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Abstract – We investigate the force generation by polymerizing bundles of filaments, which
form because of short-range attractive filament interactions. We show that bundles can generate
forces by a zipping mechanism, which is not limited by buckling and operates in the fully buckled
state. The critical zipping force, i.e. the maximal force that a bundle can generate, is given by
the adhesive energy gained during bundle formation. For opposing forces larger than the critical
zipping force, bundles undergo a force-induced unbinding transition. For larger bundles, the critical
zipping force depends on the initial configuration of the bundles. Our results are corroborated by
Monte Carlo simulations.

Copyright c© EPLA, 2009

Introduction. – Filamentous polymers play an
important role in biological and chemical physics. Both
cytoskeletal filaments such as filamentous actin and
microtubules and chemically synthesized polymers such
as dendronized polymers have diameters in the range from
2 to 25 nanometers which leads to a considerable bending
rigidity, i.e. the persistence length is comparable or larger
than the polymer’s contour length. The most important
building blocks of the cytoskeleton are actin filaments
with a persistence length of Lp ∼ 15μm and microtubules
with a much larger persistence length Lp ∼ 5mm. Such
semiflexible polymers are governed by several competing
energy scales in the system: the bending energy and
the thermal energy of the filaments, the interaction
energy between the filaments, and biochemical forces. In
biological systems, such biochemical forces are generated
by the activity of molecular motors proteins or the
polymerization dynamics of cytoskeletal filaments [1].
Force generation by polymerizing cytoskeletal filaments

is essential for various cellular processes, such as
motility [1] or the formation of cell protrusions including
filopodia, lamellipodia, or acrosomal extensions [2,3],
where filaments push against a planar obstacle. Single
polymerizing filaments can generate forces in the piconew-
ton range, which arise from the gain in chemical bonding

(a)E-mail: Jan.Kierfeld@tu-dortmund.de

energy upon monomer attachment [4]. This process also
involves shape fluctuations of the filament [5], which
exerts entropic forces on the planar obstacle [6]. Polymer-
izing filaments buckle at some critical length under the
action of their own polymerization force [7], which limits
force generation by single filaments.
Filament bundles support cell protrusions and serve as

stress fibres [8,9]. Filament bundles have a higher bend-
ing rigidity and are, thus, more stable against buck-
ling if a compressive load is applied [10]. The forma-
tion of filament bundles is governed by the competition
of thermal fluctuations and attractive interactions, which
can arise from crosslinking proteins or unspecific interac-
tions. Crosslinker-mediated interactions allow a reversible
formation of actin bundles, which can be regulated by the
concentration of crosslinkers in solution [11].
Cellular force generating structures are typically made

of polymerizing bundles rather than single filaments.
One reason is the enhanced stability of crosslinked stiffer
bundles against buckling. Moreover, ensembles of N fila-
ments could share a compressive load force suggesting that
the maximally generated force increases by a factor of N ,
similar to protofilaments in a microtubule [12]. In addition,
crosslinking within filament bundles can allow the bundle
to generate higher forces by exploiting the additional
interaction energy [13,14]. As a result, the mechanism
of force generation by polymerizing bundles is difficult
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Fig. 1: Snapshots of MC simulations for N = 3 filaments close
the transition between zipping and force-induced unbinding for
for two different initial conditions (a) b= 123 and (b) b= [12]3.

to understand because it involves several types of forces:
chemical polymerization forces from monomer bonding,
entropic forces from shape fluctuations, and interaction
forces. Moreover, a critical buckling force limits the
mechanical stability of filaments. In this letter, we
show that there exists one possible mechanism of force
generation by filament bundles, the so-called zipping
mechanism, which is completely based on the conversion
of adhesive filament interaction energy into force and
which operates if individual filaments within a bundle
are fully buckled in front of an obstacle as shown in
fig. 1. The force generated by this mechanism is inde-
pendent of chemical energy and entropic forces and is
not limited by buckling. We characterize this zipping
mechanism quantitatively and also show its intimate rela-
tion to a force-induced unbinding transition of filament
bundles.

Bundle model. – In order to model a single bundle
of N filaments we start from an effective Hamiltonian
containing bending energies and interaction energies of all
filaments,

H=

N
∑

i=1

Hb,i+

N
∑

i,j=1

H2,ij . (1)

In the first term, Hb,i =
∫ Li
0
ds 12κ(∂sti)

2 is the bending
energy of filament i with bending rigidity κ and contour
length Li, which is parametrized by its arclength s with a
contour ri(s) and unit tangent vectors t(s)≡ ∂sri. We
consider filaments with identical κ and, thus, identical
persistence lengths Lp ≡ κ/kBT at temperature T . The
second term describes attractive pairwise interactions

between the filaments, H2,ij =
∫min(Li,Lj)

0
ds[Vr(∆rij)+

Va(∆rij)], where ∆rij = ri(s)− rj(s) is the distance
between filaments i and j at arclength s along the
filament. We assume that only monomers with similar
arclength parameters interact. The first term is the hard-
core repulsion of filaments with a potential Vr(r) =∞, for
|r|< ℓr and Vr(r) = 0, otherwise, where ℓr is of order of
the filament diameter. The second term is an short-range
attractive potential Va(r), which we model by a potential

Fig. 2: Zipping mechanism in front of a wall with load
force F . Zipping starts in a splayed configuration of filament
ends (solid lines). The curvature at the wall is given by the
contact radius Rco. Zipping a distance ∆x (dashed lines)
performs a work F∆x but gains an adhesive energy J∆x.

well: the filament can gain an additional energy |W | over
a range ℓa,

Va(r) =

{

−|W |, ℓr � |r|< ℓr+ ℓa,
0, otherwise.

(2)

For cytoskeletal filaments, the attractive potential Va
typically arises from linker-mediated attractions. Then its
strength |W | is proportional to the crosslinker concentra-
tion in solution and the potential range ℓa is of the order
of a linker size. In the absence of forces and filament poly-
merization, bundles of N filaments form in a single discon-
tinuous bundling transition at a critical potential strength

W
(N)
c [11,15].
In the following we will consider bundles of polymer-

izing filaments which exert forces onto a planar wall.
We apply clamped and capped boundary conditions on
one end of the bundle (s= 0), where all filaments are
oriented into the x-direction and cannot polymerize or
depolymerize. Because of the filament bending rigidity
this induces a preferred orientation of the bundle into the
x-direction, see fig. 2. Initially, the capped ends s= 0 of
filaments are positioned in proximity. The contour lengths
Li of filaments can differ because of the polymerization
process. Monomers of length ∆l can attach and detach
to and from filaments at the other end (s=L) giving rise
to changes in the contour length ∆L=±∆l. The attach-
ment of monomers leads to a polymerization energy gain
Ep < 0, which is related to the ratio ωon/ωoff = e

−Ep/kBT

of monomer attachment and detachment rates. The
attachment rate ωon is proportional to the monomer
concentration in the surrounding solution and, thus, also
the polymerization energy Ep is controlled by monomer
concentration. We assume a constant monomer concen-
tration throughout the polymerization process, which
implies a constant on-rate ωon and, thus, constant Ep.
We will consider growth against a rigid planar wall

in the yz-plane perpendicular to the average filament
orientation. The wall can move in the x-direction but
cannot rotate. The wall is loaded with an additional
force F . We are not addressing ratchet mechanisms
involved in the insertion of monomers at the loaded end of
the filament in the proximity of the wall [4,5]. Therefore,
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we assume that the wall has a very small diffusion
coefficient such that it moves instantaneously with the
position of the monomer with the maximal x-coordinate
xmax. Changes ∆xmax give rise to an additional energy
F∆xmax for the filament. If a monomer is attached such
that ∆xmax > 0, this leads to a change in the attachment
rate ωon = e

−(Ep+F∆xmax)/kBTωoff , where we assume that
the value of ωoff is unaffected by force. Then growth stalls
for F = |Ep|/∆xmax. The specific values of ωon,off are
not essential, we only assume that shape fluctuations of
the filaments are faster than their growth dynamics. In
addition, shape fluctuations can give rise to changes in
∆xmax and corresponding energy changes.

Buckling of single growing filaments. – A single
cytoskeletal filament can generate forces in the piconewton
range [4,5]. The polymerization force is defined by the
corresponding load force that stalls polymerization. For a
single filament this polymerization force is directly related
to the polymerization energy Ep per monomer, Fp =
|Ep|/∆l. Polymerizing filaments will buckle if the load
force F exceeds the critical force for buckling, Fb ∼ κ/L

2.
In the following we will discuss the possible dynamically
stable steady states of growing or shrinking filaments.
For small load forces F <Fp, the filament will grow,

and the critical force for buckling, Fb ∼ κ/L
2, decreases.

Eventually, the load force F becomes larger than Fb,
and the filament buckles [7]. After buckling, the growing
filament end at s=L has an angle φL > 0 with the x-axis,
and the polymerization force is opposed by the reduced
load force F cosφL in the direction tangential to the
filament. This will lead to further growth, and the only
stable state of a growing filament is the fully buckled
state with φL = π/2. Upon increasing the load force such
that F cosφL >Fp, the filament shrinks. We find that
the buckled state of a shrinking filament with Fp =
F cosφL <F represent an unstable mechanical equilib-
rium because φL is increasing for increasing L at fixed load
force F . For flexible walls, a similar instability has been
discussed in ref. [16]. Therefore, the only stable states of
a shrinking filament are the unbuckled state (φL = 0) and
the fully buckled state (φL = π/2) as long as the length
reservoir is sufficiently large. Because growing filaments
will always end up in a fully buckled state, mechanisms for
force generation which also operate in the fully buckled
state of individual filaments are essential in systems
containing polymerizing filaments. We will demon-
strate that filament bundles can generate forces using a
zipping mechanism if each filament in the bundle is fully
buckled.

Zipping and force-induced unbinding. – Cells
usually rely on bundles of several filaments for the forma-
tion of cell protrusions such as filopodia or acrosomal
extensions. Such bundles have a higher bending rigid-
ity [10] and are more stable against buckling. Stall forces
of polymerizing actin bundles could be determined
experimentally only recently [17]. If the force generation

mechanism is based on the polymerization energy Ep
of single filaments, bundles of filaments are believed
to have higher stall forces because of load sharing. It
has been proposed that within bundles filaments can
additionally exploit an attractive interaction to generate
higher forces [13,14].
Within this letter, we quantitatively investigate the

interplay of attractive bundling interactions and exter-
nal load force. We find that it is possible to generate
forces independently of the polymerization energy Ep and
entirely based on the attractive interaction between fila-
ments by a zipping mechanism. In this mechanism, the
adhesive energy which is gained during bundle formation
generates a zipping force.
We will first explain the mechanism for two filaments.

As shown in fig. 2, zipping of two filaments requires a
particular initial condition, a “zipping fork”, where both
filaments are in a fully buckled state with φL = π/2 and
well-separated uncapped filament ends at the wall in a
splayed configuration. As explained above, the fully buck-
led state is generic for polymerizing non-interacting fila-
ments. The splayed initial condition arises then naturally
by the thermal motion of uncapped filaments ends if the
capped ends are anchored in proximity and the crosslinker
concentration or the adhesive potential is increased from

low values (|W |< |W
(2)
c |). The wall exerts a total force

F in the negative x-direction. If the two filaments bind
together along an additional length ∆x, the bundle gains
the free energy J∆x, where J > 0 represents the free
energy of bundling, which arises from the competition
of thermal shape fluctuations of filaments and the short-
range attraction between filaments [11]. This implies that
the zipping mechanism will only work in the bundled
phase. In the absence of thermal fluctuations, we have
J = |W |, i.e. the bundling free energy J equals the poten-
tial interaction energy gain |W |. In the presence of ther-
mal shape fluctuations, the potential energy is reduced by
entropic contributions. Close to the discontinuous unbind-
ing transition, the free energy vanishes according to J ∼

|W
(2)
c −W | [11]. If the filaments bind together along an

additional length ∆x, the wall has to move the same
distance ∆x against the load force F . This movement
performs a work F∆x, and the total free energy gain is

∆G= (J −F )∆x, (3)

see fig. 2. If the load force F is smaller than the critical

force F
(2)
c = J , a change ∆x> 0 of the bound length leads

to a free energy gain ∆G> 0 resulting in spontaneous

zipping. The critical force F
(2)
c represents the maximal

force which can be generated by the zipping mechanism

for two filaments. For forces F >F
(2)
c = J , an “inverse”

zipping with ∆x< 0 leads to a free energy gain, i.e. the
bundle is separated by the load force F . This process
represents a force-induced unbinding. Deep inside the

bundled phase, i.e. for |W | ≫ |W
(2)
c |, we find critical
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forces F
(2)
c = J ≈ |W |. Close to the thermal unbinding

transition the critical zipping force vanishes as F
(2)
c = J ∼

|W
(2)
c −W |.
We can also consider zipping and force-induced unbind-

ing as a function of the potential strength W for fixed
force F . Force-induced unbinding then happens for |W |
smaller than a force-dependent critical potential strength

W
(2)
c (F ), which is given by |W

(2)
c (F )| ≈ F deep in the

bundled phase, where large forces are needed to unbind
the bundle, and approaches the critical potential strength

for purely thermal unbinding, W
(2)
c (F )≈W

(2)
c −F , for

small forces. Zipping takes place above the critical poten-

tial strength for |W |>W
(2)
c (F ).

All zipping and force-induced unbinding thresholds are
independent of the polymerization energy Ep and, thus,
these phenomena do not depend on the presence of the
polymerization force. The zipping mechanism exploits the
binding free energy J between filaments. The polymeriza-
tion at the end of the filaments is needed only to provide a
sufficient reservoir of length for the bundle such that force
can be generated continuously. The polymerization has to
be sufficiently fast to establish a length reservoir but the
details of the polymerization kinetics are not important
for the zipping mechanism.
The mechanism requires the separation of filament ends

in the splayed zipping fork configuration in order to avoid
binding of filaments by rotation around the x-axis without
any force generation. This separation is maintained by the
slow kinetics of the long polymer ends or by fixing the
filament ends in the yz-plane. In the splayed configuration
semiflexible filaments attain a radius of curvature at
the wall, which is given by the contact radius Rco ∼
(κ/J)1/2 [18], see fig. 2. The stiffness of filaments is
important in order to allow for a force transmission onto
the wall by the curved contact segments. Only filaments
with a nonzero bending rigidity can exert a torque onto
the wall in the fully buckled state.

Monte Carlo simulations. – In order to gain further
insight into zipping and force-induced unbinding forN � 2
filaments we have performed Monte Carlo (MC) simu-
lations for identical filaments using the effective Hamil-
tonian (1). Simulation snapshots are shown in fig. 1. In
the MC simulation we use a discretized parameterization
in terms of the arc length s as in the worm-like chain

model Hb,i =
∫ Li
0
ds 12κ(∂st)

2 and model the constraint
|t(s)|= 1 by a sufficiently stiff harmonic potential. The
contours ri(s) of each filament i of length Li are discretized
into Mi =Li/∆s equidistant points r

n
i = ri(n∆s). The

total energy H=
∑

iHb,i+
∑

i,j H2,ij is calculated using

a discretized bending energy Hb,i =
∑Mi
n=1 κ

(

1− r̂n−1,ni ·

r̂
n,n+1
i

)

+ k(|rn,n+1i | −∆s)2, where rn−1,ni ≡ rni − r
n−1
i and

r̂
n−1,n
i ≡ rn−1,ni /|rn−1,ni |, and the second term represents
the spring energy that enforces the constraint |ti(s)|= 1
in the discretized model (we use k= 100kBT/∆s

2). We
also discretize the attractive interaction energy accord-

ing to H2,ij =
∑minMi,Mj
n=1 [Vr(r

n
ij)+Va(r

n
ij)]. The effects of

monomer attachment and detachment and the load force
can be taken into account by additional energy contribu-
tions Hp =Ep

∑

iMi and HF = Fxmax.
We employ the Metropolis algorithm for the total energy
H+Hp+HF . For configurational equilibration we offer
local displacement moves of the vectors rni in each MC
step and pivot moves of whole filament segments. In
addition we attempt attachment and detachment moves
of monomers with smaller frequency in order to achieve
shape fluctuations of filaments which are faster than the
growth dynamics. For a fast equilibration for longitu-
dinal fluctuations of the bound or zipped length along
the filament we also attempt reptation-like moves where
monomers are transferred between the capped end at s= 0
and the uncapped end at s=Li and vice versa; these
moves do not change the total number of monomers. The
zipping mechanism relies on the separation of filament
ends into a split zipping fork configuration at the wall,
see fig. 1. Filament ends have to stay separated in order
to avoid binding of filaments by simple rotation. In the
MC simulations such rotations are kinetically suppressed
as the rotational diffusion of a whole filament by local
displacement moves happens on much larger time scales
as zipping, which is accelerated in the MC simulations by
the reptation-like moves.

Force-induced unbinding transition. – We first
consider the force-induced unbinding transition of fila-
ment bundles. In fig. 3, we show MC results for the aver-
age binding energy per length and per filament, 〈e2〉 ≡

〈(
∑N
i,j=1H2,ij)/(

∑N
i=1 Li)〉, for bundles with N = 3 and

N = 4 in the presence of a load force F and as a function
of the potential strength per length |W |.
In the absence of external forces, a single, discontinuous

unbinding transition occurs at a critical potential strength

W
(N)
c , which only depends on the number of filaments in
the bundle [11]. In the presence of a load force, on the other
hand, the unbinding transition occurs i) in several steps,
ii) at critical potential strengths, which depend on the
load force, and iii) via different pathways depending on the
initial subbundle configuration. The number of transition
steps and the critical potential strengths in force-induced
unbinding depend on the initial zipping fork configuration,
in particular on the number and types of subbundles in the
initial splayed configuration. For N > 2 filaments several
initial subbundle configurations are possible. We will focus
on conditions deep in the bundled phase of N filaments.
Then, starting with high potential strengths |W |, we
first find a force-induced unbinding of subbundles at a

critical potential strength |W
(N |b)
c (F )| ≈ F/n(N |b), where

b will index the initial subbundle configuration and with a
number n(N |b) of pairwise filaments interactions lost upon
subbundle unbinding. Then, at smaller critical potential

strengths |W
(M)
c |, there is a subsequent thermal unbinding

transition of subbundles containing M filaments, which is
independent of force.
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Fig. 3: MC data for the average binding energy per filament and per length, 〈e2〉 as a function of the potential strength |W |
for (a) N = 3 and (b) N = 4 identical filaments (with persistence length Lp = 100, initial contour length L= 100, potential
range ℓa = 0.001 and hard-core radius ℓr = 0.1; all lengths in units of ∆l; energies in units of kBT ; lines are guides to the eye).
Arrows correspond to the snapshots in fig. 1. In the absence of an external force F = 0 (�), the thermal unbinding transition

happens at a critical potential strength |W
(N)
c |. (a) For N = 3 an external force F = 30 is applied. For an initial configuration

b= 123 (▽), the unbinding transition occurs at a critical potential strength |W
(3|123)
c | ≈ F/3. For an initial condition b= [12]3

(△), a cascade of two unbinding transition occurs at critical potential strengths |W
(2)
c | and |W

(3|[12]3)
c | ≈ F/2. (b) For

N = 4 filaments an external force F = 50 is applied. This leads to three different force-dependent critical potential strengths
|W

(4|1234)
c | ≈ F/5 (▽), |W

(4|[123]4)
c | ≈ F/3 (◦), and |W

(4|[12][34])
c | ≈ F/2 (△) depending on the initial subbundle configuration.

For a bundle with N = 3 filaments, two different initial
zipping fork configurations and, thus, two force-induced
unbinding pathways are possible, see fig. 3(a). In configu-
ration b= 123, all three filaments point in different direc-
tions. In configuration b= [12]3, the end of the bundle is
split into one subbundle of two bound filaments [12] and
the third filament 3 pointing in a different direction. In
configuration b= 123, there is a single unbinding transi-

tion at |W
(3|123)
c | ≈ F/3 with n(3|123) = 3 pairwise fila-

ment interactions lost upon unbinding. In configuration
b= [12]3, on the other hand, there are two unbinding tran-
sitions: First, filament 3 is separated from the subbun-

dle [12] at |W
(3|123)
c | ≈ F/2 because n(3|123) = 2 pairwise

filament interactions are lost upon subbundle unbinding.
Further decreasing the potential strength |W |, there is a
second thermal unbinding transition of the subbundle [12]

at the critical value |W
(2)
c |, which is independent of force.

The values for n(3|b) correspond to a triangular arrange-
ment of a three filament bundle, as can be seen in fig. 1.
For bundles with N > 3 even more initial subbundle

configurations are possible giving rise to a variety of possi-
ble force-induced unbinding pathways. In fig. 3(b), we
show MC results for a bundle with N = 4 filaments, which
exhibits already three different unbinding pathways under
force. These pathways are related to the initial configura-
tions b= 1234 with four separated filaments, b= [12][34]
with two subbundles containing two filaments each, and
b= [123]4 with one subbundle containing three filaments
and one separated filament. The numbers of pairwise fila-
ment interactions lost upon unbinding are n(4|1234) = 5,

n(4|[12][34]) = 3, and n(4|[123]4) = 2. All three values for
n(4|b) can be explained by a triangular arrangement of
filaments in the bundle, as it has been observed for equi-
librium bundles in ref. [11]. After force-induced unbinding,
the remaining subbundles unbind thermally at lower crit-
ical potential strengths in a second transition.

Zipping. – Whereas a bundle of N filaments unbinds

for |W |<W
(N |b)
c (F ), it starts zipping above the critical

potential strength, for |W |>W
(N |b)
c (F ). The filament

can generate and transmit forces onto a wall by the
zipping mechanism, which converts adhesive energy into

a force. The critical force F
(N |b)
c is the maximal force

that a bundle with N filaments and initial conditions
k can generate by the zipping mechanism for a given

potential strength |W |. The critical forces F
(N |b)
c for

zipping with an initial condition b are related to the

critical potential strengths W
(N |b)
c (F ) for force-induced

unbinding by W
(N |b)
c (F

(N |b)
c ) = |W |, which gives F

(N |b)
c ≈

|W |/n(N |b) at high potential strengths. Therefore, we
also find different critical zipping forces depending on
the zipping pathway, which is determined by the initial
configuration b.
The kinetics of zipping in the MC simulation is char-

acterized by the average velocity 〈vw〉 of the wall along
the x-axis in the stationary state. For a given load
force F , the velocity 〈vw〉 changes sign at the critical

potential strength W
(2)
c (F )≈ F with 〈vw〉< 0 for force-

induced unbinding for |W |<W
(2)
c (F ) and 〈vw〉> 0 for
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zipping for |W |>W
(2)
c (F ). The average velocity is given

by 〈vw〉= (ω+−ω−)∆l in terms of the rates ω+ and ω−
for zipping and unzipping a segment of length ∆l. These
rates depend on the attempted MC moves, and their sum
ω0 = ω++ω− is given by the frequency at which reptation-
like moves are offered in the MC dynamics. Further-
more, eq. (3) leads to ω+/ω− = exp[(J −F )∆l/kBT ] with

J −F ≈ |W | − |W
(2)
2 (F )|, such that

〈vw〉 ≈ v0 tanh

(

(|W | − |W
(2)
2 (F )|)∆l

2kBT

)

(4)

with a maximal velocity v0 = ω0∆l. This result is in
agreement with results from our MC simulations (data
not shown) and shows that the width of the transition
between force-induced unbinding an zipping decreases
with decreasing temperature T .
In the MC kinetics we neglect frictional forces, which

limit reptation-like motion. In a real system we expect
the result (4) for the velocity-potential relation to hold
for |〈vw〉|≪ v0, i.e., close to equilibrium with a maxi-
mal velocity v0, which is determined by the equilibrium
between zipping force and frictional force of the polymer
ends.

Discussion and conclusion. – We have shown that
forces can be generated by a zipping mechanism, which
is completely based on the conversion of adhesive fila-
ment interaction energy into force and which operates
independently of the polymerization energy if filaments
within a bundle are fully buckled. Below a critical poten-
tial strength or above a critical load force zipping does no
longer occur, and there is a transition from zipping to a
force-induced unbinding of the filament bundle.
The resulting zipping force is given by the filament

interaction energy per length which is liberated upon
separating the filaments. For F-actin crosslinkers such as
α-actinin or filamin recent measurements give binding
energies of 4kBT per crosslinker and filament pair [19],

which yields zipping forces F
(2)
c ≃ 6 pN for two filaments

if we assume one crosslinker per actin monomer. Actin
filaments can also be bundled by counterions with typi-
cal binding energies of 0.02kBT per actin monomer for
magnesium ions [20], which are much weaker than protein
crosslinkers. For these interactions bundles of the order of
N = 10 filaments are needed to generated zipping forces in
the piconewton range if we assume a triangular filament
arrangement and separation into single filaments resulting
in n(N |b) ≈ 3N for large N .
The zipping mechanism only relies on adhesive energy

and does not require a large variety of regulatory proteins
as found for actin-based motility of eukaryotic cells [21,22].
Zipping mechanisms may also contribute to force gener-
ation in the presence of regulatory proteins, in particular,
force generation by filament bundles in cell protru-
sions such as filopodia [23] but they could play a more

prominent important role for the motility of relatively
primitive cells such as sperm cells of nematodes [14,24,25].
Zipping mechanisms could also be exploited to create arti-
ficial force generating systems using synthetic semiflexible
polymers with attractive interactions.
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