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In this Supplemental Material we describe how the sim-
ulations were performed and present additional material
on linker length distributions, an alternative mean-field
approach, and alternative polar ejection force (PEF) dis-
tributions.

I. SIMULATION

Both the one- and the two-sided model are simulated
by solving the equations of motion with a simple Euler
method and a discrete time step A¢, which lies in the
range from 107 to 1073 s depending on the linker stiff-
ness ¢ and the number of MTs M. Dynamic instability
and attachment / detachment are included by stochasti-
cally switching the growth and the attachment state of
each MT within each time step.

Concretely, in each time step the following steps are
executed:

1. The forces Fix, Fim, Fxx and Fpgr that are ex-
erted by the MT-kinetochore linkers, the cohesin
bond and the PEFs are calculated from the posi-
tions of the kinetochores and the MT positions. In
the one-sided model, Fyy is replaced by the external
Force Foyy.

2. Following Eqgs (1) and (2) in the main text, the
rates for a rescue or a catastrophe (w;, w.) and,
if enabled, for attachment / detachment (w,, wq+)
are computed for each MT in dependence of the
force Fik that is applied on its tip. Transitions are
executed stochastically with the according proba-
bility p; = 1 — exp(—w; (Fink ) At).

3. The velocities of the MTs v, ; and the kinetochores
vk are determined with Eqs (1) and (3) in the main
text.

4. The new positions of the kinetochores X and the
MT tips &, ; are calculated with an Euler step:

Xi(t + At) = Xy (t) + vAt, (S1)
(Em’i(t + At) = il'm’i(t) + ’Um’iAt. (82)
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5. The kinetochore and MT positions are revised if
they violate any of the enabled boundary condi-
tions (confinement at the centrosome and / or the
kinetochore, forced rescue at the centrosome).

II. BEHAVIOR OF LINKER LENGTH
DISTRIBUTIONS NEAR THE MAXIMUM AND
MINIMUM LINKER EXTENSIONS

For vx > 0 (vx < 0) the linker length distributions
p+(z,t) (p—(z,t)) as given by Eq (12) in the main text,

oo (] (52 ).

(S3)
have singularities or peaks at £ = Zyax (T = Tmin) where
V4 (Zmax) = 0 (v—(2min) = 0), see Fig S1. These singu-
larities occur because the integral

wi(2) ) de, (S4)

1w =- | (fj((?) T @)

in the exponent and the prefactor 1/v4(x) in the expres-
sion (Eq S3) diverge for v4 (Zmax) = 0 (v—(@min) = 0).
To investigate the nature of these singularities or peaks
in more detail, we expand around Zpa.x and Ty, to lead-
ing order, starting with Zyax. Since v_(Zmax) # 0, the
second term of I(x) in Eq (S4) simply yields a finite fac-

tor
B(x) = exp (- / Z)j((z))dx>.

For the first term, we find for x é Tmax

px(z) =

we(r)  agp+1
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resulting in
I(z) = (o + 1) In(zmax — ) + In 5(z),
exp(1()) = B(Tmax) (Tmax — )+ L

Because oy + 1 > 0 we have for & $ Zmax

exp(I(z)) o (max — )1 20,



¢=20pNnm~!

¢=20pNnm™*

ay = —0.44 T ~
_— O_Onm571 + a_ = —0.13 — _16 nm571 | , ay = —0.09 1
-t -1 o= 70,08 — —30nms~
— 2.0nms — —14nms \ s i
. 3.5nms™ ! —10nms~! ‘ —10nn1571
B 4.0nms™! —5nms™ ! \ —nms
= e 4.0nms™!
-1
A - 0.27 —— A-5nms
\ 27 gy
. |
! ! ! \ +% il ! 0-59 \ !
—0.5 0.0 0.5 —0.5 0.0 0.5 -1 0 1 2
@ (pm) z (pm) z (pm)

FIG. S1. Probability densities of linker extensions p(z) = p+(x) + p—(x) due to Eq (S3), for various combinations of linker
stiffnesses ¢ and kinetochore velocities vk. For vk > 0 (vk < 0), they show the predicted power law behavior at Zmax
(Tmin) that is determined by as (o). For ¢ = 20pNnm™!, the distributions are peaked (a+ < 0) if v > 3.54nms™*
(vk < —14.6 nm sfl). Thus, the mean linker extension stays near max (Zmin) also in the vicinity of vk = 0 so that it has to
have a positive slope to get from Tmin t0 Tmax during the evolution from negative to positive velocities, resulting in a bistability.
For ¢ = 7pNnm™!, which lies below the regime boundary cpis, the distributions themselves as well as the unpeaked region
(a+ >0, —29.3nm s7! < v < 4.41nm sfl) are broader so that the mean linker extension evolves monotonically from Zmin to

Tmax When vy is increased and crosses vk = 0.

and, therefore, p(x) ~ py(x). Analyzing the prefactor

1 const

~ >0,
V4(T) Tmax —

we finally find a power-law behavior
p(z) = pi(x) =~ Nconst B(Tmax) (Tmax — )+
X (Tmax — )t

for z approaching ..

In an analogous manner, we expand around & = Ty
to leading order and find a power-law behavior

p(z) = p_(x) x (x — Tmin)*~ with
o —14+F_/F;
a+1:wr0(71(1)(> > 0.
cv? \ Y

The resulting dependencies of the exponents ay+1 o« 1/¢
on ¢ and ax + 1 o (Jvg/vY|)~ 1= 1F=/Fexl on kinetochore
velocities |vy| are used and discussed in the main text.
Since ay > —1, the probability densities are always nor-
malizable despite the singularities at Tax and Tmin.

If ax < 0 (for sufficiently large ¢ or sufficiently large
|vk|), the resulting total distributions p(z) = py(z) +
p—(x) are peaked around Zyax O Tmin. In the unstable
regime around vk = 0, however, the linker length distri-
bution p(z) becomes broad without pronounced peaks.
This behavior is visualized in Fig S1. In this regime, the
kurtosis ((z — (x))*)/{(z — (x))?)?, which is a measure of
the sharpness of the peaks of the distribution p(x) around
Tmin and Zax, becomes minimal indicating a broad dis-
tribution p(x).

IIT. MEAN-FIELD THEORY FOR THE
ONE-SIDED MODEL ASSUMING IDENTICAL
LINKER EXTENSIONS

Here, we present an alternative but simpler mean-field
approximation for the one-sided model. We assume that
all linkers have identical extensions (z; =~ x for all 7), i.e.,
all MTs have identical lengths and are in the same state
(growing or shrinking). While we assume in the mean-
field approach presented in the main text that all MTs
approximately decouple as soon as kinetochore velocity
fluctuations are neglected (vx = const), we assume here
a strong coupling between MTs. Accordingly the com-
pound linker distribution does no longer factorize but
can still be described by a single function p4 (z,t), which
is the probability to find all MTs in the growing (+) or
shrinking (—) state with a MT-kinetochore linker exten-
sion x.

While this approximation appears much more restric-
tive regarding the MT length (and thus the linker exten-
sion) distribution, it allows us to include stochastic fluc-
tuations of the kinetochore velocity, which we neglected
in the mean-field approach in the main text. Here, the
kinetochore velocity is a stochastic variable, depending
on the stochastic (but identical) linker extension x:

1
vg = 5 (Fext + cMx). (S5)

The Fokker-Planck-equations for the probability densi-
ties p4(x,t) are the same as for the vk = const. approx-
imation (Egs (5) and (6) in the main text), but with a
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FIG. S2. Mean kinetochore velocities resulting from the approximation of identical linker extensions (red lines) compared to
simulation results (markers). For a one-sided system with a single MT (M = 1) the alternative mean-field approach is exact
by definition and gives correct mean velocities. If M > 1, even the simple assumption of exclusively shrinking / growing MTs
[0+ from Eq (ST)] gives a better approximation (green and blue dashed lines). In contrast to Fig 2, where we aimed to detect
the two bistable states separately in each simulation, we average the simulations over a long period, to measure the total mean

velocity.

different relative velocity
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The maximum and minimum MT-kinetochore distances
Tmax/min are reached if the relative velocity vanishes,
U+ (Zmax/min) = 0, and Eq (S5) is fulfilled. Then both
the kinetochore and the MT-tips move with the same
velocity 04 given by Eq (9) in the main text:

__ MFy o 0d Foxt
0y = S W(MFieXp VE: ) ) (S7)

The corresponding MT-kinetochore distances are

= (Fy/c)In (vY. /vy)

:_E Fext - W 'yvi oFext/MFy ,
Cc MF:t MF:t

which agrees with Tab. 3 in the main text, if Eq (S7) is
used to eliminate vy in favor of Fiy:.

With the new relative velocities vy (z) from Eq (S6)
we finally obtain a solution for the probability densities
p+(z,t) analogous to Eq (12) in the main text. This solu-
tion can be used to calculate the mean linker extensions
(x) and the mean kinetochore velocity

Tmax/min

(o) = % (Fos + <M () (s8)
as a function of the external force Foy;. This type of
mean-field approach will never result in a bistable force-
velocity relation as we always obtain a unique mean linker
extension (x) and, according to Eq (S8), a unique mean
kinetochore velocity as a function of the force Fuyt. In
order to map out bistability, it is technically advanta-
geous to consider (x) and, thus, Fex as a function of
the kinetochore velocity vy as in the mean-field approach

in the main text. Then a bistable force-velocity rela-
tion can emerge as a result of a non-monotonous (but
unique) mean linker extension (x) as a function of vy.
Nevertheless, we find hints to a bistable behaviour also
in the mean-field theory with identical linker extensions:
The probability density p(z) = py(x) + p—(x) becomes
bimodal around F.; = 0 which corresponds to bistable
temporal switching of the whole ensemble between two
linker extensions and, thus, two kinetochore velocities vy.

In the present approach we always assume identi-
cal linker extensions and identical MT states (all MTs
growing or all MTs shrinking), while bistability in the
vk = const mean-field approach in the main text is the re-
sult of a very broad and heterogeneous stationary linker
extension distribution, where parts of the MT popula-
tion switch from shrinking to growing if the velocity is
increased in the bistable region around vy &~ 0. In this
bistable region, not all MTs are in the same state any-
more, and the assumption of identical linker extensions
and states becomes invalid.

By definition, the mean-field theory with identical
linker extensions is exact for a system with a single M'T
(M = 1), as can be seen in Fig S2. For an ensemble
of MTs — even for the next smallest number M = 2 —
the approach fails, however, to provide a good approx-
imation of the mean kinetochore velocity. Then even
the simple assumption of exclusively shrinking or grow-
ing MTs, which results in vy = 04, see Eq (ST7), gives
a better approximation in the large force regimes. For
M = 20, which is the relevant case for mammalian cells,
the mean-field theory with identical linker extensions dif-
fers strongly from the simulation results. We conclude
that the v = const mean-field approach described in the
main text is superior for analyzing bistability and oscil-
lations in the spindle model.
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IV. ALTERNATIVE POLAR EJECTION FORCE Fprr(X;) = £kX; Here we discuss in addition a har-
DISTRIBUTIONS monic dependence Fppp(Xy) = +koX? and a sqaure

root dependence Fpgp(Xj) = ikl/gX;/Q. The results
in Fig S3 are qualitatively similar to our results for lin-

In the main text we discuss in detail linearized PEFs, earized PEFs in Fig 11 of the main text.
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FIG. S3. Influence of polar ejection forces that are a square (top) or a root function (bottom) of the kinetochore position.
Qualitatively, the effects are the same as for linear PEFs which are discussed in Sec. 7 in the main text. The values of k2 and
k1,2 have been chosen so that the PEFs at a position of Xy = 1um have the same strength as for the corresponding value of
k in Fig 11 in the main text. Only, we plot the trajectories for k;/, = 100 pN pm /2 instead of 1000 pN pm~"/2 (bottom (a))
since in the latter case the time step in the stochastic simulation has to be uncomfortably small due to the steep ascent of the
PEF's arround Xy = 0.



