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Abstract
In the mitotic spindle microtubules attach to kinetochores via catch bonds during metaphase, and
microtubule depolymerization forces give rise to stochastic chromosome oscillations. We
investigate the cooperative stochastic microtubule dynamics in spindle models consisting of
ensembles of parallel microtubules, which attach to a kinetochore via elastic linkers. We include
the dynamic instability of microtubules and forces on microtubules and kinetochores from elastic
linkers. A one-sided model, where an external force acts on the kinetochore is solved analytically
employing a mean-field approach based on Fokker–Planck equations. The solution establishes a
bistable force–velocity relation of the microtubule ensemble in agreement with stochastic
simulations. We derive constraints on linker stiffness and microtubule number for bistability. The
bistable force–velocity relation of the one-sided spindle model gives rise to oscillations in the
two-sided model, which can explain stochastic chromosome oscillations in metaphase (directional
instability). We derive constraints on linker stiffness and microtubule number for metaphase
chromosome oscillations. Including poleward microtubule flux into the model we can provide an
explanation for the experimentally observed suppression of chromosome oscillations in cells with
high poleward flux velocities. Chromosome oscillations persist in the presence of polar ejection
forces, however, with a reduced amplitude and a phase shift between sister kinetochores. Moreover,
polar ejection forces are necessary to align the chromosomes at the spindle equator and stabilize an
alternating oscillation pattern of the two kinetochores. Finally, we modify the model such that
microtubules can only exert tensile forces on the kinetochore resulting in a tug-of-war between the
two microtubule ensembles. Then, induced microtubule catastrophes after reaching the
kinetochore are necessary to stimulate oscillations. The model can reproduce experimental results
for kinetochore oscillations in PtK1 cells quantitatively.

1. Introduction

Proper separation of chromosomes during mitosis is essential for the maintenance of life and achieved by

the mitotic spindle, which is composed of two microtubule (MT) asters anchored at the spindle poles. The

spindle contains three types of MTs classified according to their function [1]: astral MTs interact with the

cell membrane to position the spindle poles, interpolar MTs interact with MTs from the opposite pole to

maintain spindle length, and, finally, kinetochore MTs link to the chromosomes via the kinetochores at the

centromere and can apply pulling forces via the linkage. The MT–kinetochore bond is a catch bond [2], i.e.

tightening under tension but the molecular nature of the MT–kinetochore link is not exactly known and a

complete mechanistic understanding of the catch bond is missing [3, 4] but probably involves Aurora B [5];

the Ndc80 complexes and Dam1 (in yeast) are believed to play a major role in the MT–kinetochore link.

One function of the spindle is to align the chromosomes in the metaphase plate at the spindle equator. It
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Table 1. Overview of assumptions of models exhibiting stochastic chromosome oscillations. In the referred sections we discuss how
poleward flux, PEFs and the absence of pushing forces affect kinetochore dynamics in the model used for this work.

Equal Force-dep. MT
Linker Catch force MT pushing PEFs Poleward

Reference (year) model bonds sharing rescue/cat. forces MT flux

Joglekar [15] (2002) Hill sleeve No No No Yes No
Civelekoglu-Scholey [16] (2006) Motor No No Yes Yes Yes Yes
Civelekoglu-Scholey [19] (2013) Viscoelastic Yes No Yes No Yes No
Shtylla [17, 18] (2010) Hill sleeve Yes No Yes Yes No
Banigan [20] (2015) Elastic Yes No Yes Yes No Yes
Klemm [21] (2018) Permanent Yes Yes Yes No No
This work Elastic Yes No Yes Section 8 Section 7 Section 6

has been observed in several vertebrate cells that chromosomes do not rest during metaphase but exhibit
oscillations along the pole to pole axis known as directional instability [6–12], whereas in Drosophila
embryos and Xenopus eggs a directional instability does not occur [13, 14]. If present, these oscillations are
stochastic and on the time scale of minutes, i.e., on a much larger time scale than the dynamic instability of
single MTs. Both single kinetochores and the inter-kinetochore distance oscillate; inter-kinetochore or
breathing oscillations occur with twice the frequency of single kinetochore oscillations [11].

A quantitative understanding of the underlying mechanics of the MT–kinetochore-chromosome system
is still lacking. In the past, several theoretical models have been proposed that reproduce chromosome
oscillations [15–21]. (See table 1 and reviews [22, 23].) These models have in common that they simplify to
a quasi-one-dimensional geometry and contain two ensembles of MTs growing from the two spindle poles
that connect to one chromosome that is represented by two kinetochores connected by a spring (the cohesin
bond). Kinetochores follow overdamped motion [16–20] or are assumed to reach force balance
instantaneously under the influence of MT depolymerization and polymerization forces (because the
friction force is small) [15, 21].

Several MT depolymerization and polymerization forces are included into the models. The models
neglect explicit spindle pole dynamics but possibly include poleward MT flux [16, 20], which describes a
constant flux of tubulin from the plus-ends toward the spindle pole and is probably driven by plus-end
directed kinesin-5 motors pushing overlapping antiparallel interpolar MTs apart and kinesin-13 proteins
that depolymerize MTs at the centrosome [24]. The main poleward forces on kinetochores are generated by
depolymerization of MTs which builds up and transmits a poleward force via the MT–kinetochore link.
Only in the model of Civelekoglu-Scholey et al [16] the main poleward force is generated by MT
depolymerization motors at the spindle poles. In order to be able to exert poleward pulling forces the
MT–kinetochore bond needs to remain intact during depolymerization and ‘slide’ with the depolymerizing
MT plus end. The force that can be exerted depends on the nature of this bond and is high if it is a catch
bond that tightens under tension [2]. All models include switching between polymerizing and
depolymerizing MT states; in most models this switching is caused by catastrophe and rescue events
(dynamic instability [25]), only Shtylla and Keener [17, 18] do not introduce explicit MT catastrophes but
catastrophe-like events are triggered by a chemical feedback loop if MTs approach the kinetochore.

The two ensembles of MTs are engaged in a kind of tug-of-war and exert antagonistic forces via the
spring connecting kinetochores: poleward (P) depolymerization forces of one ensemble generate an
antipoleward (AP) force on the other kinetochore. Experiments suggest that kinetochore MTs can only exert
P-directed pulling forces by depolymerization but are not able to directly exert AP-directed pushing forces
on the kinetochore during polymerization [7, 26]. During directional instability, the spindle switches
between the left and the right ensemble pulling actively in P-direction by depolymerization while the
respective other ensemble is passively following in AP-direction by polymerization without actively pushing.
Nevertheless, some models have included AP-directed MT pushing forces [16–18, 20, 21]. Antagonistic
AP-directed forces on the kinetochores can also be generated by polar ejection forces (PEFs); they originate
from non-kinetochore MTs interacting with the chromosome arms via collisions or chromokinesins
belonging to the kinesin-4 and kinesin-10 families [27] and pushing them thereby toward the spindle
equator. The action of different P- and AP-directed forces can move kinetochores back and forth and also
tense and relax the inter-kinetochore cohesin bond.

Models differ in their assumptions about the MT–kinetochore link and the mechanism how MT
dynamics is directed by mechanical forces to give rise to kinetochore and inter-kinetochore distance
oscillations. The model by Joglekar and Hunt [15] uses the thermodynamic Hill sleeve model [28] for the
MT–kinetochore connection, which assumes equally spaced rigid linkers that diffuse on the discrete MT
lattice. Shtylla and Keener [17, 18] combine a continuous version of the Hill sleeve model with a negative
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chemical feedback between the force at the MT–kinetochore interface and the depolymerization rate. In
Hill sleeve models there is no effect of MT insertion and, thus, force onto the MT dynamic instability, i.e.,
on catastrophe and rescue rates. The Hill sleeve can transmit pulling forces onto the kinetochore up to a
critical force above which MTs pull out of the sleeve [15], and there is evidence that the Hill sleeve exhibits
catch-bond-like behavior [29]. More recent studies show that the kinetochore is not rigid, as supposed in
the Hill sleeve model, but should be viewed as a flexible framework [30]. Moreover, Ndc80 fibrils have been
suggested as main force transmitter [4, 31, 32], which motivated Keener and Shtylla to modify their Hill
sleeve model by replacing the rigid attachment sites with elastic linkers and allowing for a force feedback
onto MT depolymerization [33]. However, sleeve models remain speculative as electron microscopy has not
yet revealed appropriate structures [34, 35]. Civelekoglu-Scholey et al [16] proposed a model in which MTs
and kinetochores are linked by motor proteins (dyneins) walking toward the MT minus end; these links
have no catch-bond-like behavior. The links are assumed to be able to transmit tension onto MTs that
promotes MT rescue. In [21] no explicit linkers are introduced but permanent MT–kinetochore links are
assumed that can transmit both pulling and pushing forces onto MTs. As the exact nature of
MT–kinetochore linking structures is not known, a model of the MT–kinetochore linkage as a generic
elastic structure seems reasonable, as in recent models where the MTs are linked to the kinetochore via
(visco-)elastic springs [19, 20]. The MT–kinetochore bond can be modeled as a catch bond, and the elastic
linkers also transmit forces back onto the MT allowing for a force feedback onto MT dynamics as it has
been measured in [2].

In the model of Shtylla and Keener [17], MTs that are attached to the same kinetochore share the force
from the cohesin bond equally and exhibit synchronous dynamics. The last assumption is contradictory to
the experimental observation that one kinetochore MT ensemble does not coherently (de)polymerize but
always consists of a mixture of both states [36, 37]. Klemm et al [21] take into account this observation by
dividing each MT ensemble into a growing and a shrinking sub-ensemble, but also make the strong
assumption of equal force sharing between the MTs within each sub-ensemble. All other models allow for
individual MT dynamics and for different forces between MTs depending on the distances of MTs to the
kinetochore.

The main mechanism for oscillations differs between models depending on the main antagonistic
AP-directed force that switches a depolymerizing P-directed ensemble back into AP-directed
polymerization. Switching can be triggered by the AP-directed force that the other ensemble can exert via
the cohesin spring during depolymerization and by AP-directed PEFs if MT catastrophes are suppressed or
rescues promoted under tension. In the model by Joglekar and Hunt [15] AP-directed PEFs are essential for
switching. Civelekoglu-Scholey et al [16] proposed a model in which force is transmitted by motor proteins.
By variation of the model parameters they were able to reproduce a wide range of chromosome behavior
observed in different cell types. In this model, a depolymerizing P-directed ensemble switches because
tension in the cohesin spring and PEFs promote rescue events. A modified model [19] uses viscoelastic
catch bonds and accounts for the observation that in PtK1 cells only chromosomes in the center of the
metaphase plate exhibit directional instability [11]. They explain this dichotomy with different distributions
of PEFs at the center and the periphery of the metaphase plate. In the model by Shtylla and Keener [17, 18]
MT catastrophe-like events are only triggered by a chemical feedback such that kinetochore oscillations
become coupled to oscillations of the chemical negative feedback system: AP-directed MT polymerization
exerts pushing forces onto the kinetochore but triggers switching into a depolymerizing state, and MT
depolymerization exerts P-directed pulling forces and triggers switching back into a polymerizing state.

Whereas in [15, 16, 19] AP-directed PEFs are present and in the model by Joglekar and Hunt [15] also
essential for realistic kinetochore oscillations, Banigan et al [20] presented a minimal model with simple
elastic linkers and neglecting PEFs. Referring to experiments with budding yeast kinetochores [2], they
modeled MT dynamics with force-dependent velocities, catastrophe and rescue rates. In this model,
kinetochore oscillations arise solely from the collective behavior of attached MTs under force and the
resulting interplay between P-directed depolymerization forces and AP-directed polymerization forces of
the opposing MT ensembles. Force-dependent velocities, catastrophe and rescue rates are essential to trigger
switching of kinetochore motion and oscillations in this model. MTs can exert pushing forces such that it is
unclear to what extent the oscillation mechanism remains functional if pushing forces are absent as
suggested experimentally. Also the recent model by Klemm et al [21], which aims to describe kinetochore
dynamics in fission yeast, does not rely on PEFs. It uses a permanent MT–kinetochore bond and
oscillations result from the interplay between MT depolymerization and polymerization forces via
force-dependence in MT dynamics; also in this model MTs can exert pushing forces. Moreover, the model
makes the strong assumption of equal force sharing between all growing or shrinking MTs attached to a
kinetochore. The model also includes kinesin-8 motors that enhance the catastrophe rate and have a
centering effect on the chromosome positions.
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In all references [15–21] a sufficient set of ingredients is given for the respective model to exhibit
oscillations including a specific choice of parameter values. It is much harder to give necessary conditions
and parameter ranges for oscillations, which means to obtain quantitative bounds on model parameters,
than to give a sufficient set of conditions. This is the aim of the present paper within a model that starts
from the minimal model by Banigan et al and generalizes this model in several respects in later sections, see
table 1. In this way we discuss the complete inventory of possible forces acting on the kinetochore and its
influence on oscillations.

It is also difficult to trace the actual mechanism leading to oscillations. An essential part in our
quantitative analysis is a mean-field solution of the one-sided minimal model of Banigan et al [20], where a
single kinetochore under force is connected to one or several MTs that experience length-dependent
individual loads and feature force-dependent dynamics. Force–velocity relations for a single kinetochore,
which is connected to one or several MTs have been investigated previously based on a sleeve-like
MT–kinetochore interface [17, 18, 29, 33]. Here, we can derive an analytical solution of the one-sided
minimal model from a novel mean-field approach. For this purpose, we start from the Fokker–Planck
equations for the length distribution of the MT–kinetochore linkers. The only mean-field approximation is
to neglect stochastic velocity fluctuations of the attached kinetochore. Our solution clearly shows that the
force feedback of linkers onto the MT depolymerization dynamics via catch (or permanent) bonds is
essential for a bistable force–velocity relation within the minimal model. Moreover, the stationary state
solution allows us to quantify the parameter range for a bistability in the parameter plane of
MT–kinetochore linker stiffness and MT numbers.

By interpreting the force–velocity relation as phase space diagram for the two-sided model as in [20], we
show that bistability in the one-sided model is a necessary condition for kinetochore oscillations in the
two-sided model. Beyond that, we are able (1) to quantify an oscillatory regime, in which kinetochores
exhibit directional instability, in the parameter plane of linker stiffness and MT numbers predicting that
linkers have to be sufficiently stiff; (2) to describe kinetochore motion in this oscillatory regime, calculate
frequencies which agree with in vivo measurements [11] and to explain frequency doubling of breathing
compared to single kinetochore oscillations; (3) to describe kinetochore motion in the non-oscillatory
regime as fluctuations around a fixed point; (4) to show that high poleward flux velocities move the system
out of the oscillatory regime and thereby explain why directional instability has been observed in mitotic
vertebrate cells but not in Drosophila embryos and Xenopus eggs; (5) to show that polar ejection forces
reduce the amplitude of oscillations, induce a phase shift between sister kinetochores and are necessary to
align the chromosome at the spindle equator; (6) to derive as necessary condition for oscillations that either
MTs must be able to apply pushing forces on the kinetochore or a catastrophe has to be induced with
increased catastrophe rate when a MT reaches the kinetochore (7) to provide a set of model parameters that
reproduce experimental results for kinetochore oscillations in PtK1 cells quantitatively. All these results are
validated by stochastic simulations.

In particular, we quantify lower bounds for linker stiffnesses that allow oscillations, whose value depends
on the behavior of MTs growing against the kinetochore. If kinetochore MTs can exert pushing forces, we
find oscillations for linker stiffnesses >16 pN μm−1; also if MT catastrophes are induced upon reaching the
kinetochore, we find oscillations in a similar range of linker stiffnesses. These constraints provide useful
additional information on MT–kinetochore linkers whose molecular nature is not completely unraveled up
to now.

2. Mitotic spindle model

We use a one-dimensional model of the mitotic spindle (figure 1(a)), similar to the model from [20]. The
x-coordinate specifies positions along the one-dimensional model, and we choose x = 0 to be the spindle
equator. The spindle model contains a single chromosome represented by two kinetochores, which are
linked by a spring with stiffness ck and rest length d0. Two centrosomes margin the spindle at ±xc. From
each centrosome a constant number M of MTs emerges with their plus ends directed toward the spindle
equator. Each MT exhibits dynamic instability [25] and attaches to and detaches from the corresponding
kinetochore stochastically. Attached MTs are connected to the kinetochore by a linker, which we model as
Hookean polymeric spring with stiffness c and zero rest length. This spring exerts a force
Fmk = −c(xm − Xk) on each MT, and each MT exerts a counter force −Fmk on the kinetochore, where Xk

and xm are kinetochore and MT position.
In the following we define all MT parameters for MTs in the left half of the spindle model; for MTs in

the right half positions, velocities v and forces F have opposite signs. In the left half, tensile forces on the
MT–kinetochore link arise for Xk > xm and pull the MT in the positive x-direction, Fmk > 0. In [2], the
velocities of MT growth vm+ and shrinkage vm− as well as the rates of catastrophe ωc, rescue ωr and
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Figure 1. One-dimensional model of the mitotic spindle. (a) Two-sided model: M MT arise from each centrosome and can
attach to/detach from the corresponding kinetochore. (b) One-sided model: left half of two-sided model. The cohesin bond is
replaced by the external force Fext. MTs are not confined by a centrosome and permanently attached to the kinetochore.
MT–kinetochore distances xi = xm,i − Xk are the only relevant coordinates.

Table 2. Model parameters.

Transition parameters ωi ω0
i (s−1) Fi (pN)

Catastrophe ωc 0.0019 −2.3 [2]
Rescue ωr 0.024 6.4 [2]
Detachment in growing state ωd+ 0.000 11 3.8 [2]
Detachment in shrinking state ωd− 0.035 −4.0 [2]
Attachment rate ωa 1.0 Estimated

Velocity parameters vm± v0
± (nms−1) F± (pN)

Growth vm+ 5.2 8.7 [2]
Shrinking vm− −210.0 −3.2 [2]

Other parameters Symbol Value

Cohesin bond stiffness ck 20 pN μm−1 Estimated
Cohesin bond rest length d0 1 μm [7]
Centrosome position xc 6.8 μm [10]
Friction coefficient γ 1 pN s μm−1 Estimated
Thermal energy kBT 4 pN nm Estimated

detachment ωd± have been measured while MTs were attached to reconstituted yeast kinetochores. They can
all be described by an exponential dependence on the force Fmk that acts on the MT plus end:

vm± = v0
± exp

(
Fmk

F±

)
, ωi = ω0

i exp

(
Fmk

Fi

)
, (1)

(for i = r, c, d+, d−) with F+, Fr, Fd+ > 0 and F−, Fc, Fd− < 0 for the characteristic forces, because tension
(Fmk > 0) enhances growth velocity, rescue and detachment of a growing MT, while it suppresses shrinking
velocity, catastrophe and detachment of a shrinking MT (note that we use signed velocities throughout the
paper, i.e., vm− < 0 and vm+ > 0). Suppression of detachment of shrinking MTs is the catch bond property
of the MT–kinetochore link. The attachment rate is assumed to follow a Boltzmann distribution,

ωa = ω0
a exp

(
c(Xk − xm)2

2kBT

)
, (2)

according to the MT–kinetochore linker spring energy.
The kinetochore motion is described by an overdamped dynamics,

vk ≡ Ẋk =
1

γ
(Fkk + Fkm) , (3)

with the friction coefficient γ, and the forces Fkk and Fkm = −
∑

att.MTsFmk originating from the cohesin
bond between kinetochores and the MT–kinetochore linkers of all attached MTs, respectively.

We perform simulations of the model by integrating the deterministic equations of motion for MTs
(ẋm,i = vm±,i for i = 1, . . . , M) and kinetochores (equation (3)) and include stochastic switching events
between growth and shrinking as well as for attachment and detachment to the kinetochore for each MT.
For integration we employ an Euler algorithm with a fixed time step Δt � 10−3 s which is small enough to
ensure ωiΔt � 1 for all stochastic switching events (see table 2). The algorithm is described in the
supplementary material in more detail. We use parameter values from experiments as listed in
table 2.
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We start with the investigation of the minimal model, i.e. neglecting poleward flux and PEFs and using
the same simple spring model for the MT–kinetochore linker as Banigan et al where the MT plus ends are
able to ‘overtake’ the kinetochore (xm > Xk, again for MTs in the left half of the spindle) and thereby exert
pushing forces Fkm > 0 on the kinetochore (which could be interpreted as a compression of the
MT–kinetochore linker). Later, we will generalize the minimal model as described in the introduction, see
table 1. In a first step, we add poleward MT flux, which describes a constant flux of tubulin from the
plus-ends toward the spindle pole [24], by shifting the MT velocities vm±. PEFs, which push the
kinetochore away from the pole [27], will be included in a second step as external forces, which depend on
the absolute positions of the kinetochores. Finally, we will take account of the hypothesis that MTs are not
able to apply pushing forces on the kinetochore [7, 26] by modifying the model such that the growth of a
MT is stalled or that the MT undergoes a catastrophe when it reaches the kinetochore.

At the centrosome, MTs are confined: It is reasonable to assume that they undergo a forced rescue and
detach from the kinetochore if they shrink to zero length. If the mean distance of MTs from the spindle
equator is sufficiently small, |〈xm〉| � |xc|, we can also consider the MTs as unconfined (|xc| →∞). Then
both MT and kinetochore dynamics solely depend on their relative distances and not on absolute positions,
which simplifies the analysis.

3. Mean-field theory for bistability in the one-sided model

We first examine the one-sided model of Banigan et al [20], which only consists of the left half of the
two-sided model with an external force applied to the kinetochore (figure 1(b)). In simulations of this
one-sided spindle model, kinetochore movement exhibits bistable behavior as a function of the applied
force, i.e., within a certain force range there are two metastable states for the same external force: In one
state the MTs predominantly grow and the kinetochore velocity is positive while in the other state the
kinetochore has a negative velocity as a consequence of mainly shrinking MTs. It depends on the history
which of these two states is assumed: when the system enters the bistable area in consequence of a force
change, the kinetochore velocity will maintain its direction (following its current metastable branch) until
the force is sufficiently large that the system leaves the bistable area again (the current metastable branch
becomes unstable). Later we will show that this hysteresis of the one-sided model can explain stochastic
chromosome oscillations in metaphase if two one-sided models are coupled in the full two-sided
model.

In the following, we present a Fokker–Planck mean-field approach that lets us derive bistability
analytically and obtain constraints for the occurrence of bistability. We obtain a system of Fokker–Planck
equations (FPEs) for the M MT–kinetochore distances xi ≡ xm,i − Xk (i = 1, . . . , M) and decouple the MT
dynamics in a mean-field approximation, which neglects kinetochore velocity fluctuations.

We make two assumptions. First we assume that all M MTs are always attached to the kinetochore.
Because the MT–kinetochore links are catch bonds this assumption is equivalent to assuming that these
links are predominantly under tension. We will check below by comparison with numerical simulations to
what extent this assumption can be justified. Secondly, we neglect that MTs are confined by a centrosome.
Then, as mentioned above, the only relevant coordinates are the relative MT–kinetochore distances xi,
which measure the extension of the ith linker.

The MTs are coupled because they attach to the same kinetochore: each MT experiences a force
Fmk,i = −cxi from the elastic linker to the kinetochore, which is under tension (compression) for xi < 0
(xi > 0); the kinetochore is subject to the total counter force Fkm = c

∑
ixi. Therefore, the kinetochore

velocity vk is a stochastic variable depending on all distances xi, on the one hand, but determines the
velocities ẋi = vm±(xi) − vk of MTs relative to the kinetochores, on the other hand. The equations can be
decoupled to a good approximation because the one-sided system assumes a steady state with an
approximately stationary kinetochore velocity vk after a short time (rather than, for example, a cooperative
oscillation as for an MT ensemble pushing against an elastic barrier [38]). In our mean-field approximation
we then assume a constant kinetochore velocity vk ≡ 〈vk〉 and neglect all stochastic fluctuations around this
mean. This mean value is determined by the mean linker extension 〈x〉 via

vk =
1

γ

(
Fext + cM〈x〉

)
. (4)

Fluctuations around the mean value are caused by fluctuations of the force Fkm = c
∑

ixi around its mean
〈Fkm〉 = Mc〈x〉, which become small for large M (following the central limit theorem).

If vk is no longer a stochastic variable, the dynamics of the MT–kinetochore extensions xi decouple.
Then, the probability distribution for the M extensions xi factorizes into M identical factors p±(xi, t), where

6



New J. Phys. 22 (2020) 053008 F Schwietert and J Kierfeld

Table 3. Maximal or a minimal value xmax or xmin of the stationary linker extension distribution p(x) from condi-
tions v−(xmin) = 0 and v+(xmax) = 0. The distance xmin (xmax) is a function of the prescribed kinetochore velocity
vk and has to be specified separately depending on the direction of vk; xmin (xmax) is approached if the MTs shrink
(grow) for a sufficiently long time.

MT shrinks MT grows

vk > 0 v−(x) < −vk always v+(x) > 0 for x < xmax

xmin = −∞ xmax = (F+/c) ln
(
v0
+/vk

)

vk < 0 v−(x) < 0 for x > xmin v+(x) > vk always
xmin = (F−/c) ln

(
v0
−/vk

)
xmax = ∞

vk = 0 v−(x) < 0 always v+(x) > 0 always
xmin = −∞ xmax = ∞

p±(x, t) are the probabilities to find one particular MT in the growing (+) or shrinking (−) state with an
MT–kinetochore linker extensions x. We can derive two FPEs for the dynamical evolution of p±(x, t),

∂tp+(x, t) = −ωc(x)p+(x, t) + ωr(x)p−(x, t) − ∂x

(
v+(x)p+(x, t)

)
, (5)

∂tp−(x, t) = ωc(x)p+(x, t) − ωr(x)p−(x, t) − ∂x

(
v−(x)p−(x, t)

)
, (6)

where v±(x) denotes the relative velocity of MT and kinetochore,

v±(x) ≡ vm±(x) − vk = v0
± exp

(
− cx

F±

)
− vk, (7)

and ωc,r(x) = ω0
c,r exp

(
−cx/Fc,r

)
. The velocity vk is no longer stochastic but self-consistently determined by

(4). We note that these FPEs are equivalent to single MT FPEs with position-dependent velocities,
catastrophe and rescue rates [39–42].

We will now obtain the force–velocity relation of the whole MT ensemble by first solving the FPEs (5)
and (6) in the stationary state ∂tp±(x, t) = 0 and then calculating the mean linker extension 〈x〉 for given
kinetochore velocity vk using the stationary distribution p±(x). The external force that is necessary to move
the kinetochore with velocity vk then follows from (4),

Fext = γvk − cM〈x〉(vk). (8)

The MT–kinetochore distance x is limited to a maximal or a minimal value xmax or xmin for a given
kinetochore velocity vk > 0 or < 0, respectively, see table 3. These limiting values are reached if the relative
MT–kinetochore velocities vanish after the linker extension x has adjusted: first we consider vk < 0 and a
shrinking MT. If we start with a compressed linker (x > 0), the MT starts to shrink fast, the compression is
reduced and the linker may get under tension (x < 0) because the relative velocity is negative,
ẋ = v−(x) < 0. The MT–kinetochore distance x continues to decrease until ẋ = v−(xmin) = 0 in (7), where
the shrinking velocity of the MTs is the same as the prescribed kinetochore velocity (vm− = vk). Further
shrinking to x < xmin is not possible but distances x > xmin can always be reached if MTs are rescued. If
vk < 0 and the MT grows, on the other hand, there is no upper bound on x, as the relative velocity
ẋ = v+(x) is always positive; x starts to grow into the compressive regime x > 0 and continues to grow
without upper bound (for very large compressive linker extensions, MT growth is suppressed, but the
kinetochore still moves such that v+(x) ≈ −vk > 0). Analogously, if vk > 0 and MTs grow, x grows until
ẋ = v+(xmax) = 0, and smaller distances can be reached by catastrophe but there is no lower bound on x for
shrinking MTs. Linker extensions xmax (xmin) are reached as stationary states if catastrophes (rescues) are
suppressed (for example, because of large forces), such that MTs can grow (shrink) for sufficiently long
times. If the external force Fext is prescribed rather than a kinetochore velocity, all MTs reach a stationary
state with the same velocity ṽ± given by (8), Fext = γṽ±−cMxmax,min. In this stationary state, both MT-tips
and kinetochore move with the same velocity

ṽ± ≡ MF±
γ

W

(
γv0

±
MF±

exp

(
Fext

MF±

))
, (9)

where W() denotes the Lambert-W function (defined by x = W(x)eW(x)).
In the complete absence of stochastic switching between growth and shrinking by catastrophes and

rescues, the MT ensemble reaches stationary states with peaked distributions p+(x) ∝ δ(xmax − x) and
p−(x) ∝ δ(x − xmin). Stochastic switching shifts and broadens these peaks, and the FPEs (5) and (6) lead to
a distribution p±(x, t) of linker extensions x in the growing and shrinking states with statistical weight
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Figure 2. Mean-field results compared to stochastic simulations of the one-sided model. (a) The master curve 〈x〉(vk) from the
mean-field approach (red line) agrees with simulation results for different MT-numbers M = 5, 20, 50, 200. The dashed lines
mark xmin,max(vk) from table 3. We run simulations with constant external forces and average over 80 simulations for each force.
Initially, the MT–kinetochore distance is either xmin or xmax while all MTs grow or shrink with velocity ṽ±, respectively. The
system then enters a (meta-)stable state, in which we measure the mean kinetochore velocity and MT–kinetochore distances. The
marker size depicts the time the system rests in this state on average, which is a measure for its stability (maximum marker size
corresponds to trest � 1000 s). As predicted, the mean-field approach turns out to be correct in the limit of many MTs, and in this
limit the 〈x〉(vk)-relation is independent of the MT-number M. (b) Resulting force–velocity relations for different MT-numbers
M = 5, 20, 50, 200. The dashed lines show the large velocity limit vk ≈ ṽ± given by (9). We used a linker stiffness of c = 20 pN
μm−1 both in (a) and (b).

p±(x, t) > 0 in the whole interval xmin � x � xmax. At the boundaries xmin and xmax of this interval, the
probability current density

j(x, t) ≡ v+(x, t)p+(x, t) + v−(x, t)p−(x, t) (10)

has to vanish. Furthermore, in any stationary state (∂tp±(x, t) = 0) the current density is homogeneous, as
can be seen by summing up the FPEs (5) and (6):

0 = ∂x(v+(x)p+(x) + v−(x)p−(x)) = ∂xj(x). (11)

Together with j = 0 at the boundaries this implies that j = 0 everywhere in a steady state. The resulting
relation v+(x)p+(x) = −v−(x)p−(x) can be used to reduce the stationary FPEs to a single ordinary
differential equation with the solution [41]

p±(x) =
±N
v±(x)

exp

(
−
∫ (

ωc(x)

v+(x)
+

ωr(x)

v−(x)

)
dx

)
(12)

for the stationary distribution of linker extensions x in the growing and shrinking states. The normalization
constant N must be chosen so that the overall probability density p(x) ≡ p+(x) + p−(x) satisfies∫ xmax

xmin
p(x)dx = 1. Obviously, p±(x) = 0 for x > xmax and x < xmin. The stationary probability densities

p±(x) from (12) can then be used to calculate the mean distance 〈x〉 as a function of the kinetochore
velocity vk, which enters through (7) for v±(x). The integral in the exponent in (12) as well as the
normalization can be evaluated numerically to obtain an explicit 〈x〉(vk)-relation, which is shown in
figure 2(a).

At this point it should be noticed that in the mean-field theory the 〈x〉(vk)-relation is independent of the
MT number M. Therefore, we call it master curve henceforth. In figure 2(a) we compare the mean-field
theory result to stochastic simulations and find that the mean-field approach becomes exact in the limit of
large M, where fluctuations in the kinetochore velocity around its mean in (4) can be neglected.

The master curve is a central result and will be the basis for all further discussion. Together with the
force-balance (8) on the kinetochore, the master curve will give the force–velocity relation for the
MT–kinetochore system. A positive slope of the master curve, as it can occur for small vk ≈ 0 (see
figure 2(a)), gives rise to an instability of the MT–kinetochore system: then, a positive kinetochore velocity
fluctuation δvk > 0 leads to an MT–kinetochore linker compression δ〈x〉 > 0. According to the
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force-balance (8), a compression δ〈x〉 > 0 puts additional forward-force on the kinetochore leading to a
positive feedback and further increase δvk > 0 of the kinetochore velocity. This results in an instability,
which will prevent the system to assume mean linker extensions 〈x〉 in this unstable regime. This is
confirmed by stochastic simulation results in figure 2(a), which show that the unstable states are only
assumed transiently for very short times. Therefore, occurrence of a positive slope in the master curve in
figure 2(a) is the essential feature that will give rise to bistability in the one-sided model and, finally, to
oscillations in the full two-sided model.

Now we want to trace the origin of this instability for small vk ≈ 0. If the MTs are growing (shrinking)
for a long time, all linker extensions assume the stationary values x ≈ xmax(vk) (x ≈ xmin(vk)) from table 3,
where the MT-velocity adjusts to the kinetochore velocity, vk ≈ vm±(x). If the kinetochore velocity
increases in these states by a fluctuation (i.e., δvk > 0), the MT–kinetochore linkers are stretched (i.e.,
δx < 0), which slows the kinetochore down again resulting in a stable response. This is reflected in the
negative slopes of both xmax(vk) (for vk > 0) and xmin(vk) (for vk < 0). Because of constant stochastic
switching between catastrophes and rescues the mean linker extension exhibits fluctuations about xmax and
xmin, but we expect also the master curve 〈x〉(vk) to have a negative slope for a wide range of velocities vk.
Figure 2(a) shows that this is actually the case for kinetochore velocities vk around the force-free growth or
shrinking velocities v0

± of the MTs, i.e., if the imposed kinetochore velocity vk roughly ‘matches’ the
force-free growing or shrinking MT velocity. Then a small mismatch can be accommodated by small linker
extensions x, which do not dramatically increase fluctuations by triggering catastrophe or rescue
events.

The situation changes for small negative or small positive values of the kinetochore velocity around
vk ≈ 0. For vk � 0, MT–kinetochore linkers develop logarithmically growing large negative extensions xmin

(see table 3) corresponding to a slow kinetochore trailing fast shrinking MTs that strongly stretch the linker.
Likewise, for vk � 0, MT–kinetochore linkers develop logarithmically growing large positive extensions
xmax corresponding to a slow kinetochore trailing fast growing MTs that strongly compress the linker.
Around vk ≈ 0, the system has to switch from large negative x to large positive x because the resulting
tensile force Fmk = −cx on the shrinking MT will destabilize the shrinking state and give rise to MT rescue
at least for x < −Fr/c.

Therefore, also the mean value 〈x〉 switches from negative to positive values resulting in a positive slope
of the master curve if the stationary distributions p−(x) and p+(x) remain sufficiently peaked around the
linker extensions xmin and xmax, also in the presence of fluctuations by catastrophes and rescues. In the
supplementary material, we show that the stationary distributions assume a power-law behavior
p+(x) ∝ (xmax − x)α+ [p−(x) ∝ (x − xmin)α−] around xmax [xmin] for vk > 0 [vk < 0] with exponents α±
that depend on the MT–kinetochore stiffness c as α± + 1 ∝ 1/c in the presence of fluctuations. It follows
that distributions are peaked (i.e., have a large kurtosis) and bistability emerges if the MT–kinetochore
linker stiffness c is sufficiently large such that deviations of the MT velocity from the kinetochore velocity
become suppressed by strong spring forces. This is one of our main results. We also find that
α± + 1 ∝ (|vk/v

0
±|)−1−|F±/Fc,r| such that the distributions become also peaked around xmin,max in the limit of

large velocities |vk|. Then the velocity approaches vk ≈ ṽ± (Fext) for a prescribed external force such that ṽ±
from (9) represents the large velocity and large force limit of the force–velocity relation of the kinetochore
(see figure 2(b)).

In the unstable regime around vk ≈ 0, the linker length distribution p(x) is typically broad without
pronounced peaks and has a minimal kurtosis (as a function of vk) in the presence of catastrophe and
rescue fluctuations. In this regime the system assumes a state with a heterogeneous stationary distribution
of growing and shrinking MTs, i.e., the total probabilities to grow or shrink become comparable,∫

p+(x)dx ∼
∫

p−(x)dx. If the kinetochore velocity is increased, δvk > 0, the system does not react by
δx < 0, i.e., by increasing the average tension in the linkers in order to pull MTs forward, but by switching
MTs from the shrinking to the growing state (on average), which then even allows to relax the average linker
tension.

Using the force-balance (8) on the kinetochore, the master curve is converted to a force–velocity relation
for the MT–kinetochore system; the results are shown in figure 2(b). The bistability in the master curve
directly translates to a bistability in the force–velocity relation of the MT ensemble, and we obtain a regime
with three branches of possible velocities for the same external force. The upper and the lower branches
agree with our simulation results and previous simulation results in [20], and our mean-field results
become exact in the limit of large M, see figure 2(b). These branches correspond to the two stable parts of
the master curve with negative slope, that are found for kinetochore velocities vk roughly matching the
force-free growth or shrinking velocities v0

± of the MTs. The mid branch corresponds to the part of the
master curve with positive slope, where the system is unstable. Also figure 2(b) demonstrates that this
instability is confirmed by stochastic simulations results.
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Finally, we note that a simpler theoretical approach, where it is assumed that all linkers assume identical
extensions xi ≈ x and all attached MTs are in the same state (growing or shrinking), is exact for a single MT
(M = 1) by definition but not sufficient to obtain a bistable force–velocity relation for MT ensembles
(M > 1) (see supplementary material). The same assumption of identical MT positions has already been
used to study an ensemble of MTs that are connected to the same kinetochore via Hill sleeve like linkers
[17, 29]. The model of Klemm et al [21] divides each MT ensemble into a growing and a shrinking
sub-ensemble, and assumes equal load sharing only between MTs within each sub-ensemble. We can show
that, together with a force-sensitive rescue force, this is sufficient to obtain a bistable force–velocity relation
in a corresponding one-sided model.

4. Bistability gives rise to oscillations in the two-sided model

As already worked out by Banigan et al [20], the bistability in the force–velocity relation of the one-sided
MT ensemble can be considered to be the cause for stochastic oscillations in the two-sided model. Each
ensemble can be either on the lower branch of the force–velocity relation, where it mainly depolymerizes
and exerts a P-directed pulling force (vk < 0) or on the upper branch where it mainly polymerizes and
exerts an AP-directed pushing force (vk > 0). The external force in the one-sided model is a substitute for
the spring force Fkk = ck

(
Xk,r − Xk,l − d0

)
of the cohesin bond in the full model with a stiffness ck and rest

length d0, see table 2. Since the cohesin force is a linear function of the inter-kinetochore distance, the
force–velocity relation can be treated as distance-velocity (phase space) diagram for the two kinetochores
(see figure 3(a)), where both kinetochores move as points on the force–velocity relation. The cohesin bond
always affects the two kinetochores in the same way because action equals reaction: if the cohesin spring is
stretched, both kinetochores are pulled away from their pole (AP), if it is compressed, both kinetochores are
pushed polewards (P). Thus, the kinetochores always have the same position on the Fkk-axis in the
Fkk –vk-diagram in figure 3(a), if Fkk on the horizontal axis is defined as the force on the kinetochore in
AP-direction (i.e., Fkk,l ≡ Fkk and Fkk,r ≡ −Fkk for the left/right kinetochore). Likewise, we define vk on the
vertical axis as the velocity in AP-direction (i.e., vk,l ≡ Ẋk,l and vk,r ≡ −Ẋk,r for the left/right kinetochore).
The upper/lower stable branch of the force–velocity relation is denoted by v±k (Fkk). Typically, a kinetochore
on the upper (lower) branch has v+k > 0 (v−k < 0) and, thus moves in AP-(P-)direction. Using
Fkk = ck

(
Xk,r − Xk,l − d0

)
for the spring force, we find Ḟkk = −ck

(
vk,r + vk,l

)
, i.e., kinetochores move with

the sum of their AP-velocities along the force–velocity curve in the Fkk –vk diagram.
Oscillations arise from the two kinetochores moving through the hysteresis loop of the bistable

force–velocity relation as described in figure 3(a). Three states are possible (see figure 3(b)). In state 0, both
kinetochores move in AP-direction (i.e., in opposite directions) relaxing the Fkk-force from the cohesin
bond, i.e., on the upper branch and to the left in the vk –Fkk-diagram with velocity Ḟkk = −2ckv

+
k < 0.

After reaching the lower critical force Fmin of the hysteresis loop, one of the two kinetochores reverses its
direction and switches to the lower branch resulting into states 2 or 2′ where one kinetochore continues in
AP-direction with v+k > 0 while the other is moving in P-direction with v−k < 0 (i.e., both move in the
same direction). In the vk –Fkk-diagram, this results in a motion to the right with velocity
Ḟkk = ck(−v−k − v+k ) > 0 because MTs typically shrink much faster than they grow (−v0

− � v0
+, see

table 2). Moving on opposite P- and AP-branches increases the kinetochore distance and builds up Fkk-force
in the cohesin bond. After reaching the upper critical force Fmax of the hysteresis loop, it is always the
kinetochore on the lower branch moving in P-direction which switches back and state 0 is reached again.
This behavior is in agreement with experimental results [11]. The system oscillates by alternating between
state 0 and one of the states 2 or 2′ (which is selected randomly with equal probability).

For each of the states 0, 2 and 2′ depicted in figures 3(a) and (b) the two branches v±k = v±k [Fkk] provide
deterministic equations of motion for the kinetochore positions. Inserting Fkk = ck

(
Xk,r − Xk,l − d0

)
we

obtain both kinetochore velocities as functions of the kinetochore positions and find

state 0: Ẋk,l = v+k
[
ck

(
Xk,r − Xk,l − d0

)]
> 0,

Ẋk,r = −v+k
[
ck

(
Xk,r − Xk,l − d0

)]
< 0,

state 2: Ẋk,l = v−k
[
ck

(
Xk,r − Xk,l − d0

)]
< 0,

Ẋk,r = −v+k
[
ck

(
Xk,r − Xk,l − d0

)]
< 0,

state 2′: Ẋk,l = v+k
[
ck

(
Xk,r − Xk,l − d0

)]
> 0,

Ẋk,r = −v−k
[
ck

(
Xk,r − Xk,l − d0

)]
> 0.

(13)
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Figure 3. Bistability gives rise to oscillations in the two-sided model. (a) and (b) Different states of sister kinetochore motion can
be deduced from the bistability of the force–velocity relation: either both kinetochores are in the upper branch (0) or one is in
the upper and the other one in the lower branch (2, 2′). In the first case, both kinetochores move away from their pole (AP)
toward each other. Thus, the spring force Fkk decreases until it reaches Fmin. Since the upper branch is not stable anymore below
Fmin, either the left (1) or the right (1′) kinetochore switches to the lower branch and changes direction to poleward movement
(P). The system is then in state 2 or 2′ , where both kinetochores move into the same direction: the leading kinetochore P, the
trailing kinetochore AP. As P—is much faster than AP-movement (MT shrinking is much faster than growth), the
inter-kinetochore distance and the spring force are increasing. Above Fmax only AP-movement is stable, which is why the leading
kinetochore changes direction (3, 3′) and the system switches to state 0 again. (c) Solution of the equations of motion (13) for
c = 20 pN μm−1 and M = 25 with an imposed periodic order of states (0–2–0–2′–0– . . .). The initial condition is Fkk = Fmax

(both kinetochores at the right end of the upper branch). For an animated version see video S1 in the supplementary
material.

Solving these equations gives idealized deterministic trajectories of the sister kinetochores, when we also
assume that the left and the right kinetochore pass the lower branch alternately such that the order of states
is a periodic sequence 0–2–0–2′–0– . . . as shown in the example in figure 3(c). Then single kinetochores
oscillate with half the frequency of inter-kinetochore (breathing) oscillations, just as observed in PtK1 cells
[11]. Moreover, we can obtain numerical values of the frequencies directly from the trajectories. For an
MT–kinetochore linker stiffness c = 20 pN μm−1 and 20–25 MTs per kinetochore, which is a realistic
number for mammalian cells [43], we get periods of 206–258 s and 103–129 s for kinetochore and
breathing oscillations, respectively. These values coincide with experimental results of 239 s and 121 s
measured in PtK1 cells [11].

The calculated trajectories are idealized since they neglect stochastic fluctuations that occur in
simulations of the two-sided model and have two main effects on the kinetochore dynamics which already
arise in simulations that comply with the assumptions behind the mean-field theory (no confinement
(xc →∞) and permanent bonds (ωd = 0)): firstly, the sister kinetochores do not pass the lower branch
alternately but in random order. Therefore, we observe phases where one kinetochore moves in
AP-direction for several periods, while the other one changes its direction periodically but moves polewards
on average (figure 4(a)). Since this does not influence the trajectory of the inter-kinetochore distance,
breathing oscillations still occur in a more or less regular manner, which allows us to measure their
frequencies by Fourier analysis. We will show below that additional polar ejection forces suppress this
random behavior and force the kinetochores to pass the lower branch alternately. As a second effect of the
stochastic character of the simulation, kinetochores do not change the branch instantaneously after crossing
the critical forces Fmax or Fmin. Instead, they tend to maintain their primary state for a while (figure 4(b))
and follow the metastable states that we also observe in the one-sided model (figure 2(b)). Hence, the
frequencies we measure in the simulations are smaller than those we calculate from the Fokker-Planck
mean-field approach (figure 4(c)). The latter effect vanishes in the limit of many MTs (large M): the
switching points approach the theoretical values Fmax and Fmin, and the simulated breathing frequencies
converge to our mean-field predictions.

So far we have demonstrated that the mean field theory correctly describes kinetochore dynamics in
simulations of the unconfined model where we suppress detachment in order to prevent unattached MTs
from shrinking toward infinity. As shown in figure 5(a) and (b), kinetochore oscillations also survive in
simulations of the confined model independently of whether the MTs are able to detach from the
kinetochore, i.e., to rupture the catch bond. However, confinement by the centrosome influences the
kinetochore dynamics in the limit of large M: since more MTs exert a higher force on the kinetochore, it is
possible that one of the two sisters gets stuck at the centrosome for a while (see figure 5(a) and (b)). Hence,
the frequencies measured in the confined two-sided model deviate from the frequencies in the unconfined
case above M ≈ 200.
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Figure 4. Oscillations in stochastic simulations of the unconfined model compared to mean-field results. (a) Kinetochore
trajectories and breathing oscillations in the two-sided model without confinement (xc →∞) and detachment (ωd = 0). The
kinetochores behave as described in figure 3 with a random order of states 2/2′. The breathing oscillations are regular enough to
assign a frequency by Fourier analysis, see (d). With less MTs oscillations are more fluctuative. (b) Kinetochore velocity against
cohesin force in simulations of the unconfined two-sided model without detachment (green). For many MTs the velocity follows
very precisely the predicted hysteresis from the mean-field approach (red). For animated versions see videos S2 (M = 25) and S3
(M = 500) in the supplementary material. (c) Double-logarithmic plot of frequencies of breathing oscillations as a function of
MT number M: calculated from the mean-field approach according to figure 3 (red) and measured in simulations of the
unconfined (green diamonds) as well as the confined model with detachable catch bonds (blue circles) and with permanent
attachment (orange triangles). Confinement becomes relevant for large MT numbers. In the presence of detachable catch bonds
only 75% of the MTs are attached on average, which corresponds to a simple shift of the curve to lower MT numbers. (d)
Trajectories from (a) in Fourier space. While X̃k,r has its maximum at f = 0 due to the random order of states in figure 3, ΔX̃k

has a distinct peak that becomes sharper for large M indicating regular breathing oscillations. For all simulations the
MT–kinetochore linker stiffness was c = 20 pN μm−1.

Figure 5. Dynamics in the confined model with detachable MTs. (a) Kinetochore positions Xk and inter-kinetochore distance
ΔXk over time in simulations with a total number of M = 25 and M = 100 MTs per spindle pole. Oscillations as described in
figure 3 are recognizable. With 100 MTs one kinetochore can get stuck to the centrosome for a while. (b) Distribution of
kinetochore positions. The kinetochores are not aligned to the spindle equator and for M = 100 they are most likely to be found
near the centrosomes. (c) Number of attached MTs Matt over time. MTs are more likely to be attached when the correspondent
kinetochore is near the centrosome since the free MTs can reattach to the kinetochore faster in that case. (d) Distribution of Matt.
On average 75% of the MTs are attached independently of the total MT number M.
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If we enable detachment in our simulations we find that the number of attached MTs correlates with the
kinetochore position (see figure 5(c)) since due to the exponential distribution of free MTs and the distance
dependent attachment rate (2) detached MTs are more likely to reattach to the kinetochore the closer it is to
the centrosome. Moreover, on average, about 75% of the MTs are attached independently of the total MT
number (see figures 5(c) and (d)). Therefore, the catch bond nature of the link leads to an effective behavior
similar to a system without detachment but with less MTs, which explains the difference in frequencies
between the confined models with and without detachment in figure 4(c). We conclude that detachment
does not play a major role for the occurrence of kinetochore oscillations in cells with many MTs as despite
detachment there are always enough MTs attached to justify our mean-field approximation. Hence,
(periodic) changes in the number of attached MTs as they can be seen in figure 5(c) are rather a passive
consequence than an active source of kinetochore oscillations. This argumentation may not be tenable, if
just a few MTs are attached to a kinetochore, so that even detachment of a single MT effects the total force
acting on the kinetochore significantly. Then, detachment can be the primary cause of directional instability
as worked out by Gay et al [44], who modeled the mitotic spindle of fission yeast.

Taking into account the results of the last paragraph, we will mainly investigate the unconfined model
with permanently attached MTs in the following sections. This procedure is reasonable as we do not lose
any qualitative key features of kinetochore dynamics on the one hand, and, on the other hand, gain a much
better comparability of our mean field theory with the appropriate stochastic simulations.

We finally note that in all cases we examined (confined/unconfined system, permanent/detachable
bonds) the kinetochore oscillations become more fluctuative if less MTs are attached. This leads to the
conclusion that kinetochore oscillations are a result of the collective dynamics of an ensemble of MTs that
exhibit a force-dependent dynamic instability individually. Such a behavior cannot be described correctly
based on the simple assumption that all linkers have the same extension, i.e., that MTs share the load
equally and all attached MTs are in the same state (growing or shrinking), (see supplementary material).
Therefore, the model of Shtylla and Keener [17] which does assume equal load sharing and synchronous
MT dynamics requires a chemical feedback as an additional mechanism in order to obtain kinetochore
oscillations. The model of Klemm et al [21] divides each MT ensemble into a growing and a shrinking
sub-ensemble, and assumes equal load sharing only between MTs within each sub-ensemble. Together with
a force-sensitive rescue force, this is sufficient to obtain oscillations.

5. Constraints on linker stiffness and MT number for bistability and oscillations

5.1. Constraints for bistability in the one-sided model
We already argued above in section 3 that bistability (and thus oscillations) can only emerge if the
MT–kinetochore linker is sufficiently stiff. To analyze the influence of the linker stiffness c and the MT
number M on bistability quantitatively, the transformation from the master curve to the force–velocity
relation is visualized in figure 6(a) as search for the intersections of the master curve with linear functions

〈x〉 = 1

cM
(γvk − Fext). (14)

In the limit of large M these linear functions have zero slope. Bistable force–velocity relations with three
intersection points are only possible if the master curve has positive slope for intermediate vk resulting in a
maximum and minimum. The extrema of the master curve vanish, however, in a saddle-node bifurcation if
the linker stiffness drops below cbist = 7.737 pN μm−1, which is, therefore, a lower bound for the occurrence
of bistability. In the case of finite MT numbers M, bistable force–velocity relations can only be found if the
slope in the inflection point of the master curve exceeds γ/cM (the slope of the linear function (14)). This
allows us to quantify a bistable regime in the parameter plane of linker stiffness c and MT number M as
shown in figure 6(b).

5.2. Constraints for oscillations in the two-sided model
We showed in section 4 that bistability of the one-sided model is a necessary condition for oscillations in
the two-sided model. Now we show that bistability in the one-sided model is, however, not sufficient for
oscillations in the full model. If the force–velocity relation is interpreted as phase space diagram for the two
kinetochores, kinetochores only switch branches in the vk –Fkk-diagram if their velocity changes its sign at
the turning points Fmin and Fmax. If this is not the case and one of the two branches crosses vk = 0 (e.g. the
right branch for c = 10 pN μm−1 in figure 6(a), which transforms to the upper branch of the force–velocity
relation), the intersection point is a stable fixed point in the phase space diagram (see figure 7(a)). At this
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Figure 6. Constraints for bistability in the one-sided model. (a) Master curves for different linker stiffnesses c and linear
functions according to (14). In the limit of large M the linear functions have zero slope and bistability occurs if the master curve
has two extrema, which is the case for c > cbist. For finite M bistable solutions are possible if the linear functions have a smaller
slope than the inflection point of the master curve. (b) Resulting bistable regime in the parameter plane of linker stiffness c and
MT number M.

Figure 7. Kinetochore dynamics in the non-oscillatory regime. (a) Schematic explanation of kinetochore motion in the
non-oscillatory regime based on the force–velocity relation. Where the upper branch crosses zero velocity, inter-kinetochore
distance has a fixed point, around which it fluctuates. With higher linker stiffnesses c the fixed point comes closer to the left
turning point Fmin. When c is just slightly smaller than cosc, fluctuations can be large enough for the kinetochore distance to leave
the upper stable branch. Then, one of the two sister kinetochores passes once through the lower branch. (b) and (c) This
behavior can be observed in simulations. While at c = 10 pN μm−1 kinetochores just fluctuate around the fixed point, at c = 14
pN μm−1 the kinetochores occasionally pass through the hysteresis loop. Simulations were performed with an unconfined system
and 100 MTs on each side.

fixed point kinetochore motion will relax to zero velocity and just exhibit fluctuations around an
equilibrium distance instead of oscillations.

As a sufficient condition for oscillations we have to require—besides bistability—a strictly positive
velocity in the upper and a strictly negative velocity in the lower branch in the vk –Fkk-diagram. Based on
this condition we quantify an oscillatory regime in the parameter plane of linker stiffness c and MT number
M in figure 8(a). In the limit of many MTs the sufficient condition for oscillations can be formulated in
terms of the master curve: the maximum of the master curve has to be located at a positive and the
minimum at a negative velocity. This is the case for c > cosc = 15.91 pN μm−1, which is, therefore, a lower
bound for the occurrence of oscillations. This constraint on the linker stiffness for metaphase chromosome
oscillations provides additional information on MT–kinetochore linkers whose molecular nature is not
known up to now.
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Figure 8. Constraints for oscillations in the two-sided model. (a) Oscillatory regime in the parameter plane of linker stiffness c
and MT number M. (b) Mean inter-kinetochore distance according to (16) (red) and measured in simulations (blue) with
M = 100. Below cosc = 15.91 pN μm−1 (dashed line) both results match, whereas in the oscillatory regime mean
inter-kinetochore distance diverges from the fixed point, and its standard deviation increases notably.

Figure 9. Locations in c–M-parameter plane of the master curves from figure 6(a) and the simulations from figures 2, 4, 5, 7
and 8.

Because of stochastic fluctuations, the transition between oscillatory and non-oscillatory regime is not
sharp in our simulations. In the non-oscillatory regime kinetochores fluctuate around a fixed point of
inter-kinetochore distance, where the upper branch crosses vk = 0. However, these fluctuations can be large
enough for the inter-kinetochore distance to shrink and leave the upper branch on the left side, especially
for stiffnesses c slightly below cosc. If that happens, one kinetochore passes once through the lower branch of
the force–velocity relation just as in an oscillation. The difference to genuine oscillations is that these are
randomly occurring single events (resulting in a Poisson process). Randomly occurring oscillations are
visualized in figure 7 for c < cosc and c � cosc. Moreover, the force–velocity relations as well as the
kinetochore trajectories measured in corresponding simulations are shown.

In the non-oscillatory regime, the fixed point should determine the mean inter-kinetochore distance
〈ΔXk〉 = 〈Xk,r − Xk,l〉. Solving the FPEs for vk = 0, we compute the (external) force F0 that has to be
applied to one kinetochore to stall its motion:

F0 = γvk − cM〈x〉 = −cM〈x〉(vk = 0). (15)

In the two-sided model this force is applied to the kinetochores by the cohesin bond at the fixed point. With
Fkk = ck(ΔXk − d0) we compute the corresponding mean inter-kinetochore distance:

〈ΔXk〉 =
F0

ck
+ d0 = − cM

ck
〈x〉(vk = 0) + d0. (16)

Figure 8(b) shows that simulations agree with this result in the non-oscillatory regime. At cosc the transition
to the oscillatory regime can be recognized, where the mean inter-kinetochore distance deviates from the
fixed point (16). Moreover, the variance of ΔXk increases significantly at cosc due to the transition to the
oscillatory regime.
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Table 4. Metaphase poleward flux velocities vf and occurrence of directional instability. For a more detailed review
of poleward flux measurements see [45].

Directional
Cell type vf (nm s−1) instability

LLC-PK1 (porcine) 8.3 [8] Yes [8]
PtK1 (rat kangaroo) 7.7 [47] Yes [11]
PtK2 (rat kangaroo) 10 [8] Yes [12]
Newt lung 9.0 [48] Yes [6]
U2OS (human) 8.8 [9] Yes [9]

Drosophila embryo 32 [49] No [13]
Xenopus egg 37 [50] No [14]

Figure 10. Poleward flux suppresses oscillations. (a) Due to (17), the force–velocity relation is shifted by the amount of the flux
velocity vf toward smaller kinetochore velocities. If the flux is slower than the kinetochore velocity vmin in the left turning point
Fmin, the kinetochores still oscillate. For larger flux velocities, a fixed point arises on the upper branch and the kinetochores
behave as described in figure 7. (b) Oscillatory regime in the parameter plane of c and vf in the limit of many MTs. Fast poleward
flux suppresses kinetochore oscillations for arbitrary linker stiffnesses c. (c) and (d) Phase space diagrams and MT trajectories
from simulations of the unconfined two-sided model with c = 20 pN μm−1 and M = 100. While at vf = 2 nm s−1 the system is
still in the oscillatory regime, where hysteresis is recognizable in phase space, at vf = 4 nm s−1 kinetochores show fluctuative
motion as described in figure 7.

In order to provide an overview and to make orientation easier for the reader, we summarize in figure 9
where the stochastic simulations from the last three sections and the master curves in figure 6(a) are located
in the parameter plane of linker stiffness c and MT number M, and which regime they are part of.

6. Poleward microtubule flux suppresses oscillations

An effect we have not included so far is poleward MT flux, which was observed in several metazoan cells
(table 4). It describes the constant flux of tubulin from the plus-ends toward the spindle pole and is
probably driven by plus-end directed kinesin-5 motors pushing overlapping antiparallel MTs apart as well
as kinesin-13 proteins that are located at the centrosome and depolymerize the MTs at their minus-ends
[24]. During metaphase, spindle and MT length can be maintained by simultaneous polymerization at the
plus-ends [45], which results in a behavior similar to treadmilling of MTs [46].

Poleward flux can be easily included in our model by subtracting a constant flux velocity vf from the
MT velocity. Then, the relative MT–kinetochore velocities (7) become

v±(x) = v0
± exp

(
− cx

F±

)
− vf − vk. (17)

Hence, the flux velocity can be treated as an offset to the constant kinetochore velocity in the solution of the
stationary FPEs. The final effect is a shift of both the master curves and the force–velocity relations by vf

toward smaller kinetochore velocities vk as shown in figure 10(a). If the shift is so large that the left turning
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point Fmin of the force–velocity hysteresis is located at a negative velocity, poleward flux suppresses
directional instability because a fixed point emerges, and we expect similar behavior as for intermediate
linker stiffnesses in the previous section (see figure 7). In the limit of many MTs, the maximum flux velocity
that still allows directional instability is given by the velocity in the maximum of the master curve, which
provides the boundary of the oscillatory regime in the parameter plane of linker stiffness c and poleward
flux velocity vf (figure 10(b)). Phase space diagrams (figure 10(c)) and kinetochore trajectories
(figure 10(d)) from simulations with appropriate flux velocities confirm our arguments exhibiting similar
behavior as for intermediate linker stiffnesses in figure 7. For small flux velocities the boundary of the
oscillatory regime in figure 10(b) approaches our above result cosc = 15.91 pN μm−1. For increasing flux
velocities the oscillatory regime shrinks, and its boundary has a maximum at c ≈ 50 pN μm−1 with
vf ≈ 3.11 nm s−1. We conclude that kinetochore oscillations can be suppressed by moderate flux velocities
independently of the linker stiffness.

Our theory also agrees with and explains simulation results in [20], where, for large flux velocities,
suppression of kinetochore oscillations were observed but at the same time maintenance of bistability.
Moreover, our results explain the experimentally observed correlation between flux velocity and directional
instability. Kinetochore oscillations have been observed in the mitotic vertebrate cells listed in table 4
(LLC-PK1, PtK1/2, newt lung, U2OS) which have poleward flux velocities not exceeding 10 nm s−1,
whereas in the mitosis of a Drosophila embryo as well as in meiosis of a Xenopus egg, where flux velocities
are three to four times higher, chromosomes do not exhibit directional instability.

7. Polar ejection forces provide an alternating oscillation pattern and chromosome
alignment at the spindle equator

So far, we have not included polar ejection forces (PEFs). They originate from non-kinetochore MTs
interacting with the chromosome arms and pushing them thereby toward the spindle equator, either
through collisions with the chromosome arms or via chromokinesins [27], and provide additional pushing
forces on kinetochores. Therefore, they can be included into the model by adding forces FPEF,r(xk,r) and
FPEF,l(xk,l) acting on kinetochores, which depend on the absolute position of the kinetochores [19]. Due to
the exponential length distribution of free MTs as well as the spherical geometry of the MT asters, the
density of non-kinetochore MTs decreases monotonically with the distance from the spindle pole.
Therefore, we assume that PEFs reach their maximum at the centrosome and vanish at the spindle equator
(located at x = 0), where opposite PEFs compensate each other. This assumption is supported by the
monotonic PEF distribution that has been measured in vivo by Ke et al [51]. Here, we will only discuss
linearized PEFs

FPEF,l(Xk,l) = −kXk,l, FPEF,r(Xk,r) = kXk,r, (18)

where the spring constant k defines the strength of the forces, and the signs are chosen so that a positive
force acts in AP-direction. We show in figure S3 in the supplementary material that other force distributions
do not differ qualitatively in their influence on the kinetochore dynamics.

To determine kinetochore trajectories of the two-sided model in the presence of PEFs, we can start from
the same force–velocity relations as for the basic one-sided model. In the presence of PEFs, the total forces
Fk,l and Fk,r that act on the left and the right kinetochore in AP-direction depend on the absolute
kinetochore positions Xk,l and Xk,r:

Fk,l = Fkk(ΔXk) + FPEF,l(Xk,l), (19)

Fk,r = Fkk(ΔXk) + FPEF,r(Xk,r). (20)

We can investigate the motion of kinetochores in the full two-sided model again by using a phase space
diagram; in the presence of PEFs we use a vk –Fk-diagram with the total force Fk in AP-direction on the
horizontal axis and the velocity vk in AP-direction on the vertical axis. Because the total forces contain the
external PEFs they are no longer related by action and reaction and, thus, the two kinetochores no longer
have the same position on the Fk-axis, but they still remain close to each other on the Fk-axis as long as the
cohesin bond is strong enough.

A kinetochore on the upper/lower branch moves in AP-/P-direction with v±k (Fk) if v+k > 0 (v−k < 0). A
kinetochore on the upper AP-directed branch will relax its AP-directed PEFs, while a kinetochore on the
lower P-directed branch will build up AP-directed PEFs. After a time of equilibration the kinetochores
behave as described in figure 11. When one kinetochore changes its direction from P to AP (switches to the
upper branch) the sister kinetochore, which was on the upper branch before, becomes the leading
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Figure 11. Kinetochore motion in the presence of PEFs. (a) and (b) At the beginning of state 1 the left kinetochore (green) has
just switched from P- to AP-movement, so that both kinetochores are on the upper branch. Both kinetochores move in
AP-direction, which means that both the cohesin force and the PEFs decrease and both kinetochores move left in the
force–velocity diagram. Due to different PEFs, the right kinetochore (red) reaches the left turning point Fmin first and switches to
the lower branch, which marks the start of state 2. This state is dominated by the fast P-movement of the right kinetochore,
which causes a steep increase of both Fkk and FPEF,r. Therefore, the right kinetochore moves to the right in the force–velocity
diagram. Meanwhile, the left sister still moves in AP-direction and Fk,l increases slightly as the increase of Fkk is larger than the
decrease of FPEF,l. Since Ḟk,r > Ḟk,l, the right kinetochore overtakes its sister on the Fk-axis before it reaches the right turning point
and switches to the upper branch. The then following states 1′ and 2′ are the exact opposite to 1 and 2 with swapped
kinetochores. (c) Solution of the corresponding equations of motion for c = 20 pN μm−1, k = 10 pN μm−1 and M = 25. For an
animated version see video S4 in the supplementary material.

kinetochore (here, ‘leading’ refers to the position in the force velocity phase space). Therefore, the
kinetochores do not reach the left turning point Fmin at the same time so that it is always the leading
kinetochore that switches to the lower branch. Since in general the absolute P-velocity is much larger than
the AP-velocity (−v− for the lower branch is much larger than +v+ for the upper branch), the AP-directed
PEF contribution to the total force increases faster on the lower branch than on the upper one. As a result,
the P-moving kinetochore overtakes its sister on the Fk-axis before switching back to the upper branch such
that the leading kinetochore automatically becomes the trailing kinetochore in the next oscillation period
(again, ‘leading’ and ‘trailing’ in terms of phase space positions). This periodic change of kinetochore
positions in the force–velocity diagram leads to both regular breathing and regular single kinetochore
oscillations, as the kinetochores alternately pass the lower branch. Solving appropriate equations of motions
similar to (13) for each of the states depicted in figure 11(a) and (b), we determine the deterministic
trajectories in figure 11(c) confirming this regular alternating oscillation pattern.

The alternating oscillation pattern robustly survives in stochastic simulations in the presence of
moderate PEFs (k ∼ 10 pN μm−1) as we demonstrate in figure 12(a) by means of the kinetochore
trajectories in real space. In figure 12(b), emergence of regular oscillations is illustrated in Fourier space:
whereas for rather small values of k single kinetochore oscillations are still irregular resulting in a nearly
monotonic decreasing Fourier transform, for k = 10 pN μm−1 single kinetochore motion has a distinct
peak in the Fourier space indicating a regular shape of oscillations in real space. Moreover, frequency
doubling of breathing compared to single kinetochore oscillations can directly be recognized by comparing
the corresponding Fourier transforms. As a consequence of regular oscillations, the kinetochores stay near
the spindle equator and cannot get stuck to one of the centrosomes as in the basic model, see histograms of
kinetochore positions in figure 12(c). We conclude that PEFs are necessary to assure proper chromosome
alignment in the metaphase plate at the spindle equator. This is consistent with an experiment by Levesque
and Compton [52], who observed mitosis of vertebrate cells after suppressing the activity of
chromokinesins and, thus PEFs. This resulted in 17.5% of the cells in at least one chromosome not aligning
at the equator, but locating near a spindle pole.

Moreover, PEFs reduce the amplitude and increase the frequency of oscillations. The amplitude
decreases for increasing PEF strength k as the kinetochores have to cover a smaller distance between the
turning points at Fmin and Fmax. The increase of the frequency is linear in k, which can be deduced from the
linear increase of |Ḟk|:

|Ḟk,l| =
∣∣ck

(
vk,r + vk,l

)
+ kvk,l

∣∣ , (21)

|Ḟk,r| =
∣∣ck

(
vk,r + vk,l

)
+ kvk,r

∣∣ (22)

(defining vk,l ≡ Ẋk,l and vk,r ≡ −Ẋk,r as the velocities in AP-direction as before).
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Figure 12. Kinetochore dynamics under the influence of PEFs. (a) Kinetochore trajectories with different PEF constants k from
simulations with M = 100, c = 20 pN μm−1 and without confinement at the spindle poles. The PEFs force the kinetochores to
oscillate regularly and to stay near the spindle equator. For k = 10 pN μm−1 kinetochores oscillate as described in figure 11. Since
with strong PEFs kinetochores tend to switch to the lower branch simultaneously when reaching Fmin in the phase space at the
same time, for k = 1000 pN μm−1 oscillations are in antiphase due to symmetric initial conditions before the system equilibrates
at t ≈ 1500 s. After equilibration, periods of antiphase oscillations reappear over and over again due to fluctuations. Stronger
PEFs cause a more fluctuative kinetochore motion. Especially for moderate MT numbers, this can lead to suppression of
kinetochore oscillations. For animated versions of phase space trajectories see videos S5 (k = 10 pN μm−1) and S6 (k = 1000 pN
μm−1) in the supplementary material. (b) Single (right) kinetochore and breathing oscillations in Fourier space. For weak PEFs
(k = 1 pN μm−1) single kinetochore oscillations are still irregular and X̃k,r has its maximum at f = 0. If k = 10 pN μm−1, X̃k,r

has a distinct peak at half the breathing frequency, indicating regular oscillations as described in figure 11 and frequency
doubling of breathing compared to single kinetochore oscillations. With sufficiently strong PEFs (k � 100 pN μm−1) frequency
doubling is lost as a consequence of antiphase oscillations and the peaks of X̃k,r and ΔX̃k coincide with each other. (c)
Histograms of kinetochore positions and inter-kinetochore distances for the realistic case of M = 25. Chromosomes are aligned
at the spindle equator despite missing confinement at the centrosome. The range of kinetochore positions is narrower and the
distances smaller if PEFs are stronger.

Since PEFs do not have any influence on the underlying master curves and force–velocity relations, they
do not affect the kinetochore velocities vk and never completely suppress kinetochore oscillations in the
deterministic Fokker–Planck model, but only reduce their amplitude and increase their frequency. For
strong PEFs, however, this gives rise to kinetochore motion with a fluctuative character, see figure 12 (see
also video S6 in the supplementary material). The same observation was made in the model of
Civelekoglu-Scholey et al [19]. Additionally, we detect sister kinetochore oscillations being in antiphase if
PEFs are strong enough (k � 100 pN μm−1), see figure 12(a). This follows from the phase space velocities
Ḟk being dominated by the strong PEFs compared to inter-kinetochore tension: imagine, both kinetochores
are in the upper branch of the phase space and reach the turning point Fmin at nearly the same time. When
now one of the two kinetochores switches to the lower branch and starts moving polewards, its sister does
not change its direction in phase space as in state 2/2′ in figure 11(a) but continues moving left since the
decrease of PEFs due to its poleward motion cannot be compensated by the increasing AP-directed cohesin
tension if k � ck. As a consequence, the kinetochore will switch to the lower branch just after its sister and
both kinetochores pass the lower branch simultaneously, i.e. move apart from each other, finally resulting in
antiphase oscillations. While the antiphase behavior vanishes after a certain time of equilibration in the
deterministic model, in stochastic simulations periods of antiphase oscillations can be observed over and
over again regardless of whether the system has been equilibrated before. A characteristic of antiphase
oscillations is the loss of frequency doubling which also appears in the Fourier space where the peaks of
single kinetochore and breathing motion coincide with each other if PEFs are strong, see figure 12(b). Since
antiphase kinetochore oscillations have not been observed experimentally, we conclude that in vivo PEFs are
weak compared to the inter-kinetochore tension but strong enough to assure chromosome alignment at the
spindle equator. Compared to experimental results [6, 7, 10–12, 19], in our model, k = 10 pN μm−1 seems
a reasonable choice as it assures regular oscillations with frequency doubling, keeps the inter-kinetochore
distance within a suitable range of (1.2 ± 0.7) μm, and aligns kinetochores in a realistic maximum distance
of 3 μm from the spindle equator with a standard deviation of 0.88 μm in the lifelike case of
M = 25.
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8. Catastrophe promotion at the kinetochore is required to stimulate directional
instability if microtubules cannot exert pushing forces

So far, we assumed that MTs are also able to exert pushing forces on the kinetochore. During oscillations we
find, on average, slightly less (48%) MT–kinetochore links under tension, while a substantial part of linkers
also exerts pushing forces. Two experimental results suggest, however, that MTs do not directly exert
pushing forces on the kinetochore: in [7], it was shown that the link between chromosomes is always under
tension; the experiments in [26] demonstrated that, after removal of the cohesin bond, AP-moving
kinetochores immediately stop indicating that kinetochore MTs cannot exert pushing forces, while
P-moving kinetochores continue moving due to MT pulling forces.

In view of these experimental results and in order to answer the question whether MT pushing forces are
essential for bistability and oscillations, we analyze variants of our basic model, where MT growth is
confined at the kinetochore, i.e., where the relative coordinate x = xm − Xk is limited to x � 0 such that
MTs can only exert tensile forces on the kinetochore. This implies that the kinetochore undergoes a
catastrophe if it reaches the kinetochore, i.e., if the relative coordinate reaches x = 0 from below in the
one-sided model. Different choices for the corresponding catastrophe rate ωkin

c at x = 0 are possible: (i) a
reflecting boundary, i.e., ωkin

c = ∞, where a catastrophe is immediately triggered if the MT plus-end reaches
the kinetochore. (ii) A ‘waiting’ boundary condition, where the relative velocity v+ = vm+ − vk = 0 stalls if
the MT reaches x = 0 (in the simulation, we set the MT velocity to vm+ = vk). In contrast to the reflecting
boundary condition, the catastrophe rate ωkin

c at the kinetochore is finite such that the MT waits at the
kinetochore until it undergoes a catastrophe for a mean waiting time 1/ωkin

c , as similarly observed in
metaphase of PtK1 cells [36]. Because x = 0 also results in Fmk = 0, the force-free catastrophe rate seems a
natural choice, ωkin

c = ω0
c [see (1)], which should be realized in the absence of any additional catastrophe

regulating proteins at the centromere. (iii) If catastrophes are promoted by regulating proteins, but not
immediately as for (i), we obtain intermediate cases of waiting boundary conditions with ω0

c < ωkin
c < ∞.

In mammalian cells, such regulating mechanisms could be provided by the kinesin MCAK, which is
localized at the centromere during metaphase [53] and has been reported to increase the catastrophe rate of
MTs roughly 7-fold [54]. Therefore, waiting boundary conditions with an increased catastrophe rate appear
to be the most realistic scenario. We introduce a numerical catastrophe enhancement factor n � 1
characterizing the increased catastrophe rate, ωkin

c = nω0
c . Within this general scenario reflecting boundary

conditions (i) are recovered for n = ∞ and (ii) waiting boundary conditions with the zero force catastrophe
rate for n = 1. We will discuss the general case (iii) in the following.

In our basic model, where MTs can exert pushing forces on kinetochores, the pushing phases where
x > 0 can also be interpreted as a an effective waiting phase at the kinetochore with a catastrophe rate,
which is effectively increased by the pushing forces. Therefore, the behavior of our basic model resembles a
model with waiting boundary conditions with an increased catastrophe rate n > 1 at the kinetochore. MT
pushing forces are not essential for bistability and oscillations and have a similar effect as an increased
catastrophe rate at the kinetochore as our detailed analysis will show.

In the Fokker–Planck solution for the one-sided model, all confining boundary conditions limit the
maximum MT–kinetochore distance xmax to zero, where it is positive in the basic model. When xmax is
negative in the basic model (for vk > v0

+, see table 3), confining boundary conditions do not modify the
basic model, since the MTs are not able to reach the fast kinetochore. For negative kinetochore velocities
vk < v0

−, the minimum distance xmin becomes positive while xmax is zero. Then, all confining boundary
conditions fix the MT tips to the kinetochore position as they do not shrink fast enough to move away from
the poleward-moving kinetochore after a catastrophe resulting in 〈x〉 = 0 and Fext = γvk. All in all,
confinement leads to the following maximal and minimal values for the MT–kinetochore distance x
modifying table 3:

xconf
max =

⎧⎨
⎩

0, vk < v0
+

xmax, vk � v0
+,

xconf
min =

⎧⎨
⎩

0, vk < v0
−

xmin, vk � v0
−.

(23)

We calculate the master curves 〈x〉(vk) for all three types of confining boundary conditions (see
figure 13(a)). Because xconf

max � 0 for any confining boundary condition, also 〈x〉 < 0, i.e., the complete
master curves lie in the regime of tensile MT–kinetochore linker forces reflecting the fact that pushing
forces are strictly suppressed. Therefore, the MT–kinetochore catch bond is on average under tension
establishing a more firm MT–kinetochore connection during the stochastic chromosome oscillations in
metaphase. Oscillations then become a tug-of-war, in which both sets of MTs only exert pulling forces onto
each other.

20



New J. Phys. 22 (2020) 053008 F Schwietert and J Kierfeld

Figure 13. Microtubule confinement at the kinetochore. (a) Master curves of a system with a waiting boundary condition for
various ωkin

c = nω0
c and c = 20 pN μm−1. (b) Regimes in the parameter plane of c and ωkin

c in the limit of many MTs. Outside
the blue region, the master curve is bistable. In the orange region, the left branch of the master curve and, therefore, the lower
branch of the vk –Fkk-diagram cross vk = 0, which leads to a fixed point suppressing oscillations (see text), whereas in the red
region oscillations are possible. In stochastic simulations, kinetochores already oscillate at much smaller ωkin

c than predicted by
the master curves. Additionally, a new kind of fixed point, which is depicted in (c), emerges in the shaded region. (c) and (d)
Phase space diagrams and kinetochore trajectories from simulations of the unconfined two-sided model with c = 20 pN μm−1

and M = 100. The blue dots mark the new kind of fixed point, where the leading kinetochore in the lower branch moves with the
same velocity as the trailing kinetochore in the upper branch. Then the inter-kinetochore distance remains constant, while the
center of mass moves with a constant velocity as in (d) for ωkin

c = 20ω0
c at t ≈ 25 000 s. In the presence of PEFs, these fixed points

are absent and the shaded region in (b) does not apply.

With a waiting boundary condition at the kinetochore, the probability densities p±(x, t) have to be
supplemented with the probability Q(t) to find an MT at the kinetochore (x = 0). Besides the FPEs (5) and
(6) for the probability densities, we also have to solve the equation for the time evolution of Q(t):

∂tQ(t) = v+(0)p+(0, t) − ωkin
c Q(t). (24)

The analogous model for a free MT that grows against a rigid wall has already been solved in [41, 55]. In the
stationary state, (24) leads to Q = p+(0)v+(0)/ωkin

c . For the probability densities p±(x) we get the same
solution as for the basic model without confinement, except for the normalization constant. The overall
probability density can then be written as p(x) = p+(x) + p−(x) + Qδ(x) and has to satisfy∫ xconf

max

xconf
min

p(x)dx = 1.

From the overall probability density p(x) we obtain the master curves, which we show in figure 13(a) for
n = 1, 5, 20, 50, 200,∞ and a linker stiffness of c = 20 pN μm−1. Again we can analyze the master curves for
extrema to obtain constraints on linker stiffness c and catastrophe enhancement factor n = ωkin

c /ω0
c for the

occurrence of bistability and oscillations. The results of this analysis are shown in figure 13(b) as colored
regions. It turns out that extrema in the master curve and, thus, bistability occur if the linker stiffness is
sufficiently high c > cbist. For the zero force catastrophe rate n = 1 we find a high threshold value cbist = 178
pN μm−1, in the limit of a reflecting boundary n = ∞ a very low threshold cbist = 1.218 pN μm−1.

We remind that a sufficient condition for oscillations is the absence of a stable fixed point, where one of
the two branches in the vk –Fkk-diagram crosses vk = 0. In contrast to the basic model, the maxima of the
master curve are now located at a positive velocity for n > 1. Therefore, oscillations are suppressed by a
fixed point v−k = 0 on the lower branch in the vk –Fkk-diagram, which occurs if the velocity is positive in the
minimum of the master curve. In general, oscillations occur if the linker stiffness is sufficiently high
c > cosc. Again we find a high threshold value cosc = 280 pN μm−1 for n = 1 and a low threshold cosc =
1.237 pN μm−1 for a reflecting boundary condition (n = ∞).

For n < 10 the threshold values remain high. Moreover, at such high linker stiffnesses and for small n,
the simulations of the two-sided model do not show the expected behavior. For n = 1 and high linker
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stiffnesses in the oscillatory regime the kinetochore trajectories do not exhibit regular oscillations. Naively,
one could argue that kinetochore oscillations are suppressed due to the lack of a pushing force and can be
restored by additional PEFs. However, this is not the case, since, as stated above, PEFs do not affect the
master curve that determines the regime of kinetochore motion. One reason for the absence of oscillations
is that, for the zero force catastrophe rate (n = 1) the waiting time 1/ωkin

c ∼ 500 s (see table 2) at the
kinetochore is large compared to the typical oscillation periods, which are in the range of
100–200 s.

Figure 13(b) also shows that oscillations require increased catastrophe rates with n � 20 over a wide
range of linker stiffnesses from c = 10 pN μm−1 to c = 200 pN μm−1. For n > 1, at the boundary between
bistable and oscillatory regime in figure 13(b), a fixed point v−k = 0 on the lower branch of the vk –Fkk

phase space diagrams appears, which can suppress oscillations. This fixed point is, however, less relevant
because the kinetochores will only occasionally pass the lower branch simultaneously, which is necessary to
reach this fixed point. Furthermore, this fixed point is located near the right turning point Fmax so that the
kinetochores can easily leave the fixed point by a stochastic fluctuation (as in figure 7). For these two
reasons, in stochastic simulations, oscillations already occur for n � 5, that is at a much lower n than the
deterministically predicted n � 20, but not for n = 1, i.e., in the absence of a catastrophe promoting
mechanism.

The fixed point analysis of the vk –Fkk phase space diagrams reveals that also a new type of fixed point
corresponding to a non-oscillatory motion emerges for n � 100 in the shaded regions in figure 13(b). In
this new type of fixed point, the leading P-moving kinetochore in the lower branch of the master curve has
the same velocity as the trailing AP-moving kinetochore in the upper branch (see figure 13(c)) so that
Ḟkk = −ck

(
vk,r + vk,l

)
= 0, and the inter-kinetochore distance remains constant, while the center of mass

moves with a constant velocity (see figure 13(d)). In the presence of PEFs, however, this new type of fixed
point does not survive because for the P-moving kinetochore the AP-directed PEFs increase, whereas they
decrease for an AP-moving kinetochore. Then the upper blue dot in figure 13(c) moves to the left, while the
lower blue point moves to the right such that this new type of fixed point is unstable in the presence of
PEFs. Therefore, in the entire shaded region in figure 13(b) PEFs are essential to re-establish
oscillations.

We conclude that both the linker stiffness c > 10 pN μm−1 and the catastrophe rate ωkin
c at the

kinetochore (n � 20 or n � 5 in the presence of stochastic fluctuations) have to be sufficiently large to
obtain bistability and oscillations. Because additional catastrophe promoting proteins are necessary to
increase the catastrophe rate at the kinetochore, the lowest values of n, which still enable oscillations, might
be advantageous in the cellular system. We note that poleward flux can influence existence and positions of
fixed points: an intermediate flow velocity can eliminate a fixed point on the lower branch by moving it into
the unstable area of the phase space diagram. If flux is sufficiently large it can establish additional fixed
points on the upper branch of the phase space diagrams, which suppress oscillations as in the basic
model.

Moreover, the linker stiffness has to be sufficiently high to give linker extensions compatible with
experimental results. An important part of the MT–kinetochore linkage is Ndc80, which is a rod-like fibril
of total length around 60nm [56, 57] consisting of two coiled-coil regions with a flexible hinge that can
adopt bending angles up to 120◦ with a broad distribution [57]. This bending corresponds to linker length
changes of |x| ∼ 50 nm. Moreover, fluorescent labeling showed total intra-kinetochore stretches around 100
nm [58] or 50 nm [12]. Therefore, we regard linker extensions x � 100 nm as realistic values. For large
n � 20 only a small linker stiffness is necessary to enable oscillations. At the small threshold stiffness, the
average linker length |〈x〉| is typically 1 μm in this regime. Increasing the linker stiffness leads to a
decreasing linker length |〈x〉|. We conclude that, for n � 20, experimental observations of linker extensions
|x| � 100 nm put a stronger constraint on linker stiffness than the experimental observations of oscillations.
Linker stiffnesses significantly above 5 pN μm−1 and, thus, far above cosc are necessary to obtain a realistic
linker length.

For n ∼ 10–20, which is compatible with the experimental result n ∼ 7 for the catastrophe promoter
MCAK [54], and a linker stiffness c = 20 pN μm−1, the increased catastrophe rate at the kinetochore
leads to a realistic behavior with linker extensions x ∼ 100 nm, which are also compatible with the
experimental results [12, 56–58] (see figure 13(a)). This parameter regime is within the shaded regions
in figure 13(b) and PEFs are necessary to establish oscillations. The linker extension is independent of
PEFs.

For an increased catastrophe rate around n ∼ 10–20 and a linker stiffness c = 20 pN μm−1, the more
realistic model with waiting boundary conditions at the kinetochore exhibits a similar behavior as our basic
model because pushing phases where x > 0 in the basic model have a similar duration as waiting times at
the kinetochore in the more realistic model.
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9. Model parameters can be adjusted to reproduce kinetochore oscillations in PtK1
cells

So far, we took the experimentally measured parameters for MT transitions and velocities from table 2 for
granted in order to analyze the effects of poleward flux, PEFs and confinement at the kinetochore by means
of our mean-field theory. These values stem from experiments with yeast kinetochores [2], which can only
bind one MT [59], whereas the mean-field theory is only correct if the kinetochores are attached to multiple
MTs as in metazoan cells. Moreover, in budding yeast, the Ndc80 fibrils are connected to MTs via ring-like
Dam1 complexes, which do not appear in metazoan cells [60]. In this section, we demonstrate that by
adjusting the parameters of MT dynamics our model can reproduce experimental data of metazoan spindles
using the example of PtK1 cells.

Our model exhibits a large difference of P versus AP-velocity (∼ 100 vs ∼4 nm s−1, see figure 8) which is
the origin of frequency doubling and also appears in PtK1 cells but not in this extent (∼ 19 vs ∼16 nm s−1)
[11]. As a consequence, in our model both kinetochores move toward each other in AP-direction (state 0 in
figure 3) most of the time, whereas in the experiment, mostly one kinetochore moves in P-direction the
trailing sister is moving in AP-direction (state 2/2′ in figure 3). In a first step we will respect these results by
adjusting the master curve (or force velocity relation) in a way that the two stable branches fit the
experimentally measured velocities. This objective will be achieved by modifying the force-free MT
velocities v0

± (shifting the upper/lower branch up- or downwards) and the corresponding characteristic
forces F± (altering the slope of the upper/lower branch). Moreover, as a last parameter of MT dynamics, we
will change the rescue rate ω0

r in order to adjust the MT–kinetochore distance to a realistic value. In a
second step we will fit the measured frequencies and amplitudes by varying the parameters that do not
affect the master curves (ck, k).

Using the model with confinement at the kinetochore, we assume a ten times increased catastrophe rate
ωkin

c = 10ω0
c according to experimental results [54]. We set the linker stiffness to c = 20 pN μm−1 and keep

it unchanged henceforth since this value results in strongly bistable master curves and the manifold
consequences that a further modification of c has on kinetochore dynamics are hard to handle. The flux
velocity is vf = 8 nm s−1 (see table 4). The force-free MT growth velocity v0

+ has to be greater than vf for
two reasons: firstly, detached MTs would not have a chance to reach the kinetochore again, otherwise.
Secondly, this choice prevents a fixed point at the upper branch, as the left turning point in phase space
(maximum of the master curve) is located at v0

+ − vf, when the MTs are confined at the kinetochore. We
increase the force-free growth velocity roughly four-fold to v0

+ = 20 nm s−1, so that the minimum
AP-velocity v0

+ − vf = 12 nm s−1 in the left turning point Fmin lies below the observed mean velocity of
∼16 nm s−1. In order to adjust the maximum AP-velocity, we reduce the characteristic force in MT growth
to F+ = 5 pN, which leads to a steeper upper branch in the phase space diagram. The force-free shrinking
velocity v0

− should be smaller than the observed P-velocity since the lower, P-directed branch always lies
above it. Analogously to the upper branch and F+, also the slope of the lower branch can be adjusted by
varying the characteristic force F−: an increase of F−, i.e. a decrease of its absolute value, steepens the lower
branch and thereby slows down the poleward motion. It turns out that it is a good choice to keep the values
for v0

− and F− from table 2 unchanged. Finally, we reduce the rescue rate ω0
r , which lets MTs shrink to

smaller lengths xm (the minimum of the master curve is shifted downwards) and increases the
MT–kinetochore distance |x| = |Xk − xm| to a realistic value.

Since we enable detachment in this section, we set M = 35 as it results in a mean number of ∼20
attached MTs. Finally, we adjust the strength of PEFs k and the cohesin bond stiffness ck to the following
conditions: firstly, the PEFs have to be strong enough to assure proper chromosome alignment at the
equator as well as a regular oscillation pattern, but should not dominate compared to the inter-kinetochore
tension in order to prevent antiphase oscillations. Secondly, k and ck affect the amplitude and the frequency
of kinetochore oscillations which should resemble experimental results in the same manner: an increase of
both k and ck decreases the amplitude and increases the frequency. We find that k = 20 pN μm−1 and ck =

20 pN μm−1 fulfill both conditions. In table 5, we list all parameters that we have changed compared to
table 2.

The resulting kinetochore dynamics is shown in figure 14. The simulated kinetochore trajectories in
figure 14(a) are very similar to the experimental results in [11, 19] as they exhibit frequency doubling of
breathing compared to single kinetochore oscillations and move predominantly in phase, i.e. there is a
leading P- and a trailing AP-kinetochore (state 2/2′ in figure 3). The motion of the inter-kinetochore
distance is rather fluctuative, resulting in a broad Fourier transform, in which the maximum at the
breathing frequency is hardly recognizable, see figure 14(d). This is the only significant difference to the real
kinetochore motion. The distributions of kinetochore positions as well as inter-kinetochore and
MT–kinetochore distances (figures 14(e)–(g)) are in good agreement with experimental results [19].
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Table 5. Parameters to reproduce of kinetochore oscillations in PtK1 cells. Parameters not listed here have been
unchanged compared to table 2.

Description Symbol Value

Zero force rescue rate ω0
r 0.012 s−1

Zero force MT growth velocity v0
+ 20 nm s−1

Characteristic force of MT growth F+ 5 pN
Catastrophe rate at the kinetochore ωkin

c 0.019 s−1

MT flux velocity vf 8 nm s−1

PEF coefficient k 20 pN μm−1

Cohesin bond stiffness ck 20 pN μm−1

MT–kinetochore linker stiffness c 20 pN μm−1

Number of MTs M 35

Figure 14. Reproduction of kinetochore oscillations in PtK1 cells. (a) Kinetochore positions and inter-kinetochore distance over
time. Although the breathing oscillations are rather fluctuative, frequency doubling is recognizable. (b) Number of attached MTs
over time. (c) Kinetochore motion in phase space (green) compared to the mean-field force–velocity relation (red, calculated
with the mean number of attached MTs). For an animated version see video S7 in the supplementary material. (d) Position of the
right kinetochore and inter-kinetochore distance in Fourier space. Fluctuative breathing oscillations lead to a Fourier transform
with broad maxima, which are almost only recognizable in the smoothed curve (dark blue). (e)–(h) Distributions of kinetochore
positions Xk, inter-kinetochore distance ΔXk, MT–kinetochore distance |x|, and the number of attached MTs Matt.

Table 6. Characteristic quantities of model kinetochore oscillations compared to experimental results in PtK1 cells.

Description Model Experiment

Mean P velocity 21.5 nm s−1 19.0 nm s−1 [11]
Mean AP velocity 15.7 nm s−1 15.7 nm s−1 [11]
Single kinetochore frequency 4.27 mHz 4.14–4.23 mHz [11]
Breathing frequency ∼8.6 mHz 8.25 mHz [11]
Mean inter-kinetochore distance (1.83 ± 0.42) μm (1.90 ± 0.44) μm [19]
Mean MT–kinetochore distance (0.081 ± 0.042) μm (0.11 ± 0.04) μm [19]
Standard deviation of kinetochore position 0.76 μm 0.5–1.1 μm [19]
Mean number of attached MTs 21.4 20–25 [43]

In table 6, we list several characteristic quantities of kinetochore oscillations that have also been
determined experimentally for PtK1 cells. Comparison with our model results shows quantitative
agreement. In particular, the large discrepancy in the P- and AP-velocities is eliminated.

10. Discussion

We provided an analytical mean-field solution of the one-sided spindle model introduced by Banigan et al
[20], which becomes exact in the limit of large MT numbers. The mean-field solution is based on the
calculation of the mean linker extension 〈x〉 as a function of a constant kinetochore velocity vk (the master
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curve). Together with the equation of motion of the kinetochore we obtained the force–velocity relation of
the one-sided model from the master curve. Our solution clearly shows that the force feedback of linkers
onto the MT depolymerization dynamics is essential for a bistable force–velocity relation within the
minimal model. The shape of the distribution p±(x) of linker lengths (12) is governed by this force
feedback, and we traced the bistability to the peakedness (kurtosis) of this distribution.

Bistability of the force–velocity relation in the one-sided model is a necessary (but not sufficient)
condition for oscillations in the two-sided model. Interpreting the bistable force–velocity relation as phase
space diagram, we mathematically described kinetochore oscillations as an emergent result of collective
dynamics of coupled MTs that exhibit dynamic instability individually. Our theory becomes exact in the
limit of large MT numbers M. This interpretation of oscillations is underpinned by the experimental
observations that kinetochore oscillations in budding yeast [61–63], where each kinetochore is attached to
one MT [59], as well as in fission yeast [21, 64], where two to four MTs interact with the same kinetochore
[65], have a considerably more fluctuative character than the regular oscillations in vertebrate cells [6–12]
with ∼ 20 MTs per kinetochore [43, 66]. Moreover, we were able to deduce idealized kinetochore
oscillations, whose periods conform with experimental results [11]. For an MT–kinetochore linker stiffness
c = 20 pN μm−1 and 20–25 MTs per kinetochore, we get periods of 206–258 s and 103–129 s for
kinetochore and breathing oscillations, respectively. Our approach reproduced the frequency doubling of
breathing compared to single kinetochore oscillations, observed in the experiment [11]. Both in the model
and in the experiment this doubling originates from the different velocities of AP- and P-moving
kinetochores, which ensure that a P-to-AP switch (3/3′ in figure 3) always follows an AP-to-P switch of the
same kinetochore (1/1′ in figure 3). In the model the velocity difference is, however, much larger. As a
consequence, in our model with 20–25 MTs an AP-to-P switch follows 96–119 s after a P-to-AP switch of
the sister kinetochore, which is 93% of a breathing period, whereas in PtK2 cells a mean interval of merely 6
s has been measured [12]. In other words, in our model, most of the time both kinetochores move toward
each other in AP-direction (state 0 in figure 3), whereas in the experiment, mostly one kinetochore moves
in P-while the trailing sister is moving in AP-direction (state 2/2′ in figure 3). In our model, different AP-
and P-velocities are based on the fact that the MT shrinkage is much faster than growth. The model
parameters for MT dynamics were taken from experimental measurements with yeast kinetochores [2],
which, however, are distinct from metazoan kinetochores in two main points: firstly, they can only attach to
one MT [59]; secondly, the Ndc80 fibrils are connected to MTs via ring-like Dam1 complexes, which do not
appear in metazoan cells [60]. We show in section 9 that this discrepancy can be eliminated by adjusting
some MT parameters and, moreover, the model can reproduce kinetochore oscillations in PtK1 cells
quantitatively.

In experiments with HeLa cells Jaqaman et al [67] observed an increase of oscillation amplitudes and
periods when they weakened the cohesin bond. In our model, a smaller cohesin stiffness ck has the same
two effects as the inter-kinetochore distance has to be larger to reach the turning points Fmin and Fmax of the
hysteresis loop, and the phase space velocity Ḟkk = ck

(
vk,r + vk,l

)
and, therefore, the frequencies are

proportional to ck.
Our analytical approach also allowed us to go beyond the results of [20] and quantify constraints on the

linker stiffness c and the MT number for occurrence of bistability in the one-sided model and for the
occurrence of oscillations in the full model. We found that bistability requires linker stiffnesses above
cbist � 8 pN μm−1. Bistability is, however, not sufficient for oscillations. Our phase space interpretation
showed that bistability only leads to directional instability if the two branches of the force–velocity relation
are also separated by the zero velocity line. This condition quantifies the oscillatory regime in the parameter
plane of c and M. We predict that oscillations should only be observable if the MT–kinetochore linker
stiffness is above cosc � 16 pN μm−1. Our model can thus provide additional information on the
MT–kinetochore linkers whose molecular nature is unknown up to now. Several Ndc80 fibrils, which
cooperatively bind to the MT, are an important part of the MT–kinetochore link and the stiffness of this
Ndc80 link has been determined recently using optical trap measurements [68]. These experiments found
stiffnesses above ∼20 pN μm−1, which are compatible with our bounds. Moreover, they found a stiffening
of the link under force, which could be included in our model in future work.

The derivation of the lower bound for the stiffness for the occurrence of oscillations is based on the
occurrence of a new zero AP-velocity fixed point in the force–velocity diagram of the kinetochores, which
suppresses oscillations upon decreasing the stiffness. Also the influence of poleward flux to the system could
be analyzed by a fixed point analysis of the force–velocity diagram. Since poleward MT flux shifts the
force–velocity diagram toward smaller AP-velocities of the kinetochore, the upper branch may cross zero
velocity establishing again a zero velocity fixed point suppressing oscillations. This explains why high flux
velocities suppress directional instability and rationalizes the correlation between kinetochore oscillations
and poleward flux observed in several cells (table 4). It has been observed in newt lung cells that oscillations
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are occasionally (11% of time) interrupted by phases in which the kinetochores pause their motion [6]
analogously to resting in the fixed point in our model. This indicates that the spindle of newt lung cells
operates near the boundary between the oscillatory and the non-oscillatory regime.

Also experimental results in [69–72] on the effects of phosphorylation of Hec1, which is part of
mammalian Ndc80 complex, onto kinetochore dynamics can be rationalized by our force–velocity diagram
of the kinetochores. Dephosphorylation leads to hyper-stable MT–kinetochore attachments, increases the
inter-kinetochore distance, damps or completely suppresses oscillations, and lets the kinetochores more
often be found in a ‘paused state’. The increase of the inter-kinetochore distance can be explained with the
hyper-stable MT–kinetochore attachments: in the oscillatory regime, the bistable area of the force–velocity
relation increases if more MTs are attached to the kinetochore (figure 2(b)); in the non-oscillatory regime,
the mean distance 〈ΔXk〉 is a linear function of M ((16)). However, the suppression of oscillations and the
frequent appearance of paused states, which are both effects of leaving the oscillatory regime in our model,
cannot be explained with an increasing number of attached MTs. Instead, we suggest three additional effects
of Hec1 phosphorylation: firstly, it is imaginable that Hec1 is a catastrophe factor that is activated by
phosphorylation, i.e., if phosphorylation is suppressed, the catastrophe rate at the kinetochore ωkin

c

decreases. Secondly, phosphorylation of Hec1 could stiffen the Ndc80 complex so that dephosphorylation
suppresses oscillations by decreasing the linker stiffness c. Since the stiffness of the Ndc80 complex has been
measured in a recent experiment [68], this second option might be testable. The third possible explanation
is based on the observation of Umbreit et al [73] that phosphorylation of Hec1 suppresses rescues.
Following the argumentation in section 3, we conclude that an decreased rescue rate has a similar effect as
an increase of the linker stiffness: since the exponent α− that defines the leading order of p(x) near xmin is a
linear function of ω0

r (α− + 1 ∝ ω0
r , see supplementary material), the probability density p(x) becomes

sharper for negative kinetochore velocities if rescue is suppressed, finally leading to a bistable master curve
that allows for oscillations. In [71], besides suppression, Hec1 phosphorylation has also been enforced on
up to four sites. As a result, the number of attached MTs and the periods of kinetochore oscillations
decreased, which is consistent with our model (figure 4(c)). Moreover, kinetochore oscillations were
supported but became more erratic just like in our model, where kinetochore motion is more fluctuative if
less MTs are attached (figures 4(a) and (b)). This experimental result reinforces our point of view that
regular kinetochore oscillations are an emergent phenomenon that results from the collective behavior of
stochastic MT dynamics.

Furthermore, we added linearly distributed PEFs, which depend on the absolute kinetochore positions.
Their main effect is a phase shift between the sister kinetochores in their phase space trajectories, which
leads to regularly alternating kinetochore oscillations and, finally, forces the kinetochores to stay near the
spindle equator. Consistently, experimental results show that a proper formation of the metaphase plate is
not assured when PEFs are suppressed [52]. Since the PEFs do not affect the master curves and phase space
diagrams, deterministically, they never completely suppress oscillations but only reduce their amplitude and
increase their frequency, while the kinetochore velocities vk are unchanged. This is consistent with
experiments of Ke et al [51], who observed an increase in amplitude but no influence on the occurrence of
oscillations and the velocity of chromosomes after severing the chromosome arms and thereby weakening
the PEFs. In stochastic simulations, the kinetochore oscillations are more fluctuative in the presence of
PEFs, see figure 12. A similar observation was made in the model of Civelekoglu-Scholey et al [19].
Moreover, in stochastic simulations, sister kinetochores tend to oscillate in antiphase and frequency
doubling of breathing compared to single kinetochore oscillations is lost if PEFs are strong compared to the
inter-kinetochore tension (k � ck). Since to our knowledge such antiphase oscillations have not been
observed in vivo, we conclude that the inter-kinetochore tension is the dominating force for directional
instability.

Consistently with experimental observations in both fission yeast [74, 75] and human cells [76],
kinesin-8 motors investigated in the model of Klemm et al [21] have a similar centering effect as the PEFs in
our model. Since fission yeast does not contain chromokinesins [77], the Klemm model does not include
PEFs, whereas our model does not include kinesin-8. It remains an open question whether and how the
similar effects of PEFs and kinesin-8 cooperate if both are present. As kinesin-8 depolymerizes MTs in a
length-dependent manner [78, 79], it could be included in our model by a catastrophe rate ωc that depends
on the MT length xm, While such MT length-dependent catastrophe rates can easily be implemented in the
stochastic simulations, they are difficult to include into our mean-field theory, which is based on solving the
FPEs (5) and (6) in relative coordinates rather than absolute MT lengths.

Finally, we lifted the assumption that MTs are able to apply pushing forces on the kinetochores because
experiments suggest that MTs only exert tensile forces [7, 26]. Therefore, we confined MT growth at the
kinetochore by catastrophe-triggering boundary conditions. The catastrophe rate for an MT at the
kinetochore ωkin

c can, in principle, range from the force-free MT catastrophe rate ω0
c , which is realistic in the
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Table 7. Summary. Effect of an increase of the parameter in the first column on occurrence, frequency, and amplitude of kinetochore
oscillations.

Parameter Symbol Occurrence Frequency Amplitude Additional effects

Linker stiffness c Stimulation Decrease Increase Decrease of inter-kinetochore
distance in non-oscillatory regime

Poleward flux vf Suppression Decrease None
PEFs force kinetochores

Polar ejection forces k None Increase Decrease to oscillate alternately and to
stay near the spindle equator

Catastrophe rate of stalled MTs ωkin
c Stimulation Decrease Increase

Cohesin bond stiffness ck None Increase Decrease
MT number M (Stimulation) Decrease Increase

absence of any catastrophe promoting proteins up to infinity if a catastrophe is immediately triggered. In
the presence of the centromere-associated regulating protein MCAK increased catastrophe rates ωkin

c = 7ω0
c

are expected [54]. We found that both the linker stiffness c and the catastrophe rate ωkin
c at the kinetochore

have to be sufficiently large to obtain bistability and oscillations. We find, in particular, that the force-free
MT catastrophe rate is not sufficient to lead to oscillations, which shows that catastrophe-promoting
proteins are essential to induce oscillations. In the presence of PEFs, oscillations can be recovered also for
relatively small catastrophe rates: for ωkin

c /ω0
c ∼ 5, we found no oscillations in the absence of PEFs; for

ωkin
c /ω0

c < 2 we found no oscillations at all. Moreover, the linker stiffness has to be sufficiently high to give
linker extensions below 100 nm compatible with experimental results [12, 56–58]. For ωkin

c /ω0
c = 20 and a

linker stiffness of c = 20 pN μm−1, we found realistic behavior. Our results can explain experimental
observations in [80], where PtK2-cells were observed under depletion of centromeric MCAK, which
decreases ωkin

c . Then, in accordance to our results (see figures 13(c) and (d)), the turning point Fmax of the
hysteresis loop decreases. As a result the oscillation frequency increases and the mean centromere stretch
decreases, while the ‘motility rates’, i.e., the velocities do not change.

Kinetochore motion in the non-oscillatory regime can be described as fluctuations around a fixed point
with constant inter-kinetochore distance. This is exactly the behavior of peripheral kinetochores in PtK1
cells [11, 19], while the central kinetochores do exhibit directional instability. Civelekoglu-Scholey et al [19]
explained this dichotomy with different distributions of polar ejection forces in the center and the periphery
of the metaphase plate. However, the model kinetochore trajectories in the presence of strong PEFs, which
they declare to be representative for the motion of peripheral kinetochores (figure 6(C) in [19]), still have a
regular oscillating shape with only a reduced amplitude and an increased frequency, in agreement with the
results of our model in figure 12. The experimental trajectories for peripheral kinetochores from [11, 19],
on the other hand, are very fluctuative, hardly show any regular oscillations, and are very similar to the
trajectories in the non-oscillatory regime of our model. For a clear characterization of the experimentally
measured motion of peripheral kinetochores as either stochastic fluctuations or regular oscillations its
representation in Fourier space would be helpful as already provided for the central kinetochores by Wan
et al [11] and as provided in figure 12 for our model. If the Fourier transforms do not have any distinct
peaks, differences in PEFs are ruled out as a possible explanation for the dichotomy in PtK1 cells according
to both our model and the one of Civelekoglu-Scholey et al.

Instead, our results suggest differences in linker stiffness or catastrophe promotion as reasons for the
dichotomy. For instance, less Ndc80 complexes could participate in peripheral MT–kinetochore links
resulting in reduced linker stiffness and non-oscillatory behavior. Also a non-uniform MCAK distribution
that decreases radially toward the periphery of the metaphase plate could reduce ωkin

c and suppress
oscillations of peripheral kinetochores. Differences in poleward flux might be another possible explanation
for the dichotomy according to our results. However, Cameron et al [81] observed that the flux velocities in
PtK1 cells do not depend on the chromosome to which an MT is attached.

In conclusion, the minimal model can rationalize a number of experimental observations. Particularly
interesting are constraints on the MT–kinetochore linker stiffness that are compatible with recent optical
trap measurements [68]. The predicted responses to the most relevant parameter changes are summarized
in table 7 and suggest further systematic perturbation experiments, for example, by promoting catastrophes
at the kinetochore.
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