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Abstract – We investigate stall force and polymerization kinetics of rigid protofilaments in a
microtubule or interacting filaments in bundles under an external load force in the framework
of a discrete growth model. We introduce the concecpt of polymerization cycles to describe the
stochastic growth kinetics, which allows us to derive an exact expression for the stall force. We
find that the stall force is independent of ensemble geometry and load distribution. Furthermore,
the stall force is proportional to the number of filaments and increases linearly with the strength
of lateral filament interactions. These results are corroborated by simulations, which also show a
strong influence of ensemble geometry on growth kinetics below the stall force.

Copyright c© EPLA, 2011

Introduction. – Polymerization of cytoskeletal fila-
ments is essential for various cellular processes, such as
motility or the formation of cellular protrusions including
filopodia or lamellipodia [1,2]. Single polymerizing fila-
ments can generate forces in the piconewton range, as
has been demonstrated experimentally for microtubules
(MTs) [3]. Such force generation mainly relies on the
gain in chemical bonding energy upon monomer attach-
ment [4]. An opposing force slows down filament growth,
which finally stops at the stall force representing the
maximal polymerization force a filament can generate.
Therefore, the stall force is the essential quantity to
characterize polymerization forces.
Cellular force generating structures such as filopodia

are made of polymerizing ensembles of interacting actin
filaments [5]. Particularly important are bundles of
parallel filaments, which can hold together by crosslinking
proteins or unspecific attractive interactions. Stall forces
of polymerizing actin bundles could be determined
experimentally only recently [6].
MTs are tubular filaments, which also consist of an

ensemble of typically 13 interacting protofilaments (PFs).
The force-velocity relation of polymerizing MTs has been
experimentally determined in refs. [3,7], where stall forces
around 5 pN have been obtained.
An ensemble of many non-interacting filaments or PFs

is believed to have higher stall forces than a single
filament because of load sharing effects. First fits of the

(a)E-mail: Jan.Kierfeld@tu-dortmund.de

experimental data on MT growth in ref. [3] were based on
the assumption of load sharing and application of ratchet
models for a single rigid PF [8]. An explicit continuous
model for N rigid PFs in a MT under load resulted in stall
forces ∝N1/2 [9]. For an analogous discrete growth model
of PFs in a MT it has been shown that the stall force
of N PFs increases ∝N compared to a single PF [10],
in agreement with equal load sharing. Variants of this
model which allow a better fit of experimental data were
discussed in [11].
In addition to load sharing effects, crosslinking or

attractive lateral interactions within filament bundles or
between PFs can allow the ensemble to generate even
higher forces by exploiting the additional interaction
energy [12]. For flexible filaments, zipping mechanisms for
force generation can even rely exclusively on attractive
interactions [13]. These results suggest that the stall
force of interacting filaments or PFs increases by the
additional interaction energy per length that a bundle
gains upon assembly. Lateral interactions between PFs of
a polymerizing MT have been considered in refs. [14–16].
Also for MT growth, approximative analytical results in
refs. [14,15] suggest that the stall force of interacting PFs
increases by the additional interaction energy per length
that the MT gains upon assembly.
Apart from this progress, an exact result for the stall

force could not be derived so far. Furthermore, the
geometry of the bundle or tube, i.e. the relative position-
ing of filaments or PFs in the ensemble, has an impact
on the mechanics of monomer insertion under load and on
the lateral interactions, which are involved.
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In this letter, we investigate the combined effects of
attractive filaments interactions and ensemble architecture
on the growth kinetics under a compressive force using a
discrete growth model [10,14,15]. Based on the concept
of polymerization cycles we derive an exact analytical
result for the stall force. This result shows that for the
discrete model introduced in refs. [10,14,15] the stall
force is a universal quantity, which only depends on the
polymerization energy gain and the interaction strength
between filaments or PFs. The stall force is independent of
ensemble geometry and independent of the distribution of
load force and interaction energy between attachment and
detachment rates. The result also shows that the stall force
increases ∝N , i.e., linearly in the number of filaments.
Using stochastic simulations based on the Gillespie

algorithm we find that the growth kinetics below the stall
force depends sensitively on the strength of interactions
between rigid filaments in a bundle or PFs in a MT
and on the geometry of the bundle or tube. We find
different shapes of the force-velocity relation as well as a
complex non-monotonic dependence of the growth velocity
on the relative filament positioning. This dependence is
very pronounced at low forces well below the stall force
but vanishes upon approaching the stall force resulting in
a geometry independent stall force.
Our results are of particular interest with respect to the

growth kinetics of MTs, which usually contain 13 PFs.
Our results imply that a two-start helical structure (with a
helical pitch of one tubulin dimer), which is often assumed
in modelling, has a distinct force-velocity relation but an
identical stall force as the actual three-start helix structure
(with a helical pitch of three tubulin monomers) found by
electron microscopy [17].

Model and simulation. – We consider a filament
consisting of N rigid PFs in a tube-like arrangement such
that each PF has two neighbors and periodic boundary
conditions apply. For actin bundles, this model neglects
effects from thermal shape fluctuations [18] and the
existence of defects within the bundle structure [19–21].
Each PF consists of monomers of size d, see fig. 1, The
attachment and detachment rates for monomers are kon
and koff , respectively, and related to the polymerization
energy gain Ep > 0 upon adding a monomer by kon/koff =
eEp/kBT at temperature T . For MTs, each monomer is a
tubulin dimer, and we will neglect hydrolysis of GTP such
that kon and koff are attachment and detachment rates
for GTP-tubulin dimers. We also neglect catastrophes
and consider MTs only in their growing phase. Effects of
hydrolysis are shortly discussed in the end.
Each PF has attractive lateral interactions with its two

neighbors; the corresponding lateral association energy
(per length) is εl > 0. Thus, apart from the polymerization
energy, an attaching monomer gains the lateral interaction
energy εlΔℓ, where Δℓ > 0 is the additional contact length
with neighboring monomers, which is created upon insert-
ing the monomer. Likewise, a detaching monomer looses a

Fig. 1: (Colour on-line) Schematic picture of the model of
interacting PFs polymerizing against the external load force F
for N = 4. Positions of monomers of size d in neighboring PFs
are shifted by the offset h. Insertion of a monomer (yellow)
might change the position of the leading PF by Δx (right
picture) and create additional contact length with neighboring
PFs (red).

corresponding interaction energy resulting in Δℓ < 0. If the
PF can equilibrate its remaining configurational degrees of
freedom sufficiently fast during addition or removal of a
monomer, thermodynamics requires that lateral interac-
tions change on- and off-rates of that monomer such that
k∗on/k

∗
off = (kon/koff) exp(εl|Δℓ|/kBT ).

The influence of an external load is described by a
force F , which acts only on the leading PF. We denote
the position of the tip of the leading filament by x.
Insertion of a monomer changes the position of the tip of
the leading PF by Δx> 0 in the on-process, which gives
rise to an additional mechanical energy FΔx. Likewise,
removal of a monomer in the off-process gives rise to
Δx< 0. If we assume again that the PF can equilibrate its
remaining configurational degrees of freedom sufficiently
fast during addition or removal of a monomer under force,
thermodynamics requires further modification of on- and
off-rates such that [8,9]

k∗on
k∗off
=
kon
koff
e(εl|∆ℓ|−F |∆x|)/kBT . (1)

If on- and off-rates k∗on and k
∗
off are specified separately

the thermodynamic constraint (1) allows to introduce a
load distribution factor θF and a lateral energy distribu-
tion factor θl,

k∗on = kone
(−θFF |∆x|+(1−θl)εl|∆ℓ|)/kBT ,

k∗off = koffe
((1−θF )F |∆x|−θlεl|∆ℓ|)/kBT .

(2)

In general, load and energy distribution factors can depend
on the specifics of insertion and removal and differ for
each polymerization step. A reasonable assumption is that
the external load only affects the on-rate (corresponding
to θF = 1) and that the on-rate is diffusion-limited and
not affected by lateral interactions (corresponding to
θl = 1) but other choices are thermodynamically possible.
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In the absence of lateral interactions, this model (with
θF = 1) was introduced by van Doorn et al. [10]. Lateral
interactions have been included in refs. [14–16].
The geometry of the bundle or tube has an impact on

the mechanics of monomer insertion under load and on
the lateral interactions, which are involved. Therefore, we
expect a strong influence of geometry on growth kinetics.
We control the ensemble geometry by shifting the relative
position of neighboring PFs in the initial configuration by
a distance h, which we call a geometry parameter, see fig. 1.
Because of the periodic boundary conditions, we have
N − 1 relative displacements of h between neighboring PFs
and one relative displacement of (N − 1)h. For h= 0 we
have an aligned or “flat” initial configuration with all PF
tips at the same height. For symmetry reasons, geometry
parameters h and −h are equivalent. The parameter h can
also be shifted by multiple monomer sizes d corresponding
to the insertion of additional monomers without changing
the kinetics. Therefore, it is sufficient to consider values
0<h< d/2. In the following we will measure h in units of
d and use h̄≡ h/d.
Of special interest are MTs, which are usually built

from N = 13PFs with tubulin dimers of size d≃ 8 nm [17].
Often it is assumed that MTs with N = 13PFs have
an offset h̄= 1/13 [10,11], which results in a symmetric
arrangement without a seam in the structure, where the
tube closes. The actual structure exhibits a three-start
helix with a helical pitch of three tubulin monomers
(or 1.5d) resulting in h̄= 1.5/13 [17] and a seam. Other
numbers of PFs in MTs ranging from N = 8 up to N = 19
have been observed as well [17,22] in the form of two-start
or four-start helices corresponding to h̄= 1/N (a helical
pitch of d) or h̄= 2/N (a helical pitch of 2d), respectively.
In view of these different possible structures we want
to study MT growth kinetics also as a function of the
geometry parameter h [14].
In order to simulate the stochastic non-equilibrium

growth dynamics of the model we use the Gillespie
algorithm [23], which implements a continuous-time
Markov process with the rates introduced above. For
the simulations we use parameters, kon = 200 [1/min],
koff = 50 [1/min], a monomer size d= 8nm and a
temperature kBT = 4.1 pNnm corresponding to room
temperature. We used a load distribution factor θF = 1
and performed simulations both for energy distribu-
tion factors θl = 0 (interaction energy affects on-rate)
and θl = 1 (on-rate diffusion-limited). For each set of
parameters, we average over 100 runs.

Polymerization cycles, growth velocity, and stall

force. – The polymerization kinetics is completely deter-
mined by the configuration of theN PF ends: the absolute
length of each PF does not enter the rates (2) and we
can neglect the possibility of vacancies or holes within a
PF, which have not been observed experimentally. There-
fore, the growth kinetics can be described by transitions
between all possible states of the N PF ends. In general,

each such state of the filament end can be described by a
set �n= (n1, . . ., nN−1) of N − 1 integer monomer number
differences between neighboring PFs with ni as monomer
number difference between PFs i and i+1. Transitions
between these states happen by monomer addition and
removal with rates (2). Monomer addition (removal) at PF
i leads to changes Δni =+1 and Δni−1 =−1 (Δni =−1
and Δni−1 =+1). The transition rates k�n1,�n2 between two
states �n1 and �n2 are only non-zero if both states are related
by addition or removal of a single monomer and the corre-
sponding rates are determined by (2), which depend on
force and lateral interactions.
During polymer growth, layers of monomers are added

and eventually layers with N monomers are completed
upon addition of a monomer. After addition of L complete
layers the filament end attains the same configuration
as initially. Therefore, each completion of L layers closes
a polymerization cycle CL of transitions in the network
of states �n. A non-zero average polymerization velocity
v= 〈ẋ〉 implies that layers are added with a non-zero
rate and is equivalent to the existence of stationary cycle
fluxes in the network of states �n . We can calculate these
stationary cycle fluxes using general theorems derived for
the kinetics of chemical networks [24–26].
We denote the stationary cycle flux for a polymerization

cycle C+L completing L layers by J(C
+
L ). Likewise, the

opposite cycle removing L layers is called C−L and the
corresponding stationary flux is J(C−L ). For an arbitrary
cycle C+L = (�n1, �n2, . . ., �nM , �nM+1 ≡ �n1) of length M and
completing L layers (M �NL), the ratio of stationary
cycle fluxes in forward and backward direction is given
exactly by the ratio of products of transition rates along
the edges of the cycles [24,26]:

J(C+L )

J(C−L )
=

∏M
i=1 k�ni,�ni+1
∏M
i=1 k�ni+1,�ni

. (3)

In addition, we can establish a general relation between
the average growth velocity v and the stationary fluxes
along cycles CL: The total stationary net flux along the
fundamental set of all cycles C1 for completions of single
layers gives the mean time to complete a single layer and,
therefore, the mean growth velocity as

v= d
∑

C1

(J(C+1 )−J(C
−
1 )). (4)

Summation over single-layer cycles C1 is sufficient because
they form a fundamental set [25], i.e., linear combinations
allow to represent cycles for an arbitrary number of L
layers.
At the stall force, the growth velocity v vanishes,
i.e., J(C+1 ) = J(C

−
1 ), for all polymerization cycles for

single layers. Because such cycles form a fundamental
set, it follows that all stationary net polymerization cycle
currents have to vanish, i.e., J(C+L ) = J(C

−
L ) for all cycles

CL. This leads to the conclusion that the different filament
end states are in detailed balance at the stall force, as has
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been conjectured in [10]. According to the relation (3) we
obtain the following Wegscheider condition [27] for any of
the polymerization cycles CL:

M
∏

i=1

k�ni,�ni+1
k�ni+1,�ni

= 1, (5)

which will lead to an exact expression for the stall force.
We first consider the cycle C+L . Addition of exactly

L layers requires M+ = (M +NL)/2 attachment and
M− = (M −NL)/2 detachment transitions, where
M =M++M− and NL=M+−M−. Regardless of load
and energy distribution factors, the thermodynamic
constraint (1) requires

k�ni,�ni+1
k�ni+1,�ni

=
kon
koff
e±(εl|∆ℓi,i+1|−F |∆xi,i+1|)/kBT (6)

for each attachment (+) and detachment (−) transition
in C+L . Therefore

∏M
i=1 k�ni,�ni+1
∏M
i=1 k�ni+1,�ni

=

(

kon
koff

)M+−M−

e(εl|∆ℓM |−F |∆xM |)/kBT ,

(7)

where ΔℓM =
∑M+
i=1 |Δℓi,i+1| −

∑M
−

i=1 |Δℓi,i+1|=LNd is
the total net gain in lateral contact length and ΔxM =
∑M+
i=1 |Δxi,i+1| −

∑M
−

i=1 |Δxi,i+1|=Ld is the total net
advance of the leading PF. As a result, we find for the
ratio of products of transition rates along the edges of the
forward and backward cycles the simple result

∏M
i=1 k�ni,�ni+1
∏M
i=1 k�ni+1,�ni

= (kon/koff)
LNe(εlLNd−FLd)/kBT . (8)

From the condition (5) we then obtain an exact expression
for the stall force,

Fstall =N

[

εl+
kBT

d
ln

(

kon
koff

)]

. (9)

Based on the assumption of detailed balance the same
result has also been obtained in ref. [14]. The stall force
is a linear function of the number N of filaments in the
ensemble and increases linearly with the lateral interac-
tion. It is independent of all load or energy distribution
factors of individual polymerization steps. Moreover, the
stall force is independent of the ensemble architecture.
Our derivation shows that geometry independence not
only means that the result (9) is independent of the para-
meter h for an arrangement with constant offset between
neighboring PFs but that we obtain the same result (9)
for the stall force for completely arbitrary arrangements
of PFs relative to each other. Therefore, we also expect
the stall force of a bundle of interacting actin filaments
not to depend on the precise relative arrangement of actin
filaments, which is hard to control in experiments.
In the framework of polymerization cycles the

so-called one-layer approximation introduced in ref. [15]

is equivalent to a “one-cycle” approximation, which
restricts the sum in (4) to a contribution from a single
cycle dominating the sum in the limit of large forces close
to the stall force. Therefore, the exact expression (9) for
the stall force, at which all cycle currents become zero, is
also recovered in the one-layer approximation in ref. [15].
This indicates how a systematic improvement of the
one-layer approximation could be achieved by inclusion
of more polymerization cycles, which will leave the result
(9) for the stall force unaffected.
Experimentally, force-velocity curves have been

measured [3,7] but the stall force is not directly accessi-
ble. Nevertheless, an exact result such as (9) can help to
constrain the analysis of experimental data.
We conclude this section with a short discussion of the

effects of GTP-hydrolysis on the stall force of MTs. GTP-
tubulin attaches and can hydrolyze within the MT to
GDP-tubulin, which gives rise to different off-rates koff,T
and koff,D for GTP and GDP monomers, respectively.
This leads to a coupling between polymerization cycles
and hydrolysis, if the probability pD that a monomer
at the filament end is of GDP-type becomes non-zero.
For small probabilities pD, effects from hydrolysis can
be included approximately by using an effective off-rate
koff,eff = pT koff,T+ pDkoff,D in the result (9) for the stall
force, where pT = 1− pD is the probability that a monomer
at the filament end is of GTP-type. Because hydrolysis
destabilizes the filament and koff,T <koff,D, hydrolysis will
generally reduce the stall force. For single actin filaments,
the effect of hydrolysis on the force-velocity relation has
been calculated in ref. [28]. Hydrolysis and a non-zero
pD also give rise to catastrophes as soon as the entire
GTP-cap of a MT becomes hydrolyzed.

Simulation results. – In simulations we can explore
not only the stall force but the full force-velocity relation.
We characterize the growth process by the average growth
velocity v= 〈ẋ〉. We determine the force-velocity relation
as a function of both the PF interaction (per length) εl and
the geometry parameter h. From the force-velocity curves,
we determine the stall force numerically and investigate
how the stall force depends both on PF interactions and
geometry parameter. Some of our simulation results have
also been obtained in ref. [14] using a fixed-time-step
Monte Carlo algorithm.

Force-velocity relation. We first describe results for
the force-velocity relation of N = 13 PFs correspond-
ing to a MT using the rates (2). The shape of the
force-velocity relation depends on the PF interaction
εl [15,16]. For εl = 0 all force-velocity curves end at
the same velocity v(0) = d(kon− koff) for zero force,
independently of the geometry parameter h, see fig. 2(a).
Simulations confirm that force-velocity curves for differ-
ent geometry parameters h exhibit the same stall force
Fstall =N(kBT/d) ln(kon/koff) as predicted in eq. (9).
The shape of the force-velocity curves between F = 0
and the stall force F = Fstall, however, depends on the
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Fig. 2: (Colour on-line) Geometry-dependence of the force-velocity relation for N = 13PFs and two different values of the
lateral interaction, (a) εl = 0pN (curves are independent of the energy distribution factor θl) and (b), (c) εl = 3.0 pN, ((b)
θl = 0, (c) θl = 1). For each lateral interaction, different geometry parameters h (in units of nm and for monomer size d= 8nm)
are compared. Insets are logarithmic plots.

geometry parameter h, as shown in fig. 2(a): for forces
F > 0 and small h, the kinetically limiting step is the
insertion of the first monomer to an almost flat configura-
tion. This rate-limiting step becomes faster for increasing
h because the increase Δx of the leading tip becomes
smaller. This results in steeper force-velocity curves for
decreasing values of the geometry parameter h, as can be
seen in fig. 2(a).
For εl > 0, also the velocities at zero force v(0) depend

on the geometry parameter h and on the energy distribu-
tion factor θl. For increasing h, the zero-force velocity v(0)
increases because the attractive PF interaction accelerates
growth by reducing the off-rate (for θl = 1, see fig. 2(c))
or increasing the on-rate (for θl = 0, see fig. 2(b)). Increas-
ing the on-rate (θl = 0) leads to a much stronger effect. On
the other hand, the simulations confirm that the stall force
remains identical for different geometry parameters h and
for the different energy distribution factors θl in fig. 2(b)
and θl = 0 in fig. 2(c) as predicted by eq. (9). Nevertheless,
it is not possible to simply conclude that force-velocity
curves become increasingly steep for increasing geometry
parameter h. Only for h= 0, strong suppression of the
rate-limiting first insertion step by force always results in
the steepest force-velocity curves, see fig. 2. Then the stall
force is hard to determine because the force-velocity curve
is extremely flat with measured zero velocity over a range
of higher forces.

Stall force. It is possible to directly check the above
exact analytical result (9) for the stall force in simulations
by the condition v(Fstall) = 0, i.e., by determining the
force where the average growth velocity in the simulation
vanishes. In simulations this is done by applying a linear
interpolation to data points of force-velocity curves in
vicinity of the stall force.
In fig. 3 we show the simulation results for the stall force

as a function of the lateral interaction εl for (a) N = 13
and different values of the geometry parameter h and
for (b) fixed h and different values of N . The simulation
results clearly show a linear increase with εl and N and
confirm the analytical result (9). In particular, we find no
dependence on the geometry parameter h.
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Fig. 3: (Colour on-line) Stall force (in pN) as a function
of lateral interaction energy εl (in pN) for θl = 1. Points
represent simulation results, lines the analytical result (9).
(a) For N = 13PFs and different geometry parameters
h= 3

2
d/N ≈ 0.934 nm, h= d/N ≈ 0.615 nm, random h, h=

1.0 nm (from bottom to top). Curves are shifted by 0, 20, 40
and 60 nm, respectively. (b) For a geometry parameter h= d/N
and different PF numbersN = 4, 5, 6, 8, 10, 11, 13 and 15 (from
bottom to top).

The derivation of (9) was not limited to PF arrangement
with a constant offset h between neighboring PFs but
predicts the same stall force for completely arbitrary
arrangements of PFs. We checked this prediction by
simulations of several random arrangements with random
displacements between neighboring filaments, see fig. 3(a)
(green line).

Dependence of velocity on the geometry parameter.

The simulations allow us to explore how the growth velo-
city v depends on the geometry parameter h̄ (0< h̄< 1)

28006-p5



J. Krawczyk and J. Kierfeld

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0 1 2 3 4 5 6 7 8

h

F=1.0
F=2.0
F=3.0
F=5.0

 0

 50

 100

 150

 200

v
[µ

m
/m

in
]

v
[ µ

m
/m

in
]

F=0.0
F=1.0
F=2.0
F=3.0
F=5.0

F=0.0
F=2.0
F=4.0

F=10.0

0 1 2 3 4 5 6 7 8

h

F=2.0
F=4.0

F=10.0

Fig. 4: (Colour on-line) Growth velocity as a function of the
geometry parameter h (in nm and for monomer size d= 8nm)
for N = 4 (left) and N = 13 (right) PFs for different values of
the force F (in pN). The lateral interaction energy is εl = 3.0 pN
and the lateral energy distribution factor θl = 1 for both top
pictures and θl = 0 for both bottom pictures. For vanishing
force F = 0 the curves exhibit N − 1 maxima at h̄= i/N with
i= 1, . . . , N − 1. With increasing force, some maxima vanish
and new maxima can emerge.

for different load forces F , see fig. 4. The curves v(h̄) are
symmetric with respect to the axis h̄= 1/2. For εl > 0
and zero load force F = 0, the curves v(h̄) exhibit N − 1
maxima corresponding to relative displacements h̄= i/N
with i= 1, . . . , N − 1. At these values of h̄, the relative
displacement h is commensurate with the monomer
size d such that polymerization cycles are possible,
where all subsequently attached monomers gain the
same lateral interaction energy. This avoids rate-limiting
attachment steps and leads to optimal polymerization
velocities. The maxima are very pronounced for energy
distribution factors θl = 0, where the on-rate is exponen-
tially increased by lateral interactions and rather broad
plateaus for θl = 1. This implies that MT models using
h̄= 1/13 [10,11] overestimate the growth velocity as
compared to the actual three-start helix with h̄= 1.5/13.
With increasing load F the height of the maxima

decreases, maxima can vanish or become minima, and new
local maxima can appear. Upon approaching the stall force
F ≈ Fstall, all curves v(h̄) become flat, which supports the
analytical result of an h-independent stall force.

Conclusion. – Based on the concept of polymerization
cycles we obtained the exact result (9) for the stall force
of polymerizing ensembles of rigid protofilaments with
lateral interactions. The stall force is a linear function
of the number N of filaments in the ensemble and
increases linearly with the lateral interaction. On the
other hand, the stall force is independent of the geometry
of the ensemble and load or energy distribution factors.

These results have been confirmed by simulations using
the Gillespie algorithm. Simulations also show that the
shape of the force-velocity relation exhibits a pronounced
dependence on the ensemble geometry below the stall
force. Our results are relevant for the interpretation
of experimental data on the force-velocity relation in
microtubule polymerization and in the polymerization of
bundles of interacting actin filaments or microtubules.
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