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FIG. S1. Twelve more example experiments as described in Fig. 3A-D in the main text. The gray

lines show powerfits to the stiffness–force relations that exhibit strain stiffening, giving the stiffening

exponents depicted in Fig. 3F in the main text. The fits do not include values corresponding to

x > 200 nm, see for instance the top Ndc80P plot, where the fit only applies to F . 6 pN.
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FIG. S2. Collective analysis including the experiments without observable stiffening. The main

results are unchanged due to the comparably short durations of non-stiffening experiments. (A) Cu-

mulative stiffness data with robust power fits analogously to Fig. 3F in the main text. The linear

stiffening is maintained for Ndc80wt and roughly for Ndc80P. (B) Summarized stiffness–force re-

lations analogously to Fig. 3G in the main text. The Ndc80wt stiffness still exceeds the stiffnesses

of Ndc80∆80 and Ndc80CHmut.
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FIG. S3. Increased amount of stiffness data. While only one stiffness per experiment can be

obtained by the sole use of the stalls for stiffness determination (right bars), the time tracing

analysis increases the amount of data by 1 to 2 orders of magnitude (left bars).
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FIG. S4. Stiffness–force relations for different bead populations. The legend shows the mean

number of Ndc80 complexes per bead in each population. There is no recognizable correlation

between the stiffness and the Ndc80 density. The binning was performed as in Fig. 3H in the main

text.



I. ROBUST FITTING TO THE STIFFNESS–FORCE RELATIONS

Here, we describe the robust fitting procedure of power law functions c(F ) = aF b + c0 to

the force–stiffness data (Fi,ci). Since the stiffness values that result from the time tracing

analysis exhibit a high spread (see Fig. 3E in the main text), we perform the power fits by

use of a robust fitting method instead of a least squares fit which is sensitive to outliers.

While in a least squares fit the sum of the squared residuals is minimized,

min
1

2

∑
i

ε2i , εi =
c(Fi)− ci

σi
, (S1)

the robust fitting method that we applied minimizes the sum of the Huber loss functions

ρ(εi) [S1]:

min
∑
i

ρ(εi), ρ(ε) =


1
2
ε2, |ε| < k

k|ε| − 1
2
k2, |ε| ≥ k

. (S2)

Thereby, the residuals are weighted as in a least squares fit for ε < k, and with an absolute

estimator (which results in a median when the data is fitted by a constant function) for

ε ≥ k. The tuning parameter k is set to 1.345 to achieve a relative efficiency of 95 % in

respect to the normal distribution [S2, S3]. Finally, we need to estimate the errors σi of

the stiffnesses that we determined from the sample variances of the bead positions x within

each interval (see Fig. 1 in the main text). Since c ∝ 1/Var(x), the relative deviation of the

the stiffness is the same as for the variance, σc/c = σVar/Var(x). From a sample of length n,

the variance and its deviation can be estimated to [S4]

Var(x) =
1

n− 1

∑
i

(xi − 〈x〉)2 , σVar =

√
2

n− 1
Var(x). (S3)

With n = 1000 in a 0.1 s interval at a sample frequency of 10 kHz and stiffnesses around

c = 0.1 pN nm−1, the estimated error is

σc =

√
2

n− 1
c = 0.0045 pN nm−1. (S4)

The fit results and the original data are shown in Fig. 3E in the main text, the fit parameters

are listed in Tab. S1.



TABLE S1. Fit parameters of power fits c(F ) = aF b + c0.

a b c0

Ndc80wt 0.022 1.03 0.025

Ndc80∆80 0.0038 2.21 0.017

Ndc80CHmut 0.0069 2.00 0.017

Ndc80P 0.027 0.98 0.010



II. MECHANICAL MT STIFFNESS
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FIG. S5. Model for the effective stiffness from MT unbending.

The model for the mechanical stiffness that follows from MT unbending is similar to the

PF model in the main text. In contrast to the PF, the MT does not have a spontaneous

curvature but its tip is lifted to a height h by the attached bead as sketched in Fig. S5. With

a force F that is applied in z-direction, the total energy is given by the sum of bending and

stretching energies:

EMT =

∫ L

0

(α
2

(θ̇(s))2 − F cos θ(s)
)

ds, (S5)

where s denotes the position along the MT, θ the local bending angle, L the length of

the free MT end (behind the fixed MT seed), and α = kBTLp the bending stiffness. The

configuration θ(s) that minimizes the energy under the constraint

h =

∫ L

0

sin θ(s) ds (S6)

satisfies the Euler-Lagrange equation

θ̈ =
F

α
sin θ − Fh

α
cos θ

θ�1
≈ F

α
θ − Fh

α
, (S7)

with a Largange-multiplier Fh, which corresponds to the force in u-direction that is necessary

to hold the MT tip at height h. With the boundary conditions θ(0) = 0 (due to the fixed

MT seed) and θ̇(L) = 0, the approximated equation is solved by

θ(s) =
Fh
F

(1− cosh(λs) + tanh(λL) sinh(λs)) , λ :=

√
F

α
, (S8)

Fh =
Fh/L

1− 1
λL

tanh(λL)
. (S9)

This results in the effective deflection

z =

∫ L

0

cos θ(s) ds ≈
∫ L

0

(
1− θ2(s)

2

)
ds

= L

[
1− h2

4L2

(
3

1− f(λL)
−
(
λL f(λL)

1− f(λL)

)2
)]

, f(x) :=
tanhx

x
.

(S10)



Finally, the effective stiffness of MT unbending is given by

c =

(
∂z

∂F

)−1

=
8
√
Fα

h2

(
1− f(λL)

)3

f ′(λL)
(
(3 + 2λ2L2) f(λL)− 3

)
+ 2λLf 2(λL)

(
1− f(λL)

) . (S11)

In the limit of strong forces (F � α/L2 ∼ 0.05 pN), this converges to

c ≈ 8L2

h2
√
α
F

3
2 . (S12)

There are two required parameters: the length L of the free MT end and the height h of

the MT tip. Typical MT lengths lay around L ∼ 5 µm. Given the bead diameter of 1 µm

and the distance between the surfaces of the coverslip and the bead (∼ 100 nm), the height

of the tip should not exceed h ≈ 500 nm. Fig. S6 shows the mechanical MT stiffness cMT

compared to and in series with the stiffness of n parallel Ndc80 complexes for L = 5 µm and

h = 500 nm. Though this choice of h provides a lower estimate (cMT ∝ h−2), the mechanical

MT stiffness is still too large, to have a significant influence.
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FIG. S6. (A) The mechanical stiffness of MT unbending (dashed line, L = 5 µm, h = 500 nm)

exceeds the stiffness of n parallel Ndc80 complexes (solid lines) and the measured wild type stiff-

nesses. (B) The dotted lines show the mechanical MT stiffness in series with n Ndc80 complexes.

The influence of the MT is not significant when cNdc � cMT.



III. PEG STIFFNESS

According to Oesterhelt et al. [S5], the extension–force relation of PEG is given by:

L(F ) = NS

(
Lplanar

e+β∆G(F ) + 1
+

Lhelical

e−β∆G(F ) + 1

) (
coth(βFLK)− 1

βFLK

)
+NS

F

KS

, (S13)

where ∆G(F ) = ∆G0−F (Lplanar−Lhelical). The used parameters are listed in Tab. S2. Ex-

cept NS, they are taken from Ref. [S5]. Fig. S7 shows the stiffness cPEG(F ) = (∂L(F )/∂F )−1

compared to and in series with the Ndc80 stiffness.

TABLE S2. Parameters of the PEG model.

Description Symbol Value

number of segments NS 45

bond length of the planar (trans-trans-trans) conformation Lplanar 0.358 nm

bond length of the helical (trans-trans-gauche) conformation Lhelical 0.28 nm

Kuhn length LK 0.7 nm

zero force free energy difference Gplanar −Ghelical ∆G0 3 kBT

segment elasticity KS 1.5× 105 pN nm−1
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FIG. S7. (A) The stiffness of n parallel PEG molecules (dashed lines) exceeds the Ndc80 stiffness

(solid lines) in most of the examined force range (F < 6 pN) and lies an order of magnitude

above the measured stiffnesses (∼ 0.1 pN nm−1). (B) The dotted lines show the stiffness of n

PEG molecules in series with n Ndc80 complexes. The influence of PEG is not significant when

cNdc � cPEG.



IV. WORM-LIKE CHAIN MODEL

To take into account a Ndc80 complex with possibly (semi)flexible arms, we model the

Ndc80 complex as two worm like chains (WLC) with persistence length Lp that are flexibly

connected. To run Monte Carlo (MC) simulations, we describe each WLC by a bead–spring

model [S6]: The Ndc80 arm ~a (~b) is discretized into Na + 1 (Nb + 1) beads, which are

connected by Na (Nb) springs each with rest length da (db) and stiffness ka (kb). The rest

lengths are defined by da = a/Na and db = b/Nb to be consistent with the observed Ndc80

arm lengths a and b. Given the extensions and directions of the springs as ~ai (~bj) with

i = 1...Na (j = 1...Nb), we find the total stretching energy

Estretch =
ka
2

Na∑
i=1

(
|~ai| − da

)2
+
kb
2

Nb∑
j=1

(
|~bj| − db

)2
. (S14)

The positions ~Am and ~Bn of the beads are given by

~Am = ~A0 +
m∑
i=1

~ai, ~Bn = ~B0 +
n∑
j=1

~bj, (S15)

where ~A0 = ~0 (the Ndc80 complex is fixed to the glass bead) and ~B0 = ~ANa . The glass bead,

which is modeled as a wall (see Fig. 2C in the main text), is described by the boundary

condition that each bead has to be located in the upper half space, i.e., for the z-components:

Am,z, Bn,z > 0 for each m,n. Each bead ~Am, ~Bn except ~A0, ~ANa = ~B0 and ~BNb
contributes

a bending energy which sums up to

Ebend =
Lp

βda

Na−1∑
m=1

(1− cosαm) +
Lp

βdb

Nb−1∑
n=1

(1− cos βn), (S16)

where αm (βn) is the angle between bonds m and m+ 1 (n and n+ 1):

cosαm =
~am · ~am+1

|~am||~am+1|
, cos βn =

~bn ·~bn+1

|~bn||~bn+1|
. (S17)

Finally, when a force F in z-direction is applied on the last bead, the total energy reads as:

E = Estretch + Ebend − FBNb,z. (S18)

In the MC simulation, we randomly choose a bead (i, j > 0) and suggest to move it in a

random direction for a constant distance s. If the move does not violate the boundary con-

dition, it will be accepted with probability min(1, exp(−β∆E)), where ∆E = Esugg − Eorig



is the energy difference between the suggested and the original configuration following

Eq. (S18). After a certain time of equilibration, we measure z = BNb,z and z2 after each

sweep (Na + Nb moves), and calculate the mean extension and its variance at the end of a

simulation. By repeating it for various external forces, we can record force–extension and

force–stiffness relations.

In our simulations, we used ka = kb = 1000 pN nm−1 to model the two Ndc80 arms as

nearly unstretchable. Moreover, we used the same discretization lengths da = db = 1 nm,

i.e., Na = 40 and Nb = 16.

Fig. S8 shows the stiffness–force relations for a single and for n = 5 parallel semiflexible

Ndc80 complexes with various persistence lengths Lp. The effect of semiflexibility on the

stiffness is negligible for realistic persistence lengths above 100 nm [S7].
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FIG. S8. Stiffness of a single (left) and n = 5 parallel (right) semiflexible Ndc80 complexes with

persistence lengths Lp. As a check of the MC simulations, we added the large persistence length

Lp = 1000 nm, which correctly resembles results of the FJC model (Lp =∞) according to Eq. (8)

in the main text.



SUPPORTING REFERENCES

[S1] Huber, P. J., 1964. Robust Estimation of a Location Parameter. Ann. Math. Stat. 35:73–101.

http://projecteuclid.org/euclid.aoms/1177703732.

[S2] Holland, P. W., and R. E. Welsch, 1977. Robust regression using iteratively reweighted least-

squares. Commun. Stat. - Theory Methods 6:813–827. http://www.tandfonline.com/doi/

abs/10.1080/03610927708827533.

[S3] de Menezes, D., D. Prata, A. Secchi, and J. Pinto, 2021. A review on robust M-estimators for

regression analysis. Comput. Chem. Eng. 147:107254. https://linkinghub.elsevier.com/

retrieve/pii/S0098135421000326.

[S4] Casella, G., and R. L. Berger, 2002. Statistical inference. Duxbury, Pacific Grove, CA 93950

USA, 2 edition.

[S5] Oesterhelt, F., M. Rief, and H. E. Gaub, 1999. Single molecule force spectroscopy by AFM

indicates helical structure of poly(ethylene-glycol) in water. New J. Phys. 1:6.1–6.11. https:

//iopscience.iop.org/article/10.1088/1367-2630/1/1/006.

[S6] Kierfeld, J., O. Niamploy, V. Sa-yakanit, and R. Lipowsky, 2004. Stretching of semiflexible

polymers with elastic bonds. Eur. Phys. J. E 14:17–34. http://link.springer.com/10.

1140/epje/i2003-10089-3.

[S7] Hvidt, S., J. D. Ferry, D. L. Roelke, and M. L. Greaser, 1983. Flexibility of light meromyosin

and other coiled-coil α-helical proteins. Macromolecules 16:740–745. https://pubs.acs.

org/doi/abs/10.1021/ma00239a007.

http://projecteuclid.org/euclid.aoms/1177703732
http://www.tandfonline.com/doi/abs/10.1080/03610927708827533
http://www.tandfonline.com/doi/abs/10.1080/03610927708827533
https://linkinghub.elsevier.com/retrieve/pii/S0098135421000326
https://linkinghub.elsevier.com/retrieve/pii/S0098135421000326
https://iopscience.iop.org/article/10.1088/1367-2630/1/1/006
https://iopscience.iop.org/article/10.1088/1367-2630/1/1/006
http://link.springer.com/10.1140/epje/i2003-10089-3
http://link.springer.com/10.1140/epje/i2003-10089-3
https://pubs.acs.org/doi/abs/10.1021/ma00239a007
https://pubs.acs.org/doi/abs/10.1021/ma00239a007

	BPJ11981_illustmmc.pdf
	Robust fitting to the stiffness–force relations
	Mechanical MT stiffness
	PEG stiffness
	Worm-like chain model
	Supporting References


