
Supporting Material:
Bifurcation of velocity distributions in

cooperative transport of filaments by fast
and slow motors

Xin Li1, Reinhard Lipowsky1, Jan Kierfeld1,2

1Max Planck Institute of Colloids and Interfaces, Science Park Golm,
14424 Potsdam, Germany

2Physics Department, TU Dortmund University,
44221 Dortmund, Germany

December 10, 2012

Section 1 of the Supporting Material contains the master equation used in the
theoretical analysis as well as the derivation of binding and unbinding rates in the
master equation. We also discuss frictional forces. In section 2, we give analyti-
cal estimates for the boundaries ηl and ηu of the bistable regime in the mean field
motility diagrams, Section 3 contains additional motility diagrams in the (F̂ ,

Nf

N
) and

(v̂,
Nf

N
) parameter planes. In section 4, we discuss the influence of the total number

of available motors N on our results.

1 Master equation approach

We assume fixed numbers Nf of fast and Ns of slow motors available to attach to
the microtubule. The numbers of nf fast and ns slow motors that actually bind and
transport the microtubule vary stochastically in 0 ≤ nf ≤ Nf and 0 ≤ ns ≤ Ns

because of stochastic binding and unbinding of motors, see Fig. 3 A in the main text.
The state of the filament can then be uniquely described by the pair (nf ,ns) of motor
numbers. Let p(nf , ns, t) denote the probability to find the filament with nf fast and
with ns slow motors attached at time t, then the stochastic properties of the system
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are described by the master equation

∂

∂t
p(nf , ns, t) = εf (nf + 1, ns)p(nf + 1, ns, t) + εs(nf , ns + 1)p(nf , ns + 1, t)

+ πf (nf − 1, ns)p(nf − 1, ns, t) + πs(nf , ns − 1)p(nf , ns − 1, t)

− [πf (nf , ns) + πs(nf , ns) + εf (nf , ns) + εs(nf , ns)]p(nf , ns, t) (S1)

where πf and εf are the rates for binding and unbinding of fast motors, as well as πs

and εs are the rates for binding and unbinding of slow motors. All four rates depend
on the state (nf ,ns) of the system.

We take the binding rate of a single motor to be independent of load force because
unbound motors can always bind to filaments from their relaxed state, which means
π(F ) = π0 is independen of force and equals the zero load force binding rate π0 (1, 2).
The single motor unbinding rate depends on its load force F and is given by (3, 4)

ε(F ) = ε0 exp(|F |/Fd), (S2)

where ε0 is the unbinding rate at zero load force, and Fd defines the detachment force.
The detachment force Fd can be different for forces in the forward and backward
direction of motor motion.

For the systems studied in this article, fast motors will always experience resisting
forces because they move faster, while slow motors will be pulled forward and expe-
rience assisting forces. We use the convention that resisting forces F have positive
sign, and assisting forces have negative sign.

For a fast motor under a resisting force F ≥ 0, we assume an approximately linear
force-velocity relation (4–7)

Vf (F ) = vf (1 − F/Fsf ) for 0 ≤ F < Fsf , (S3)

where vf is the velocity of the unloaded fast motor. If the motor is pulled backwards
by resisting forces exceeding a stall force Fsf , i.e., for F ≥ Fsf , we assume that it
stalls resulting in V(F ) = 0.

For a slow motor under an assisting force F ≤ 0, the motor velocity increases as
observed in experiments (7, 8), and we assume a linear relation

Vs(F ) = vs(1 − F/Fss) for F ≤ 0 < Fss, (S4)

where vs is the velocity of an unloaded slow motor and Fss is a characterstic force,
which gives the intersection point of the force-velocity curve with the force-axis as
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indicated in Fig. 3 B in the main text. In principle, the force Fss characterizing the
force-velocity relation in the regime of assisting forces F ≤ 0 can be different from
the stall force of slow motors. We assume Fs ≡ Fss = Fsf for simplicity.

The effective binding and unbinding rates in a state (nf ,ns) depend on the load
force on each motor and can be calculated from the conditions of (i) force balance
and equal force sharing and (ii) equal velocities of all motors in a stationary state
with respect to motor motion. This assumes that motor stepping happens at a time
scale, which is small compared to the time scale for binding and unbinding of motors
such that we can use conditions (i) and (ii) with fixed motor numbers ns and nf .

Because of the different stepping velocities, an assisting load force F− < 0 is
acting on each slow motor, whereas a resisting load force F+ > 0 is acting on each
fast motor. We assume that the total load is equally shared between all nf attached
fast and all ns attached slow motors. Therefore, the condition (i) of force balance on
the microtubule leads to

nfF+ = −nsF− ≡ F (nf , ns), (S5)

where F (nf , ns) > 0 is the absolute value of the total force acting on each motor group.
In eq. (S5) we assumed that we can neglect frictional forces on the moving filament
in the force balance and that the filament is very stiff, such that we need not consider
elastic forces explicitly. If we include the friction force Γvm for a microtubule with
velocity vm and friction coefficient Γ (with Γ = 2πηL/ ln(L/D) for motion along the
microtubule axis, where η is the viscosity of the surrounding liquid, L the microtubule
length, and D the microtubule diameter) into the force balance, we obtain

nfF+ + nsF− = Γvm. (S6)

For a typical microtubule velocity vm = 1 µm/s, microtubule length L = 5 µm and
diameter D = 25 nm, and the viscosity of water η = 10−3 Ns/m2, the friction force
is only ∼ 6 × 10−3 pN and can be neglected.

Given the unbinding rate of a single motor as in equation (S2), the effective
unbinding rates εf and εs of nf fast and ns slow motors from the microtubule in the
state (nf , ns) are

εf (nf , ns) = nfε0f exp[F (nf , ns)/(nfFdf )] (S7)

εs(nf , ns) = nsε0s exp[F (nf , ns)/(nsFds)]. (S8)

The parameters ε0f and ε0s denote the unbinding rates of a single fast and slow motor
at zero load force, and Fdf and Fds denote the detachment forces for fast and slow
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motors, respectively. Similarly, the effective binding rates πf and πs of fast and slow
motors in state (nf , ns) are

πf (nf , ns) = (Nf − nf )π0f (S9)

πs(nf , ns) = (Ns − ns)π0s, (S10)

where Nf − nf and Ns − ns are the numbers of unbound fast and slow motors which
are available to bind to the microtubule, respectively. The parameters π0f and π0s

denote the corresponding binding rates of fast and slow motors.
The condition (ii) of equal velocities of all motors leads to

Vf (F+) = Vs(F−) = vm(nf , ns), (S11)

where Vf and Vs are the velocities of individual fast and slow motors as given by
the force-velocity relations (S3) and (S4), respectively, and vm is the velocity of the
microtubule.

Combining the condition (S11) of equal velocities and the force balance relation
(S5), we can eliminate F+ and F− and obtain the microtubule velocity

vm(nf , ns) =
vsvf

(1 − nf

n
)vf +

nf

n
vs

, (S12)

where vf and vs are the velocities of fast and slow motors at zero load force, respec-
tively, and n ≡ nf +ns is the total number of bound motors. We also obtain the total
force F (nf , ns) acting on each motor group,

F (nf , ns) =
1 − vs

vf

1 +
nf

ns

vs

vf

nfFs. (S13)

Using this expression in eqs. (S7) and (S8), we can calculate the effective unbinding
rates in a state (nf , ns) characterized by the numbers of bound fast and slow motors.
This determines the effective rates in the master equation (S1).

In the presence of friction, we find from the condition (S11) of equal velocities and
the modified force balance relation (S6) the generalized relations

vm(nf , ns) =
vsvf

(1 − nf

n
)vf +

nf

n
vs +

Γvf vs

nFs

, (S14)
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and

nfF+ =
1 − vs

vf
+ vs

vf

Γvm

nsFs

1 +
nf

ns

vs

vf

nfFs (S15)

−nsF− =
1 − vs

vf
− Γvm

nf Fs

1 +
nf

ns

vs

vf

nfFs (S16)

which reduce to eqs. (S12) and (S13) for Γ = 0.

2 Analytical estimates for stability boundaries in

motility diagrams

The mean field equation for the parameter

fMF(n̂) ≡ v̂

N̂

exp
[

F̂ (1−v̂)
ηv̂

n̂
1+n̂

]
+ π̂

exp
[

F̂ (1−v̂)
1+n̂

]
+ π̂

= n̂, (S17)

for the parameter

n̂ ≡ 〈nf〉
〈ns〉

vs

vf

, (S18)

see eqs. (23) and (24) in the main text, can have one, two, or three different solutions.
The parameter regime of bistable transport is characterized by the existence of three
solutions in mean field theory. At the boundaries of this regime, there are saddle
node bifurcations, and eq. (S17) has two solutions, see Fig. 4 in the main text. These
boundaries are determined by the additional bifurcation condition f ′

MF(n̂) = 1. By
solving fMF(n̂) = n̂ and f ′

MF(n̂) = 1 simultaneously, we obtain the critical values ηl

and ηu at the lower and upper boundary, respectively, as a function of the fraction
of fast motors Nf/N . Outside the bistable regime for η < ηl or η > ηu, the mean
field equation (S17) has only a single solution. Apart from calculating ηl and ηu

numerically from the conditions fMF(n̂) = n̂ and f ′
MF(n̂) = 1, as we did for the red

data points in the motility diagrams in Fig. 5 in the main text, analytical estimates
can be given working in the limits of small and large n̂.

In the limit of small n̂ = nf/ns � 1, i.e., small ratios of fast to slow attached
motors, we obtain the lower branch ηl of critical values, as can be seen from the
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bifurcation diagram in Fig. 4 in the main text. Expanding the arguments of both
exponentials in the function fMF(n̂) in the mean-field equation (S17) for n̂ � 1 gives

fMF(n̂) ≈ v̂

N̂

exp
[

F̂ (1−v̂)
ηv̂

n̂
]

+ π̂

exp
[
F̂ (1 − v̂)

]
+ π̂

= n̂. (S19)

Using this approximation, the equations fMF(n̂) = n̂ and f ′
MF(n̂) = 1 can be solved

analytically to obtain ηl. We find a simple 1/N̂ -dependence for the lower branch of
critical values,

ηl =
1

N̂

W (π̂)F̂ (1 − v̂)

exp[F̂ (1 − v̂)] + π
, (S20)

see eq. (5) in the main text. In eq. (S20), the function W (x) is the positive branch of
the Lambert W-function, which is the solution of x = WeW for W ≥ −1. For π̂ = 5,
we have W (π̂) ' 6.14.

For the parameter values for the three gliding assay systems given in Table 1 in
the main text, we then find ηl ' 1.00/N̂ (solid blue curve in Fig. 5 A in the main
text) for wild-type and mutant kinesin-1, ηl ' 0.61/N̂ (solid blue curve in Fig. 5
B in the main text) for OSM-3 and kinesin-II motors, and ηl ' 0.74/N̂ (solid blue
curve in Fig. 5 C in the main text) for Xklp1 and Xkid motors. All estimates show
good agreement with the numerical calculation, in particular for small fraction of fast
motors Nf/N .

In the limit of large n̂ = nf/ns � 1, i.e., a large ratio of fast to slow attached
motors, we obtain the upper branch ηu of critical values, as can be seen from the
bifurcation diagram in Fig. 4 in the main text. We can obtain an approximate closed
expression for ηu by expanding the arguments of the exponentials in the mean-field
equation (S17) in 1/n̂ � 1 and by neglecting π̂ in the nominator, which is justified
for small v̂,

fMF(n̂) ≈ v̂

N̂

exp
[

F̂ (1−v̂)
ηv̂

(1 − 1/n̂)
]

1 + π̂
= n̂. (S21)

With these approximations, fMF(n̂) = n̂ and f ′
MF(n̂) = 1 can be solved analytically,

and we find

ηu =
F̂ (1 − v̂)

v̂

1

−W−

[
− v̂

N̂(1+π̂)e

] , (S22)

where W−(x) is the negative branch of the Lambert W-function, which is the solution
of x = WeW for W ≤ −1. The asymptotics W−(−x) ≈ ln(x) for 0 < x � 1 gives a
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logarithmic dependence
ηu ∝ 1/ ln N̂ (S23)

for v̂/N̂ � 1, see eq. (6) in the main text.
Alternatively, we observe that n̂ changes very slowly as a function of Nf/N along

the upper branch ηu of critical values. Therefore, we use a constant approximation
n̂ ≈ n̂0 along the upper branch, which also leads to a logarithmic dependence of the
form (S23),

ηu =
F̂ (1 − v̂)

v̂

n̂0

1 + n̂0

1

ln
[
N̂ n̂0

v̂

(
exp

[
F̂ (1−v̂)
1+n̂0

]
+ π̂

)
− π̂

] ∝ 1/ ln N̂ . (S24)

We find that values n̂0 = 5.0 give good approximations of the upper critical branch
for all three gliding assays, as shown by green solid lines in Fig. 5.

3 Motility diagrams in the (F̂ ,
Nf

N ) and (v̂,
Nf

N ) pa-

rameter planes

From the mean field equation (S17) we identify the ratio of detachment forces η =
Fds/Fdf , the velocity mismatch between slow and fast motors v̂ = vs/vf , and the

ratio of stall and detachment force F̂ = Fs/Fdf as most relevant microscopic motor

parameters, as well as the fraction Nf/N = 1/(1 + N̂) of available fast motors as
most relevant experimental control parameter.

In the main text, we discuss in detail the motility diagrams in the (
Nf

N
, η) param-

eter plane for three gliding assay experiments. In this section, we discuss additional
motility diagrams in the (F̂ ,

Nf

N
) and (v̂,

Nf

N
) parameter planes in Figs. S1 and S2. For

the three different gliding assay experiments we used motor parameters from Table 1
in the main text.

Also as a function of the parameters F̂ and v̂, the mean-field equation (S17)
can have one, two, or three different solutions. We find an analogous bifurcation
behavior as in the (

Nf

N
, η) parameter plane: there exists a bistable motility regime

in the parameter plane, where we find two stable and one unstable solution, whereas
we have only a single solution branch outside this region. At the critical parameter
values at the boundaries of the bistable regime, the single solution bifurcates in a
saddle node bifurcation. Bistability corresponds to a bimodal velocity distribution
in the master equation approach and to bistable transport, whereas a single solution
corresponds to a unimodal velocity distribution, i.e., fast or slow transport.
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Figure S1: Motility diagrams for microtubules transported by (A) wild and mutant
type of kinesin-1 motors, (B) OSM-3 and kinesin-II motors, (C) Xklp1 and Xkid
motors as a function of the parameters F̂ and Nf/N . The regime on the lower right
enclosed by the open circles is the regime of bistable transport, while we find fast or
slow transport with a unimodal velocity distribution outside this region. The open
circles are numerical results, the solid blue and green curves are obtained from the
analytical approximations (S20) and (S24), respectively. The stars indicate critical
points. The dashed green lines represent the parameters explored experimentally in
(A) Ref. (9) and (C) Ref. (10).
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Figure S2: Motility diagrams for microtubules transported by (A) wild and mutant
type of kinesin 1 motors, (B) OSM-3 and kinesin-II motor, (C) Xklp1 and Xkid
motors as a function of the parameters v̂ and Nf/N . In the regime on the lower left
enclosed by the open circles we find bistable transport. Outside this region we find
fast or slow transport with a unimodal velocity distribution. The open circles are
numerical results, the solid blue and green curves are obtained from the analytical
approximations (S20) and (S24), respectively. The stars indicate critical points. The
dashed green lines represent the parameters explored experimentally in (A) Ref. (9)
and (C) Ref. (10).
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The critical values at the boundaries of the bistable parameter regions can be
determined by simultaneous solution of the mean-field equation fMF(n̂) = n̂ and
the condition f ′

MF(n̂) = 1 resulting in the open red circles in Figs. S1 and S2. The
boundaries of the bistable parameter regions consist of two branches, which terminate
in a critical point, where the additional condition f ′′

MF(n̂) = 0 holds (marked by a
star in Figs. S1 and S2).

We can obtain analytical estimates for the two boundary lines of critical values
using a small n̂ approximation for one branch (solid blue lines in Figs. S1 and S2)
and using a constant n̂ approximation, n̂ ≈ n̂0, for the other branch (solid green line
in Figs. S1 and S2). The analytical estimates can also be obtained by solving the
corresponding expressions (S20) for ηl and (S22) or (S24) for ηu for the parameters
F̂ or v̂.

The parameter F̂ contains information about the detachment forces. A large value
of F̂ indicates that motors can unbind easily while a small value of F̂ shows that
motors are strongly bound to the filament. Only for small detachment forces or large
values of F̂ we expect unbinding cascades, which give rise to bistability. Therefore,
the critical points of the motility diagram are located in the upper left part of the
(F̂ ,

Nf

N
) parameter plane in Figs. S1. With motor parameters from Table 1 in the main

text, the critical points are at (F̂c, Nf,c/N) = (0.16, 0.84), (5.32, 0.77) and (1.05, 0.80)
for the three different assays as shown in Figs. S1 A, B and C, respectively. For wild-
type and mutant kinesin-1 motors, see Fig. S1 (A), the value F̂ ' 2 is larger than
the critical value 0.16; therefore, a transition between a bistable state with bimodal
velocity distribution and a state with unimodal velocity distribution is possible as
a function of the fraction of fast motors Nf/N . For the other two assays, see Fig.

S1 B, C, the value F̂ ' 1 is smaller than the critical values; therefore, the system
always stays in a state with unimodal velocity distribution. This agrees with what
we obtained from the motility diagrams in the (

Nf

N
, η) parameter plane discussed in

the main text.
For the motility diagram in the (F̂ ,

Nf

N
) plane, the boundaries of the bistable

regime are non-monotonous functions of the parameter F̂ . This gives rise to a re-
entrant behavior, which was absent in the (

Nf

N
, η) parameter plane.

The parameter v̂ describes the velocity mismatch between slow and fast motors.
Small values of v̂ correspond to large velocity mismatches. Then, large load forces
can build up more easily between slow and fast motors, and we expect unbinding
cascades, which give rise to bistability. Therefore, the critical points of the motility
diagram are located in the upper right part of the (v̂,

Nf

N
) parameter plane in Figs. S2.

With motor parameters from Table 1 in the main text, the critical points are at (v̂c,
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Nf,c/N) = (0.47, 0.46), (0.058, 0.87), and (0.096, 0.80) for the three different assays
as shown in Figs. S2 A, B and C, respectively. The value v̂ ' 0.065 for wild-type and
mutant kinesin-1 motors, see Fig. S2 A, is much smaller than the critical value 0.47,
whereas the values of v̂ are larger than the corresponding critical values for the other
two assays. Again, we find that only in the assay with wild-type and mutant kinesin-1
motors a transition from a state with bimodal velocity distribution to a state with
unimodal velocity distribution is possible as a function of the fraction of fast motors
Nf/N .

4 Influence of the total motor number N

Finally, we discuss the influence of the parameter N = Nf + Ns, which is the total
number of motors available to attach to the filament, on the average microtubule
velocity. The mean-field equation (S17) only depends on N̂ = Ns/Nf , i.e., if N is

changed while N̂ is fixed, motility diagrams remain unchanged. This prediction only
holds in the mean-field limit of large N .

Using a different approach, Larson et al. (9) found that average microtubule
velocities as shown in Fig. 3 in the main text depend on N . Within the mean-field
approach, average microtubule velocities can only be calculated for unimodal velocity
distributions in the regimes of fast and slow transport. For bistable transport, we
have to use the master equation approach, see eq. (7) in the main text. Figs. S3
show results for assays with (A) kinesin-II and OSM-3 motors (11) and (B) Xkid and
Xklp1 motors (10) and (C) wild-type and mutant kinesin-1 motors (9) for different
values of N .

For the assays in Figs. S3 (A) and (B), for which we predict a unimodal velocity
distribution, we find that the microtubule velocity is indeed almost independent of
N and mean-field and master equation results agree for larger values of N . For the
assay in Fig. S3 (C), on the other hand, we predict a transition from a bimodal to
a unimodal velocity distribution for Nf/N ' 0.31. Here we find a sharpening of the
transition for increasing N , which can be explained by a sharpening of the bimodal
velocity distribution because stochastic switching between the two velocities becomes
more unlikely for larger motor numbers N .
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Figure S3: Microtubule velocity as a function of the fraction of fast motors Nf/N
for different total numbers of available motors N . Microtubules are transported by
(A) OSM-3 and kinesin-II motors (11), (B) Xklp1 and Xkid motors (10), and (C)
wild and mutant type of kinesin 1 motors (9). The results for finite N = 10 and
mean-field results in the limit of large N almost agree for (A) and (B). The transition
from bistable to uniform velocities sharpens for increasing N in (C). The data points
are the experimental results from Refs. (9–11). The values of motor parameters are
given in Table 1 in the main text.
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