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In this Appendix, we present details of the simulation model of the crosslinked semiflexible polymer
network and a summary of the wrinkling theory based on continuum linear elasticity theory used to
analyze our simulation results. We also present details on how wrinkling affects the crossover from
bending to stretching dominated deformation of the network.
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SIMULATION

In this Appendix, we present details of the simulation
model of the crosslinked semiflexible polymer network.

Network preparation

We analyze and compare two types of semiflexible
polymer networks: (i) random and (ii) regular networks.
For both types of networks, the initial condition is planar.

(i) Random networks are prepared using a “mikado
model” [1, 2]. In a rectangular simulation box of size
Lx × Ly in the x-y-plane, straight rods of length L are
added at random positions and random angles. Inter-
sections between rods are identified as crosslinks. The
resulting mean distance between neighboring crosslinks
is lc, and rods are added until a given density η = L/lc is
reached. In order to allow bending deformation, the re-
sulting segments between crosslinks are split into two by
adding a midpoint. Dangling ends are removed as they
can relax freely and do not contribute to the total elastic
energy.

(ii) Regular triangular networks are prepared by plac-
ing infinitely long rods equidistantly and at angles ϕ =
0, π/3, 2π/3 with respect to the x-direction. Again we
identify intersections as crosslinks, and add midpoints to
the resulting segments of equal length lMc .

For both types of networks, we apply periodic bound-
ary conditions in x-direction and fixed boundary con-
ditions in y-direction, i.e., intersection points with the
boundary are treated as fixed crosslinks.

As a result, the network configuration is defined by a
set of points (crosslinks and midpoints) with two main
properties: (a) the position in three-dimensional space
and (b) a list of connections to neighboring points. In or-
der to calculate the stretching energy, the initial segment
lengths lij,0 between pairs ij of neighboring points are
also stored. Crosslinks are connected to 2-4 other points
in random networks and to 6 other points in regular trian-
gular networks; midpoints always have two neighboring
points.

Semiflexible polymer network model

We use a simulation model very similar to the model
presented in Ref. [1]. The stretching energy E(s) =
(µ/2)

∫
ds(u′(s))2 is applied to each pair ij of neighbor-

ing points connected by a rod segment, the bending en-
ergy E(b) = (κ/2)

∫
ds(φ′(s))2 is applied to each triple

ijk of neighboring points connected by segments along
the same rod.

The stretching energy of a segment of length lij with
u′(s) ≈ (lij − lij,0)/lij,0 is

E
(s)
ij =

µ

2

(lij − lij,0)2

lij,0
. (1)

The bending energy of a triple ijk of neighboring points
with the two neighboring segments forming an angle φijk
is

E
(b)
ijk = κ

1− cosφijk
lij + ljk

. (2)

Here we used (φ′(s))2 ≈ 2(1−cosφijk)/(lij+ljk)2. These
definitions can be applied both to planar and wrinkled
networks.

Energy Minimization

For energy minimization, we used a conjugate gradient
method which minimizes the total stretching and bending
energy of the network. The degrees of freedom are the
positions of crosslinks and midpoints.

For the gradient method, we calculate stretching and
bending forces on each crosslink and midpoint. The

stretching force F
(s)
i,ij onto point i (with position ri, i.e.,

lij = |ri − rj | and with lij ≡ ri − rj) from a link ij is

F
(s)
i,ij = −µ lij

lij

lij − lij,0
lij,0

.

A point i is subject to bending forces as an endpoint of
a triple ijk or as a midpoint of a triple jik. The bending
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force F
(b)
i,ijk acting upon an endpoint i of a triple ijk is

F
(b)
i,ijk = κ

lij
lij

[
1− cosφijk
(lij + ljk)2

− 1

lij + ljk

(
cosφijk
lij

+
1

ljk

)]
,

whereas the force on a midpoint is given by

F
(b)
i,jik = κ

1− cosφijk
(lij + lik)2

(
lij
lij

+
lik
lik

)
− κ 1

lij + lik

[
cosφijk

(
lij
l2ij

+
lik
l2ik

)
+

lij + lik
lij lik

]
.

All stretching and bending forces on a point i have to be
added up to get the total force Fi, which is used in the
conjugate gradient algorithm.

In a planar network, there are no resulting forces in
the z-direction, and the network remains planar without
a perturbation.

Simulation parameters

We use square systems of sizes Lx/L = Ly/L = 1.5
for random networks. We investigated random network
densities η = L/lc = 32...54 and regular network densi-
ties η′ = Lx/l

M
c = 20...50. The random network densities

are chosen well above the percolation threshold and suf-
ficiently high to avoid network configurations with low
density regions, where wrinkling patterns are not well-
defined.

Filament elasticity is characterized by the length scale
lb ≡

√
κ/µ, for which we consider a parameter range

lb/L = 1.4 · 10−4...2.5 · 10−3.

Network deformation and preconditioning

Simulations are performed by increasing the shear an-
gle γ of the simulation box by increments ranging from
10−7 to 10−2 depending on elastic properties of the net-
work and the range of shear angles that we want to study.
In each step n, the boundaries of the simulation box are
fixed at a new angle γn = γn−1 + δγ, and an affine defor-
mation with δx(y) = y sin γ is applied to all points. This
includes the intersection points with the y-boundaries at
y = 0 and y = Ly, which are fixed at their new posi-
tions after the affine deformation. Then, the minimiza-
tion routine is used to let the network relax into its new
equilibrium configuration with respect to the positions of
the remaining interior crosslinks and midpoints.

Since the forces have no z-component in a strictly
planar network, it remains planar under shear. How-
ever, the planar unwrinkled state becomes an unsta-
ble (or metastable) minimum above a critical shear an-
gle, γ > γc, and we can induce wrinkling by applying

small perturbations. To probe the stability of the planar
state, we randomly perturb crosslinks and midpoints in
z-direction with a random amplitude δz(x, y). We in-
crease the random amplitude until the resulting increase
in energy δE reaches a certain value relative to the to-
tal energy of the network before perturbation - usually
between 1 and 10%.

We also use non-random perturbations in order to cal-
culate the wrinkling threshold γc. In this case, we apply
displacements according to the wrinkling pattern z(x, y)
that is expected from elasticity theory at the onset of
wrinkling, see eq. (15) below.

For some simulations of random networks, we use a
“preconditioning” procedure: we first calculate a wrinkle
pattern for a regular network with similar elastic prop-
erties, measure the displacement pattern z(x, y) (eventu-
ally interpolating from the lattice points in the xy-plane),
and apply the same displacement pattern to the random
network. This is only done once before the start of the
simulation.

Wrinkle detection

To determine wrinkles and measure their wavelength λ,
we calculate all intersection points of rod segments with
the xy-plane. For wrinkled configurations, these points
are arranged in a pattern of parallel lines. The distance
between these lines equals λ/2.

In order to determine the wrinkle amplitude, we calcu-
late the square sum of the z-components of all N points
in the network,

∑N
i=1 z

2
i . Assuming an approximately

uniform area per point, we compare this to the integral
N

LxLy

∫
dxdy (z(x, y))

2
over a continuous wrinkling pat-

tern z(x, y) as it is expected from elasticity theory, see
eq. (15) below. We use the measured wavelength λ and
solve for the amplitude of this pattern. This procedure
can be applied to both regular and random networks.

Wrinkling threshold

For regular networks, we can use the relation A2 ∝
(γ − γc), see (22) below, to obtain the threshold shear
γc for the onset of wrinkling in our simulations. We ex-
trapolate the square of the wrinkling amplitude A2 as a
function of shear angle linearly (for γ > γc), and the zero
of this line is γc. To determine γc, we impose wrinkling
perturbations following the pattern (15) given below with
the longest admissible wavelength λ = λ1 = Lx/

√
2

(n = 1).

For random networks, we find that the amplitude ex-
hibits discrete jumps instead of approaching zero contin-
uously as A2 ∝ (γ − γc). In this case, we identify γc as
the first shear angle exhibiting a non-zero wrinkling am-
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plitude A > 0 upon imposing a wrinkling perturbation
(15) with n = 1.

CONTINUUM ELASTICITY THEORY OF
WRINKLING UNDER SHEAR

In this Appendix, we summarize the continuum linear
elastic theory of wrinkling of an elastic membrane un-
der an applied shear strain γ, to which we compare our
findings for regular and random semiflexible polymer net-
works. This elastic theory can be found in similar form
in Refs. [3] or Ref. [4].

Elastic moduli

The in-plane deformations of planar two-dimensional
elastic membranes are characterized by a 2D Young mod-
ulus Y or a compression modulus K, a shear modulus G,
and a Poisson ration ν. For isotropic elasticity, we have
two independent elastic constants and the additional re-
lations G = Y/2(1 + ν) and K = Y/2(1− ν).

For a regular triangular network of semiflexible poly-
mers with stretching elasticity E(s) = (µ/2)

∫
ds(u′(s))2

and a lattice constant lMc , we can calculate the elastic
constants explicitly [5]:

G =

√
3

4

µ

lMc
, Y =

8

3
G , K = 2G , ν =

1

3
(3)

Out-of-plane bending deformations are characterized
by a bending modulus B. For thin plates from a 3D
isotropic material, the bending modulus is related to the
2D moduli and the plate thickness t by B = Y t2/12(1−
ν2). For a triangular network of semiflexible polymers
with bending elasticity E(b) = (κ/2)

∫
ds(φ′(s))2 and a

lattice constant lMc , the bending modulus is given by

B =
3
√

3

4

κ

lMc
= 3G

κ

µ
= 3Gl2b (4)

with lb ≡
√
κ/µ.

Strains, stresses, and energies

For a general deformation r(x, y) = r0(x, y) +
u1(x, y)ex+u2(x, y)ey+z(x, y)ez of an elastic membrane
with respect to an undeformed reference state r0(x, y),
length changes dr2 − dr20 =

∑
ij uijdxidxj are described

by a 2D strain tensor

uij ≡
(
εx γxy
γxy εy

)
, (5)

and a corresponding stress tensor

σij ≡
(
σx τxy
τxy σy

)
=

( Y
1−ν2 (εx + νεy) 2Gγxy

2Gγxy
Y

1−ν2 (εy + νεx)

)
.

(6)

The elastic energy density is given by

e2D =
1

2
σijuij = Gu2ik +

1

2
(K −G)u2ll

=
1

2
G∆ε2 + 2Kε̄2 + 2Gγ2xy (7)

with ∆ε ≡ εx − εy and ε̄ ≡ 1
2 (εx + εy).

We apply a uniform shear by an angle γ with bound-
ary conditions ux(x, Ly) − ux(x, 0) = (tan γ)Ly and
uy(x, Ly) = uy(x, 0) = 0 at y = Ly and y = 0 and pe-
riodic boundary conditions in x-direction. For a strictly
planar deformation in the absence of wrinkling, the re-
sulting in-plane strain and stress tensors are homogeneous

uij,pl =

(
0 γ/2
γ/2 0

)
, σij,pl =

(
0 Gγ
Gγ 0

)
, (8)

and the elastic energy density is

e2D,pl =
1

2
Gγ2. (9)

Wrinkling gives rise to an additional out-of-plane dis-
placement z(x, y). For small deflections, the second fun-
damental form κij of the membrane describing its curva-
tures is given by

κij ≈
∂2z

∂xi∂xj
+O(z2), (10)

and the additional in-plane strains caused by the dis-
placement z(x, y) are

uij =

(
εx,pl + 1

2κ
2
11 γxy,pl + ∂z

∂x
∂z
∂y

γxy,pl + ∂z
∂x

∂z
∂y εy,pl + 1

2κ
2
22

)
+O(z4) (11)

The total elastic energy density e = e2D + eB is the sum
of the in-plane elastic energy (7) and the bending energy

eB =
1

2
B
[
κ211 + κ222 + 2νκ11κ22 + 2(1− ν)κ212

]
, (12)

see, for example, Ref. [3].

Force equilibrium

The equilibrium configuration of the membrane is ob-
tained by the conditions of force equilibrium, which are∑

i

∂iσij = 0 ,

B

[
∂4z

∂x4
+
∂4z

∂y4
+ 2

∂4z

∂x2∂y2

]
=
∑
ij

σijκij (13)
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for small out-of-plane displacements z(x, y).
These equations are the first variation of the total en-

ergy e2D + eB as given by (7) and (12) with respect to
the fields uij and z(x, y). The first equation represents
the in-plane force equilibrium, the second equation the
force equilibrium perpendicular to the plane.

Wrinkling instability (near threshold)

In order to calculate the wrinkling pattern uij and
z(x, y) for a given shear angle γ exactly, we have to solve
the equations (13) with the correct boundary conditions.
An alternative approximate procedure is to choose a suit-
able ansatz z(x, y) for the out-of-plane wrinkling pattern,
assume homogeneous in-plane strains as in (8), and min-
imize the total elastic energy e2D + eB with respect to
the parameters of the ansatz z(x, y) [3].

For a planar shear deformation (8), the strain tensor is
diagonal in a ξ-η coordinate system rotated by π/4, i.e.,
ξ ≡ (x+ y)/

√
2, η ≡ (y − x)/

√
2 with

uξη ≡
(
εξ γξη
γξη εη

)
=

(
γ/2 0
0 −γ/2

)
. (14)

The principal strain axes of the deformation are eξ =
(1, 1)/

√
2 and eη = (−1, 1)/

√
2 with pure stretching in ξ-

direction and pure compression in η-direction. Therefore,
wrinkles are expected to appear perpendicular to the η-
direction of compression and along the ξ-direction. This
motivates the ansatz

z(x, y) = A sin

(
π
y

Ly

)
sin

(
2π
y − x√

2λ

)
(15)

for the wrinkling pattern with amplitude A and wrinkle
wavelength λ. This ansatz satisfies the boundary con-
ditions uy(x, Ly) = uy(x, 0) = 0 at y = Ly and y = 0.
The periodic boundary conditions in x-direction limit the
wrinkle wavelength to a set of discrete values

λn =
1√
2

Lx
n

(n = 1, 2, ...). (16)

There is a maximal wavelength λ1 = Lx/
√

2, which is ad-
mitted by the system size and the boundary conditions.

Close to the critical angle γ ≈ γc, we can expand the
total elastic energy e2D + eB in powers of the amplitude
A. Because of the A → −A symmetry, only even terms
occur in this expansion.

The resulting in-plane and bending elastic energy den-
sities are

e2D,wr =
1

2
Gγ2 − π2

2
Gγ

A2

λ2
+O(A4) , (17)

eB,wr =
1

2
BA24π4

[
1

λ4
+

1

λ2L2
y

+
1

16L4
y

]
, (18)

FIG. 1: Wrinkle pattern (15) for n = 2, i.e., λ = Lx/2
√

2.

where we replaced oscillating functions by their spatial
averages over the area. The second term in (17) fa-
vors wrinkling, which relieves compressive stress in η-
direction. The first term in e2D,wr is identical to the
strictly planar elastic energy. If the energy difference
∆e between wrinkled and unwrinkled state is negative,
∆e = e2D,wr + eB,wr − e2D,pl < 0, wrinkling is energet-
ically favorable and the planar state becomes unstable
with respect to the formation of wrinkles with A 6= 0.
This is the case when the coefficient of the A2-terms in
∆e becomes negative, i.e.

γ > 4π2B

G

[
1

λ2
+

1

L2
y

+
λ2

16L4
y

]
.

The smallest wrinkling angle γc leading to an instability
is obtained for the maximal wavelength λ = λ1,

γc = 4π2B

G

[
1

λ21
+

1

L2
y

+
λ21

16L4
y

]
= 4π2B

G

1

L2
y

[
2a2 + 1 +

1

32a2

]
∝ B (19)

where a ≡ Ly/Lx is the aspect ratio of the membrane.
The energetically most favorable and most unstable

wavelength λ for γ > γc (but γ sufficiently small so
that we are still near threshold) is selected by minimizing
e2D + eB with respect to λ. This gives

λ ≈
√

8π

(
B

G

)1/2
1

γ1/2
(20)

for γ � γc. The wavelength λn closest to this value will
appear as wrinkling pattern.

According to eqs. (17) and (18), the energy difference
is

∆e = e2D,wr + eB,wr − e2D,pl = −a(γ − γc)A2 + bA4

(21)
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with positive coefficients a and b (a ∼ G/λ21 and b ∼
G/λ41). Therefore, minimizing with respect to A gives

A2 ∝ (γ − γc) (22)

at the onset of wrinkling. Therefore, the wrinkling insta-
bility is always a supercritical pitchfork bifurcation anal-
ogously to standard φ4-theory with a second order phase
transition (as in beam buckling). The instability hap-
pens at the largest wavelength λ1 that is admissible by
boundary conditions, which is also similar to buckling.

We use the relation (22) to obtain γc in our simulations
by linearly extrapolating A2 to zero as a function of shear
angle.

Wrinkling far from threshold

For strong shear, we will have fully developed wrinkles
whose amplitude A grows and whose wavelength λ de-
creases with increasing γ. Expansions in A are no longer
a good approximation. Here, we use (i) that a wrinkled
network can only support little stress perpendicular to
the wrinkle direction, such that σξ � |ση|. This will lead
to a relation between A and λ. Then, we use (ii) the
force equilibrium to determine λ (alternatively, one can
minimize the total energy e2D + eB with respect to λ for
given A = A(λ), see Ref. [4]).

Far from the threshold, we start from ση ≈ 0. Ac-
tually, ση will be of the order of the critical stress of a
plate of width λ/2, i.e., ση ∼ −σcr = −4π2B/λ2 [4], and
we assume σξ � σcr. In contrast, at the onset of wrin-
kling, we assumed that both stresses are approximately
equal, σξ ≈ ση ≈ Gγ, with only small corrections of or-
der O(A2) from wrinkles. Using ση = Y

1−ν2 (εη+νεξ) ≈ 0

and εξ = 1
Y (σξ − νση) ≈ 1

Y σξ, we find in-plane strain
contributions

εη = −νεξ = −ν γ
2
,

σξ = Y εξ = Y
γ

2
. (23)

Since wrinkles essentially lead to a vanishing stress ση,
these results are reminiscent of uniaxial stretching in ξ-
direction with stress-free boundaries, where we also find
the usual lateral contraction εη = −νεξ.

We assume γ � (A/Ly)2 such that stress and strain
in ξ-direction are unaffected by the wrinkles:

εξ ≈
γ

2
+
π2

16

A2

L2
y

≈ γ

2
.

The compressive strain in η-direction is relieved by wrin-
kling. The condition ση ≈ 0 only holds in the middle of
the membrane (y = Ly/2), where

εη = −γ
2

+
1

2

(
∂z

∂η

)2

is maximal for a wrinkling pattern (15). Averaging the
strain εη over one wrinkle in the middle of the membrane,
we find

εη ≈ −
γ

2
+ π2A

2

λ2
.

This gives

−γ
2

+ π2A
2

λ2
= εη = −νεξ = −ν γ

2
γ

2
(1− ν) = π2A

2

λ2

or

A =
1√
2π

(γ(1− ν))1/2λ . (24)

Furthermore, the force equilibrium (13) in out-of-plane
direction, which also holds for larger deflection ampli-
tudes A, gives

B
∂4z

∂η4
≈ σξ

∂2z

∂ξ2

B(2π)4
A

λ4
≈ Y γ

2

π2

2

A

L2
y

,

which leads to [4]

λ = (8π)1/2
(
B

Y γ

)1/4

L1/2
y . (25)

Far from threshold, we find for elastic energy density
e2D,wr+eB,wr ≈ σξεξ/2 ≈ Y γ2/8. Therefore, linear con-
tinuum elasticity predicts for the energy ratio Ewr/Epl
of wrinkled to planar networks

Ewr
Epl

=
e2D,wr + eB,wr

e2D,pl
=

Y

4G
=

1 + ν

2
(26)

where we used (9) and Y = 2(1 + ν)G.

CROSSOVER FROM BENDING TO
STRETCHING

For small linear strains, planar random networks
are bending dominated for small densities and become
stretching dominated for higher densities [1, 2, 7]. For
a fixed density, random networks are bending dominated
at low strains and stretching dominated at high strains
[6]. We find that this crossover is strongly modified by
the wrinkling transition.

Onck et al. [6] suggest that the transition between
bending and stretching dominated regimes can be identi-
fied by the following parameter measuring the deviation
from affine behavior:

∆A =
1

n

n∑
k=1

|∆~rk −∆~ak| / |∆~ak| . (27)
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FIG. 2: (a) Ratio Eb/Es of bending to stretching energy
as a function of shear angle γ for random networks with
lb/L = 7.9 · 10−4 and η = 39. Wrinkling at γc ' 0.003 leads
to an immediate crossover to stretching dominated behavior.
We also observe hysteresis. (b) Ratio Eb/Es (dashed lines)
and non-affinity measure ∆A (solid lines, data points) as a
function of shear angle γ for planar random networks with
lb/L = 7.9 · 10−4 and η = 32, 39, 47, 54.

Here, n is the total number of points in the network, ∆~rk
are their actual displacements in a shear increment, and
∆~ak are their displacements under an affine deformation.
The transition from bending to stretching dominated be-
havior is expected to coincide with a maximum in ∆A.

Since wrinkling is necessarily non-affine, it causes ∆A
to become very large and probably even discontinuous at
the wrinkling instability. Hence, ∆A is not very reliable
for measuring the dominant deformation mode in wrin-
kled networks, and we need a different indicator. For pla-
nar networks, we find that a maximum in ∆A coincides
with a maximum of the ratio of bending to stretching en-
ergy, Eb/Es, see Fig. 2b. Therefore, we can use this ratio
similarly to ∆A as an indicator for the transition in defor-

mation behavior. It also has the additional advantage of
being applicable in wrinkled networks without the prob-
lems we have with ∆A. By comparing the same networks
in planar and three-dimensional simulations, we find that
wrinkling causes a transition to stretching dominated be-
havior at much smaller strains than in planar networks,
see Fig. 2a. Because of the hysteresis at the wrinkling
transition described in the main text, we can also study
wrinkled networks at strains γ < γc,r and find that they
are always dominated by stretching. Consequently, the
wrinkling transition automatically causes the network to
become stretching dominated. Thus, the wrinkling in-
stability leads to a profound modification of the network
deformation behavior.
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