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Effective interaction and residual elastic interaction
Fig. 1 supplements Fig. 3 from the main text and gives additional information on the effective interaction U and the residual
elastic interaction ∆U =U −Udep between two disks by showing cuts through the contour plot in Fig. 3 as a function of r/σ or
ϑ .
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Figure 1. (a) Measured effective interaction of two hard disks suspended in hard needles for different disk diameters σ ′. The
interaction is mostly attractive with a strength around ∼ 5kBT . The interaction minimum is at the disks’ surface at ϑ = 0◦. The
range of U(r,ϑ0) in radial direction (left column) is of order of l0. In angular direction (right column), U(r0,ϑ) shows a
growing repulsive area at ϑ = 90◦ for larger disks. (b) Residual elastic interaction ∆U(~r) =U(~r)−Udep(~r) of two disks for
different diameters σ ′. For larger disks the interaction shows a distorted quadrupolar pattern. For small disks (σ ′ = 1) the
repulsive area around ϑ = 0◦/90◦ is missing. (Figure created using matplotlib 3.2.1 (https://matplotlib.org/), python 3.8.2
(https://www.python.org/), inkscape 0.92.5 (https://inkscape.org/))

Event-chain algorithm
The event-chain algorithm is a rejection-free MC technique, which is based on global balance by introducing so-called lifting
moves. For hard spheres or needles a lifting move is the transfer of a MC displacement from one particle to another particle.
This means in a MC move only one particle at a time is active and moved along a line until it contacts another object. Then the
remaining MC move distance is lifted to this object, which is then moved further.

Needles are represented by their two endpoints, where only one endpoint is moving at a time. In two dimensions the
needle-needle interaction simplifies effectively to a collision of an endpoint with another needle. The remaining MC move
distance is lifted to one of the endpoints of this needle. Therefore, we have a fluid of endpoints with an effective 3-particle
interaction (two endpoints of a passive needle and the active endpoint). In Ref.1 the generalization of the event-chain algorithm
to N-particle interactions has been worked out. For needles the probability to which endpoint the MC move is lifted is
proportional to the the distance to the other endpoint, i.e., it is lifted with higher probability to the closer endpoint. In the
presence of additional disks, MC displacement is also lifted to disks if a needle collides with the disk and vice versa.

Effective collision detection is essential for a fast event-chain simulation. The collisions are calculated by intersections of a
ray starting at the active particle (either a sphere center or a needle endpoint) with another ray, line segment, or circle. The
construction and an overview of all possible cases is shown in Fig. 2 (a) and (b). To speed up the collision detection, we use a
special neighbor list design. Each particle is confined to a “container”, which triggers an event when the particle leaves it. Then
the neighbor list is updated, which ensures that the neighbor lists are always valid. Particles are added to the neighbor lists
of the other particle and vice versa when their containers overlap. This way, for different particles different container shapes
can be chosen. For the needles a very narrow rectangle can be used, which limits the computational effort for calculating the
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Figure 2. (a) Scheme for the container neighbor lists. The figure shows three needles and a sphere and their respective
containers. Particle(s) are added to the neighbor lists of the other particle(s) and vice versa if their containers overlap. Arbitrary
shapes address the anisotropy of needles efficiently. (b) Possible events in case a needle tip moves along the dashed black ray.
Green lines are constructed by the inactive endpoint of the active needle and the endpoints of the hit needle or by a tangent to a
hit sphere. Solid lines can trigger an event and the dashed part is to illustrate the construction. (c) Possible events in case a
sphere moves along the dashed black ray. Left picture shows the handling of hitting an endpoint directly resembling the
sphere-sphere interaction. To check for the collision with the interior of the needle, one translates the needle perpendicular to
its orientation by σ/2. (Figure created iwth inkscape 0.92.5 (https://inkscape.org/))

distances to the next collision and makes the simulation significantly more efficient in the nematic phase. In particular, the
anisotropy of the needles can be assigned particularly well without sacrificing any flexibility for the bookkeeping of the spheres.
Even systems with a density of ρ ′

n = 100, i.e., with a mean distance of 1/1000, (see Fig. 2 in the main text) are possible.
To avoid numerical issues we exclude the particle (needle or sphere) which was lifted from when calculating the rejection

distance. Furthermore, we optimize the updating of lists by putting them onto a collision grid.

Derivation of the density-dependent depletion interaction
Here we present the derivation of the density-dependent depletion interaction including more intermediate steps. We use
the results of Biben et al.2 and generalize them to anisotropic depletants with a rotational degree of freedom ϕ to get a
density-dependent depletion interaction for disks in a suspension of hard needles. We consider a system of hard disks with
positions {~XI} and Nn hard needles with positions {~xi} and orientations {ϕi}. Upper case indices refer to disks, s lower case
indices to needles. The energy of the system is given by

H = ∑
I<J

Vdd(~XI −~XJ)+∑
i< j

Vnn(~xi −~x j,ϕi,ϕ j)+∑
iI

Vdn(~xi −~XI ,ϕi) .

The disk-disk interaction is given by Vdd, the needle-needle interaction by Vnn and the disk-needle interaction by Vdn. By
integrating over the needle degrees of freedom one can derive the effective interaction V ({~XI}) between the disks2,

βV ({~XI}) =− ln

[∫
∏

i
d~xidϕi exp

(
−β

[
∑
iI

Vdn(~xi −~XI ,ϕi)+∑
i< j

Vnn(~xi −~x j,ϕiϕ j)

])]

(β ≡ 1/kBT ). The corresponding force FK({~XI}) on disk K is given by

FK({~XI}) =−∇~XK
V ({~XI})

=−∑
l

∫ [∫
∏
i 6=l

d~xidϕi exp

(
−β

[
∑
iI

Vdn(~xi −~XI ,ϕi)+∑
i< j

Vnn(~xi −~x j,ϕi,ϕ j)

])]

×

[∫
∏

i
d~xidϕi exp

(
−β

[
∑
iI

Vdn(~xi −~XI ,ϕi)+∑
i< j

Vnn(~xi −~x j,ϕi,ϕ j)

])]−1

∇~XK
Vdn(~xl −~XK ,ϕl)d~xldϕl

=− 1
Nn

∑
l

∫
ρ
(1)(~xl ,ϕl |{~XI})∇~XK

Vdn(~xl −~XK ,ϕl)d~xldϕl .
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In the last step we used the single particle density of needles with angle ϕl at~xl for fixed disk positions:

ρ
(1)(~xl ,ϕl |{~XI}) = Nn

∫
∏i 6=l d~xidϕi exp

(
−β

[
∑iI Vdn(~xi −~XI ,ϕi)+∑i< j Vnn(~xi −~x j,ϕi,ϕ j)

])
∫

∏i d~xidϕi exp
(
−β

[
∑iI Vdn(~xi −~XI ,ϕi)+∑i< j Vnn(~xi −~x j,ϕi,ϕ j)

]) .

By using ∇~XK
Vdn(~xl − ~XK ,ϕl) =−∇~xlVdn(~xl − ~XK ,ϕl), evaluating the sum to a factor Nn and defining the average over the

needle angles as 〈A〉ϕ =
∫

dϕA(ϕ), we get

FK({~XI}) =
1

Nn
∑

l

∫
ρ
(1)(~xl ,ϕl |{~XI})∇~xlVdn(~xl −~XK ,ϕl)d~xldϕl

=

〈∫
ρ
(1)(~r ′,ϕ|{~XI})∇~r ′Vdn(~r ′−~XK ,ϕ)d~r ′

〉
ϕ

.

For the case of two disks at~0 and~r this yields

F~r(~0,~r) =
〈∫

ρ
(1)(~r ′,ϕ|~0,~r)∇~r ′Vdn(~r ′−~r,ϕ)d~r ′

〉
ϕ

(1)

We use the superposition approximation

ρ
(1)(~r ′,ϕ|~0,~r)≈ ρ(~r ′,ϕ|~0)ρ(~r ′−~r,ϕ|~0)/ρn,

where ρ(~r ′,ϕ)≡ ρ(~r ′,ϕ|~0) is the density distribution around a single disk and ρn is the average needle density. For a single
disk the needles are distributed according to the direct interaction potential Vdn(~r,ϕ),

ρ(~r,ϕ) = ρn exp(−βVdn(~r,ϕ))

resulting in

∇~rρ(~r,ϕ) =−βρn exp(−βVdn(~r,ϕ))∇~rVdn(~r,ϕ) =−βρ(~r,ϕ)∇~rVdn(~r,ϕ) .

Using this in eq. (1) we arrive at

F~r(~0,~r)≈− 1
ρnβ

〈∫
ρ(~r ′,ϕ)ρ(~r ′−~r,ϕ)(−β∇~r ′Vdn(~r ′−~r,ϕ))d~r ′

〉
ϕ

= ∇~r
1

ρnβ

〈∫
ρ(~r ′,ϕ)ρ(~r ′−~r,ϕ)d~r ′

〉
ϕ

=−∇~rUdep(~r) .

This effective potential is the density-dependent depletion interaction, which we further approximate by

βUdep(~r)≈− 1
ρn

∫
〈ρ(~r ′,ϕ)〉ϕ〈ρ(~r ′−~r,ϕ)〉ϕ d~r ′ =− 1

ρn

∫
ρ(~r ′)ρ(~r ′−~r)d~r ′

=−ρn

∫ (
1− ρ(~r ′)

ρn

)(
1− ρ(~r ′−~r)

ρn

)
d~r ′ ,

where we used 〈ρ(~r ′,ϕ)ρ(~r ′−~r,ϕ)〉ϕ ≈ 〈ρ(~r ′,ϕ)〉ϕ〈ρ(~r ′−~r,ϕ)〉ϕ , which is valid for the isotropic phase and the ideal
nematic phase. Since we investigate the effective interaction in the nematic phase this should be a good approximation.

For the special case of an idealized density that is a step function and either zero or ρn (see Fig. 3), the effective potential
essentially becomes the well-known depletion interaction βU(r) = −ρ0Aov, where Aov is the overlap area of the excluded
areas3.
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Figure 3. Idealized step-like depletion zone around a disk (a) and resulting overlap area Aov(r,ϑ) (b). (Figure created iwth
inkscape 0.92.5 (https://inkscape.org/))
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