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In this Supplemental Material we describe how the sim-
ulations were performed and present additional material
on linker length distributions, an alternative mean-field
approach, and alternative polar ejection force (PEF) dis-
tributions.

I. SIMULATION

Both the one- and the two-sided model are simulated
by solving the equations of motion with a simple Euler
method and a discrete time step ∆t, which lies in the
range from 10−5 to 10−3 s depending on the linker stiff-
ness c and the number of MTs M . Dynamic instability
and attachment / detachment are included by stochasti-
cally switching the growth and the attachment state of
each MT within each time step.

Concretely, in each time step the following steps are
executed:

1. The forces Fmk, Fkm, Fkk and FPEF that are ex-
erted by the MT-kinetochore linkers, the cohesin
bond and the PEFs are calculated from the posi-
tions of the kinetochores and the MT positions. In
the one-sided model, Fkk is replaced by the external
Force Fext.

2. Following Eqs (1) and (2) in the main text, the
rates for a rescue or a catastrophe (ωr, ωc) and,
if enabled, for attachment / detachment (ωa, ωd±)
are computed for each MT in dependence of the
force Fmk that is applied on its tip. Transitions are
executed stochastically with the according proba-
bility pi = 1− exp(−ωi(Fmk)∆t).

3. The velocities of the MTs vm,i and the kinetochores
vk are determined with Eqs (1) and (3) in the main
text.

4. The new positions of the kinetochores Xk and the
MT tips xm,i are calculated with an Euler step:

Xk(t+ ∆t) = Xk(t) + vk∆t, (S1)

xm,i(t+ ∆t) = xm,i(t) + vm,i∆t. (S2)
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5. The kinetochore and MT positions are revised if
they violate any of the enabled boundary condi-
tions (confinement at the centrosome and / or the
kinetochore, forced rescue at the centrosome).

II. BEHAVIOR OF LINKER LENGTH
DISTRIBUTIONS NEAR THE MAXIMUM AND

MINIMUM LINKER EXTENSIONS

For vk > 0 (vk < 0) the linker length distributions
p+(x, t) (p−(x, t)) as given by Eq (12) in the main text,

p±(x) =
±N
v±(x)

exp

(
−
∫ (

ωc(x)

v+(x)
+
ωr(x)

v−(x)

)
dx

)
,

(S3)

have singularities or peaks at x = xmax (x = xmin) where
v+(xmax) = 0 (v−(xmin) = 0), see Fig S1. These singu-
larities occur because the integral

I(x) ≡ −
∫ (

ωc(x)

v+(x)
+
ωr(x)

v−(x)

)
dx, (S4)

in the exponent and the prefactor 1/v±(x) in the expres-
sion (Eq S3) diverge for v+(xmax) = 0 (v−(xmin) = 0).

To investigate the nature of these singularities or peaks
in more detail, we expand around xmax and xmin to lead-
ing order, starting with xmax. Since v−(xmax) 6= 0, the
second term of I(x) in Eq (S4) simply yields a finite fac-
tor

β(x) ≡ exp

(
−
∫

ωr(x)

v−(x)
dx

)
.

For the first term, we find for x / xmax

ωc(x)

v+(x)
≈ α+ + 1

xmax − x
with

α+ + 1 =
ω0
cF+

cv0+

(
vk
v0+

)−1+F+/Fc

> 0

resulting in

I(x) ≈ (α+ + 1) ln(xmax − x) + lnβ(x),

exp(I(x)) ≈ β(xmax)(xmax − x)α++1.

Because α+ + 1 > 0 we have for x / xmax

p−(x) ≈ − N
v−(xmax)

exp(I(x)) ∝ (xmax − x)α++1 ≈ 0,
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FIG. S1. Probability densities of linker extensions p(x) = p+(x) + p−(x) due to Eq (S3), for various combinations of linker
stiffnesses c and kinetochore velocities vk. For vk > 0 (vk < 0), they show the predicted power law behavior at xmax

(xmin) that is determined by α+ (α−). For c = 20 pN nm−1, the distributions are peaked (α± < 0) if vk > 3.54 nm s−1

(vk < −14.6 nm s−1). Thus, the mean linker extension stays near xmax (xmin) also in the vicinity of vk = 0 so that it has to
have a positive slope to get from xmin to xmax during the evolution from negative to positive velocities, resulting in a bistability.
For c = 7 pN nm−1, which lies below the regime boundary cbist, the distributions themselves as well as the unpeaked region
(α± > 0, −29.3 nm s−1 < vk < 4.41 nm s−1) are broader so that the mean linker extension evolves monotonically from xmin to
xmax when vk is increased and crosses vk = 0.

and, therefore, p(x) ≈ p+(x). Analyzing the prefactor

1

v+(x)
≈ const

xmax − x
> 0,

we finally find a power-law behavior

p(x) ≈ p+(x) ≈ N constβ(xmax)(xmax − x)α+

∝ (xmax − x)α+

for x approaching xmax.

In an analogous manner, we expand around x = xmin

to leading order and find a power-law behavior

p(x) ≈ p−(x) ∝ (x− xmin)α− with

α− + 1 =
ω0
rF−
cv0−

(
vk
v0−

)−1+F−/Fr

> 0.

The resulting dependencies of the exponents α±+1 ∝ 1/c
on c and α± + 1 ∝ (|vk/v0±|)−1−|F±/Fc,r| on kinetochore
velocities |vk| are used and discussed in the main text.
Since α± > −1, the probability densities are always nor-
malizable despite the singularities at xmax and xmin.

If α± < 0 (for sufficiently large c or sufficiently large
|vk|), the resulting total distributions p(x) = p+(x) +
p−(x) are peaked around xmax or xmin. In the unstable
regime around vk ≈ 0, however, the linker length distri-
bution p(x) becomes broad without pronounced peaks.
This behavior is visualized in Fig S1. In this regime, the
kurtosis 〈(x−〈x〉)4〉/〈(x−〈x〉)2〉2, which is a measure of
the sharpness of the peaks of the distribution p(x) around
xmin and xmax, becomes minimal indicating a broad dis-
tribution p(x).

III. MEAN-FIELD THEORY FOR THE
ONE-SIDED MODEL ASSUMING IDENTICAL

LINKER EXTENSIONS

Here, we present an alternative but simpler mean-field
approximation for the one-sided model. We assume that
all linkers have identical extensions (xi ≈ x for all i), i.e.,
all MTs have identical lengths and are in the same state
(growing or shrinking). While we assume in the mean-
field approach presented in the main text that all MTs
approximately decouple as soon as kinetochore velocity
fluctuations are neglected (vk = const), we assume here
a strong coupling between MTs. Accordingly the com-
pound linker distribution does no longer factorize but
can still be described by a single function p±(x, t), which
is the probability to find all MTs in the growing (+) or
shrinking (−) state with a MT-kinetochore linker exten-
sion x.

While this approximation appears much more restric-
tive regarding the MT length (and thus the linker exten-
sion) distribution, it allows us to include stochastic fluc-
tuations of the kinetochore velocity, which we neglected
in the mean-field approach in the main text. Here, the
kinetochore velocity is a stochastic variable, depending
on the stochastic (but identical) linker extension x:

vk =
1

γ
(Fext + cMx) . (S5)

The Fokker-Planck-equations for the probability densi-
ties p±(x, t) are the same as for the vk = const. approx-
imation (Eqs (5) and (6) in the main text), but with a
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FIG. S2. Mean kinetochore velocities resulting from the approximation of identical linker extensions (red lines) compared to
simulation results (markers). For a one-sided system with a single MT (M = 1) the alternative mean-field approach is exact
by definition and gives correct mean velocities. If M > 1, even the simple assumption of exclusively shrinking / growing MTs
[ṽ± from Eq (S7)] gives a better approximation (green and blue dashed lines). In contrast to Fig 2, where we aimed to detect
the two bistable states separately in each simulation, we average the simulations over a long period, to measure the total mean
velocity.

different relative velocity

v±(x) = vm±(x)− vk

= v0± exp

(
− cx
F±

)
− 1

γ
(Fext + cMx) . (S6)

The maximum and minimum MT-kinetochore distances
xmax/min are reached if the relative velocity vanishes,
v±(xmax/min) = 0, and Eq (S5) is fulfilled. Then both
the kinetochore and the MT-tips move with the same
velocity ṽ± given by Eq (9) in the main text:

ṽ± ≡
MF±
γ

W

(
γv0±
MF±

exp

(
Fext

MF±

))
. (S7)

The corresponding MT-kinetochore distances are

xmax/min = (F±/c) ln
(
v0±/vk

)
= −F±

c

(
Fext

MF±
−W

(
γv0±
MF±

eFext/MF±

))
,

which agrees with Tab. 3 in the main text, if Eq (S7) is
used to eliminate vk in favor of Fext.

With the new relative velocities v±(x) from Eq (S6)
we finally obtain a solution for the probability densities
p±(x, t) analogous to Eq (12) in the main text. This solu-
tion can be used to calculate the mean linker extensions
〈x〉 and the mean kinetochore velocity

〈vk〉 =
1

γ
(Fext + cM〈x〉) (S8)

as a function of the external force Fext. This type of
mean-field approach will never result in a bistable force-
velocity relation as we always obtain a unique mean linker
extension 〈x〉 and, according to Eq (S8), a unique mean
kinetochore velocity as a function of the force Fext. In
order to map out bistability, it is technically advanta-
geous to consider 〈x〉 and, thus, Fext as a function of
the kinetochore velocity vk as in the mean-field approach

in the main text. Then a bistable force-velocity rela-
tion can emerge as a result of a non-monotonous (but
unique) mean linker extension 〈x〉 as a function of vk.
Nevertheless, we find hints to a bistable behaviour also
in the mean-field theory with identical linker extensions:
The probability density p(x) = p+(x) + p−(x) becomes
bimodal around Fext = 0 which corresponds to bistable
temporal switching of the whole ensemble between two
linker extensions and, thus, two kinetochore velocities vk.

In the present approach we always assume identi-
cal linker extensions and identical MT states (all MTs
growing or all MTs shrinking), while bistability in the
vk = const mean-field approach in the main text is the re-
sult of a very broad and heterogeneous stationary linker
extension distribution, where parts of the MT popula-
tion switch from shrinking to growing if the velocity is
increased in the bistable region around vk ≈ 0. In this
bistable region, not all MTs are in the same state any-
more, and the assumption of identical linker extensions
and states becomes invalid.

By definition, the mean-field theory with identical
linker extensions is exact for a system with a single MT
(M = 1), as can be seen in Fig S2. For an ensemble
of MTs – even for the next smallest number M = 2 –
the approach fails, however, to provide a good approx-
imation of the mean kinetochore velocity. Then even
the simple assumption of exclusively shrinking or grow-
ing MTs, which results in vk = ṽ±, see Eq (S7), gives
a better approximation in the large force regimes. For
M = 20, which is the relevant case for mammalian cells,
the mean-field theory with identical linker extensions dif-
fers strongly from the simulation results. We conclude
that the vk = const mean-field approach described in the
main text is superior for analyzing bistability and oscil-
lations in the spindle model.
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IV. ALTERNATIVE POLAR EJECTION FORCE
DISTRIBUTIONS

In the main text we discuss in detail linearized PEFs,

FPEF(Xk) = ±kXk Here we discuss in addition a har-
monic dependence FPEF(Xk) = ±k2X2

k and a sqaure

root dependence FPEF(Xk) = ±k1/2X
1/2
k . The results

in Fig S3 are qualitatively similar to our results for lin-
earized PEFs in Fig 11 of the main text.
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FIG. S3. Influence of polar ejection forces that are a square (top) or a root function (bottom) of the kinetochore position.
Qualitatively, the effects are the same as for linear PEFs which are discussed in Sec. 7 in the main text. The values of k2 and
k1/2 have been chosen so that the PEFs at a position of Xk = 1 µm have the same strength as for the corresponding value of

k in Fig 11 in the main text. Only, we plot the trajectories for k1/2 = 100 pN µm−1/2 instead of 1000 pN µm−1/2 (bottom (a))
since in the latter case the time step in the stochastic simulation has to be uncomfortably small due to the steep ascent of the
PEFs arround Xk = 0.


