝑡in,m (𝑥, 𝑦) − ®̄𝑡out,m (𝑥, 𝑦) |2. (16)

We train in batches of 50 samples per batch by backpropagation
using the Adadelta algorithm. The number of training steps
per epoch consists of 900 training batches or 45000 samples.

A traction-based objective function comparing the resid-
ual of the force balance that generates the displacements is

the proper “physics-informed” error metric, since we are in-
terested in correct traction forces in TFM. Training for correct
traction forces is enabled by using synthetic training data
based on traction patches, where we know the true tractions.
Alternatively, one could use the residual between the input
displacement field and a displacement field generated from
the predicted traction field as a training metric, but this ap-
proach has an obvious problem: to do the backpropagation
during training we would have to compute all predictions
of the network for the displacement field in each step of the
training, which slows down training several orders of magni-
tude (in a first approximation by a factor of 𝑁2). Implicitly,
conventional TFM techniques such as the BFTTC algorithm
follow this strategy as they minimize deviations in the result-
ing displacement field (subject to additional regularization)
(15). Therefore, we expect networks trained according to this
strategy to perform qualitatively similar to the BFTTC algo-
rithm. We will investigate in detail the resulting differences
in accuracy of the traction and displacement predictions in
the section Displacement versus traction error.

During training, we evaluate the loss MSE eqn. (16) for the
training data and a validation MSE for unknown displacement
data of the same type. The validation and training errors in
Fig. 3 show constant learning and generalization of the model
without over-fitting. We note that a valuation loss lower than
the training loss is common when using dropout layers, which
are active in training but inactive during inference. In total,
the training is performed for 5000 epochs, which we chose
as an arbitrary training limit to truncate the power law tail
seen in training, took ∼ 100 h on an NVIDIA QUADRO RTX
8000 GPU, with the main learning advancements occurring in
the first 5 h. Each epoch consists of 50000 randomly chosen
traction patch distributions of which 45000 samples are used
in training and 5000 are used for validation.

Sampling the hyper-parameter space of networks

We sample the hyper-parameter space to detect which network
traits are important for its performance, i.e., we train a number
of different networks on the same data for the same duration
and compare their learning progress. The findings of this
sampling are contained in Fig. 4, where the baseline (solid blue,
label “Single Conv.”) is a network with a single convolutional
layer per block, skip connections, a dropout of 10% and a
batch size of 132, using the Adadelta optimizer. For this
figure we use data generated with the “naive” traction patch
discretization and switch to the force conserving method for
one of the trials.

In Fig. 4 we vary only one parameter at a time, i.e., we
disable the skip connections, vary the batch size, change
the optimizer, change the dropout rate, change the number
of convolutional layers in a block or change the traction
discretization method, this allows us to get an understanding
of the hyper-parameter space and its implications on predictive
performance:
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Figure 3: The time evolution of training and validation MSE during training of the neural network NNlow. Already after the first
epoch a rough traction reconstruction is achieved. After 10 Epochs the reconstruction gains significantly in terms of visual
sharpness, which is further increased in the following epochs. We stop the training process after 5000 epochs, because longer
training yields diminishing returns.

1. The base line configuration “Single Conv.” (solid blue)
with a single convolutional layer and trained with the
Adadelta optimizer performs better compared to train-
ing with the Adagrad optimizer (“Adagrad”, dashed
green).

2. The training performance is improved when using two
convolutional layers per block (“Dual Conv.”, solid
orange), but, because of the increased complexity, train-
ing and inference is computationally significantly more
expensive.

3. We observe that the network without skip connections
(“No Skip Connections”, solid red) performs signifi-
cantly worse than all other networks.

4. We are able to improve learning by using a lower batch
size of 50 (“Batch Size 50”, solid purple).

5. Changing dropout affects training as one would expect –
a larger dropout decreases and a lower dropout increases
training precision (“Larger/Lower Dropout”, dashed
dotted magenta/brown).

6. When employing a shallower network obtained by
removing one encoder and one decoder block (“Shal-

lower”, dotted grey) the learning is faster initially, but
seems to plateau earlier before improving again.

7. Finally, when using the exact force conserving dis-
cretization for the traction grid (“Exact Discretization”,
solid yellow) we are able to drastically improve training
performance, supporting our above claim that conserv-
ing the force balance exactly is of great importance.

For all network variants, the training progress shown in Figs.
3 and 4 follows a power law MSE ∝ epochs−𝛼 with exponents
𝛼 ∼ 0.4.

We finally settle on a network architecture that has one
convolutional layer per block, skip connections, a dropout
of 10% and a batch size of 50, while using the Adadelta
optimizer. This network architecture has also been used for
the training process shown in Fig. 3 and has been used to
produce all results shown in the following. The entire network
structure is implemented using the Keras Python API (41).

BFTTC algorithm
In order to evaluate the performance of our CNN in compari-
son to conventional TFM methods, we employ the Bayesian
Fourier Transform Traction Cytometry (BFTTC) algorithm
as a standard to compare with. The algorithm is described in
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Figure 4: The learning processes of different networks where
we sweep the hyper-parameter space by changing one property
at a time to search for well performing networks (see text).
Generally, training follows a power law and we cut off training
at 5000 epochs.

Refs. (15, 30) and has been made publicly available by the
authors at https://github.com/CellMicroMechanics/
Easy-to-use_TFM_package.

RESULTS

We analyze the performance of our ML approach on a set
of error metrics. Additionally, we compare the performance
to the BFTTC algorithm (15, 30) as a state-of-the-art con-
ventional TFM method. Importantly, we want to discriminate
between background noise and signal while also evaluating
magnitude and angle reconstruction precision to infer whether
our network generalizes to data never seen before. This will be
done for synthetic displacement data first, which is generated
in the same way as the training data and contains an additional
varying level of noise. Subsequently, we can evaluate the
performance of the CNN on artificial cell data using the same
error metrics, on completely random displacement fields and,
finally, we apply the CNN to real cell data.
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Figure 5: We evaluate the final low noise network 𝑁𝑁low
during training by computing six precision metrics at interme-
diate points during training. We use the metrics to quantify
the performance of the traction reconstruction during train-
ing of the network. This evaluation is performed with new
data drawn from the same distribution and problem class as
the training data. We clearly observe drastic improvements
in predictive precision in the first 100 epochs, after which
the improvement of the metrics is drastically slower. For the
metrics DDA, DTMB and DMA a lower score is better (as
indicated by the red arrow), while the SNR is better for larger
values. Finally, the DTMA and ADTMA scores are better
when they are closer to zero.

Evaluation metrics and application to synthetic
patch-based data
We employ six evaluation metrics, four of which have already
been introduced by Huang and coworkers (15) or earlier, to
better distinguish between noise and signal, as well as be-
tween bias and resolution. Precise definitions of all evaluation
metrics are given in the Appendix. In Fig. 5 we evaluate these
metrics for varying noise levels during training of the network
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Figure 6: The comparison of our networks NNlow (trained
with low noise background) and NNhigh (trained with high
noise background) with a state of the art conventional BFTTC
approach shows the precision across the six evaluation metrics
(see text) for varying noise levels 𝜎̃ on synthetic patch-based
data. This test is performed with an ensemble of traction spots
randomly chosen in count, size, magnitude and orientation,
testing our networks performance on data similar to the
training data. The arrows next to the metric name indicate
whether higher or lower is better; “0” indicates that the metric
has a sign and a value of zero is optimal. Both of our networks
outperform the BFTTC method in most metrics. With the high
noise network NNhigh we trade low noise fidelity for elevated
noise handling capabilities.

𝑁𝑁low and in Fig. 6 we evaluate these metrics for varying
noise levels 𝜎̃ on our synthetic data patch-based data.

The noise applied to the displacement field data is uncor-
related between pixels and randomly chosen from a Gaussian
distribution centered around zero, with standard deviation 𝜎.
Let the dimensionless displacement field standard deviation
be std𝑢̄, then we define our noise levels 𝜎̃ = 𝜎/std𝑢̄, such that
𝜎̃ is the relative noise applied to the displacement field. In the

following considerations we vary 𝜎̃ between 1 % and 10 %.
We pass the exact noise standard deviation to the BFTTC

method for the noise evaluations, such that the BFTTC method
has optimal conditions. Our networks do not get any additional
information about standard deviation of the noise floor.

First, we introduce a measure to more precisely quan-
tify the orientation resolution via the Deviation of Traction
Direction at Adhesions (DDA)

DDA = 〈𝑝(𝛾pre, 𝛾tru)2〉 (17)

between predicted and true traction angles 𝛾 (see eqn. (28)
in the Appendix for a more precise definition of the average);
𝑝(𝛼, 𝛽) measures the periodic distance between two angles
𝛼 and 𝛽. A small DDA indicates precise traction direction
reconstruction. For both of our networks the direction recon-
struction is more precise than the BFTTC method across the
range of tested noise levels.

Second, we evaluate the Deviation of Traction Magni-
tude in the Background (DTMB) (15), which quantifies how
accurate the traction magnitude reconstruction works in the
background (see eqn. (24) in the Appendix), thus, if there is
no prediction of an underground noise floor, not associated
with any focal adhesion point, the DTMB score will be zero.
Both of our NNs have a much lower DTMB score in than the
BFTTC method in the limit 𝜎̃ → 0, which should manifest
in a much less noisy traction force reconstruction. While
the low noise network again departs from that score linearly
the high noise network again stays comparatively constant.
During training we see that precision in low noise scenarios
is traded for less robustness as evident from the increasing
slope in Fig. 5. The high noise network again does not show
this tendency.

Third, we discuss the Deviation of Traction Magnitude at
Adhesions (DTMA) (13, 15) which evaluates the precision of
traction magnitude reconstruction at the focal adhesion points
(see eqn. (23) in the Appendix), thus the DTMA is zero for a
perfect reconstruction, negative for an underestimation and
positive for an overestimation of traction magnitudes. During
training (see Fig. 5) this quantity consistently improves but
trades precision in low noise scenarios for an increasing slope
of the DTMA as a function of background noise. This is a
first evidence that this network might perform poorly on high
noise experimental data. We do not see the increase in slope
for the high noise network (see Fig. 6). In Fig. 6 we see similar
DTMA scores for all approaches in the limit 𝜎̃ → 0, with a
systematic under-prediction of tractions. For increasing noise
floors both the BFTTC and the low noise network (NNlow)
depart from this common score and start to overestimate
tractions. While the DTMA score for the high noise network
barely changes, the low noise network DTMA score rises
linearly with the noise floor 𝜎̃, while the BFTTCs DTMA
rises faster than linearly. The high noise network (NNhigh)
retains a comparatively constant DTMA score and always
under-predicts the traction magnitude.
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Figure 7: We compare our networks NNlow and NNhigh with
the BFTTC method for data generated from an artificial cell
model using the same six evaluation metrics for varying noise
levels 𝜎̃ as in Fig. 6. Since the method of generating the
data is now different from the training process, we expect to
see the generalization potential of our networks more clearly
than in Fig. 6. The BFTTC method works considerably worse
on this data compared to Fig. 6. Additionally, we see an
amplified underestimation of the traction magnitudes for the
BFTTC method. With respect to noise, the high noise network
seems to give the best compromise between precision and
regularization of the output traction fields.

Fourth, we introduce the Absolute Deviation of Trac-
tion Magnitude at Adhesions (ADTMA) that is similar to
the DTMA, but evaluates the absolute deviations, capturing
the actual reliability of reconstructions more precisely than
DTMA, since alternating under- and over-predictions do not
cancel out in this score. We can again see the same qualitative
behavior as in most of the other metrics: Both networks are
more precise in the low noise region, but the low noise network
seems to perform best at a noise level of ∼ 3%, while the high
noise network is robust against increases in background noise.

Fifth, the Signal to Noise Ratio (SNR) (15) also gives an
insight into the noise floor of predictions (see eqn. (25) in
the Appendix), it is high for a precise distinction between
background noise and actual focal adhesion induced deforma-
tion and goes to zero for an increasingly noisy reconstruction.
Both of our networks have a consistently higher SNR than
the BFTTC method, undermining the assumption that the
networks will yield a less noisy reconstruction overall. The
low noise network SNR decays quickly with increasing noise
levels, while the high noise network is more resilient against
the increases in noise floor.

Finally, the Deviation of the Maximum traction at Adhe-
sions (DMA) (15) gives a more detailed insight into the con-
sistency for high amplitude tractions within a focal adhesion
point (see eqn. (26) in the Appendix). A perfect reconstruction
would yield a DMA score of zero, while under-predictions
give negative scores and over-predictions positive scores. We
can again observe that both of our networks give similar
scores for low noise scenarios, which are both lower than the
score of the BFTTC method. The low noise network again
departs linearly from this common value, while the high noise
network DMA score stays at a consistent level.

Across all six measures we observe the following trends
for network NNlow trained with a low level of background
noise as compared to network NNhigh trained with a high
level of background noise: NNlow perform superior to the
BFTTC-standard and NNhigh for low-noise data, because they
are trained on low noise data. Their performance deteriorates,
however, for higher noise levels 𝜎̃, where their performance
drops below NNhigh but also below the BFTTC-standard.
NNhigh finds a better compromise between robustness and
accuracy such that it outperforms the BFTTC-standard across
all noise levels. Remarkably, the performance of the NNhigh
only deteriorates above noise levels 𝜎̃ ∼ 100%.

Tractions of artificial cells
In order to test the ability of the CNN to specialize from
our general patch-based training set to realistic cell data, we
first test the model on artificial cell data. The advantage of
artificial cell data is that the “true” tractions are precisely
known. A convenient model to generate realistic cell traction
data artificially is the contractile network model (40). In this
model, the stress fibers are active cable links with specific
nodes anchored to the substrate at positions ®𝑟𝑖 = (𝑥𝑖 , 𝑦𝑖)T. To
construct a typical cell shape with lamellipodium and tail
focal adhesions the tractions ®𝑡𝑖 (®𝑟) generated at each anchor
point are generated by minimizing the total energy of the
cable network. These tractions are then applied to circular
patches of radius 𝑅̃ = 0.04 under an angle 𝛾𝑖 given by the
stress fiber orientation at the anchored nodes (see Fig. 1).

In addition to Fig. 6, we want to evaluate the aforemen-
tioned metrics (DDA, ADTMA, DTMB, DMA, DTMA, SNR)
on a displacement field generated by an artificial cell as shown
in Fig. 1. Again, we add Gaussian noise to the displacement
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Figure 8: Comparison of traction reconstruction for a real Fibroblast between our networks NNlow and NNhigh and the BFTTC
method (top and middle row). Although we do not have the “true” traction field at hand for a quantitative evaluation of precision
across the methods, we see compatible results across the board, while both networks have a significantly reduced noise floor.
The top row shows traction magnitude reconstruction, while the center row shows angle reconstruction.

field with varying noise levels 𝜎̃ and evaluate the behavior
of our networks NNlow, NNhigh, and the BFTTC method in
Fig. 7. We average all our results over 10 artificial cells.

We see qualitatively similar results to Fig. 6 in the SNR
and DTMB metrics, while the absolute performance in those
metrics is better (higher SNR and lower DTMB scores) for
the artificial cell data. This is likely due to the lower number
of traction patches in total and the equal radii of all traction
patches. Both networks, are able to reconstruct the traction
fields more reliably and with greater precision. This is true
across all observed metrics.

The artificial cell data show a clear tendency towards a
traction magnitude underestimation (DTMA, ADTMA) for
all approaches. Since we are generating tractions in strongly
bounded range due to the cable network, the traction spots
tend to be in close proximity to each other, which can increase
smearing of sharply separated traction spots.

Reconstruction of random traction fields
In order to prove that our networks indeed have learned to
exploit the linearity of the problem and that they have learned
a general solution for the problem, we probe them on entirely
random traction fields. These are generated starting from

spatially uncorrelated Gaussian noise, which is subsequently
convolved with a proximity filter with a characteristic correla-
tion length of ∼ 0.1 in dimensionless units of the image size.
Then we compute the corresponding displacement field and
pass it to our high noise network and the BFTTC method for
reconstruction.

The advantage of this reconstruction setting is that we have
the exact ground truth for tractions while not using traction
fields that are similar to the training data. As detailed in the
Supporting Material, our high noise network can reconstruct
the random traction field and associated displacements with
higher accuracy than the BFTTC method.

Tractions of real cells
Finally, we want to test our ML approach on real cell images.
Of course, we do not have access to the “true” traction field
for those images, however, we can qualitatively compare the
results obtained from our ML approach with those obtained
by the well tested BFTTC method. The example cell results
shown in Fig. 8 are for a NIH/3T3 (National Institutes of
Health 3T3 cultivated) Fibroblast on a substrate with length
𝐿 = 200.2 𝜇m and elastic modulus 𝐸 = 10670 Pa (the data
was made available in Ref. (17)). Additional results for all
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14 cells provided in Ref. (17) are similar and provided in the
Supporting Material.

It is apparent that the network trained with low noise
reconstructs a traction field, which is similar to that of the
BFTTC method, while the noise in the vicinity of the cell is
significantly reduced. The network trained with a high noise
floor gives a more regular traction pattern and cuts off lower
amplitude tractions.

The reason for these results is that the network trained
with low noise exhibits a SNR superior both to BFTTC and
the network trained with high noise levels if noise in the
experimental data is low (see Figs. 6 and 7); for artificial cell
data also the DTMA and ADTMA of the network trained with
low noise is superior for low experimental noise levels (see
Fig. 7). A low noise in experimental data seems to be realized
here. We can thus infer that the tractions reconstructed by
the high noise network systematically under-predict the real
tractions for this particular data.

As expected from our prior analysis, the resistance to
additional noise is much better for the network which saw
high noise levels during training and the low noise network
is fails completely when subjected to very high noise. The
robustness of the high noise network is highlighted in Fig. 9,
where the cell data is superposed with significant background
noise of 𝜎̃ = 100 %. Both our low noise network and the
BFTTC method produce a noisy traction field in this case,
while the high noise network still displays a similar traction
pattern in both of these cases. The noise seen in the BFTTC
method is significantly reduced, as we pass the exact standard
deviation of the applied noise to the method.

Overall, the result from the high noise network and the
BFTTC method is qualitatively similar in the high noise
scenario, while the high noise network reconstruction is more
regular and fits the circular focal adhesion point model more
consistently and stays invariant for a wide range of background
noise levels. Apparently, the noise the network sees in training
directly controls the regularization of the reconstruction and it
would be possible to create intermediate networks with higher
sensitivity, but lower noise invariance.

Finally, we compute the residual error between the exper-
imental (already noisy) input image and the reconstructed
displacement field, by solving the reconstructed traction field
for the displacement field. We do this for all the 14 cells pro-
vided in Ref. (17) (see Supporting Material). For the low noise
network we achieve a mean RMSE ∼ 10−3, while the high
noise network performs slightly better at an RMSE ∼ 9 · 10−4.
The BFTTC method performs significantly better with an
average RMSE ∼ 5 · 10−5. While the residual errors are low
for all approaches we can conclude that the BFTTC method
reconstructs the input displacement field more accurately. This
seems surprising in light of the higher traction background
noise outside the cell shape that the BFTTC clearly produces.
The reasons are discussed in the next section in more detail.

We can additionally quantify the contribution of tractions
that lie outside the cell contour, which can be considered

unphysical. For this we subtract all tractions inside of the
contour from the full traction fields and are left with tractions
that lie outside the cell contour. When calculating the rooted
mean square of these outside tractions we are left with a metric
that quantifies physical consistency. We perform this analysis
for the cell in Fig. 8 and find that the mean background traction
for the BFTTC method is ∼ 0.013, while it is ∼ 0.009 for
NNlow and ∼ 0.008 for NNhigh. Since the cell segmentation is
only an approximation this metric is only a proxy for physical
consistency.

We conclude that the high noise network is the better
choice for a traction field where the noise is not known,
or might be inhomogeneous. If the experimental error is
high, or the displacement field reconstruction is imprecise
the high noise network provides a robust way of extracting
the traction field, while conventional methods are plagued by
high background noise in the reconstructed traction fields in
this case.

Evaluating a traction field with our networks takes 1 ms,
while evaluation an image with the BFTTC method takes 1.5 s
(with size 104 × 104). This is a performance improvement
of more than three orders of magnitude. Because of the non-
dimensionalization we perform it is only necessary to train
one network for a large range of experimental realizations.
Thus, when the same network is reused for a number of
different experiments the long training time will eventually
be outweighed by the significant performance advantage at
inference.

Displacement versus traction error
We train our NNs for correct tractions by using the MSE of
tractions from eq. (16) as objective function. This is only
possible with synthetic data, where the “truth” for tractions
is known. Within this approach we optimize accuracy in
tractions but concede errors in the displacement which are
not of primary interest in TFM.

Alternatively, one could base training on the MSE of
displacements with the drawback of slowing down the training
process by orders of magnitude but with the advantage that
training could also be performed with actual experimental
data. Networks trained with displacement-based metrics will
minimize the displacement error in order to obtain correct
tractions, which is a more indirect approach. The BFTTC
algorithm also minimizes the deviations in displacements in
order to determine an optimal traction field (15). We show that
this causes deviations in tractions by applying both strategies
to situations where we know the “true” tractions.

Figure 10 shows a comparison for a synthetic traction
field that we generate from the NIH/3T3 traction data (see
Fig. 8) by suppressing tractions outside the cell shape (which
should be artifacts). This provides the traction “truth” for
the comparison. The corresponding displacement field is
computed and spatially uncorrelated low amplitude Gaussian
noise is added. This displacement field is analyzed by the low
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Figure 9: Adding noise to the Fibroblast displacement field shows strong noise robustness of our network NNhigh, which has
been trained for high noise scenarios, in traction reconstruction (top and middle row). The low noise network NNlow fails
to compensate for the high noise and the BFTTC method yields qualitatively similar results to the high noise network, but
exhibits strong noise artifacts in the reconstructed traction fields. The BFTTC method has an unfair advantage, since we pass
the exact standard deviation of the perfectly uniform Gaussian noise to it for its regularization, while our networks do not get
this information. The bottom row displays the displacement field computed from the reconstructed traction fields.

and high noise networks and the BFTTC algorithm. Fig. 10
clearly shows that, on the one hand, both low and high noise
network give a significantly better traction reconstruction, in
particular outside the cell shape where the BFTTC method
tends to generate background traction noise. On the other
hand, this background traction noise obviously enables the
BFTTC method to lower the displacement errors, in particular
inside the cell shape. As we are interested in correct traction
reconstruction in TFM, this comparison clearly pinpoints the
advantages of the CNN reconstruction when trained with the
traction MSE as objective function.

Input resolution scaling
So far we used a fixed size of 𝑁 × 𝑁 = 104 × 104 for input
images. Since our networks are exclusively composed out of
input size independent layers, we are able to feed arbitrary
input sizes (i.e., arbitrary image resolutions) to the networks.

It is, however, important to realize that we provide no
spatial information to the network apart from the size 𝑁 × 𝑁
of the input array. Because the total input size is not visible to
our convolutional layers the network has no means to adapt to

changes of the input size 𝑁 . It is possible to circumvent this
limitation by scaling the input displacements properly, such
that the input is locally equivalent to that of a 104 × 104 grid.
A local 104 × 104 section of a 𝑁 × 𝑁 image of a substrate of
length 𝐿 corresponds to a section of smaller length (104/𝑁)𝐿
such that the dimensionless displacement 𝑢̄ for a resolution
𝑁 × 𝑁 corresponds to a larger dimensionless displacement
(𝑁/104)𝑢̄ for a 104 × 104 section of the same substrate. Or,
in other words, the displacement scale must be coupled to
the pixel scale, since our networks directly operate on the
pixel level with dimensionless displacements. The scale factor
for the input displacements for an image of size 𝑁 × 𝑁 is
thus 𝑁/104. We show in the Supporting Material that this is
sufficient to make the networks usable for arbitrary resolutions.
We compare the performance of our networks with the BFTTC
method on 256 × 256 grids and find superior precision and
speed provided by our networks. In particular, the SNR metric
further improves upon increasing resolution.
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Figure 10: Comparison of traction and displacement error between our networks NNlow and NNhigh and the BFTTC method for
a synthetic Fibroblast-like traction field and corresponding calculated displacements. The two top rows show the reconstructed
traction and displacement fields as compared to the “truth” (first column), which is at hand in this comparison. The two bottom
rows display the square error calculated between the “true” and reconstructed displacement and traction fields. We see that both
NNs give better traction reconstruction with reduced noise outside the cell as compared to BFTTC, while displacement errors
are slightly higher.

DISCUSSION
We present a ML approach to TFM via a deep convolutional
NN trained on a general set of synthetic displacement-traction
data derived from the analytic solution of the elastic forward
problem for random ensembles of circular traction patches.
This follows the general strategy that NNs trained with easy-
to-generate data of representative forward solutions can serve
as a regressor to solve the inverse problem with high accuracy
and robustness.

Our approach to TFM uses synthetic training data derived
from superpositions of known and representative traction
patches. This allows us to employ an objective training func-
tion that directly measures traction errors. This contrasts
conventional TFM approaches such as BFTTC, where the
tractions are adjusted to match the displacement field (even-
tually subject to additional regularizing constraints on the

tractions), such that low displacement errors are the implicit
objective. We show that a force conserving discretization is
crucial for high performance networks and we find a signifi-
cant enhancement of the robustness of the NN if the training
data is subjected to an appropriate level of additional noise.

In conventional TFM approaches the inverse elastic prob-
lem is ill-posed and the suitable choice of regularization in
the inversion procedure is crucial and has been a topic of
active research over the last twenty years. ML approaches
circumvent the need for explicit regularization and provide
an implicit regularization by a proper choice of the network
architecture, i.e., convolutional NNs for TFM, and after proper
training. Our work shows that the suitable choice of “physics-
informed” training data and, moreover, the suitable choice
of noise on the training data governs the applicability of the
NN and the compromise between accuracy and robustness
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in ML approaches, somewhat analogous to the role of the
regularization procedure in conventional TFM approaches.

We employ a sufficiently general patch-based training set
and show that this allows the CNN to successfully specialize
to artificial cell data and real cell data. Moreover, training
with an additional background noise that is 5% of the average
variance of the dimensionless displacement field (the 𝑁𝑁high
network eqn. (15)), gives a robustness against noise in the
NN performance that is superior to state-of-the-art conven-
tional TFM approaches without significantly compromising
accuracy. We can systematically back these claims by char-
acterizing both the NN performance and the performance of
state-of-the-art conventional TFM (the BFTTC method) via
six error metrics both for the patch-based training set (Fig. 6)
and the artificial cell data set (Fig. 7), which are two data
sets where we can compare the prediction to the true traction
labels. We also test the NN performance on random traction
fields (see Supporting Material) and traction fields derived
from real cell data (Fig. 10). Whenever the true tractions are
known, we find that our NNs, which were trained to minimize
traction errors, give more accurate traction reconstruction
with a reduced background traction noise outside the cell
shape, although the NNs tend to concede higher errors in the
corresponding displacement fields.

For real cell data, we find that a NN trained with low noise
(0.5%) gives the best performance if the experimental data is
of high quality with low noise levels (see Fig. 8). For noisy
experimental data, on the other hand, the NN trained with
high levels of noise (5%) clearly performs best (see Fig. 9).
This suggests that it might be beneficial to first employ the
high noise network on experimental data and only switch to
the low noise network if the background noise level is below
1% of the displacement standard deviation.

Overall, we provide a computationally efficient way to
accelerate TFM as a method and improve both on accuracy and
noise resilience of conventional approaches, while reducing
the computational complexity, and thus execution time by
multiple orders of magnitude compared to state-of-the-art
conventional approaches. It is apparent from our analysis that
ML approaches have the potential to shift the paradigm in
solving inverse problems away from conventional iterative
methods, towards educated regressors which are trained on
a well understood and numerically simple to solve forward
problem.

We make all NNs discussed in this work freely available
for further use in TFM. We use a 104 × 104-grid for the
displacement data, but show that our networks are able to
handle arbitrary displacement data resolutions. Experimental
data can easily be adapted to comply with the network input
shape by properly scaling the displacements or, alternatively,
by interpolating or downsampling to a 104 × 104-grid, which
will, however, decrease the traction resolution.

By using non-dimensionalized units, the NNs made avail-
able with this work are widely applicable across different
problems and can also be easily further adapted, for exam-

ple, to problems where typical tractions are not limited to
the range traction ranges discussed here by repeating the
training process. In the Supporting Material, we show that
the present networks are able to generalize to larger dimen-
sionless traction magnitudes than trained for, with 𝑡 ranging
up to 1.5, without re-training. Another potential problem
to be addressed in future work is the effect of spatial noise
correlations, for example, from optical aberration or from
the displacement tracking routine that is applied to generate
the displacement input data. In the Supporting Material, we
consider uncorrelated Gaussian noise with a standard devia-
tion that decreases with the distance from the image center
and find a robust performance of the high noise network.
Robustness to noise with genuine spatial correlations over
characteristic distances significantly larger than the pixel size
will presumably require re-training of the networks. All nec-
essary routines to re-train a NN to new traction levels, new
characteristic patch sizes, or other noise levels are made freely
available with this work at https://gitlab.tu-dortmund.
de/cmt/kierfeld/mltfm. This will also allow to easily
adapt the training to other types of noise correlations.
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DETAILS OF THE SOLUTION OF THE
FORWARD PROBLEM FOR TRACTION
PATCHES
For the solution of the forward problem for a tractions patch
of size 𝑅𝑖 , we obtained the functions 𝑁 𝑗 (𝑟𝑖 , 𝜃) in eqn. (12)
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and eqn. (13). They are defined as

𝑁 𝑗 (𝑟𝑖 , 𝜃) ≡
∫ 2𝜋

0
𝑑𝜙

∫ ∞

0
𝑑𝜌
𝐽1 (𝜌𝑅𝑖)

𝜌
𝑓 𝑗 (𝜙)𝑒−𝑖𝜌𝑅𝑖𝑟𝑖 cos(𝜙−𝜃)

(18)

with

𝑓1 (𝜙) ≡ 1

𝑓2 (𝜙) ≡ sin2 𝜙

𝑓3 (𝜙) ≡ sin 𝜙 cos 𝜙

𝑓4 (𝜙) ≡ cos2 𝜙.

By definition, 𝑁2 + 𝑁4 = 𝑁1.
The remaining integrals in the functions 𝑁 𝑗 (𝑟𝑖 , 𝜃) can be

performed analytically:

𝑁1 (𝑟𝑖) = 2𝜋
∫ ∞

0
𝑑𝑥
𝐽1 (𝑥)𝐽0 (𝑥𝑟𝑖)

𝑥

=

{
4E

(
𝑟2
𝑖

)
𝑟𝑖 < 1

4
[
𝑟𝑖E

(
𝑟−2
𝑖

)
− (𝑟𝑖 − 𝑟−1

𝑖
)K

(
𝑟−2
𝑖

) ]
𝑟𝑖 > 1

(19)

with the complete elliptic integrals𝐸 (𝑚) =
∫ 𝜋/2
0 (1−𝑚 sin2 𝜃)1/2𝑑𝜃

and 𝐾 (𝑚) =
∫ 𝜋/2
0 (1 − 𝑚 sin2 𝜃)−1/2𝑑𝜃;

𝑁2 (𝑟𝑖 , 𝜃) = 2𝜋
∫ ∞

0
𝑑𝑥

(
𝐽1 (𝑥)𝐽1 (𝑥𝑟𝑖)

𝑥2𝑟𝑖
− sin2 𝜃

𝐽1 (𝑥)𝐽2 (𝑥𝑟𝑖)
𝑥

)

=


4 sin2 𝜃E

(
𝑟2
𝑖

)
+ 4

3𝑟2
𝑖

cos(2𝜃)×[
(1 + 𝑟2

𝑖
)E

(
𝑟2
𝑖

)
+ (𝑟2

𝑖
− 1)K

(
𝑟2
𝑖

) ]
𝑟𝑖 < 1

2
3𝑟𝑖

[ (
3𝑟2

𝑖
+ (2 − 𝑟2

𝑖
) cos(2𝜃)

)
E
(
𝑟−2
𝑖

)
+

(1 − 𝑟2
𝑖
) (3 − cos(2𝜃))K

(
𝑟−2
𝑖

) ]
𝑟𝑖 > 1

;

(20)

𝑁3 (𝑟𝑖 , 𝜃) = −2𝜋 sin 𝜃 cos 𝜃
∫ ∞

0
𝑑𝑥
𝐽1 (𝑥)𝐽2 (𝑥𝑟𝑖)

𝑥

=


2

3𝑟2
𝑖

sin(2𝜃)
[ (
𝑟2
𝑖
− 2

)
E
(
𝑟2
𝑖

)
+

2(1 − 𝑟2
𝑖
)K

(
𝑟2
𝑖

) ]
𝑟𝑖 < 1

2
3𝑟𝑖 sin(2𝜃)

[ (
𝑟2
𝑖
− 2

)
E
(
𝑟−2
𝑖

)
+

(1 − 𝑟2
𝑖
)K

(
𝑟−2
𝑖

) ]
𝑟𝑖 > 1

;

(21)
𝑁4 (𝑟𝑖 , 𝜃) = 𝑁1 (𝑟𝑖) − 𝑁2 (𝑟𝑖 , 𝜃). (22)

DEFINITIONS OF EVALUATION METRICS
We employ six evaluation metrics (see Figs. 6 and 7). Their
definition is based on a comparison of traction predictions
®̄𝑡pre,s (𝑥, 𝑦) in sample 𝑠 compared to “true” tractions ®̄𝑡tru,s (𝑥, 𝑦),
which are known for the artificial data for random circular
traction patches. We evaluate all six metrics by averaging
over 𝑆 = 100 samples; the sample average is denoted by
〈...〉. All traction vectors ®̄𝑡𝑖,𝑣 in patch 𝑖 (𝑖 = 1, ..., 𝑛) are

indexed by 𝑣. All tractions vectors ®̄𝑡𝑏,𝑤 outside patches are
considered as belonging to the background 𝑏 and indexed by
𝑤. For completeness we give the precise definitions of all six
evaluation metrics:

1. Deviation of Traction Magnitude at Adhesions (DTMA)
(15):

DTMA =

〈
mean𝑖

mean𝑣

(
|®̄𝑡pre,s
𝑖,𝑣 | − |®̄𝑡tru,s

𝑖,𝑣 |
)

mean𝑣

(
|®̄𝑡tru,s
𝑖,𝑣 |

) 〉
. (23)

Note that mean𝑣

(
|®̄𝑡tru,s
𝑖,𝑣 |

)
= |®̄𝑡tru,s

𝑖,𝑣 | because artificial
traction data is piecewise constant in traction patches.

2. Deviation of Traction Magnitude in the Background
(DTMB) (15):

DTMB =

〈mean𝑤

(
|®̄𝑡pre,s
𝑏,𝑤 | − |®̄𝑡tru,s

𝑏,𝑤 |
)

mean𝑖mean𝑣

(
|®̄𝑡tru,s
𝑖,𝑣 |

) 〉
. (24)

Note that |®̄𝑡tru,s
𝑏,𝑤 | = 0 because artificial traction data

exactly vanishes outside patches.

3. Signal to Noise Ratio (SNR) (15):

SNR =

〈mean𝑖mean𝑣

(
|®̄𝑡pre,s
𝑖,𝑣 |

)
std𝑤

(
®̄𝑡tru,s
𝑏,𝑤

) 〉
, (25)

where std is the standard deviation.

4. Deviation of the Maximum traction at Adhesions (DMA)
(15):

DMA =

〈
mean𝑖

max𝑣

(
|®̄𝑡pre,s
𝑖,𝑣 |

)
− max𝑣

(
|®̄𝑡tru,s
𝑖,𝑣 |

)
mean𝑣

(
|®̄𝑡tru,s
𝑖,𝑣 |

) 〉
.

(26)
Note that max𝑣

(
|®̄𝑡tru,s
𝑖,𝑣 |

)
= |®̄𝑡tru,s

𝑖,𝑣 | because artificial trac-
tion data is piecewise constant in traction patches.

5. Absolute Deviation of Traction Magnitude at Adhesions
(ADTMA):

ADTMA =

〈
mean𝑖

�������
mean𝑣

(
|®̄𝑡pre,s
𝑖,𝑣 | − |®̄𝑡tru,s

𝑖,𝑣 |
)

mean𝑣

(
|®̄𝑡tru,s
𝑖,𝑣 |

)
�������
〉

.

(27)

6. Deviation of Traction Direction at Adhesions (DDA):

DDA = 〈mean𝑖mean𝑣 𝑝
2 (𝛾pre,s

i,v , 𝛾tru,s
i,v )〉 , (28)

where 𝑝(𝛼, 𝛽) measures the periodic distance between
two angles 𝛼 and 𝛽.
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