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Abstract
Regarding the experimental observation that microtubule (MT) catastrophe can be described as a
multistep process, we extend the Dogterom–Leibler model for dynamic instability in order to
discuss the effect that such a multistep catastrophe mechanism has on the distribution of MT
lengths in the two regimes of bounded and unbounded growth. We show that in the former case,
the steady state length distribution is non-exponential and has a lighter tail if multiple steps are
required to undergo a catastrophe. If rescue events are possible, we detect a maximum in the
distribution, i.e. the MT has a most probable length greater than zero. In the regime of unbounded
growth, the length distribution converges to a Gaussian distribution whose variance decreases with
the number of catastrophe steps. We extend our work by applying the multistep catastrophe model
to MTs that grow against an opposing force and to MTs that are confined between two rigid walls.
We determine critical forces below which the MT is in the bounded regime, and show that the
multistep characteristics of the length distribution are largely lost if the growth of an MT in the
unbounded regime is restricted by a rigid wall. All results are verified by stochastic simulations.

1. Introduction

Microtubules (MTs) are tubular cytoskeletal filaments and fulfill various functions in the cell and its
specialized structures. In particular, the assembly and disassembly of MTs is fundamental for many cellular
processes. For instance, at the onset of mitosis, interphase MTs are rapidly rearranged to form the mitotic
spindle, which drives chromosome segregation via disassembling kinetochore MTs. The dynamics of MT
polymerization is commonly described by the term dynamic instability [1]: an MT stochastically switches
between a growing and a shrinking state in which it polymerizes or depolymerizes, respectively. The
transition from growth to shrinkage is called catastrophe, the reverse process rescue. An early mathematical
description of dynamic instability was provided by the Dogterom–Leibler model [2, 3], which is a simplified
version of an earlier model by Hill [4] applied to a semi-infinite geometry and depends on four constant
parameters: a (de)polymerization velocity for the growing and the shrinking state, and two transition rates
for the occurrence of catastrophes or rescues. Depending on these parameters, the MT exhibits two
dynamical regimes: a regime of bounded growth with zero mean growth velocity and a stationary
exponentially decaying length distribution, and a regime of unbounded growth with a non-zero mean
growth velocity.

Later on, Odde et al [5] and, more recently, Stepanova et al [6] and Gardner et al [7] found
experimentally that the durations of the growth intervals are not distributed exponentially as one would
expect for a constant catastrophe rate. Instead, the measured growth durations were gamma distributed,
leading to the conclusion that catastrophe is a multistep process, which means that the MT ages and the
catastrophe rate increases during growth. While it was concordantly reported from control groups of in vitro
experiments that an MT has to pass approximately three steps to undergo a catastrophe [5, 7, 8], it was also
shown in the same experiments that the number of steps depends on concentrations of kinesins [7] or
MT-targeting agents [8].
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The underlying mechanism of MT aging is still under debate and several microscopic models have been
proposed. For instance, it was suggested that a catastrophe is triggered by a certain number of
‘sub-catastrophes’ of single protofilaments [9–11]. A chemomechanical approach led to the conclusion that
the MT tip becomes more tapered during growth, which promotes catastrophe [12]. Another model, which
included Brownian dynamics of single tubulin molecules, revealed that MT aging might be a much more
complex stochastic process relying on a fluctuating MT tip and an increasing number of curled
protofilaments [13]. Chemomechanical stochastic growth models on the dimer level revealed that a
catastrophe could be triggered by a ‘nucleus’ of three neighboring protofilaments shrinking by more than six
dimers, such that its guanosine triphosphate (GTP)-cap is removed and its ends reach into the guanosine
diphosphate (GDP)-body of the MT [14, 15]. It is not straightforward to identify three identical and
irreversible substeps of a multistep process, as it is suggested by the experimental observations [5, 7, 8], in
any of these microscopic models. The notion of a catastrophe-triggering nucleus consisting of three
shortened neighboring protofilaments [14, 15] could be indicative of the three substeps.

In this paper, we do not concentrate on the microscopic details of MT aging but on the consequences that
a multistep catastrophe mechanism that is compatible with the experimentally observed gamma distributions
has for the distribution of MT lengths. For that purpose, we extend the empirical Dogterom–Leibler model
by subdividing the growing state into an arbitrary number n of sub-states an MT has to pass to undergo a
catastrophe. In the bounded growth regime, the stationary form of the resulting master equations has to be
solved numerically, except for the case that MTs cannot be rescued. However, taking advantage of the results
of Jemseena and Gopalakrishnan [16], who set up and analyzed master equations for dynamic instability
with an age-dependent catastrophe rate, we are able to compute exact values for the mean MT length
and higher moments and to provide an approximation that comprises the key characteristics of the
length distribution for arbitrary numbers n of sub-states. While Jemseena and Gopalakrishnan made up
heuristic functions to directly fit the age-dependency of catastrophe, our work is based on the model that
catastrophe is a multistep process with equal transition rates for each step as deduced empirically from
the aforementioned experiments. Our main results are similar to those obtained by Jemseena and
Gopalakrishnan: the duration of MT growth becomes less stochastic if more sub-steps are necessary to
induce a catastrophe, which results in a more narrow length distribution with a lighter tail. In particular, the
stationary distribution has a maximum if rescues are possible, i.e. the MT has a most probable length greater
than zero, in contrast to the monotonically decreasing exponential distribution that follows from a
single-step catastrophe. Going beyond the work of [16], we also examine the regime of unbounded growth,
where the MT lengths approach a Gaussian distribution as in the case of a single-step catastrophe [2, 3] but
with a variance that decreases with the number of sub-steps that are necessary to trigger a catastrophe.

Furthermore, we apply our results for multistep MT dynamics to models of MTs under an opposing force
and in a rigid confinement [17, 18]. An opposing force suppresses MT growth and can counteract the effects
of an increased number of required catastrophe steps n such that the critical force, below which the MT is in
the bounded regime, becomes a monotonic function of n. A rigid confinement to maximumMT lengths L
truncates the determined probability distributions to the accessible interval [0,L] accompanied by a finite
probability to find the MT stalled at the confining boundary. Moreover, the confinement forces MTs from the
unbounded regime to a stationary length distribution, which, however, does not exhibit multistep
characteristics but is exponentially increasing.

2. Model

2.1. Classical single-step model
The Dogterom–Leibler model [3] is an empirical coarse-grained MT model that describes an MT as a
continuous object and includes dynamic instability as stochastic switches between phases of growth and
shrinkage with constant velocities. A similar model was provided earlier by Hill [4], who has already
obtained some of the results of Dogterom and Leibler from a discrete description. Both catastrophe and
rescue are described as single-step or Poisson process as sketched in figure 1(a). The Dogterom–Leibler
model requires four parameters: growth and shrinkage velocities v± as well as catastrophe and rescue rates ωc

and ωr. The probability densities p±(x, t) of the length x of a growing (+) or a shrinking (−) MT obey the
following Fokker–Planck equations (FPEs) [3, 4]:

∂tp+(x, t) =−ωcp+(x, t)+ωrp−(x, t)− v+∂xp+(x, t),

∂tp−(x, t) = ωcp+(x, t)−ωrp−(x, t)+ v−∂xp−(x, t).
(1)

2
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Figure 1.Models of dynamic instability. The MT is either in a growing or in a shrinking state, in which its tip moves with constant
velocities v+ or v−. (a) In the classical Dogterom–Leibler model, catastrophe is a single step process with a constant rate ωc.
(b) When catastrophe is modeled as a multistep process, the growing state is divided into n sub-states, and a growing MT has to
pass n sub-steps, each with rate ω, before it undergoes a catastrophe. This n-step process can be summarized by means of an
age-dependent catastrophe rate ωc(τ).

The mean velocity of the MT tip (time-averaged over many catastrophe and rescue cycles) is given by [3, 4]

V=
⟨x+⟩− ⟨x−⟩
⟨τ+⟩+ ⟨τ−⟩

=
ωrv+ −ωcv−

ωr +ωc
(2)

and can serve as an order parameter for the transition between bounded and unbounded regimes of MT
growth. With a reflecting boundary at x= 0, i.e. with the MT undergoing a forced rescue as soon as it shrinks
back to zero length, a negative parameter V < 0 leads to a zero mean velocity and bounded MT growth.
Then, the overall probability density p(x, t) = p+(x, t)+ p−(x, t) converges to a stationary exponential
distribution with a finite mean length [3]

⟨x⟩= v+v−
ωcv− −ωrv+

. (3)

For V > 0, the parameter V is always identical to the mean growth velocity and MT growth is unbounded
without a stationary length distribution. The probability density approaches a time-dependent Gaussian
distribution

p(x, t) =
1√
4πDt

exp

(
(x−Vt)2

4Dt

)
(4)

with a diffusion constant

D=
ωcωr(v+ + v−)2

(ωc +ωr)3
(5)

for the length diffusivity [3, 4].

2.2. Multistep model
In the following, we extend the Dogterom–Leibler model in a way that takes account of the experimental
observation that MT catastrophe is a multistep process [5–7], see figure 1(b). For this purpose, we introduce
the number of steps n an MT has to pass to undergo a catastrophe. As long as an MT has not passed all n
steps, it continues growing with v+. Therefore, the growing state can be divided into n sub-states i= 1 . . .n.
In the experiments in [5–7], the conclusion that MT catastrophe is a multistep process was derived from the
observation that growth durations τ+ are gamma-distributed,

pτ+(τ+) =
ω (ωτ+)

n−1

Γ(n)
e−ωτ+ , (6)

3
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with the gamma function Γ(n) =
´∞
0 tn−1e−tdt [19]. A gamma distribution implies that each catastrophe

step occurs with the same step rate ω and that backward steps are not allowed, i.e. the states i= 1 . . .n are
passed in a prescribed order as sketched in figure 1(b). Other microscopic models that have unequal step
rates or allow for backward steps could be thought of but go beyond the scope of this study. Fits to the
experimental data gave n∼ 3 [5, 7, 8] but values of n depend on concentrations of kinesins [7] or
MT-targeting agents [8]. Since rescue is still described as a single-step process, MT dynamics is now
characterized by a set of five parameters n, v−, v+, ωr and ω.

Introducing n sub-states gives rise to a time- or age-dependent catastrophe rate via the general relation

ωc(τ) =
pτ+(τ)

Pτ+(τ)
=−∂τ lnPτ+(τ), (7)

which holds for an arbitrary probability density pτ+(τ+) of growth durations τ+, and where
Pτ+(τ) =

´∞
τ

pτ+(t)dt is the survival probability of a growing MT: the catastrophe rate is only observed
within the ensemble of surviving MTs. For a gamma distribution (6), we have

Pτ+(τ) = QΓ(n,ωτ) =
Γ(n,ωτ)

Γ(n)
(8)

with the upper incomplete gamma function Γ(n,x) =
´∞
x tn−1e−tdt and its corresponding regularized form

QΓ(n,x) [19]. This leads to a catastrophe rate ωc(τ), which is monotonically increasing with time τ . For
small times τ ≪ ω−1, the final catastrophe is unlikely, because n− 1 prior sub-steps in a prescribed order are
necessary that occur each with probability ωτ resulting in ωc(τ)/ω ≈ (ωτ)n−1/(n− 1)!. For large times
τ ≫ ω−1, n− 1 prior sub-steps have passed almost certainly with probability 1− (n− 1)/ωτ , and the rate
for the final catastrophe approaches ω, i.e. ωc(τ)/ω ≈ 1− (n− 1)/ωτ . We note that this asymptotic form of
the catastrophe rate with an algebraic approach to unity is different from the exponential approach assumed
by Jemseena and Gopalakrishnan [16].

With the growth duration τ+, also the length gain x+ = v+τ+ during one growth interval is gamma
distributed:

px+(x+) =
c(cx+)n−1

Γ(n)
e−cx+ , c≡ ω

v+
. (9)

On average, an MT grows for a duration of ⟨τ+⟩= nω−1, and its tip covers a distance of ⟨x+⟩= v+nω−1

during that interval. Two generic situations will be of interest:

(i) A comparison of models that yield the same (experimentally observed) average growth duration ⟨τ+⟩
but feature a different number of sub-states n. Then, we have to simultaneously use a n-dependent
catastrophe step rate ω ∝ n, i.e. if more sub-states have to be passed to catastrophe we have to increase
the step rate accordingly to get the same overall average growth duration or distance.

(ii) Models for experiments, where the catastrophe step rate ω remains fixed while the number of sub-steps
n can be manipulated, e.g. via MT associated regulating proteins such as the MCAK, which promotes
catastrophes by reducing n without affecting ω [7].

Together with the mean shrinking duration ω−1
r and distance v−ω−1

r , we deduce the mean tip velocity
analogously to equation (2):

Vn =
⟨x+⟩− ⟨x−⟩
⟨τ+⟩+ ⟨τ−⟩

=
v+nω−1 − v−ω−1

r

nω−1 +ω−1
r

=
nωrv+ −ωv−

nωr +ω
. (10)

Again, the sign of Vn determines whether MT growth is bounded and a stationary state exists. MT growth is
stabilized and may leave the bounded regime in scenario (ii) if only the number of sub-steps n to trigger a
catastrophe is increased (n> nc = ωv−/ωrv+) while the other parameters remain constant. If we compare
models with the same average growth duration ⟨τ+⟩ but different number of sub-states n in scenario (i), on
the other hand, we also have to use a catastrophe rate ω ∝ n, and Vn becomes independent of n in
equation (10). Then, also the sign of Vn and, thus, the MT growth regime (bounded or unbounded) is
unchanged by n.

For a general mathematical description, we assign a probability density pi(x, t) to each sub-state i= 1 . . .n
of a growing MT. The total growing state density is given by p+(x, t) =

∑
i pi(x, t). The stochastic time

evolution of the probability densities is described by a system of n+ 1 FPEs:

4
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∂tp−(x, t) = ω pn(x, t) − ωr p−(x, t) + v− ∂x p−(x, t)
∂tp1(x, t) = ωr p−(x, t) − ω p1(x, t) − v+ ∂x p1(x, t)
∂tpi(x, t) = ω pi−1(x, t) − ω pi(x, t) − v+ ∂x pi(x, t), for i= 2 . . .n.

(11)

Due to the reflecting boundary, the probability current density

j(x, t) = v+p+(x, t)− v−p−(x, t) (12)

has to vanish at x= 0. Furthermore, in any stationary state (∂tpi(x, t) = 0), the current density is constant in
space, as can be seen by summing up the FPEs (11):

0= ∂x

(
−v+

∑
i

pi(x)+ v−p−(x)

)
=−∂xj(x). (13)

Together with j(x= 0) = 0, this implies that, in a steady state, the probability current density has to vanish
everywhere. With the resulting relation

p−(x) =
v+
v−

p+(x) =
v+
v−

∑
i

pi(x), (14)

we can eliminate p−(x) in the stationary FPEs and achieve

∂xp⃗+(x) =Mp⃗+(x), (15)

with p⃗+(x) = (p1(x),p2(x), . . . ,pn(x))T, a matrix

M=



r− c r r r · · · r
c −c 0 0 · · · 0
0 c −c 0 · · · 0
...

. . .
. . .

. . .
. . .

...
0 · · · 0 c −c 0
0 · · · 0 0 c −c


, (16)

and the abbreviations r= ωr/v− and c= ω/v+. Due to the reflecting boundary condition, a growing MT
with length 0 must be in state 1, which provides the initial condition for the FPEs (15):

p⃗+(x= 0) = p⃗0 ≡ (p0,0, . . . ,0)
T = p0⃗e1. (17)

Therewith, the solution of the FPE (15) can formally be expressed as p⃗+(x) = exp(Mx) p⃗0. The parameter p0
is determined by the normalization condition

´∞
0 p(x)dx= 1, with

p(x) = p+(x)+ p−(x) =

(
1+

v+
v−

) n∑
i=1

pi(x). (18)

2.3. Force dependent growth velocities and catastrophe step rates
Here, we introduce force dependencies of the growth velocity and the catastrophe rate as similarly done in
[18]. The effective velocity v+ of a growing MT results from the attachment of tubulin dimers to the MT tip
with rate ωon and their detachment with rate ωoff:

v+ = d(ωon −ωoff), (19)

where d= 8 nm/13≈ 0.6 nm is the effective dimer size. An opposing force F modifies the attachment rate by
a Boltzmann factor [20], yielding the force-dependent growth velocity

v+( f) = d
(
ωone

−f −ωoff

)
, (20)

where we introduced the dimensionless force f= F/F0 with F0 = kBT/d≈ 7 pN and the thermal energy
kBT= 4.1 pNnm. As a consequence, MT growth is stalled (v+( f) = 0) at the dimensionless stall force

fstall = ln

(
ωon

ωoff

)
. (21)

5
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In the classical picture of dynamic instability, a growing MT is stabilized by a GTP-cap that is formed by
GTP-tubulin dimers continuously added to the MT tip [1]. The GTP-tubulin dimers tend to be hydrolyzed
after incorporation into the MT lattice so that the GTP cap may vanish and the MT undergoes a catastrophe.
Since this is less likely if the addition of new GTP-tubulin dimers is fast, the catastrophe rate is expected to be
negatively correlated with the growth velocity. Different microscopic models of dynamic instability were
proposed that may be employed to deduce the velocity-dependence of the catastrophe rate [9, 10, 21, 22].
Here, we use the phenomenological approach from [18] that is based on the experimental observation that
the mean growth duration ⟨τ+⟩ is a linear function of growth velocity,

⟨τ+⟩= av+ + b (22)

with a= 13.8 s2 nm−1 and b= 20 s [23].
For different multistep catastrophe mechanisms that yield the same experimentally observed average

growth duration ⟨τ+⟩= nω−1 but feature a different number of sub-states n (scenario (i)), this implies

ω(v+) = nω0(v+) with ω0(v+) =
1

av+ + b
, (23)

which conforms with equation (22) independently of the choice of n. Therefore, the step rate ω(v+) inherits
a force dependence from the growth velocity via equation (20). Because the experimental observations
suggest sub-steps that occur with the same rate ω(v+), also their force-dependence should be identical.
Moreover, we assume that the number of catastrophe steps n is a structural feature of the MT that depends
neither on the growth velocity nor on the applied force. Then, we find the force-dependent step rate

ω( f) = nω0( f) with ω0( f) = ω0[v+( f)] =
1

av+( f)+ b
, (24)

with v+( f) from equation (20). Analogously, we define c( f) = ω( f)/v+( f) and c0( f) = ω0( f)/v+( f).

2.4. Confinement between rigid walls
Above, we assumed unrestricted MT growth. In the following, we introduce a rigid wall that confines the MT
length to a box between the reflecting boundary at x= 0 and the position of the wall x= L. Similar models
for confined MTs with a single-step catastrophe were discussed in [17, 18]. If an MT tip reaches the wall, its
growth is stalled (v+ = 0). An MT that reaches the wall in growing state i has to pass all n− i subsequent
states to undergo a catastrophe and to leave the wall. Due to the velocity dependence of the catastrophe step
rate (23), reaching the wall induces catastrophes with an increased step rate ωL ≡ ω(v+ = 0).

We introduce probabilities Qi to find the MT stalled at the wall while it is in growing state i. Since the MT
leaves the wall instantaneously after a catastrophe, we can assume that Q− = 0. The time evolution of Qi(t) is
given by

∂tQ1(t) =−ωLQ1(t)+ v+ p1(L, t),

∂tQi(t) = ωLQi−1(t)−ωLQi(t)+ v+ pi(L, t), for i= 2 . . .n.
(25)

While the first terms describe the catastrophe steps of an MT that is already stalled, the expressions v+ pi(L, t)
provide the probability currents onto the wall of an MT in state i. The total probability to find an MT tip at
the wall is given by Q(t)≡

∑
iQi(t) and ∂tQ(t) =−Qn(t)+ v+ p+(L, t)≡ JL(t) yields the total probability

current onto the wall. In the stationary state (∂tQi(t) = 0), equation (25) is solved by

Qi = Qi−1 +
v+
ωL

pi(L) =
v+
ωL

i∑
j=1

pj(L), (26)

which adds up to the total probability

Q=
n∑

i=1

Qi =
v+
ωL

n∑
i=1

(n− i+ 1)pi(L). (27)

In the interior of the confining box (x< L), MT dynamics is still described by the FPEs (11). Therefore,
the stationary probability density of the length of a confined MT is given by pconf(x) = p+(x)+ p−(x)+
Qδ(L− x) and has to satisfy the normalization condition

1=

ˆ L

0
pconf(x)dx=

ˆ L

0

(
p+(x)+ p−(x)

)
dx+Q. (28)

6
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Since Q is a linear combination of pi(L), both Q and p±(x) are proportional to the constant of integration p0
introduced in the initial condition (17). Therefore, normalization can be achieved by adjusting p0, just like in
the unconfined case.

3. Results

3.1. Bounded growth
We start our investigation of the multistep MT model with the force-free case. In general, the solution
p⃗+(x) = exp(Mx) p⃗0 of the FPEs (15) can only be evaluated numerically, e.g. by numerical diagonalization of
the coefficient matrixM as described in appendix A. However, if an MT cannot be rescued (ωr = r= 0)
except for the forced rescue at the boundary x= 0, as it is the case in certain in vitro experiments [7], the
solution can be expressed analytically:

pi(x) =
c

n
(
1+ v+

v−

) (cx)i−1

(i− 1)!
e−cx, (29)

p(x) =

(
1+

v+
v−

) n∑
i=1

pi(x) =
c

n
QΓ(n, cx), (30)

where QΓ(n,x) = Γ(n,x)/Γ(n) is the regularized form of the upper incomplete gamma function (see
equation (8)).

In order to approach a solution of the general case (ωr > 0), we make use of the results of Jemseena and
Gopalakrishnan [16], who calculated the Laplace transform

p̃(s) =

ˆ ∞

0
p(x)e−sx dx (31)

of the steady state length distribution for the case of an age-dependent catastrophe rate ωc(τ), where the age
τ is the time that has passed since the last rescue event. Given an arbitrary probability density pτ+(τ+) of
growth durations τ+, the associated age-dependent catastrophe rate is given by equation (7). Combining that
with the results of Jemseena and Gopalakrishnan [16], we find

p̃(s) =

(
1

⟨x+⟩
− r

)
1− p̃x+(s)

s− r(1− p̃x+(s))
, (32)

with the Laplace transform p̃x+(s) of the probability density of growth distances px+(x). The derivation is
presented in appendix B. To achieve a result for the n-step catastrophe process, we substitute the Laplace
transform of px+(x) from equation (9) into equation (32):

p̃(s) =
( c
n
− r
) 1−

(
c

c+s

)n
s− r

(
1−

(
c

c+s

)n) . (33)

If r= 0, the inverse Laplace transform yields the probability density from equation (30). For the general case
with rescues (r> 0), there is no analytical result for the inverse Laplace transform p̃(s)→ p(x). Nonetheless,
we are able to compute exact results for the mean MT length ⟨x⟩ and the variance Var(x) = ⟨x2⟩− ⟨x⟩2 by
interpreting the Laplace transform as moment-generating function:

⟨xm⟩= (−1)m
∂m

∂sm
p̃(s)

∣∣∣∣
s=0

, (34)

⟨x⟩= n+ 1

2(c− nr)
=

n+ 1

2

v+v−
v−ω− nv+ωr

, (35)

Var(x) =
n+ 1

12

2n(n− 1) r+(n+ 5) c

c(c− nr)2
. (36)

The method can be easily extended to higher moments and cumulants, which are listed in appendix C up to
the fourth degree.
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Moments ⟨xm⟩ of the length distribution are dominated by large x and, thus, by the analytical properties
of the Laplace transform p̃(s) for small s around s= 0. On the other hand, we can approximate p̃(s) for large s
as

p̃(s)
c
n − r

=
(c+ s)n − cn

(s− r)(c+ s)n + rcn
≈ (c+ s)n − cn

(s− r)(c+ s)n
. (37)

Then, the inverse Laplace transform is possible and provides an approximation of p(x) for short MT lengths:

p(x)≈
( c
n
− r
)
erx
(
1−

(
c

c+ r

)n

P
(
n,(c+ r)x

))
, (38)

where P(n,x) = 1−QΓ(n,x) is the regularized lower incomplete gamma function [19].
In the following, we compare our analytical results with stochastic simulations that solve the equation of

motion of the MT for fixed time steps∆t and include the random occurrence of a catastrophe step or a
rescue after each time step. Here, we consider situation (i) and want to compare models with the same
average growth duration ⟨τ+⟩ and, thus, the same parameter Vn in equation (10) but different number of
sub-states n. Then, we have to use a catastrophe step rate proportional to n,

ω = nω0, c= nc0, c0 =
ω0

v+
, (39)

with a constant ω0, and the MT remains in the bounded regime (Vn < 0) independently of n. We use the
following values:

v+ = 20nms−1, v− = 200nms−1, ωr = 0.01s−1, ω0(v+)≈ 0.0034s−1, (40)

which are typical for bounded MT growth with negative Vn and correspond to tubulin concentrations
around ctub ∼ 10µM ([15, 18] and references therein).

Figure 2 shows the results in absence of rescue events (r= 0) except for the forced rescues at x= 0. The
analytical predictions from equations (29) and (30) perfectly match with the results from the simulations.
The overall probability densities are monotonically decreasing functions and converge towards a step
function c0Θ(c−1

0 − x) for large n. This uniform distribution for an infinite step catastrophe process can be
made plausible by considering the growth distances x+: Since the standard deviation of the gamma
distribution (9) is given by∆x+ =

√
nc−1, the relative error of growth distances∆x+/⟨x+⟩= 1/

√
n

vanishes for large n. Moreover, as we assumed that c= nc0, also the absolute deviation decreases as 1/
√
n

whereas the mean growth distance stays constant. Consequently, the more steps an MT has to pass to
undergo a catastrophe, the more deterministic and predictable the length gain becomes. In the infinite step
limit, the MT tip always covers the same distance during one growth interval. Then, in the absence of rescue
events, an MT grows from x= 0 to exactly x= c−1

0 where it undergoes a catastrophe, and shrinks back to zero
length where it is rescued again, finally resulting in a uniform distribution of MT lengths. Dynamically,
repeated growth and shrinking by a sharp distance x= c−1

0 results in deterministic oscillations with a sharp
period T= ω−1

0 (1+ v+/v−). Similar effects have been discussed in [16]. Increasing the number of sub-states
n at fixed mean growth duration thus sharpens the distribution of growth lengths and gives rise to
quasi-deterministic MT length oscillations.

If rescues are possible (r> 0), the probability density functions are not monotonic anymore but increase
exponentially for short MT lengths up to a maximum, see figure 3(a). The exponential increase and the
maximum are well described by the approximation (38). After the maximum, however, the approximation
deviates from the real distribution. In that region, the probability densities measured in stochastic
simulations are only fitted well by the numerical solution according to appendix A, which is also the case for
the single state densities pi(x) depicted in figure 3(b). If the number of steps n increases, the maximum
becomes sharper and moves towards longer MT lengths up to x= c−1

0 . As we show in appendix D, in the
infinite step limit, the probability density approaches a piecewise defined function that initially grows
exponentially as (c− r)exp(rx) until it has a step discontinuity at x= c−1

0 . Moreover, there are
non-analyticities of higher order at each multiple of c−1

0 . Like in the absence of rescues, this behavior can be
explained with the determinism of MT growth distances in the infinite step limit: Since now the rescue rate is
greater than zero, an MT can be rescued before shrinking to zero length and is able to grow beyond the single
growth distance c−1

0 . Nevertheless, an MT that grows from zero length after a forced rescue and undergoes a
catastrophe at x= c−1

0 still shrinks back to zero with the probability exp(−r/c0) = 74%. These 74% alone
would result in a step function again, and only in 74% of the growth cycles that start from x= 0, the MT
reaches lengths x> c−1

0 , finally leading to the step discontinuity.
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Figure 2. Comparison of analytical and simulation results in absence of rescue events. (a) Overall probability densities with
various n. (b) Single state distributions in a ten-step process. For all cases in (a), (b), the analytical FPE solutions (29) and (30)
(red lines) match with the distributions measured in simulations (bars). (c) For an infinite-step process, the overall probability
density converges to a step function.

Figure 3. Comparison of deterministic and simulation results with r> 0. The deterministic results were calculated by numerically
diagonalizing the matrixM from equation (16) as described in appendix A. (a) Overall probability densities with various n. For
short MT lengths, they grow exponentially (dashed lines) and can be approximated by equation (38) (gray lines). (b) Single state
distributions in a ten-step process. For all cases in (a), (b), the deterministic results (red lines) match with the distributions
measured in simulations (bars). (c) For an infinite-step process, the overall probability density converges to a piecewise defined
function that grows exponentially as (c− r)exp(rx) until it has a step discontinuity at x= c−1

0 , see appendix D.

Figure 4. The mean MT length ⟨x⟩ and its standard deviation∆x=
√

Var(x)measured in simulations (blue) match with the
analytical predictions (red) from equations (35) and (36).

As it can be seen in figure 4, equations (35) and (36) correctly describe the mean length and its variance
as measured in stochastic simulations. If the number of catastrophe steps and the step rate are increased
proportionally, the mean length decreases by up to one half of the single-step value.

The length distributions in figures 2(c) and 3(c) exhibit a characteristic change of shape as a function of
the sub-state number n. Measurements of complete length distributions will, thus, allow to draw conclusions
on this parameter related to the catastrophe mechanism. Also the reduction of the mean length ⟨x⟩ in
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Figure 5. Comparison of analytical and simulation results for the unbounded case. The numerical results were each obtained
from averaging over an ensemble of 105 stochastic simulations of an MT that is initially in growing state 1 at x= 0. (a) Overall
probability densities with various n at three different times, and the corresponding Gaussian approximations. The results only
match for large times (t ≳ 10000 s) whereas at the beginning (see t= 1000 s), the initial and the boundary condition, which are
not incorporated in the approximation, still have a significant influence on the simulation results. For n= 1 and n= 2, there are
even considerable amounts of MTs with length v+t= 20µm that have not undergone a catastrophe yet (Pτ+ (t) = 3.4% and
0.9% respectively). (b) Time evolution of the mean MT length ⟨x⟩ and its standard deviation∆x for various n. Until the first
catastrophe, which occurs sharply at t= ω−1

0 ≈ 300 s for n→∞, the MT grows ballistically with ⟨x⟩= v+t and∆x= 0. Later,
the simulations converge to the values predicted from the Gaussian approximation.

figure 4 to one half of the single-step value for increasing n will allow to determine the sub-state number n if
the average growth duration ⟨τ+⟩, rescue rate and growth and shrinkage velocities v± are known.

3.2. Unbounded growth
In the regime of unbounded growth, there is no stationary solution which is why we have to analyze the time
dependent FPEs (11). As described in detail in appendix E, by use of the Fourier transform and the implicit
function theorem, we are able to calculate a dispersion relation that is valid for long MTs. As Vn > 0 in the
unbounded regime, the limit of long MTs is reached after long times. We conclude from the approximated
dispersion relation that the probability density of MT lengths approaches a Gaussian distribution as in
equation (4), but with the mean velocity Vn given by equation (10) and the diffusion constant

Dn =
n(n+ 1)

2

ωrω(v+ + v−)2

(nωr +ω)3
. (41)

One can easily see that Dn, and thus the standard deviation of MT lengths vanish for large n if the other
parameters remain constant. Together with equation (10), this means that an increase of the number of
catastrophe steps favors growth over shrinkage and thereby can make the MT leave the bounded regime,
where a further increase of n favors growth even more until catastrophes are almost completely suppressed.

In figure 5, the results are compared to stochastic simulations. Here again, we consider situation (i) that
the catastrophe step rate is proportional to n so that the mean growth duration and the mean velocity are
constant. Then, the diffusion constant Dn does not vanish for large n but still decreases by up to one half of
the single-step value. We use the same parameters as in equation (40) but with a ten times higher rescue rate
in order to induce an unbounded state with Vn > 0. At the beginning of the simulations both the initial and,
since the MTs are still short, the boundary condition cause the length distribution to significantly deviate
from the Gaussian approximation. After long times, however, the MTs gained so much length that the
probability of reaching the boundary is negligible. Then, the approximation provides an accurate description
of the simulation results.

3.3. MT growth against a force
An opposing force f affects the growth velocity and the step rate as described in section 2.3. We start our
investigation with an MT that grows against a constant force and distinguish the two scenarios introduced
above for the step rate: (i) we consider an experimentally given mean growth duration ⟨τ+⟩ as in
equation (22), and consider models with different numbers n of sub-steps that conform with this
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experimental data. Then we use ω( f) = nω0( f) as in equation (24). (ii) Experimentally, also the number of
sub-steps nmight be changed without affecting the catastrophe step rate ω( f), e.g. by altering the MCAK
concentration [7]. Then, we have a given ω( f), for which we use ω( f) = ω0( f) with ω0( f) from
equation (24) to obtain agreement with the experimental data of [23] for n= 1.

For both scenarios, the opposing force influences the MT length distribution via a force dependent
sub-step catastrophe rate ω( f) and via a force dependent growth velocity v+( f) as explained in section 2.3.
Therefore, application of an opposing force does not give rise to novel shapes of MT length distributions but
simply shifts parameters, in particular, the mean velocity parameter Vn = Vn( f). This gives rise to other
important effects, namely the existence of a critical force fc for the boundary between bounded and
unbounded regime [18].

While we vary n, f and ωr in the following analysis, the other parameters are fixed throughout this
section to

v− = 200nms−1, ωoff = 6s−1[24], ωon = 39.33s−1, (42)

where ωon was chosen such that the growth velocity and the step rate used in the previous sections (see
equation (40)) are reproduced for f = 0.

Because of the force dependence of growth velocity and step rate, also the mean velocity Vn in
equation (10) becomes force-dependent. In general Vn decreases with increasing force f such that a critical
force fc exists above which MT growth transitions from the unbounded to the bounded regime because it is
suppressed by force. This critical force is determined from the condition Vn = 0 and is always smaller than
the stall force fstall = ln(ωon/ωoff) = 1.88, which is set by the condition v+ = 0 so that the MT is not able to
leave the boundary at x= 0 and, therefore, must be in the bounded regime.

For the first scenario (i) with a given ⟨τ+⟩ and ω( f) = nω0( f) as in equation (24), the velocity Vn is
n-independent. Likewise, the critical force fc is n-independent with

fc = ln

 ωon

ωoff +
b
2ad

(
−1+

√
1+ 4a

b2r

)
 . (43)

Therefore, measurements of the critical force will not allow to deduce information about the number of
sub-steps n.

For the second scenario (ii), where the number of sub-steps n is changed without affecting the
catastrophe step rate ω( f) = ω0( f) with ω0( f) from equation (24), on the other hand, the velocity Vn

depends on n (see equation (10)). Therefore, we also find an n-dependent critical force

fc = ln

 ωon

ωoff +
b
2ad

(
−1+

√
1+ 4a

b2r
1
n

)
 , (44)

above which the MT is in the bounded regime. For both scenarios, the critical force is shown in figure 6(a)
with different rescue rates ωr. In the second scenario, which applies to experiments employing MCAK, which
promotes catastrophes by reducing the number of required steps [7], a value of n could be determined from
experiments measuring the critical force fc. If the parameter values lie in the unbounded regime in the
absence of force, the critical force fc can be determined by increasing the force f such that MT growth
becomes limited to a finite mean length ⟨x⟩<∞ for f= fc at the transition to the bounded regime.

Substituting v+ and ω in equation (35) with their force-dependent versions, we determine force
dependent mean lengths ⟨x⟩, which are shown as function of f and n in figures 6(b) and (c), respectively. For
the first scenario, we find a very weak n-dependence as in the absence of force (see equation (35) and
figure 4):

⟨x⟩= n+ 1

2n(c0( f)− r)
. (45)

In the second scenario, where the number of sub-steps n is changed without affecting the catastrophe step
rate, we find a much more pronounced n-dependence

⟨x⟩= n+ 1

2(c0( f)− nr)
, (46)
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Figure 6.MTmultistep dynamics under an opposing force f. The step rate is considered either as proportional to n
(ω( f) = nω0( f), dashed lines) or as constant (ω( f) = ω0( f), solid lines). The dots represent results from stochastic simulations.
The asymptotic behavior of the depicted plots is summarized in table 1. (a) Critical force fc according to equations (43) and (44)
as function of n for different rescue rates ωr. Above fc, MT growth is bounded, otherwise, it is unbounded. For ω( f) = nω0( f), fc
is constant and fc < 0 if ωr ≲ 0.03 s−1. For ω( f) = nω0( f), fc converges to fstall for large n. (b) Mean MT length ⟨x⟩ as function of
the dimensionless force f for n= 1,3,10,100 and ωr = 0.01 s−1 (top) and ωr = 0.1 s−1 (bottom). For both step rate scenarios,
the opposing force reduces the mean MT length, which becomes 0 at f= fstall and diverges at f= fc. (c) Mean MT length ⟨x⟩ as
function of n for f= 0,0.6,1.2,1.8 and ωr = 0.01 s−1 (top) and ωr = 0.1 s−1 (bottom). For ω( f) = nω0( f), ⟨x⟩ behaves as in
figure 4 if the MT is in the bounded regime. For ω( f) = ω0( f), ⟨x⟩ increases with n and diverges at n= nc = ω( f)v−/ωrv+( f).

Table 1. Asymptotic behavior of the critical force fc and the mean MT length ⟨x⟩ in various limits, cf figure 6.

Limit Asymptotic behavior

(i) ω( f) = nω0( f) f c (43) r→ 0 1
2 ln

(
ad2ω2

on r
)

r→∞ fstall − 1
bdωoff

1
r

⟨x⟩ (45) n→∞ 1
2 (c0( f)− r)−1

f→ f+c
n+1

2nc ′0 ( fc)
( f− fc)

−1 with c ′0( f) = ∂fc0( f)

f→ f−stall
n+1
2n bdωoff ( fstall − f)

(ii) ω( f) = ω0( f) f c (44) nr→ 0 1
2 ln

(
ad2ω2

on nr
)

nr→∞ fstall − 1
bdωoff

1
nr

⟨x⟩ (46) n→ nc =
c0
r

nc+1
2r (nc − n)−1

f→ f+c
n+1

2c ′0 ( fc)
( f− fc)

−1 with c ′0( f) = ∂fc0( f)

f→ f−stall
n+1
2 bdωoff ( fstall − f)

as also evidenced in figures 6(b) and (c). Again, we arrive at the conclusion that in the second scenario, a
value for the sub-step number n could be determined from experiments measuring the mean length ⟨x⟩( f).

The asymptotic behavior of fc and ⟨x⟩ is summarized in table 1. In the second scenario, the critical force
becomes a monotonic function of n, that grows logarithmically for small n and converges to fstall for n→∞,
see figure 6(a) and table 1. Moreover, the mean length grows as a function of n and diverges at
nc = ω( f)v−/ωrv+( f) indicating a switch to the unbounded regime, see figure 6(c). Analogously, we observe
diverging mean lengths in figure 6(b) for both scenarios when the applied force approaches the critical
force fc from above.

3.4. MT dynamics under a rigid confinement
So far, we assumed that the MT can grow freely to arbitrary lengths. However, the more realistic situation
both in vitro and in vivo is that the MT is confined to a finite length. In the following, we investigate how
multistep MT dynamics is affected by a rigid wall that restricts the MT length to x⩽ L as described in
section 2.4. In contrast to the reflecting boundary at x= 0, the MT tip stays at the wall after reaching the
length L until it has completed the remaining catastrophe steps with an increased step rate ωL = ω(v+ = 0).
In the stationary state, the probability Q to find the MT stalled at the wall (x= L) is given by equation (27)
while the probability density in the interior (0< x< L) is still defined by the FPEs (15). Therefore, the
probability density pconf(x) of a confined MT follows from truncating the unconfined probability density at
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Figure 7.MTmultistep dynamics confined by a rigid wall at x= L. Data is shown for ωr = 0.01 s−1 and f = 0, i.e. for the
parameters from equation (40). The step rate is considered either as proportional to n (ω = nω0, dashed lines) or as constant
(ω = ω0, solid lines). The dots represent results from stochastic simulations. (a) Probability densities pconf(x) in the interior of the
box 0< x< L for n= 2,3,4,10,100. The length distributions of a free MT as depicted in figure 3 are truncated at x= L. For
ω = nω0 (top and center), the decisive factor for the shape of the distribution is whether the right boundary lies beyond the
maximum, which coincides with the mean growth length ⟨x+⟩= c−1

0 = 5.9µm for n→∞. For ω = ω0 (bottom), the MT
switches from the bounded to the unbounded regime between n= 3 and n= 4 (nc = 3.4). Accordingly, the MT lengths are shifted
from being cumulated near the left boundary towards the right one. The total weight in the interior of the box decreases from
n= 10 to n= 100 and further as the MT tends to be stalled at the wall for a longer time, see (b). (b), (c) Probability Q to find the
MT at the wall and mean MT length ⟨x⟩ as function of n for L= 1,10,100µm. For ω = nω0, Q decreases with n due to the lighter
tails of the length distributions. Since the MT is always in the bounded regime, the wall at x= L becomes irrelevant for L→∞
and the mean length converges to equation (35), which is depicted in figure 4. For ω = ω0, a larger n shifts the MT length towards
the right boundary and increases the residence time at the wall. Consequently, Q approaches 1 and ⟨x⟩ approaches L for n→∞.
(d), (e) ProbabilityQ to find the MT at the wall and meanMT length ⟨x⟩ as function of L for n= 2,3,4,10,100. If the MT is in the
bounded regime (ω = nω0 or ω = ω0 and n= 2,3), the wall can be neglected for large L so that Q vanishes and ⟨x⟩ approaches
the mean length of a free MT from equation (35). In the unbounded regime (ω = ω0 and n= 4,10,100) the MT tends to the wall
and is unlikely to shrink to zero length if L is large. Therefore, Q converges towards a finite value and ⟨x⟩ grows linearly with L.

x= L and weighting it with 1−Q in order to fulfill the normalization condition (28), see figure 7(a). As for
an unconfined MT, the FPEs have to be solved numerically in the general case with rescues (ωr, r> 0), see
appendix A. However, in presence of a confinement to 0< x< L, an analytical solution for moments is no
longer possible via the Laplace transform because the Laplace transform is defined over the whole half-space
0< x.

Again, we distinguish the two scenarios (i) of a step rate that is proportional to n (ω = nω0) and (ii) of a
constant step rate (ω = ω0), applying the force-free parameters from equation (40). Then, according to
equation (23), the step rate at the wall is ωL = nω0(v+ = 0) = n/b or ωL = ω0(v+ = 0) = 1/b, respectively.
In the proportional scenario (i), where the MT stays in the bounded regime for any n, the length distribution
only retains the characteristics from figure 3 with a maximum and a sharp decrease thereafter if the
position L of the wall lies beyond the mean growth length ⟨x+⟩= c−1

0 = 5.9µm, see figure 7(a). If L falls
below the mean growth and the mean shrinkage length ⟨x−⟩= r−1 = 20µm, the MT length will approach a
roughly uniform distribution as the MT is likely to both grow and shrink from boundary to boundary
without catastrophes or rescues in the interior.

For a constant catastrophe step rate (ii), the MT switches from the bounded to the unbounded regime at
n= nc = 3.4. The growth of an MT in the unbounded regime is now confined by the rigid wall so that the
MT lengths approach a stationary distribution as in the bounded regime. Since Vn > 0 in the formerly
unbounded regime, the MT tends to the wall at x= L and greater MT lengths are more likely, see figure 7(a).
It is important to note that the multistep characteristics of the length distribution, in particular the
maximum, are lost if Vn > 0. Instead we find exponentially increasing probability densities because the
distance from the right boundary that can be reached during a shrinkage-growth-cycle that starts from the
wall is dominated by the single-step rescue. In order to restore a distribution with a maximum, rescue had to
be a multistep process.
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The behavior of the length distributions also becomes manifest in the stall probabilities Q and the mean
lengths ⟨x⟩ depicted in figures 7(b)–(e). In the proportional step rate scenario (i), Q decreases with n
(figure 7(b)) since the lighter tailed distributions make it less likely for the MT to reach the wall. With a
constant step rate (ii), on the other hand, Q approaches 1 for two reasons: firstly, leaving the bounded regime
by increasing n drives the MT towards the wall; secondly, the residence time at the wall is longer if more steps
are required to leave it. As a consequence of Q→ 1, the mean MT length approaches L if n is increased with a
constant step rate, see figure 7(c).

Figures 7(d) and (e) show Q and the mean MT length, respectively, as a function of L. Q(L) decreases
monotonically starting from Q(0) = 1, where the wall coincides with the reflecting boundary at x= 0. The
behavior for larger L depends on whether an unconfined MT with the same parameters would be in the
bounded (Vn < 0) or in the unbounded regime (Vn > 0): in the bounded regime, it is unlikely that the MT
reaches the wall if L is large, and, hence, Q(L) vanishes while the mean length converges to the value of an
unconfined MT as given by equation (35). For Vn > 0, on the other hand, the MT stays always in the vicinity
of the wall so that its mean length becomes a linear function of L, and Q converges to a finite value because
the probability density behaves as if the left boundary did not exist. We draw the general conclusion that the
left (x= 0) or the right boundary (x= L) can be neglected for Vn > 0 or Vn < 0, respectively, if L is
sufficiently large.

The results in figure 7 suggest that, in scenario (i), it might be possible to determine the number of
catastrophe sub-steps n from the length distribution if the MT is confined to sufficiently large compartments
L≳ 10 µm so that the results for an unconfined MT can be applied. Then, also the probabilities Q to find the
MT at the wall display a characteristic n-dependence, however, its absolute values are too small for an
accurate measurement. In scenario (ii), which applies to experiments employing MCAK [7], a value of n
could be determined more easily from length distributions and Q-measurement but also from experiments
measuring the mean length ⟨x⟩.

4. Discussion

Based on experimental results that characterize MT growth periods as gamma distributed and conclude that
catastrophe is a multistep process [5, 7], we extended the empirical Dogterom–Leibler model [2, 3] in order
to analyze the consequences a multistep catastrophe mechanism has for the distribution of MT lengths. The
multistep process has two main effects on the growth durations of an MT, which also underlie the
consequential changes in the length distributions: Firstly, if the number of catastrophe steps is increased
while keeping the rate of a single step constant, the growth durations become longer and the MT may leave
the bounded regime. Secondly, the growth periods and hence the length gain during one growth interval are
less stochastic if more steps are necessary to trigger a catastrophe.

Similar results were obtained in previous work by Jemseena and Gopalakrishnan [16], who deduced an
age-dependent catastrophe by directly fitting the experimental results without any intermediate step of
interpretation. Our work goes one step further by implementing the common interpretation of the
experimental findings as a consequence of a multistep catastrophe. Thereby, we gain a better comparability
and applicability as our model is based on exactly the parameters n and ω that are usually determined to
characterize such experimental results [5, 7, 8]. Moreover, our model allows for an easy numerical solution
both in the bounded and in the unbounded regime of MT growth as well as for an MT that is confined
between two rigid walls. Nevertheless, the more general and phenomenological approach of Jemseena and
Gopalakrishnan could be adjusted to describe the multistep interpretation and, therefore, proved helpful for
deducing exact analytical results, e.g. for the mean MT length, which are still valid when an MT grows
against an external force.

In the case of bounded growth, the stationary length distribution has a steep descent in the vicinity of the
mean growth distance n/c. In absence of rescues, the steep descent follows an area where the probability
density is only slowly decreasing and becomes nearly constant for large n. If rescues are allowed, the
distribution is exponentially increasing and has a maximum before it decreases sharply. In both cases, the
length distributions are lighter tailed than the exponential distribution resulting from a single-step
catastrophe, i.e. a multistep catastrophe reduces the number of MTs that are longer than the mean growth
length. As a consequence, the mean MT length decreases by up to one half the single-step value if the number
of catastrophe steps and the step rate are increased proportionally (see figure 4).

If the average growth duration ⟨τ+⟩ is known, we show that measurements of the shape of the bounded
length distributions (figures 2(c) and 3(c)) or the mean MT length will give access to the number of
sub-states n that best describe the experimental data (scenario (i)).

We also discussed the situation where MT dynamics is altered by MT regulators that do not only affect
the velocities or the transition rates but the number of catastrophe sub-steps [7] (scenario (ii)). We conclude
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that by such a regulation, an MT acquires more potent ways to adapt to special situations inside the cell:
while altering the classical four parameters only adjusts the range of MT lengths, which stay exponentially
distributed in the single-step case (as long as they do not leave the bounded regime), variation of the
additional parameter n changes the shape of the length distribution. As similarly discussed by Gardner et al
[7], this could be beneficial during mitosis. For instance, during prometaphase, the steep descent in the length
distribution can appropriately limit the area that is explored by MTs in order to fasten search-and-capture of
chromosomes [25]. The correction of erroneous attachments might be supported by MCAK, which has been
shown to be localized at the centromere [26] and to promote catastrophes by reducing the number of
required steps [7]. In metaphase, the chromosomes are bi-directionally attached and set under tension by the
opposing MT ensembles in a tug-of-war. As a result, the plus ends of the attached MTs may be located in
areas with lower MCAK concentrations and obey multistep dynamics again. Then, accumulation of MT
lengths around the maximum of their distribution may support the precise positioning of chromosomes in
the metaphase plate and the maintenance of spindle length. Finally, the oscillatory behavior of multistep MTs
that follows from the deterministic growth durations may also support the characteristic chromosome
oscillations occurring during metaphase [27]. This influence may be examined theoretically by means of
mitotic spindle models that reproduce chromosome oscillations and already include dynamic instability of
individual MTs [28–31]. Such models could be easily extended by multistep catastrophes.

Stationary length distributions that have a maximum for short MT lengths before they apparently
decrease exponentially and are similar to the ones in figure 3 were measured in several experimental studies
[32–37]. Though some of these studies have already been cited as evidence for a multistep catastrophe
mechanism [7, 38], there are different reasons why this interpretation is dubious. In contrast to our model
with a fixed minus and a dynamic plus end, the in vitro studies in [32, 36] examined free MTs that could
polymerize simultaneously at both ends. Therefore, the shape of the length distribution can be rationalized
by a convolution of the respective exponential distributions at the plus and the minus end, which are both
obeying single-step dynamics [36]. In [33], the deviation from an exponential distribution for short MT
lengths is attributed to the image resolution being too low to detect very short MTs. The results in [34, 35,
37] seem to be more in line with our model, yet these publications do not provide a quantitative evaluation
of the measured length distributions, which makes a valid conclusion difficult. Besides, [34, 35] are in vivo
experiments so that additional effects from MT associated proteins or spatial restrictions are likely.

In the regime of unbounded growth, the MT lengths approach a Gaussian distribution as in the
single-step case but with a reduced variance. In vivo, the stabilization of MT growth due to an increase of the
number of catastrophe steps might help interphase MTs, which have been shown to be in the unbounded
regime [2, 39], to reach the cell boundary. On the other hand, at the transition from interphase to mitosis,
MT lengths are significantly reduced in order to prepare the mitotic spindle assembly [35, 40]. The
restructuring of the MT array may be supported by a reduction of the number of catastrophe steps, which
destabilizes the MTs and shifts them to the bounded regime. This hypothesis is supported by the observation
of Gardner et al [7] that MCAK, which plays a key role for the control of MT dynamics during mitosis [41],
promotes catastrophes by reducing the required steps from n= 3 to n= 1 and simultaneously keeping the
step rate ω constant.

We also added a force-dependence of growth velocity and step rate to the model and analyzed how force
affects multistep MT dynamics in the scenario of a step rate that is proportional to the number of required
steps (ω( f) = nω0( f), scenario (i)) as well as for a step rate that does not depend on n (ω( f) = ω0( f),
scenario (ii)). If the opposing force exceeds the critical force fc, the mean velocity Vn changes its sign and the
MT switches from the unbounded to the bounded regime.

With a step rate that is proportional to n, the mean velocity and, thus, the critical force are constant. This
scenario is useful for determining the number of sub-states n if the mean growth duration ⟨τ+⟩= nω0 is
known. Because the critical force is strictly n-independent, measurements of the critical force will not allow
to deduce information about the number of sub-steps n.

When the step rate is independent of n, the force f and an increase of n counteract each other because the
force suppresses growth and enhances catastrophe steps, thereby decreasing the mean growth duration and
length, while a larger n results in an increased mean growth duration ⟨τ+⟩= nω0. Thus, the critical force is a
monotonic function of n and converges to the stall force, at which the growth velocity vanishes.
Manipulating the step number without affecting the step rate is possible by a variation of the MCAK
concentration [7]. In this situation measurements of the critical force fc give information on the value
of n.

While we have only examined multistep MT dynamics against a constant force, a next step would be to
consider forces that depend on time and/or MT length. An interesting example is an MT that grows against
an elastic obstacle [18]. Such an analysis could also be extended to an ensemble of MTs: since multiple
single-step MTs that grow against an elastic obstacle exhibit collective catastrophes and oscillations [42], it
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might be worthwhile to work out how this collective behavior is interfered by the inherent periodic dynamics
of multistep MTs that follows from the deterministic growth durations.

If the MT is confined to finite lengths L, for instance by the cell cortex, the MT will either tend to shrink
back to zero length if it is in the bounded regime, or it will grow repeatedly against the confining boundary if
MT growth would be unbounded without the confinement. In the latter case, the stationary length
distribution has no maximum but increases exponentially up to the boundary. Since this is due to the
single-step kinetics of the rescue, a maximum could be restored by a multistep rescue, which, however, has
not been observed so far to our knowledge. As aforementioned, MTs are in the unbounded regime during
interphase [2, 39], where the MT organizing center is positioned by direct pushing and/or by
dynein-mediated pulling interactions between the plus ends and the actin cortex [43–46]. Since it would be
disadvantageous for these interactions if the MT distribution had a maximum and the most probable MT
length lay in front of the cell cortex, a single-step rescue and an exponential length distribution are indeed
favorable in this situation. Moreover, we argued above that interphase MTs might be in the unbounded
regime as a result of an increased number of required catastrophe steps n. This mechanism would further
support the interaction with the cell cortex since the probability Q to find the MT plus end at the confining
boundary correlates positively with n if the step rate is constant.

5. Conclusion

In conclusion, a catastrophe mechanism that requires multiple steps has significant effects on the length
distribution of MTs. Modifying the number of required catastrophe steps, e.g. by regulation via MCAK [7],
allows to adapt not only the scale but also the shape of the length distribution to be beneficial for the present
physiological situation. The multistep characteristics of MT length are retained under an opposing force; the
critical force to suppress unbounded growth becomes sensitive to modification of the number of catastrophe
steps. Confined MTs can continue to show characteristic maxima in the MT length distribution only in the
bounded regime and if the compartment is sufficiently long; otherwise MT, length distributions tend to
simple exponentially decreasing or increasing distributions in the bounded and unbounded case,
respectively.
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Appendix A. Numerical solution of the stationary FPEs

We solve the stationary FPE (15) by numerical determination of the eigenvalues λj and -vectors v⃗j of the
matrixM. The solution can then be written as

p⃗+(x) =
n∑

j=1

aj⃗vje
λjx or pi(x) =

n∑
j=1

ajSije
λjx, (A.1)

with S= (⃗v1, . . . , v⃗n). The coefficients aj follow from the initial condition (17) at x= 0:

p⃗+(x= 0) =
n∑

j=1

aj⃗vj = S⃗a
!
= p⃗0, (A.2)

⇒ a⃗= S−1p⃗0, aj = p0
(
S−1
)
j1
= p0 a

′
j , (A.3)

with a⃗= (a1, . . . ,an)T. Finally, the constant p0 is determined by the normalization condition (note that
Reλj < 0 for any eigenvalue):
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1=

ˆ ∞

0
p(x)dx=

ˆ ∞

0

(
1+

v+
v−

) n∑
i=1

pi(x)dx

= p0

(
1+

v+
v−

) n∑
i=1

n∑
j=1

a ′
j Sij

ˆ ∞

0
eλjx dx

= p0

(
1+

v+
v−

) n∑
i=1

n∑
j=1

a ′
j Sij

(
− 1

λj

)
, (A.4)

p0 =−

(1+ v+
v−

) n∑
i=1

n∑
j=1

a ′
j Sij

λj

−1

. (A.5)

If an MT is confined to x⩽ L by a rigid wall as described in section 2.4, the probability density in the
interior of the box is still given by equations (A.1) and (A.3), but is accompanied by the probability Q to find
the MT tip stalled at the wall, which is a linear combination of pi(L) in the stationary state, see equation (27).
Therefore, for a confined MT, the constant p0 follows from the normalization condition (28), which has to be
fulfilled by the total probability density pconf(x) = p(x)+Qδ(L− x):

1=

ˆ L

0
pconf(x)dx=

ˆ L

0
p(x)dx+Q

=

n∑
i=1

[(
1+

v+
v−

)ˆ L

0
pi(x)dx+

v+
ωL

(n− i+ 1)pi(L)

]

= p0

n∑
i=1

n∑
j=1

a ′
j Sij

[(
1+

v+
v−

)ˆ L

0
eλjx dx+

v+
ωL

(n− i+ 1)eλjL

]
, (A.6)

p0 =


n∑

i=1

n∑
j=1

a ′
j Sij

[(
1+

v+
v−

)
eλjL − 1

λj
+

v+
ωL

(n− i+ 1)eλjL

]
−1

. (A.7)

Appendix B. Solution for an age-dependent catastrophe rate

Jemseena and Gopalakrishnan [16] found that in case of an age-dependent catastrophe rate ωc(τ) and a
reflecting boundary at x= 0, the Laplace transformed overall probability density p̃(s) of MT lengths is given
by

p̃(s) = J0
1− ζ(s)

s− r(1− ζ(s))
, (B.1)

ζ(s) =

ˆ ∞

0
ωc(τ)exp(−v+τ s−Ω(τ))dτ, (B.2)

Ω(τ) =

ˆ τ

0
ωc(τ

′)dτ ′. (B.3)

Using equation (34), the normalization condition, which defines the constant J0, can be expressed as

1=

ˆ ∞

0
p(x)dx= ⟨x0⟩= p̃(0). (B.4)

Substituting the catastrophe rate ωc(τ) =−∂τ lnPτ+(τ) that follows from an arbitrary distribution of
growth durations (see equation (7)), we find

Ω(τ) =− lnPτ+(τ), (B.5)
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ζ(s) =

ˆ ∞

0
ωc(τ)Pτ+(τ)e

−v+τ s dτ

=

ˆ ∞

0
pτ+(τ)e

−v+τ s dτ

≈ 1− v+⟨τ+⟩s= 1−⟨x+⟩s. (B.6)

The last line is valid for small s. Next, we substitute x= v+τ to show that ζ(s) is the Laplace transform of the
probability density of growth distances:

ζ(s) =

ˆ ∞

0

1

v+
pτ+

(
x

v+

)
e−sx dx=

ˆ ∞

0
px+(x)e

−sx dx= p̃x+(s). (B.7)

For the purpose of normalization, we use the approximated form of ζ(s) from equation (B.6):

1= p̃(0) = J0
⟨x+⟩s

s− r⟨x+⟩s

∣∣∣∣
s=0

= J0
⟨x+⟩

1− r⟨x+⟩
, (B.8)

J0 =
1

⟨x+⟩
− r. (B.9)

Substituting equations (B.7) and (B.9) into equation (B.1) finally results in p̃(s) as given in equation (32).

Appendix C. Moments and cumulants of MT length

The moments ⟨xm⟩ and the cumulants κm of MT length x can be derived from the Laplace transformed
probability density in equation (33) as

⟨xm⟩= (−1)m
∂m

∂sm
p̃(s)

∣∣∣∣
s=0

, κm = (−1)m
∂m

∂sm
ln p̃(s)

∣∣∣∣
s=0

. (C.1)

The first four moments and cumulants are:

⟨x1⟩= κ1 =
n+ 1

2(c− nr)
(C.2)

⟨x2⟩= n+ 1

6c(c− nr)2

[
2(n+ 2) c+ n(n− 1) r

]
(C.3)

κ2 = Var(x) =
n+ 1

12c(c− nr)2

[
(5+ n) c+ 2n(n− 1) r

]
(C.4)

⟨x3⟩= n+ 1

4c2 (c− nr)3

[
(n+ 2)(n+ 3) c2 + 2n(n2 + n− 2) cr− n2 (n− 1) r2

]
(C.5)

κ3 =
n+ 1

4c2 (c− nr)3

[
(n+ 3) c2 + n(n− 1)(n+ 3) cr− n2 (n− 1) r2

]
(C.6)

⟨x4⟩= n+ 1

30c3 (c− nr)4

[
6(n+ 2)(n+ 3)(n+ 4) c3

+ 2n(n− 1)(n+ 2)(16n+ 43) c2r

+ 2n2 (n− 1)(n+ 2)(4n− 23) cr2

− n3 (n− 1)(n2 − 19) r3
]

(C.7)

κ4 =
n+ 1

30c3 (c− nr)4

[(
n(−n2 + n+ 109)+ 251

)
c3

+ 4n(n− 1)
(
n(7n+ 60)+ 107

)
c2r

+ 2n2 (n− 1)
(
n(11n− 30)− 149

)
cr2

− 4n3 (n− 1)(n2 − 19) r3
]
. (C.8)
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Appendix D. Stationary solution for an infinite step catastrophe process

In the limit n→∞, the Laplace transformed probability density of growth distances is p̃x+(s) = e−s/c0 . For
the Laplace transform of the overall probability density of MT lengths in presence of rescue events follows:

p̃(s) = (c0 − r)
1− e−s/c0

s− r
(
1− e−s/c0

)
= (c0 − r)

∞∑
k=0

rk
(
1− e−s/c0

s

)k+1

= (c0 − r)
∞∑
k=0

rk
k+1∑
l=0

(
k+ 1

l

)
(−1)l

e−ls/c0

sk + 1
. (D.1)

Inverse Laplace transformation yields:

p(x) = (c0 − r)
∞∑
k=0

rk
k+1∑
l=0

(k+ 1)(−1)l

l!(k+ 1− l)!

(
x− l

c0

)k

Θ

(
x− l

c0

)

= (c0 − r)
∞∑
l=0

(−1)l

l!
Θ

(
x− l

c0

) ∞∑
k=l−1

(k+ 1)

(k+ 1− l)!

(
r

(
x− l

c0

))k

= (c0 − r)
∞∑
l=0

(−1)l

l!
Θ

(
x− l

c0

)(
r

(
x− l

c0

))l−1(
l+ r

(
x− l

c0

))
exp

(
r

(
x− l

c0

))
= (c0 − r)

[
erxΘ(x)−

(
1+ r

(
x− c−1

0

))
er(x−c−1

0 )Θ
(
x− c−1

0

)
+

1

2

(
r
(
x− 2c−1

0

))(
2+ r

(
x− 2c−1

0

))
er(x−2c−1

0 )Θ
(
x− 2c−1

0

)
− . . .

]
. (D.2)

We see that the probability density increases exponentially until it has a step discontinuity at the (now
deterministic) growth length x= c−1

0 . At each multiple of the growth length, the function is non-analytic
since an additional term contributes thereafter. The first two non-analyticities can be seen in figure 3(c). In
absence of rescues (r= 0) the probability density correctly turns into the step function
c0 (Θ(x)−Θ(x− c−1

0 )).

Appendix E. Approximation for unbounded growth

We define the Fourier transform

qi(k, t) =

ˆ ∞

−∞
e−ikxpi(x, t)dx, (E.1)

and apply it to the FPE (11):

∂t⃗q(k, t) = A(k)⃗q(k, t), (E.2)

with q⃗(k, t) = (q1(k, t), . . . ,qn(k, t),q−(k, t))T and

A(k) =



−ω− iv+k 0 · · · 0 ωr

ω
. . .

. . . 0

0
. . .

. . .
. . .

...
...

. . .
. . . −ω− iv+k 0

0 · · · 0 ω −ωr + iv−k


. (E.3)

The fundamental solutions of equation (E.2) are given by

q⃗j(k, t) = v⃗j(k)e
λj(k)t, (E.4)
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where λj(k) and v⃗j(k) are the eigenvalues and eigenvectors of A(k), respectively. The eigenvalues can be
determined from the characteristic polynomial of A(k):

0= det(A(k)−λIn+1)

= (−1)nωrω
n +(−1)n+1(ωr − iv−k+λ(k))(ω+ iv+k+λ(k))n. (E.5)

An approximation for long MTs in real space corresponds to the limit of small k in Fourier space. For k= 0,
λ0(k= 0) = 0 is the only non-negative eigenvalue and, therefore, provides the only solution q⃗j(k, t) that does
not vanish for t→∞. To approximate the dispersion relation for long MTs after long times, we expand λ0(k)
around k= 0 using the implicit function theorem. According to equation (E.5), λ0(k) can be implicitly
defined by f(λ0(k),k) = 0 with

f(λ0(k),k)≡−ωrω
n +(ωr − iv−k+λ0(k))(ω+ iv+k+λ0(k))

n. (E.6)

From the implicit function theorem and with λ0(k= 0) = 0, we find

λ ′
0(k) =

∂λ0(k)

∂k
=− ∂kf(λ0,k)

∂λ0 f(λ0,k)
, (E.7)

λ ′
0(0) =−i

nωrv+ −ωv−
nωr +ω

=−iVn, (E.8)

λ ′ ′
0 (k) =−

(∂2
k + 2λ ′

0∂λ0k +λ ′2
0 ∂

2
λ0
)f(λ0(k),k)

∂λ0 f(λ0,k)
, (E.9)

λ ′ ′
0 (0) =−n(n+ 1)

ωrω(v+ + v−)2

(nωr +ω)3
=−2Dn. (E.10)

This results into the dispersion relation

λ0(k)≈−iVnk−Dnk
2, (E.11)

which corresponds to a diffusion process with diffusion constant Dn and drift Vn, which is the mean velocity
as deduced in equation (10).

Normalization of the overall probability density is translated into Fourier space by the condition
q(0, t) = 1, where q(k, t) is the Fourier transform of the overall probability density p(x, t). Finally, an inverse
Fourier transform of q(k, t) = exp(λ0(k)t) yields the approximation of p(x, t) for long times:

p(x, t)≈ 1√
4πDnt

exp

(
− (x−Vnt)2

4Dnt

)
. (E.12)
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