REDUCTION OF THE ELASTIC GREEN’S TENSOR TO TWO DIMENSIONS

The full three-dimensional Green’s tensor of the boundary problem in the main text on the half-space z > 0 is given
by [S1l [S2]:
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The tensor is not symmetric, in general. On the surface z = 0, this becomes
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For incompressible polymer materials with v ~ 1/2, the coupling between in-plane tractions and out-of-plane dis-
placements is small.

DISCRETIZATION OF TRACTION PATCHES
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FIG. S1. The discretization of circular traction patches onto a pixel grid (top row) with a naive discretization, an improved
discretization and a force conserving discretization (left to right). The resulting residual displacement errors (bottom row) are
generated by feeding the discretized traction field back to the solver to generate a residual of the input displacement field and
the displacement field obtained from resolving the discretized traction field. The residual error decreases drastically if the total
traction force is conserved by the discretization method.

A naive approach for the discretization of the circular traction patches onto a square pixel grid with indices
i,7 € {1, ..., N} and square side lengths ¢ = L/N is to check whether any square segment center point ¢;; is contained
in the circular traction patch of radius R; and center point ¢;. If the center point is contained, the grid segment ij is
assigned the traction #y of the circular patch:

(S3)

tij =

r 50, fOI' |8” — Et| < Rt
0, else.
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FIG. S2. Calculation of overlap areas Ag,ov for circular patches containing k = 1,2, 3 corners of square grid segments.

This naive discretization suffers from a critical artifact: it does not conserve the total traction force F; exerted by the
patCh7 Zi,j CLQEIL']' # ioﬂ'RtQ = Ft.

One step towards improving the force conservation is to check for all four corners of the square grid segment whether
they are contained in the traction circle. If we assign equal weights to any of the corners,

Eij —t #corners:ontamed’ (S4)
the naive optimization is improved, but still not force conserving.

Ultimately, we construct a force conserving discretization by explicitly calculating the exact area occupation ratio
of each square grid segment and the circular traction spots (see Fig. .

We start with the case that exactly one corner of the grid square with is contained in the traction circle. We only
need to consider the case where only the bottom left corner of the grid segment is contained in the traction circle; all
remaining cases can be constructed by mirror or rotational symmetries. We denote the vector from the center of the
circle to the bottom left corner of the grid segment by (Az, Ay), its length by d and the angle with the y-axis by «
such that (Ax, Ay) = d(sin «, cos ). The overlap area of traction circle and grid square is given by the polar integral

1 /2
Ao =3 /0 d6r2(p, ) (s5)
with
r(6,) = \/R — dsin(¢ — ) — dcos(6 — a). (6)

This integral can be solved via basic calculus:

1
Al,ov(Ax, Ay) = ZR? + A(EAy

1 . .
~5 (\/R? — Ay2Ay + 1/ R? — Ax2Ax + R? arcsin(Ay/R;) + R? arcsm(Am/Rt)) : (S7)

If two corners of the grid square are contained in the traction patch it suffices to consider the case where the bottom
left and the top left corner are contained because of rotational symmetries. Additionally, we can concentrate on the
case where the center point of the traction patch is below (smaller y-component) the grid square center point because
of the mirror symmetries of the problem. The two corner overlap can be viewed as a one corner overlap with a shifted
Az and an additional rectangular overlap (see Fig. resulting in

As ov(Az, Ay) = Aj oy (\/Rf — (Ay +a)?, Ay) +a ( R? — (Ay +a)? — Aac) . (S8)

Similarly, the three corner overlap decays into a two corner overlap minus a shifted one corner overlap (see Fig.[S2)).
Again, for symmetry reasons, we only need to consider one configuration, where the top left, bottom left and bottom
right corner of the grid square are contained in the circular traction patch:

As oy (Az, Ay) = Ag oy (Ax, Ay) — A1 oy (Az + a, Ay) . (S9)



Finally, in order to conserve the total force exerted by the traction patch, the tractions assigned to a grid square
must then be weighted by their area occupation percentage,

~ A
tij _ tO ov,ij

2 (S10)
where Agy 45 is calculated from eqns. , , or depending on the number of corners of square ij contained
in the circular traction patch.

We integrate this force balance conserving discretization algorithm in a solver to generate the displacement fields
from arbitrary superpositions of circular traction patches. The solver is implemented in a C/C++ package with a
Python binary interface to combine the speed of native byte code with the simplicity of an interpreted language.

The fundamental error of this method can be computed by generating a large exact circular solution and feeding
the discretized traction grid back into our solver. With the force conserving implementation we are able to reproduce
the displacement field of a large circular traction patch of radius R; = 0.4 to a precision of RMSE ~ 1.2 - 1074,
This also allows us to probe the difference between the three traction discretization methods in Fig. The naive
discretization gives a residual error RMSE ~ 5.1-10~4 for the displacement field, the optimized naive discretization is
already able to lower the residual error drastically to RMSE ~ 4.4 - 10~*. The force conserving method finally lowers
the residual error to RMSE ~ 1.2 - 10~*, which is significantly better than both the naive and the improved naive
method.



RECONSTRUCTION OF RANDOM TRACTION FIELDS
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FIG. S3. We construct a completely random traction field that is generated by an entirely different method, as compared to the
training data. From the generated random traction field (upper left) we generate the accompanying displacement field (middle
left), which we feed to our high noise network and the BFTTC method. Both methods generate a traction field reconstruction
(top row), from which we can compute the reconstructed displacement field (middle row) and the corresponding displacement
errors (bottom row).

We generate entirely random traction fields via a method the networks have not been trained on. This will prove
that our networks indeed have learned to exploit the linearity of the problem and that they have learned a general
solution for the problem.

We generate these random traction fields such that they resemble traction fields that my be encountered in reality.



We first generate Gaussian noise with vanishing mean and a standard deviation of 1072. We then convolve the
substrate field with a proximity filter exp(—|r — #|*/0.14) corresponding to a characteristic correlation length of 0.1
in dimensionless units of the image size, which induces correlations over ~ 10 pixels for N = 104. The result of this
is a traction field and an associated displacement field which can be seen in Fig. [S3| (first column). The traction field
we have generated here has an entirely different character than the circular training samples the network has seen in
training. The displacement field generated from the random traction field is passed to our high noise network and the
BFTTC method without further altering it (e.g. by adding noise). The reconstructed traction fields for both methods
are shown in Fig. (bottom row). We then pass these reconstructed traction traction fields back into our traction
solver, which generates the associated displacement field. The resulting reconstructed displacement fields are shown
in Fig. [S3| (top row).

Some observations are possible from the visual comparisons alone. First, our network was able to reconstruct the
traction field accurately and the resulting reconstructed displacement field is visually similar to the ground truth.
Second, the BFTTC method achieves a reconstruction which at first glance seems similar, but on closer inspection
clearly shows stronger deviations from the ground truth than our network. Third, the BEFTTC method suffers from
strong reconstruction artifacts at the perimeter of the substrate. These visual findings are supported by the RMSE we
calculate between the ground truth displacement field and the reconstructed displacement fields. While the network
has an RMSE ~ 6.5 - 1072 the BFTTC method achieves an RMSE ~ 1.8 -10~!. We generate 50 random force fields
and determine the RMSE for the BFTTC method and our N Nypjgh, network between the input displacement field and
the reconstructed displacement field (generated from the reconstructed traction field). The BFTTC method achieves
on average RMSE ~ 0.04, while our network achieves on average RMSE ~ 0.01. Our network thus predicts traction
fields that are more consistent with the input displacement fields.

The advantage of this comparison is that we have the exact ground truth for tractions while not using traction
fields that are similar to the training data. We have thus shown two things here — our network is able to reconstruct
arbitrary traction fields and it does so with high precision.



GAUSSIAN NOISE WITH AMPLITUDE CORRELATED WITH POSITION
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FIG. S4. Results for Gaussian noise with a standard deviation decreasing with the distance to the center of the experimental
images. It is evident, that the high noise network returns an invariant prediction even under these circumstances. The BFTTC
method produces a significantly elevated traction background noise.

In this work, we focused on uncorrelated Gaussian noise. Experimental noise might contain correlations, for
example, from optical aberration that gives rise to a non-uniform noise amplitude. As an example, we consider effects
from uncorrelated Gaussian noise with a standard deviation that decreases with the distance from the center of the
experimental image in Fig. In this example, the standard deviation decreases with a factor (1 — r/v/2)%, where r
is the dimensionless distance from the center.



HIGHER TRACTION MAGNITUDES
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FIG. S5. We generate traction patches with magnitudes uniformly varying from 0.5 to 1.5, which is well outside our training
range. We observe that the networks are still able to provide highly accurate predictions, even in this traction magnitude

regime.

We trained our networks on traction patches with dimensionless traction magnitudes £ uniformly distributed between
0.0 and 0.5. In Fig. we show that the networks are able to generalize to larger traction magnitudes by evaluating
all six metrics for synthetic patch-based data with dimensionless traction magnitudes ¢ uniformly distributed between

0.5 and 1.5.




CHANGING THE INPUT RESOLUTION
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FIG. S6. We generate traction patches on a larger grid of size 256 x 256 to verify that our networks are able to adapt to input
resolution changes. We compare our six precision metrics with the BFTTC method and find similar results compared to the
findings for 104 x 104 grids in the main text.

To quantify the performance of our networks for higher input resolutions we generate data on a significantly larger
grid (N x N = 256 x256) and scale the input displacements by 256,/104 (as discussed in the main text). We compare the
traction reconstruction performance with the BETTC method in Fig. In our implementation (using TensorFlow),
the execution time scales oc N? for the BFTTC method, while it remains linear oc N for network inference.



FURTHER ANALYSIS OF EXPERIMENTAL DATA

We present additional results for all 14 cells provided in Ref. [S3]. We compare the traction reconstruction for all
14 real Fibroblast between our networks NNy, and NNy and the BETTC method (top and middle rows of each
image). Although we do not have the “true” traction field at hand for a quantitative evaluation of precision across
the methods, we see compatible results, while both networks have a significantly reduced noise level. The top rows
show traction magnitude reconstruction, while the center rows show angle reconstruction. In addition, the bottom
rows displays the displacement field computed from the reconstructed traction fields. We see that deviations in the
displacement field between all three methods are small. The cells are numbered as in the repository for Ref. [S3]: cell
14 is the cell used as an example in the main text, cells 1-13 are analyzed in addition in this Supporting Information.
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FIG. S7. Comparison of traction and displacement reconstruction for a real Fibroblast between our networks NN,y and NNpign
and the BETTC method for cell 1 of Ref. [S3].
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FIG. S8. Comparison of traction and displacement reconstruction for a real Fibroblast between our networks NNoy and NNpjgn
and the BETTC method for cell 2 of Ref. [S3].
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FIG. S9. Comparison of traction and displacement reconstruction for a real Fibroblast between our networks NN,y and NNpign
and the BETTC method for cell 3 of Ref. [S3].
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FIG. S10. Comparison of traction and displacement reconstruction for a real Fibroblast between our networks NNi, and
NNpigh and the BETTC method for cell 4 of Ref. [S3].
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FIG. S11. Comparison of traction and displacement reconstruction for a real Fibroblast between our networks NNi, and
NNpigh and the BETTC method for cell 5 of Ref. [S3].
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FIG. S12. Comparison of traction and displacement reconstruction for a real Fibroblast between our networks NNi, and
NNpigh and the BETTC method for cell 6 of Ref. [S3].
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FIG. S13. Comparison of traction and displacement reconstruction for a real Fibroblast between our networks NNi, and
NNpigh and the BETTC method for cell 7 of Ref. [S3].
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FIG. S14. Comparison of traction and displacement reconstruction for a real Fibroblast between our networks NNi, and
NNpigh and the BETTC method for cell 8 of Ref. [S3].
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FIG. S15. Comparison of traction and displacement reconstruction for a real Fibroblast between our networks NNi, and
NNpigh and the BETTC method for cell 9 of Ref. [S3].
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FIG. S16. Comparison of traction and displacement reconstruction for a real Fibroblast between our networks NNi, and
NNpigh and the BEFTTC method for cell 10 of Ref. [S3].
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FIG. S17. Comparison of traction and displacement reconstruction for a real Fibroblast between our networks NNi, and
NNpigh and the BETTC method for cell 11 of Ref. [S3].
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FIG. S18. Comparison of traction and displacement reconstruction for a real Fibroblast between our networks NNi, and
NNiigh and the BFTTC method for cell 12 of Ref. [S3].
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FIG. S19. Comparison of traction and displacement reconstruction for a real Fibroblast between our networks NNi, and
NNpigh and the BEFTTC method for cell 13 of Ref. [S3].
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FIG. S20. Comparison of traction and displacement reconstruction for a real Fibroblast between our networks NNi, and
NNpigh and the BEFTTC method for cell 14 of Ref. [S3]. Cell 14 is also analyzed in Fig. 8 in the main text; here we also show
the reconstructed displacement data.
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