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We investigate wrinkling of two-dimensional random and triangular semiflexible polymer networks
under shear. Both types of semiflexible networks exhibit wrinkling above a small critical shear angle,
which scales with an exponent of the bending modulus between 1.9 and 2.0. Random networks exhibit
hysteresis at the wrinkling threshold. Wrinkling lowers the total elastic energy by up to 20% and strongly
affects the elastic properties of all semiflexible networks such as the crossover between bending and
stretching dominated behavior. In random networks, we also find evidence for metastable wrinkled
configurations. While the disordered microstructure of random networks affects the scaling behavior of
wrinkle amplitudes, it has little effect on wrinkle wavelength. Therefore, wrinkles represent a robust,
microstructure-independent assay of shear strain or elastic properties.
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Random networks of stiff fibers or polymers are impor-
tant model systems for biopolymer meshworks in the cell
cortex or the cytoplasm [1] or synthetic nanofibrous
materials [2]. In such a network structure, a random array
of fibers or semiflexible polymers with an intrinsic bending
rigidity is cross-linked. We will focus on the situation
where cross-linking is permanent on the time scale of
network deformation. Quasi-two-dimensional (2D) geom-
etries are used to model sheetlike materials such as
the cell cortex, the spectrin cytoskeleton of red blood cells,
or synthetic materials such as paper sheets. In fact, much of
the theoretical and simulation work on semiflexible poly-
mer networks has been done on planar networks [3–8]; this
work has shown that planar networks exhibit unique elastic
properties under shear with a crossover from bending to
stretching dominated elasticity, nonaffine deformation, and
strain hardening. More recently, similar properties could be
found in simulations of three-dimensional bulk networks,
which are suitable models for bulk biopolymer gels [8–12].
Realistic 2D sheetlike materials are, however, embedded

into three-dimensional space and exhibit a buckling insta-
bility with deformations normal to the initial plane resulting
in wrinkling even if applied stresses are strictly in plane.
All existing works on 2D semiflexible networks neglect
this issue. We show that wrinkling strongly modifies the
elastic properties of a 2D sheetlike material under shear in
comparison to strictly planar deformations.
Wrinkling of a 2D material can occur under different

loading conditions: Stretching with clamped boundaries
causes tensional wrinkles along the stretching direction
[13–15], and shearing gives rise to wrinkles at a 45° angle
[16,17]. In both cases, the material is under compressive
stress perpendicular to the wrinkle orientation. Here, we
want to study wrinkling of 2D networks of semiflexible
polymers under shear deformation in order to provide a
more realistic treatment of sheetlike networks embedded

into three-dimensional space, where the effects of wrin-
kling are of practical relevance for applications of these
materials. We will compare regular and disordered network
geometries to address the important question in the context
of wrinkling theory to what extent the wrinkling instability
and wrinkle properties depend on the microstructure of a
material. We will compare our findings for 2D semiflexible
networks to the continuum linear elasticity theory of
wrinkling [16,17].
Models and simulations.—Semiflexible polymer net-

works are generated by placing straight rods of length
L into a 2D rectangular simulation cell with dimensions
Lx × Ly (we use Lx=L ¼ Ly=L ¼ 1.5 for random net-
works). Each rod is characterized by a stretching modulus
μ and a bending modulus κ. We neglect thermal fluctuations
and only consider mechanical elasticity. Hence, the energy
of a filament consists of a stretching energy contribution
EðsÞ ¼ R ðμ=2Þ½u0ðsÞ�2ds and a bending energy contribution
EðbÞ ¼ R ðκ=2Þ½ϕ0ðsÞ�2ds. Here, u0ðsÞ is the local strain and
ϕ0ðsÞ is the local curvature, both parametrized by the
contour length s. The elastic moduli can be used to define
the length scale lb ≡

ffiffiffiffiffiffiffiffi
κ=μ

p
, which can be interpreted

as the “thickness” of the network, as we will argue below.
The number lb=L is our dimensionless measure for the
relative bending rigidity of the rods. For F-actin of length
L ¼ 20 μm, we typically find lb=L≃ 10−4; throughout
the Letter, we consider comparable or higher bending
rigidities lb=L ¼ 1.4 × 10−4;…; 2.5 × 10−3.
Filament intersections are identified as cross-links.

During simulation, the cross-links are treated as permanent
and freely rotating. Filaments exceeding the simulation
cell in the y direction are fixed to the y boundaries.
In the x direction, we use periodic boundary conditions.
Depending on the depositing routine, two different types of
2D networks are generated: (i) The rods are either placed
equidistantly at fixed orientations, resulting in a regular
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triangular network or (ii) added at random positions with
random orientations forming a disordered, random net-
work. In a triangular network (i), the filaments extend
through the whole simulation cell, and the lattice constant
l▵c is specified to determine the total number of filaments.
In a disordered network (ii), filaments are added until the
network density reaches a specified value. We calculate
the dimensionless network density as η ¼ L=lc. Here, lc is
the mean distance between neighboring cross-links, and η
is equivalent to the average number of cross-links per rod.
Throughout the Letter, we consider densities
η ¼ 32;…; 54. For random networks, this is far above
the rigidity percolation threshold, which is around ηp ≃ 6
[18]. Based on Ref. [19], we estimate typical values for
F-actin networks as 5≲ η≲ 100. For regular networks, we
define an analogous density parameter η0 ¼ Lx=l▵c . In order
to allow bending of the segments between cross-links, the
midpoints of each segment can be displaced. With this
discretization, only the first bending mode is considered,
which is expected to dominate in the absence of thermal
fluctuations [3].
The elastic moduli of a regular triangular network can

be calculated analytically. We find a shear modulus G▵ ¼ffiffiffi
3

p
μ=4l▵c and a Young’s modulus Y▵ ¼ 8G▵=3 resulting

in a Poisson ratio ν▵ ¼ 1=3 and a bending modulus
B▵ ¼ 3G▵κ=μ. The densities of the random networks
considered in this Letter are sufficiently high that the elastic
moduli can be calculated by assuming affine deformations
and a uniform distribution of rod orientations [3,5]. This
leads to a shear modulus Gr ¼ ðπ=16Þðμ=LÞðηþ 2=η − 3Þ
and relations for the other moduli which are identical to
regular triangular networks: Yr ¼ 8Gr=3, νr ¼ 1=3, and
Br ¼ 3Grκ=μ. Using these results, we can generate regular
and random networks with the same elastic moduli for
comparison. For both triangular and random networks, we
haveB=3G ¼ κ=μ ¼ l2b. In shell elasticity, the ratioB=3G is
proportional to the square of the shell thickness, and in
elasticity theory of thin cylindrical rods of diameter d, we
have κ=μ ∼ d2 [20], which suggests identifying lb with a
network “thickness”.
The degrees of freedom of the simulation are the

positions of cross-links and segment midpoints. Starting
from an undeformed planar state, the shear deformation γ
in the x direction is increased by small increments δγ.
For each increment, we perform an affine deformation of all
points, fix the y boundaries at their new positions, and find
the configuration of minimal total energy using a conjugate
gradient algorithm. To allow for wrinkling, we allow cross-
link and midpoint positions to move in all three spatial
dimensions. To avoid getting trapped in the metastable
planar network configuration and enable wrinkle forma-
tion, the z coordinates (normal to the initial network plane)
of cross-links and midpoints are randomly perturbed before
minimization. Without this perturbation, the networks
remain planar under shear, hence, they do not exhibit

wrinkling. This enables us to simulate the same

networks with and without wrinkling and compare their

total energies Ewr (wrinkled) and Epl (planar). Details of the

simulation model are contained in the Supplemental

Material [21].
Wrinkle formation.—For shear angles γ exceeding a

critical value γc, planar networks undergo a buckling
instability, and wrinkled network configurations become
energetically preferable to planar configurations. An exam-
ple of a wrinkled random network is shown in Fig. 1.
We find wrinkles at a 45° angle to the shear direction, for
both triangular and random networks, i.e., independent of
microstructure. For both network types, patterns with n
wrinkles are well described by a displacement field
z ¼ A sin ðπy=LyÞ sin ð

ffiffiffi
2

p
πðy − xÞ=λnÞ normal to the xy

plane with an amplitude A and wavelengths λn ¼ Lx=n
ffiffiffi
2

p
,

as predicted by membrane elasticity theory [17,21] (n ¼ 3
in Fig. 1). We focus on densities η≳ 30 because wrinkling
patterns are not well defined in regions of low network
density.
Continuum elasticity theory predicts a critical value

γc ∝ B=G ∝ l2b for wrinkling of 2D membranes [16,21]:
Wrinkling relieves compressional stress in the direction
perpendicular to the wrinkles, thus, lowering the
in-plane elastic energy per area to e2D;wr ¼ Gγ2=2−
ðπ2=2ÞGγA2=λ2 þOðA4Þ. On the other hand, wrinkling
costs an additional bending energy eB;wr ¼ 4π4BA2=
2½λ−4 þ λ−2L−2

y þ L−4
y =16� per area. Wrinkling sets in if

Δe ¼ e2D;wr þ eB;wr −Gγ2=2 < 0 for the largest possible
wavelength λ1 ¼ Lx=

ffiffiffi
2

p
. This happens for

γ > γc ¼ ð4π2B=GL2
yÞ½2a2 þ 1þ a−2=32�; (1)

FIG. 1 (color online). Snapshots of a wrinkled random network
(lb=L ¼ 2.5 × 10−3 and η ¼ 54) at two different shear strains
γ ¼ 0.06 and 0.12. The dimensionless displacement z=λ in
normal direction is color coded. Wrinkles form at an angle of
45° to the shearing direction; the wrinkle amplitude increases
with the shear angle.
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where a≡ Ly=Lx is the aspect ratio. This energy argument
also predicts a supercritical pitchfork bifurcation with
A2 ∝ γ − γc at the onset of wrinkling, which we use to
obtain γc in simulations by extrapolating A2 to zero as a
function of shear angle.
In our simulations of regular networks under shear, we

confirm these results and find good agreement with Eq. (1),
see Fig. 2(a). Fitting the data with a function γc ∝ lαb ∝
ðκ=μÞα=2 yields exponents α ¼ 1.93;…; 1.97 depending on
network density. For random networks, the situation is
more complicated because we have to average over
many realizations with different γc. For the average value,
we find a slightly smaller exponent α ¼ 1.9 for η ¼ 47.
Consequently, γc follows a power law as a function of (κ=μ)
with an exponent close to 1 in semiflexible networks as
predicted by continuum elasticity theory; the dependence
on network density is weak. Thus, it is a generic feature
of both regular and disordered 2D semiflexible polymer
networks to become unstable with respect to wrinkling
already at small critical shear angles. Therefore, wrinkle
formation will be relevant in most applications.
The above results were obtained using perturbations z

corresponding to a sinusoidal displacement field with
wavelength λ1. When applying random perturbations in
the z direction, wrinkling sets in at larger shear angles γc;r

in both regular and random networks. The difference can
be as large as two orders of magnitude. Additionally, we
observe a hysteretic behavior at the onset of wrinkling in
random networks, as shown in Fig. 2(b) (red trajectory)
for the total energy ratio Ewr=Epl of wrinkled and corre-
sponding planar networks. Shearing beyond γc;r and then
relaxing the wrinkled state to γ < γc;r, we find that wrinkles
persist, as we would expect since γc < γc;r. Repeated
simulations show that the threshold γc;r for wrinkling
decreases for increased amplitudes of the random pertur-
bation of the unwrinkled configuration. This effect can be
explained by an energy barrier which exists between two
metastable minima in the energy landscape, corresponding
to the unwrinkled and wrinkled states (and exists for all
γ > γc). This barrier is more likely to be overcome for
increased noise amplitudes.
Both planar and wrinkled 2D networks avoid compres-

sive stress by bending. In planar networks, the individual
segments bend in plane on the small scale lc between cross-
links, whereas wrinkling allows bending on larger length
scales as cross-links move out of plane. As a consequence,
to avoid the same amount of compressive stress, less
bending energy is required in wrinkled networks, which
gives rise to a lower total energy Ewr < Epl. Figure 2(c)
shows that the maximum relative energy gain by wrinkling
is reached for deformations just above the threshold γc;r and
ranges from 10% to 20% in random networks (regular
networks behave qualitatively similar). At higher strains,
the energy gain decreases again and Ewr=Epl approaches
unity for large γ. This is a characteristic feature of the
nonlinear elasticity of semiflexible polymer networks with
strain hardening and an elasticity dominated by the stretch-
ing of fibers along the principal strain axis at a 45° angle for
large γ [7]: Whether the material wrinkles or only bends in
plane in the direction perpendicular to the principal strain
axis has negligible effects on the elastic energy. In a material
following linear continuum elasticity theory of wrinkling,
we find Ewr=Epl ≈ ð1þ νÞ=2 for large γ instead [21].
Figure 2(c) also shows that the wrinkling energy gain is
larger for dense networks. An energy gain of up to 20% by
wrinkling shows that wrinkling will be relevant for practi-
cally all elastic properties and that constraining sheetlike
materials in simulations to planar configurationswillmodify
material properties considerably.
In random networks, wrinkles also exhibit metastability.

This is investigated using “preconditioned networks”,
where we transfer the configuration of a regular network
with identical elastic properties to a disordered network
as the initial condition for further energy minimization.
This results in lower total energies. The preconditioned
networks remain energetically favorable also at higher
strains, see Fig. 2(b) (blue trajectories), indicating the
existence of several local minima in the energy landscape.
These correspond to different metastable configurations
with slightly different wrinkle configurations. Since the
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FIG. 2 (color online). (a) Critical shear angle γc as a function of
the rigidity (double logarithmic) for random (densities η ¼ 47)
and regular networks (η0 ¼ 20, 30, 50) in comparison with linear
continuum elasticity theory (CET). Lines are least square fits γc ∝
lαb (see text). (b) Total energy ratio Ewr=Epl of wrinkled to planar
networks as a function of shear angle γ for random networks (red)
with rigidity lb=L ¼ 2.5 × 10−3, η ¼ 47. We find hysteresis upon
reversing the deformation, as indicated by the arrows. Precondi-
tioning random networks with wrinkle patterns from regular
networks results in a lower energy (blue). (c) Total energy ratio
Ewr=Epl as a function of shear angle γ for random networks with
lb=L ¼ 2.5 × 10−3 and η ¼ 32, 39, 47, 54. Data points in (b),(c)
represent averages over ten realizations, and the error bars
indicate the statistical spread.
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configuration with the lowest total energy is similar in
regular and disordered networks, we also conclude that the
wrinkling wavelength is independent of the network
microstructure.
Wrinkle properties.—Wrinkles can be characterized by

their wavelength and their amplitude. In elasticity theory of
membranes, the wrinkle wavelength λ can be related to the
applied shear. Far from the wrinkling threshold, γ ≫ γc, the
force equilibrium in the z direction between the outward
bending forces ∝ BAλ−4 and the inward stretching forces
∝ YγAλ−2 gives [17,21]

λ ¼ ð8πLyÞ1=2ðB=YÞ1=4γ−1=4 ¼ ð
ffiffiffiffiffi
72

p
πLylbÞ1=2γ−1=4; (2)

where we used B=Y ¼ 9l2b=8. With periodic boundary
conditions, λ cannot change continuously but is restricted
to discrete values λn ¼ Lx=n

ffiffiffi
2

p
. We find that regular

networks follow Eq. (2) from elasticity theory within the
limits of this discretization. For random networks, we find
that preconditioning with the wavelength of regular net-
works always lowers the total energy, see Fig. 2(b). This
lets us conclude that the stable wavelengths of wrinkles in
random and regular networks are identical, implying
validity of Eq. (2) also for random networks. Therefore,
by measuring the wavelength of wrinkles, the ratio of
bending to Young’s modulus and shear modulus B=3G ¼
8B=9Y ¼ l2b or local strains γ can be determined via Eq. (2).
This works independently of the microstructure of the
network.
A second characteristic of wrinkles is their amplitude A.

In continuum elasticity of membranes, A is a function of the
wavelength λ and the applied shear strain γ [17,21],

A ¼ λð2πÞ−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − νÞγ

p
; (3)

which is valid far from the wrinkling threshold. This result
is obtained from linear continuum elasticity theory by
assuming that wrinkling leads to a vanishing shear stress in
the direction perpendicular to the wrinkles [21]. For small
strains γ, our simulation results for wrinkled regular net-
works show good agreement with Eq. (3) with slightly
larger amplitudes, see Fig. 3(a), which can be attributed to
nonlinear effects. We find that the dependence A ∼ γ1=2

only holds up to a maximum strain γ×max, which depends
on network density and bending stiffness, see Fig. 3(a). For
γmax, we find the empirical relation

γmax ∼ ξ≡ l2bl
−2
c

ffiffiffiffiffiffiffiffiffiffi
λL−1

y

q
: (4)

Using γmax ∼ ξ to rescale strains to ~γ ¼ γξ−1 and
amplitudes to ~A ¼ Aξ−1=2, we achieve data collapse onto
a master curve with a maximum reduced amplitude atffiffiffiffiffiffiffiffiffi
~γmax

p
≈ 5.4. Typical values for ξ are ξ ¼

2.9;…; 68 × 10−5. Only for values ~γ < ~γmax, the wrinkle
amplitude is in agreement with Eq. (3). Hence, γmax gives

an estimate for the maximum strain at which it is reasonable
to treat regular networks and their wrinkles by elasticity
theory. According to Eq. (2), the corresponding wavelength
λðγmaxÞ only depends on lc, which suggests that for
γ > γmax, the discrete network structure becomes relevant.
When comparing random networks to regular ones, we

notice deviations from Eq. (3) already at smaller strains.
Moreover, after being preconditioned at different strains,
random networks exhibit a pronounced dependence on the
initial state resulting in significantly different amplitudes,
as shown in Fig. 3(b). This indicates the existence of
different metastable configurations differing in amplitudes
despite having the same wavelength.
Crossover from bending to stretching.—Typically, the

nature of the deformation in planar random networks
depends on the strain and network density. At small strains,
linear elastic properties are bending dominated for small
densities and become stretching dominated for higher
densities [3–6]. For a fixed density, networks are bending
dominated at low strains and become stretching dominated
at high strains, which results in nonaffine deformations at
the crossover [7]. The ratio of bending to stretching energy
correlates with measures for the nonaffinity of network
deformation and can, thus, be used as an indicator for
the transition in deformation behavior in wrinkled net-
works. Comparing the same networks in planar and three-
dimensional simulations, we find that wrinkling causes a
transition to stretching dominated behavior at much smaller
strains than in planar networks. Our results suggest that
the wrinkling transition inherently causes the network to
become stretching dominated even if the strain is too small
to cause stretching domination in a planar network. Details
are included in the Supplemental Material [21].
Conclusion.—We investigated wrinkling of two-

dimensional random and triangular semiflexible polymer
networks under shear. Both types of networks wrinkle alre-
ady above small critical shear angles with γc ∝ ðκ=μÞα=2,
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FIG. 3 (color online). Ratio of rescaled wrinkle amplitude and
wavelength ~A=λ as a function of ~γ1=2 (a) for regular networks
(lb=L ¼ 3.3;…; 17 × 10−4 and η0 ¼ 20, 25, 30, 35) and (b) for
preconditioned random networks (lb=L ¼ 2.5 × 10−3 and
η ¼ 39). For regular networks (a), the rescaled quantities exhibit
data collapse. Agreement with linear continuum elasticity theory
(CET) [black line, Eq. (3)] only holds up to a maximal strain ~γmax.
For preconditioned random networks (b), rescaling does not lead
to data collapse, and the amplitudes depend on the strain γ0 at
which the networks were preconditioned.
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where α ranges from 1.9 to 2.0 [see Fig. 2(a)]. Random
networks exhibit hysteresis near thewrinkling threshold [see
Fig. 2(b)]. The maximal energy gain upon wrinkling is up to
20%. Therefore, wrinkling is a relevant effect for all elastic
properties [see Fig. 2(c)]. In random networks, we found
metastablewrinkledconfigurations.Eventhoughthedisordered
microstructure in random networks strongly affects the scaling
properties of the wrinkle amplitude [see Figs. 3(a) and 3(b)], it
has little effect on the wrinkle wavelength, which follows
predictions from elasticity theory. Therefore, wrinkle wave-
lengths can represent a robust, microstructure-independent
assay of shear strain or elastic properties. Wrinkling strongly
affects the characteristic elastic response of 2D semiflexible
polymer networks since it triggers an immediate transition to
stretching dominated deformation.
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