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Spheroidal and conical shapes of ferrofluid-filled capsules in magnetic fields
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We investigate the deformation of soft spherical elastic capsules filled with a ferrofluid
in external uniform magnetic fields at fixed volume by a combination of numerical and
analytical approaches. We develop a numerical iterative solution strategy based on nonlinear
elastic shape equations to calculate the stretched capsule shape numerically and a coupled
finite element and boundary element method to solve the corresponding magnetostatic
problem and employ analytical linear response theory, approximative energy minimization,
and slender-body theory. The observed deformation behavior is qualitatively similar to
the deformation of ferrofluid droplets in uniform magnetic fields. Homogeneous magnetic
fields elongate the capsule and a discontinuous shape transition from a spheroidal shape to
a conical shape takes place at a critical field strength. We investigate how capsule elasticity
modifies this hysteretic shape transition. We show that conical capsule shapes are possible
but involve diverging stretch factors at the tips, which gives rise to rupture for real capsule
materials. In a slender-body approximation we find that the critical susceptibility above
which conical shapes occur for ferrofluid capsules is the same as for droplets. At small
fields capsules remain spheroidal and we characterize the deformation of spheroidal capsules
both analytically and numerically. Finally, we determine whether wrinkling of a spheroidal
capsule occurs during elongation in a magnetic field and how it modifies the stretching
behavior. We find the nontrivial dependence between the extent of the wrinkled region
and capsule elongation. Our results can be helpful in quantitatively determining capsule
or ferrofluid material properties from magnetic deformation experiments. All results also
apply to elastic capsules filled with a dielectric liquid in an external uniform electric field.
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I. INTRODUCTION

Elastic capsules consist of a thin elastic shell enclosing a fluid inside. Elastic microcapsules
are found in nature, for example, as red blood cells or virus capsids. They can also be produced
artificially by various methods, for example, interfacial polymerization at liquid-liquid interfaces or
multilayer polyelectrolyte deposition [1]. Artificially produced microcapsules are attractive systems
for encapsulation and transport, for example, in delivery and release systems. Their overall shape is
often nearly spherical and the shell can be treated as a two-dimensional elastic solid with a curved
equilibrium shape. In experiments and for applications, elastic properties of capsules can be tuned by
varying size, thickness, and shell materials. For applications involving delivery by rupture of capsules
it is necessary to understand and characterize the mechanical properties and elastic instabilities of
capsules.

The mechanical properties of elastic capsules are governed by the elastic shell, which is curved
(typically spherical) in its equilibrium shape. This gives rise to different characteristic instabilities
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in response to external forces [1–3]. Thin elastic membranes bend much more easily than stretch.
This protects a curved equilibrium shape against deformations changing its Gaussian curvature and
that is the reason for the stability of capsules under uniform compression. In contrast to fluid drops,
elastic capsules under uniform compression fail in a buckling instability below a critical volume or
critical internal pressure [4–9]. Buckling-type instabilities can also be triggered by external forces,
for example, in electrostatically driven buckling transitions of charged shells [10] or in hydrodynamic
flows [11]. Under point force loads, for example, exerted by atomic force microscopy tips, elastic
capsules indent linearly at small forces and assume buckled shapes in the nonlinear regime at higher
forces [2,12,13]. As opposed to fluid droplets, elastic capsules can also develop wrinkles upon
deformation [14–17] if compressive hoop stresses arise.

Microcapsules can be manipulated and deformed in hydrodynamic flow [14,18,19], by microma-
nipulation using an atomic force microscope [2,3] or micropipettes or capillaries [16,17]. Another
promising route to exert mechanical forces and to actuate elastic capsules in a noninvasive manner is
via magnetic or electric fields [20,21]. For magnetic fields this requires the presence of magnetizable
material either in the shell or in the capsule interior. The whole capsule then acquires a magnetic
dipole moment, which can be manipulated in external magnetic fields. For actuation by electric
fields the capsule has to contain polarizable dielectric material such that the capsule acquires an
electrostatic dipole moment, which can be manipulated by an electric field. Homogeneous fields
orient dipole moments but also induce capsule deformations, which increase the size of the dipole
moment after orientation. Therefore, homogeneous fields always lead to stretching and elongation
of the capsule. Inhomogeneous fields can also exert a net force on the capsule and induce directed
motion at fixed magnetic dipole moment along the field gradient.

In the following we focus on spherical elastic capsules that are filled with a (quiescent) magnetic
fluid and deformed in homogeneous external magnetic fields. As magnetic fluid we consider a
ferrofluid, which is a liquid that is magnetizable by external magnetic fields because it consist of
ferromagnetic or ferrimagnetic nanoparticles suspended in a carrier fluid. Because of the small
particle size, ferrofluids are stable against phase separation and show superparamagnetic behavior
[22]. Ferrofluids are used in technical and medical applications [23–25]. All our results also apply to
elastic capsules filled with a (quiescent) dielectric fluid which are placed in a homogeneous external
electric field.

The problem of ferrofluid droplets in uniform external magnetic fields has already been
theoretically studied in the literature. Also, a spherical ferrofluid droplet is elongated in the direction
of the magnetic field for increasing field strength; the resulting elongated shape was observed to be
nearly spheroidal [26]. Bacri and Salin [27] used the assumption of a spheroidal shape for a quite
precise approximation of the elongation by minimizing the total energy. Although the droplet is only
elongated by the field, an abrupt shape transition is possible [27]: Beyond a threshold magnetic field
strength the spheroidal droplet becomes unstable and elongates discontinuously into a shape with
conical tips. The conical shape is stabilized by a positive feedback between shape and magnetic field
distribution: A sharp tip gives rise to a diverging field strength at the tip, which in turn generates
strong stretching forces stabilizing the sharp tip. The mechanism of forming sharp tips is reminiscent
of the normal field instabilities (Rosensweig instabilities) of free planar ferrofluid surfaces in a
perpendicular homogeneous magnetic field, which were first described by Cowley and Rosensweig
[28] and later extended by a nonlinear stability analysis to study subsequent pattern formation [29].

The discontinuous shape transition to a conical shape exhibits hysteresis and only occurs above a
critical susceptibility χc of the ferrofluid. In Refs. [30,31] a value χc � 16.59 was found below
which no conical shape can exist; a slender-body approximation in Ref. [32] gives χc � 14.5.
Using the approximative energy minimization for spheroidal shapes of Bacri and Salin [27] gives
χc � 19.8. The jump in droplet elongation at the transition to a conical shape depends on the
magnetic susceptibility: Large elongation jumps are possible for high susceptibilities. This behavior
was investigated in more detail in several numerical studies [33–35]. Apart from free ferrofluid
droplets, the deformation behavior of sessile droplets on a plate [36] or sedimenting ferrofluid drops
in external fields [37] have also been investigated for homogeneous external magnetic fields.
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Dielectric droplets in a homogeneous external electric field exhibit the same shape transition from
a spheroidal to a conical shape. For the electric field, however, free charges exist, and conducting
droplets are easily realized experimentally. In fact, the first experimental observations of conical
droplet shapes were made for water droplets [38] and soap bubbles [39]. In Ref. [31] it was shown that
also a conducting liquid droplet surrounded by an outer conducting liquid in a homogeneous electric
field exhibits conical shapes above a corresponding critical conductivity ratio σ/σout = 1 + χc �
17.59. In the limit of an ideally conducting droplet with infinite susceptibility or infinite conductivity
(both resulting in zero electric field inside the droplet), the conical solutions in Refs. [30–32] approach
Taylor’s cone solution with a half opening angle �49.3◦ [40]. Both for liquid metal (i.e., ideally
conducting) and dielectric droplets, the conic cusp formation has been studied dynamically and
dynamic self-similar solutions have been obtained [41,42]. Fluid droplets, which are neither perfect
conductors nor perfect insulators, disintegrate at higher external electric fields by emitting jets of
fluid at the tip, from which small droplets pinch off. Also for this process, scaling laws for droplet
sizes could be theoretically obtained [43,44].

In a ferrofluid-filled elastic capsule the ferrofluid drop is enclosed by a thin elastic membrane,
which will modify the transition from a spheroidal to a conical shape observed for droplets.
Such ferrofluid-filled capsules have already been realized experimentally. Neveu-Prin et al. [45]
encapsulated ferrofluids by polymerization and analyzed the magnetization behavior of the magnetic
capsules. Degen et al. [20] investigated experimentally elastic capsules filled with a magnetic liquid
in an external magnetic field. They used a magnetic liquid consisting of micrometer-sized magnetic
particles that do not show the special properties of ferrofluids but form long chains in the presence
of external magnetic fields. These magnetite-filled elastic capsules could be actuated to deform in a
magnetic field. A quantitative theoretical description of their deformation is still missing. In Ref. [21],
capsules filled with a dielectric liquid in an external electric field were investigated experimentally
and theoretically with a focus on small deformations.

We will describe the elastic shell by a nonlinear elastic model based on a Hookean elastic energy
density for thin shells, assume axisymmetric capsules, and calculate the shape at force equilibrium
by solving shape equations as they have been derived in Refs. [7,17]. As stated above, homogeneous
magnetic fields acting on ferrofluid-filled capsules give rise to stretching and elongation of the
capsule in order to increase the total dipole moment. Therefore, stretching tensions are dominant in
the elastic shell. This is why we will consider the limiting case of vanishing bending modulus and
bending moments for most of the present work, which is commonly called the elastic membrane
limit (as opposed to the elastic shell case).

In our numerical approach, the magnetic field inside the capsule is calculated using a coupled
finite element and boundary element method. The capsule shape provides the geometric boundary
for the field calculation. Vice versa, the magnetic field distribution couples to the shape equations via
the magnetic surface stresses. We solve the full coupled problem numerically by an iterative method.

We combine this numerical approach with several analytical approaches to investigate the capsule
deformation in a homogeneous magnetic field as a function of the magnetic field strength and Young
modulus of the capsule material. First we characterize the linear deformation regime of spheroidal
capsules for small fields both numerically and analytically. Then we answer the question to what
extent the elastic shell will suppress the discontinuous spheroidal to conical shape transition of a
ferrofluid droplet and whether elastic properties such as the Young modulus of the shell material can
be used to tune and control the instability. We show that conical shapes can also occur for capsules
with nonlinear Hookean membranes but require diverging strains at the conical tips. As a real elastic
material is not able to support arbitrarily high strains, we expect that diverging local stretch factors at
the capsule poles indicate that real capsules tend to rupture close to the poles as soon as the conical
shape is assumed. Then the existence of a sharp discontinuous shape transition into a conical shape
provides an interesting route to trigger capsule rupture at the poles at rather well-defined magnetic
(for ferrofluid-filled capsules) or electric (for dielectric-filled capsules) field values. The subsequent
rupture process has some analogies to the onset of the disintegration of droplets in electric fields
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[43,44], but our static approaches based on nonlinear Hookean material laws are not suited to model
the rupture process itself.

We find that the discontinuous shape transition between spheroidal and conical shapes with hys-
teresis effects and shape bistability is also present for elastic ferrofluid-filled capsules. Numerically,
we obtain a complete classification of the shape transition in the parameter plane of dimensionless
magnetic field strengths (magnetic Bond number) and the dimensionless ratio of the Young modulus
of the shell material and the surface tension of the ferrofluid. These findings are partly corroborated by
an analytical approximative energy minimization extending the spheroidal shape approximation of
Bacri and Salin [27] to ferrofluid-filled capsules. For conical shapes we generalize the slender-body
approximations of Stone et al. [32], which allows us to quantify the divergence of local stretch factors
at the capsule poles and to show that the same analytic formula as for ferrofluid droplets governs
the dependence of the cone angle on the magnetic susceptibility χ (or the dielectric susceptibility
ε/εout − 1 for a dielectric droplet with dielectric constant ε in a surrounding liquid with εout). In
particular, we predict the critical susceptibility χc, above which the hysteretic shape transition
between spheroidal and conical capsule shapes can be observed, to be identical to the critical value
for ferrofluid or dielectric droplets. We also find that, for elastic capsules, magnetic stretching can
give rise to wrinkling along the capsule equator region. We predict the parameter range for the
appearance of wrinkles and the extent of the wrinkled region on a spheroidal capsule depending on
its elastic properties and its elongation.

II. THEORETICAL MODEL AND NUMERICAL METHODS

We start with a ferrofluid drop suspended in an external nonmagnetic liquid of the same density
as the ferrofluid, which eliminates gravitational forces. Thus the drop is force-free except for the
surface tension γ , which forces the drop to be spherical and is balanced by internal pressure. If the
drop is enclosed by an elastic shell, for example, after a polymerization reaction at the liquid-liquid
interface, we have a spherical elastic capsule. We assume that the relaxed rest shape of this capsule
is spherical with a rest radius R0, which is given by the fixed volume V0 = 4πR3

0/3 of the droplet
or capsule.

After applying a uniform magnetic field H0ez in the z direction, the resulting shape of the capsule
becomes stretched in the z direction, but the capsule shape and magnetic field distribution remain
axisymmetric around the z axis. A uniform external magnetic field causes mirror-symmetric forces
on the capsule, resulting in a shape with reflection symmetry with respect to the plane z = 0 (see
Fig. 1).

A. Geometry

We describe the axisymmetric shell using cylindrical coordinates r , z, and ϕ. The capsule’s shell
is thin compared to its diameter, so we consider the shell to be a two-dimensional elastic surface.
Because of the axial symmetry, we only need the contour line r(z) to describe the whole capsule
shape.

For our calculations, we parametrize the surface by the arc length s0 of the undeformed spherical
contour with s0 ∈ [0,L0 = πR0], starting at the lower apex and ending at the upper apex. Using the
reflection symmetry, we only need half of that interval, s0 ∈ [0,L0/2], to describe the capsule’s shape
completely. In addition to the coordinates r(s0) and z(s0), we define a slope angle ψ(s0) by the unit
vector es following the contour line via es = (cos ψ, sin ψ).

B. Magnetostatics

1. Forces by the ferrofluid

In order to calculate the shape of the capsule in an external magnetic field, we have to take the
magnetic forces that are caused by the ferrofluid on the capsule surface into account. Because we
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FIG. 1. Illustration of the parametrization in cylindrical coordinates (r,z,ϕ) and the contour line with arc
length s. The complete capsule is obtained by revolution of the red contour line, while the angle ψ describes its
slope. This contour line is calculated numerically. The polar radius is called a, while b denotes the equatorial
radius.

are interested in a static solution, we can assume that the fluid is at rest. Then the fluid can only
exert hydrostatic forces normal to the surface, while tangential components are zero. In order to
calculate the normal magnetic force density fm(r,z) on the surface, we use the magnetic stress tensor
by Rosensweig [22],

fm(r,z) = μ0

∫ H (r,z)

0
M(r,z)dH (r,z) + μ0

2
M2

n (r,z). (1)

Here M = |M| is the absolute value of the magnetization and Mn = M · n its normal component (n
is the outward unit normal to the capsule surface). Magnetization M and magnetic field H are taken
on the inside of the capsule surface.

We assume a linear magnetization law

M = χH (2)

with a susceptibility χ for the ferrofluid (χ = μ − 1 in terms of its magnetic permeability μ),
which is justified for small fields H � Ms/3χ , where Ms is the saturation magnetization of the
ferrofluid. References [46,47] studied the behavior of drops with a nonlinear Langevin magnetization
(polarization) law. The saturation of the magnetization or polarization forbids sharp tips and leads to
more rounded drops. It was shown, on the other hand, that the linear law is a very good approximation
for small and even medium fields. This typically requires the maximum magnetic flux density
Bmax = μ0Hmax to be in a range of 50–100 mT, depending on the specific fluid [36,48]. For a
linear magnetization we can rewrite Eq. (1) as

fm(r,z) = μ0χ

2

[
H 2(r,z) + χH 2

n (r,z)
]

(3)

(assuming χout = 0 for the external nonmagnetic liquid or using χ = μ/μout − 1 in terms of the
magnetic permeabilities μ of the ferrofluid and the μout of the external liquid), where H = |H|
and Hn is the normal component of the magnetic field. We will use this position-dependent normal
magnetic force density to modify the pressure in our elastic equations in Sec. II C 1.
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2. Calculation of the magnetic field

To calculate the total magnetic field, i.e., the superposition of the external uniform field and the
field from the ferrofluid magnetization, we use the fact that ferrofluids are generally nonconducting
[22]. Then Maxwell’s equations give ∇ × H = 0, which allows us to introduce a scalar magnetic
potential u with ∇u = H. From Maxwell’s equation ∇ · B = ∇ · μ0(H + M) = 0 we get Poisson’s
equation in magnetostatics

∇2u(r,z) = −∇ · M(r,z). (4)

For the linear magnetization law (2), Poisson’s equation simplifies to the Laplace equation
∇2u(r,z) = 0.

For the numerical solution of this partial differential equation we use a coupled axisymmetric
finite element–boundary element method [49–52] with a cubic spline interpolation for the boundary
[53]. This combination of methods was also used by Lavrova et al. for free ferrofluid drops [34,54,55]
and earlier for electric drops, e.g., by Harris and Basaran [56]. The finite element method (FEM) is
used to solve Eq. (4) in the magnetized domain inside the capsule and the boundary element method
(BEM) for the nonmagnetic domain outside. Both domains are coupled by the continuity conditions
of magnetostatics for u and its normal derivative on the boundary of the capsule,

uin = uout, μ
∂uin

∂n
= ∂uout

∂n
, (5)

with μout = 1 for the external nonmagnetic liquid. Both the FEM and BEM exploit axial symmetry
and effectively operate in the two-dimensional rz plane, where the axisymmetric capsule shape
is described by a contour line (r(s),z(s)). For the FEM we use a standard Galerkin method with
linear elements on a triangular two-dimensional grid in the rz plane that is created with a Delauney
triangulation using the Fade2D software package [57], where we set a fixed number of grid points
on the capsule’s boundary.

In the BEM we express solutions u(r0) of the Laplace equation ∇2u = 0 for r0 on the outside or
the boundary of the capsule in terms of integrals over the boundary of the capsule. Using fundamental
solutions with rotational symmetry [58], we have to solve a set of one-dimensional integrals over
the whole boundary of the capsule

cu(r0) −
∫ L

0

[
u(r)

∂u∗
ax(r0,r)

∂n
− ∂u(r)

∂n
u∗

ax(r0,r)

]
r ds = z0. (6)

Here u∗
ax(r0,r) ≡ ∫ 2π

0 u∗(r0,r)dϕ is the axially symmetric fundamental solution of Laplace’s
equation, which is obtained from the fundamental solution u∗(r,r0) = 1/4π |r − r0| of Laplace’s
equation, 
u∗(r,r0) = −δ(r − r0). In the integral equation (6), u and its normal derivative are
evaluated on the outside of the capsule surface. The point r0 is the point where u is to be calculated,
while the integrals are taken over points r(s) on the capsule contour. Both r and r0 lie in the same
rz plane. For the geometric factor c, we have c = 1/2 for points r0 on the boundary � and c = 1
for points r0 in the exterior domain. The vector n denotes the outward unit normal vector and z0

describes the z component of r0. On the right-hand side of (6), z0 can be interpreted as the potential
of the external electric field. For numerical evaluation, the integrals in Eq. (6) are discretized by a
point collocation method and solved by applying Gaussian quadrature for nonsingular integrands
and a midpoint rule for weakly singular integrands.

The FEM and BEM are coupled at the boundary by the continuity conditions (5). The FEM
provides values for u on every finite element grid point inside the capsule including values uin on the
inner side of the boundary; in addition, the normal derivatives ∂uin/∂n on the inside of the discretized
capsule boundary are needed for the FEM but remain a priori unknown. Values for these normal
derivatives on the boundary points of the FEM grid are obtained by the BEM method. Our BEM uses
linear interpolation for u between the discretized boundary points. We use the continuity conditions
(5) to write the boundary integral equation (6) in terms of quantities on the inner capsule boundary.
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FIG. 2. Numerical results for the magnetic field distribution and capsule shape (two-dimensional projection)
for a capsule filled with a ferrofluid with a susceptibility of χ = 21. The ratio of Young’s modulus and surface
tension is Y2D/γ = 100. The external magnetic field H0 is uniform and points in the upward direction. Arrows
indicate the local direction of H ; the color codes for the absolute value of H in units of H0. The (a) spherical
capsule and (b) spheroidal capsule have uniform fields inside, while the field in the (c) conical-shaped capsule
increases strongly in the tips. The elongations a/b (ratio of the polar radius to the equatorial radius) are
(a) a/b = 1, (b) a/b = 2.26, and (c) a/b = 5.38. The magnetic Bond numbers Bm [see the definition in Eq. (23)]
are (a) Bm = 0, (b) Bm = 262.4, and (c) Bm = 702.2.

Using one BEM equation (6) for each boundary point (with c = 1/2), we obtain a set of equations
that allows us to calculate the unknown derivatives ∂uin/∂n for given uin and to get a closed system of
equations for u everywhere inside the capsule. After solving the resulting system of FEM equations,
we know u everywhere inside the capsule. For the calculation of u inside the capsule and thus for
the calculation of the magnetic force density fm(r,z) acting on the capsule using (3), which is also
calculated with the magnetic field on the inside, it is not necessary to calculate u in the entire external
domain explicitly. This is done implicitly by the BEM. If needed (for example, in order to calculate
the field in the exterior regions in Fig. 2), u can be calculated by solving (6) for points r0 in the
exterior with c = 1.

In a ferrofluid capsule or drop with sharp edges, very high field strengths can arise [see Fig. 2(c)].
Also field gradients can be large, which makes pointed shapes prone to discretization errors caused
by the grid. This effect can be countered to some degree by placing more FEM grid points at the tip
in order to improve the precision there, which is, however, limited by the BEM part of the solution
scheme: The collocation points must not come too close to the symmetry axis because the weakly
singular integrals become strongly singular on the z axis [59]. This leads to massively increasing
numerical errors near the axis and a decrease of the overall precision. Overall, our numerical scheme
to calculate singular BEM integrals is not the most advanced as a trade-off for simplicity. There
are more elaborated schemes for the integration of singular integrals as, for example, developed
over many years by Gray et al. [60,61], which could provide a more elegant way to deal with the
problem. We use the following compromise for the discretization: We place N = 250 elements on
the boundary such that the length Li of the ith boundary element (beginning at the equator) is
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given by

Li = c0 exp

(
ln(l0)

i − 1

N

)
. (7)

The constant c0 is chosen in order to obtain the correct total arc length L, which is given by the
meridional stretch factors λs = ds/ds0 of the deformed capsule [see Eq. (11) below],

∑N
i=1 Li =

L/2 = ∫ L0/2
0 λsds0. We choose l0 = 0.1 (l0 = 1 gives a constant element length and l0 < 1 leads to a

higher element density at the capsule’s tip). Increasing N beyond 250 does not improve the precision
significantly. A higher density of points at the capsule’s tip (lower l0) leads to stronger oscillations
in the iterative solution scheme (see Sec. II D below).

3. Electric fields and dielectric liquid

Our approach to elastic capsules filled with a ferrofluid in a magnetic field also applies to capsules
filled with a dielectric fluid in an electric field. The generic situation for a capsule filled with a fluid
with dielectric constant ε is to be suspended in a dielectric liquid with a different εout 	= ε, which
does not equal unity εout 	= 1. Then the dielectric force density in a linear medium is

fe(r,z) = ε0εoutχε

2

(
E2(r,z) + χεE

2
n(r,z)

)
, χε ≡ ε

εout
− 1, (8)

which is completely analogous to (3) with χε playing the role of the susceptibility χ . For the general
case, Poisson’s equation becomes

∇2φ(r,z) = − 1

ε0
∇ · P(r,z), (9)

with the electric potential φ and the polarization P. For a linear polarization law, it simplifies to the
Laplace equation ∇2φ(r,z) = 0.

C. Equilibrium shape of the capsule

1. Elasticity and shape equations

The capsule is deformed by the normal magnetic stresses fm from the ferrofluid. We have
to calculate the resulting deformed equilibrium shape, where all elastic stresses, surface tension,
and magnetic stress are balanced everywhere on the capsule. Every point of the reference shape
[r0(s0),z0(s0)] is mapped onto a new point [r(s0),z(s0)]. The deformed shape [r(s0),z(s0)] is calculated
by solving shape equations, which are derived from nonlinear theory of thin shells [7,17,62,63]. We
use a Hookean elastic energy density with a spherical rest shape. The Hookean elastic energy density
(defined as energy per undeformed unit area) is given by

ws = 1

2

Y2D

1 − ν2

(
e2
s + 2νeseϕ + e2

ϕ

) + 1

2
EB

(
K2

s + 2νKsKϕ + K2
ϕ

)
. (10)

Here es and eϕ are meridional and circumferential strains that contain the stretch factors λs and λϕ :

es = λs − 1, eϕ = λϕ − 1, λs = ds

ds0
, λϕ = r

r0
. (11)

Here and in the following, quantities with subscript 0 refer to the undeformed spherical reference
shape and quantities without 0 describe the deformed shape. Analogously, the bending strains Ks

and Kϕ are generated by the curvatures κs and κϕ :

Ks = λsκs − κs0, Kϕ = λϕκϕ − κϕ0, κs = dψ

ds
, κϕ = sin ψ

r
.

In the elastic energy (10), Y2D is the two-dimensional Young modulus governing stretching
deformations, EB is the bending modulus, and ν is the two-dimensional Poisson ratio. Elastic
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properties are usually only weakly ν dependent; we use ν = 1/2, which is the typical value for
an incompressible polymeric material. The arc length of the deformed capsule’s contour is given by
L = ∫ L0

0 λsds0, while L0 = πR0 is the fixed arc length of the undeformed spherical capsule.
In experiments, the capsule’s shell is constructed by polymerization on the surface of a drop.

Therefore, the undeformed reference shape, which is spherical in the absence of gravity, is also a
solution of the Laplace-Young equation

γ (κs + κϕ) = p, (12)

where γ is the surface tension of the droplet. The solution of the Laplace-Young equation will be
discussed in detail in Sec. II C 4 below.

In the following we will neglect the bending energy, which means we set EB = 0. The
characteristic length scale of the problem is the radius R0 of the undeformed sphere such that
the neglect of the bending energy corresponds to the limit of large Föppl–von Kármán numbers
γFvK ≡ Y2DR2

0/EB . This is the limiting case of an elastic Hookean membrane and is a good
approximation for two reasons. First, we will only consider capsules with thin shells as they were
prepared in experiments [17,20]. The shell thickness D is very small compared to the capsule size,
D � R0. With Y2D ∝ D and EB ∝ D3 it follows that γFvK ∼ (R0/D)2 � 1 and stretching energies
are typically larger than bending energies. The second argument is that the homogeneous magnetic
field acting on the ferrofluid-fluid capsule predominantly stretches and elongates the capsule in order
to increase its total dipole moment. This increases stretching energies, whereas the capsules develop
high curvatures only at the conical tips. However, we show below that stretch factors diverge at
conical tips, so the stretching energy dominates over the bending energy associated with these high
curvatures also in the tip regions.

Elastic tensions in the shell (defined as force per deformed unit length) derive from the surface
elastic energy density by

τs = 1

λϕ

∂ws

∂es

= Y2D

(1 − ν2)λϕ

[(λs − 1) + ν(λϕ − 1)],

τϕ = 1

λs

∂ws

∂eϕ

= Y2D

(1 − ν2)λs

[(λϕ − 1) + ν(λs − 1)]. (13)

Although we use a Hookean elastic energy density, the constitutive relation (13) is nonlinear because
of the additional 1/λ factors, which arise for purely geometrical reasons: The Hookean elastic energy
density is defined per undeformed unit area such that ∂ws/∂es is the force per undeformed unit length,
whereas the Cauchy stresses τs and τϕ are defined per deformed unit length.

In addition to the elastic tensions τs and τϕ , there is also a contribution from an isotropic effective
surface tension γ between the outer liquid and the capsule. Such a contribution arises either as the
sum of surface tensions of the liquid outside with the outer capsule surface and the liquid inside with
the inner capsule surface or, if the capsule shell is porous such that there is still contact between
the liquids outside and inside the capsule, with additional contributions from the surface tension
between outside and inside liquids. In the absence of elastic tensions, the surface tension γ also
gives rise to the spherical rest shape of the capsule. For macroscopic capsules the surface tensions
should be negligible, but for microcapsules with weak walls they should not be neglected. We expect
the effective surface tension γ to be somewhat smaller than typical liquid-liquid surface tensions,
which are around γ = 50 mN/m; we will use γ = 10 mN/m below.

The equilibrium of forces in the deformed elastic membrane is described by

0 = τsκs + τϕκϕ + (κs + κϕ)γ − p, (14)

0 = cos ψ

r
τϕ − 1

r

d(rτs)

ds
, (15)
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where Eq. (14) describes the normal force equilibrium and Eq. (15) tangential force equilibrium (in
the s direction, equilibrium in the ϕ direction is always fulfilled by axial symmetry). In the presence
of magnetic forces, the pressure

p(s) = p0 + fm(s) (16)

is modified by the magnetic stress fm, which is a position-dependent normal stress pointing outwards
and thus stretching the capsule and given by the magnetic field at the capsule surface [see Eq. (3)]. It
is important to note that magnetic forces are always normal to the surface such that they do no enter
the tangential force equilibrium (15). The (homogeneous) pressure p0 is the Lagrange multiplier for
the volume constraint V = V0 = 4πR3

0/3.
The equations of force equilibrium and geometric relations can be used to derive a system of four

first-order differential equations with the arc length s0 of the undeformed spherical contour as an
independent variable, which are called shape equations in the following:

r ′(s0) = λs cos ψ, z′(s0) = λs sin ψ,

ψ ′(s0) = λs

τs + γ
[−κϕ(τϕ + γ ) + p(s0)], (17)

τ ′
s(s0) = λs

cos ψ

r
(τϕ − τs).

In these shape equations, the surface tension γ gives an isotropic and constant stress contribution, in
addition to the elastic stresses τs and τϕ . This is because we assume that the undeformed rest state,
where the elastic stresses τs and τϕ vanish, is identical to the shape of a ferrofluid droplet of surface
tension γ . We neglect that γ could change during capsule preparation and during elastic deformation.

The system of shape equations is closed by the constitutive relation (13) for τϕ and the relations

λs = (1 − ν2)λϕ

τs

Y2D
− ν(λϕ − 1) + 1 with λϕ = r

r0
, κϕ = sin ψ

r
,

where the first relation derives from the constitutive relation (13) for τs and the second relation
is geometrical. For further details on the derivation of the shape equations, we refer the reader to
Refs. [7,17,62].

2. Numerical solution of the shape equations

The system of shape equations (17) has to be solved numerically. The integration starts at the
pole with s0 = 0 and runs to the capsule’s equator at s0 = L0/2. To integrate the four first-order
differential equations we have three boundary conditions at s0 = 0:

r(0) = 0, z(0) arbitrary, ψ(0) = 0. (18)

The condition for r(0) follows from the absence of holes in the capsule. We can choose z(0) arbitrarily
because the external magnetic field does not depend on the z coordinate. The boundary condition
ψ(0) = 0 at the pole seems to exclude possible conical capsule shapes with ψ(0) > 0. We discuss
this issue below in Sec. III C and in Appendix C 3. There we derive the boundary condition ψ(0) = 0
for finite stretches λs and λϕ at the poles. The boundary condition ψ(0) = 0 also arises if the magnetic
forces fm remain finite at the poles such that the normal force equilibrium requires finite curvatures
at the poles. Conical shapes, however, have divergent stretches λs and λϕ and divergent magnetic
normal forces fm at their conical tips. In the numerical calculation of capsule shape and magnetic
field we have to discretize the capsule surface such that divergences are cut off (this numerical issue
is discussed in more detail also in Appendix D) and the boundary condition ψ(0) = 0 for finite
stretches λs and λϕ or finite magnetic force fm is appropriate. Then the right-hand side of the shape
equation for τs in Eq. (17) vanishes, τ ′

s(0) = 0 for s0 = 0 [see also Eq. (C14)], which can be used
to start the integration at the pole. A priori, a fourth boundary condition for the tension τs(0) at the
pole is unknown. On the other hand, we have ψ(L0/2) = π/2 as a matching condition at s0 = L0/2
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FIG. 3. Three-dimensional illustration of a wrinkled capsule. The length Lw of the wrinkles is measured as
the length of the region, where τϕ + γ < 0. The wrinkling wavelength is not determined explicitly here.

to prevent kinks there. With the help of this matching condition, we can use a shooting method
to determine τs(0). To increase numerical stability, we expand the shooting method to a multiple
shooting method, where we use several integration intervals with several matching points.

To keep the volume of the capsule constant, we have to use the internal pressure p0 as the
Lagrange multiplier, which is adjusted during the calculation. In order to do so, p0 becomes another
shooting parameter with V − V0 as the corresponding residual. In this work we use a fourth-order
Runge-Kutta scheme with a step size of 
s0 = 10−6 in the first integration interval starting at the
apex and 
s0 = 10−4 in all other intervals, while there is a total of 250 integration intervals.

3. Wrinkling

A ferrofluid-filled capsule is stretched in a uniform external magnetic field in the direction of the
magnetic field. As opposed to a ferrofluid droplet, a capsule can develop wrinkles if circumferential
compressive stresses arise as a result of this stretching.

Because of volume conservation, the circumferential radius of the capsule has to decrease in the
equator region, giving rise to compression with λϕ < 1 in this region, and a region of negative elastic
stress τϕ < 0 develops. In contrast to a droplet with a liquid surface and constant surface tension
γ > 0, regions of negative total hoop stress γ + τϕ < 0 can develop for capsules if the negative
elastic hoop stress exceeds the surface tension. Then the elastic shell can reduce its total energy by
developing wrinkles in the circumferential direction (see Fig. 3 for illustration). These wrinkles cost
stretching energy in the meridional s direction and bending energy, but this is compensated by a
release of compressional stresses and a reduction of elastic compression energy in the ϕ direction.
Strictly speaking, γ + τϕ < 0 is only an approximation neglecting the bending energy, which will
also increase upon wrinkling, and the negative stress has to exceed a small Euler-like threshold value.
We expect the wrinkles to occur in a region near the capsule equator. Thus they will be roughly parallel
to the external magnetic field and therefore we assume that they do not effect the magnetic properties
of the capsule.

In order to introduce wrinkling in the shape equations, we will use the same approach that has been
used for pendant capsules in Ref. [17]. The wrinkles will break the axial symmetry. In the wrinkled
regions, where γ + τϕ < 0, we approximate the shape by an axisymmetric pseudomidsurface
(r(s0),z(s0)) for which we use modified axisymmetric shape equations, where we set γ + τϕ = 0. This
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condition states that the total circumferential hoop stress is completely relaxed by fully developed
wrinkles [64]. This leads us to a new set of equations (see also Ref. [17]), which read

r ′(s0) = λs cos ψ, z′(s0) = λs sin ψ, ψ
′
(s0) = λs

τ s + γ
p, τ ′

s(s0) = −λs

cos ψ

r
(τ s + γ ). (19)

We also have to introduce a modified effective surface tension γ = λϕ/λϕ , because the real surface
area exceeds the pseudosurface area, and we have to model this increase of Eγ by increasing γ

instead. This new system of differential equations is closed by the relations

λs = τ sλϕ + Y2D

Y2D − νγ
, λϕ = r

r0
.

In order to calculate γ , the circumferential stretch factor λϕ of the real, wrinkled surface has to
be calculated via the constitutive relations (13). To calculate wrinkled capsule shapes we start to
solve the shape equations (17) as described before. As soon as the condition τϕ + γ < 0 is valid,
we continue the calculations by solving the modified system (19). By following the solution of the
modified system, we can calculate the length Lw of the wrinkled region

Lw =
∫

τϕ+γ<0
ds. (20)

At this point, it is also possible to calculate the wavelength of the wrinkles using the same methods
as in Ref. [17]. Here we will mainly be interested in the extent Lw of the wrinkled region.

4. Ferrofluid droplet

The special case Y2D = 0 describes a ferrofluid droplet without an elastic shell and has been
treated in the literature before. The balance of forces on the surface is given by the Laplace-Young
equation (12). Using the definitions of κs and κϕ , this equation can be translated into

dψ

ds
= p

γ
− sin ψ

r
.

In order to have a parametrization in the reference arc length s0 and a fixed integration interval, we
introduce a constant stretch factor λs , which is adjusted as a shooting parameter. The boundary and
matching conditions are the same as in the case of the elastic shape equations. Together with the
already known geometrical relations for r and z, we get a system of three shape equations for a
droplet:

r ′(s0) = λs cos ψ, z′(s0) = λs sin ψ, ψ ′(s0) = λs

(
p0 + fm

γ
− sin ψ

r

)
. (21)

This system is solved in the same way as the shape equations for elastic capsules in the previous
sections. The basic shooting parameters are given by λs and p0. Our solution scheme for the Laplace-
Young equation is chosen such that it is completely analogous and comparable to the elastic shape
equations. There are several other ways to solve this equation with a volume constraint, for example,
by employing finite elements [65].

D. Iterative numerical solution of the coupled problem

The magnetostatic and the elastic problem are coupled: The capsule shape determines the boundary
conditions for the magnetic field via the continuity conditions (5), while the normal magnetic force
density fm(r,z) acting on the capsule surface [see Eq. (3)] enters the shape equations (17) via the
pressure [see Eq. (16)]. To find a joint solution we use an iterative numerical solution scheme. We
start with the reference shape and calculate the corresponding magnetic field H(r,z) for a given
external field H0. Then we can calculate a deformed shape of the capsule using this magnetic field.

043603-12



SPHEROIDAL AND CONICAL SHAPES OF FERROFLUID- …

Now we recalculate the magnetic field and so on until the iteration converges. At this fixed point,
the solution of the shape equations and the magnetic field are self-consistent. This iterative coupling
of elastic shape equations to an external field calculated by a boundary element method is similar to
the iterative scheme used in Ref. [11] to calculate the shape of sedimenting capsules in an external
flow field. For the problem of ferrofluid droplets, an analogous iterative strategy has been introduced
in Refs. [34,54,55,59].

The iteration can cause numerical problems in the solution of the the nonlinear elastic shape
equations. If the capsule shape changes rapidly during the iteration, the shooting method used to
solve the shape equations does not find a solution. This problem can be reduced by slowing down the
iteration. To solve the elastic shape equations in the nth step, we use a convex linear combination of
the updated magnetic field H′

n and the magnetic field Hn−1 from the previous iteration step instead
of H′

n itself [11,59]:

Hn = Hn−1 + α(H′
n − Hn−1). (22)

The parameter α ranges between 0 and 1 and has to be lowered in situations of quickly changing
shapes of the capsule. Finally, it is switched back to 1 to ensure real convergence. To track a solution
as a function of the magnetic field strength, it is helpful to increase the external magnetic field
H0 in small steps 
H0 and let the capsule’s shape converge after each step. This slows down the
calculation speed drastically but increases numerical stability and helps to track a specific branch of
stable solutions (see Sec. IV C 4).

A problem with the iterative solution scheme can arise if the capsule shape becomes nearly conical
with a very sharp tip of high curvature. Then the numerical error in the calculation of the magnetic
field (see Sec. II B 2) makes it difficult or even prohibitive to reach a fixed point of the iterative scheme.
Instead the iteration gives oscillations of the capsule shape around the required fixed point, which
worsens the quality of the results. The iterative strategy used here directly converges to stationary
shapes without simulation of the real dynamics.

An alternative to our iterative scheme is to directly simulate the dynamics for the fluid from the
electromagnetic, elastic, and hydrodynamic forces. Then the fluid motion is simulated over time until
it reaches a steady state. This method was used by Karyappa et al. for elastic capsules in electric fields
[21]. For liquid droplets, there are comparable problems with sharp tips and numerical singularities,
where the full dynamics could by solved to great accuracy, such as the emission of fluid jets at the
tip of drops in electric fields [43], pinch-off dynamics [66], and coalescence phenomena [67]. The
errors of the field calculation with finite elements at such sharp tips can also be reduced by using
advanced mesh algorithms, such as the elliptic mesh generation [68].

E. Control parameters and nondimensionalization

In order to identify the relevant control parameters and reduce the parameter space, we introduce
dimensionless quantities. We measure lengths in units of the radius R0 of the spherical rest shape,
energies in units of γR2

0 , i.e., tensions in units of the surface tension γ of the ferrofluid, and magnetic
fields in units of the external field H0. The problem is then governed by essentially three dimensionless
control parameters.

The magnetic Bond number Bm,

Bm ≡ μ0R0χH 2
0

2γ
, (23)

is the dimensionless strength of the magnetic force density. With this dimensionless number, the
Laplace-Young equation (12) for a ferrofluid droplet can be written in dimensionless form

κ̃s + κ̃ϕ = p̃0 + Bm

(
H̃ 2 + χH̃ 2

n

)
,

with H̃ ≡ H/H0, κ̃ ≡ R0κ , and p̃ ≡ pR0/γ . The scaled droplet shape described by this Laplace-
Young equation then only depends on the two dimensionless parameters Bm and χ .
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The dimensionless Young modulus Y2D/γ is the control parameter for elastic properties of the
capsule shell. Another dimensionless control parameter for elastic properties is Poisson’s ratio ν,
which is set to ν = 1/2 and thus fixed throughout this paper. The limit Y2D/γ = 0 describes a droplet
without an elastic shell while Y2D/γ � 1 describes a system dominated by the shell elasticity.

The three dimensionless parameters Bm, Y2D/γ , and the magnetic susceptibility χ of the ferrofluid
uniquely determine the capsule shape (apart from its overall size R0). In the following we consider
Bond numbers Bm between 0 and 103 (see Sec. IV). For a typical ferrofluid-filled capsule with
χ = 21, R0 = 1 mm [21,69], and γ = 0.01 N/m, these Bond numbers correspond to magnetic field
strengths H between 0 and about 500 kA/m (or fields B = μ0H between 0 and 0.5 T). We consider
dimensionless Young moduli Y2D/γ from 10−2 (nearly no elasticity) to 100 (elastically dominated)
and the purely elastic limit Y2D/γ = ∞ (where the definition of Bm is not useful anymore). For the
analogous problem of a dielectric droplet in an external electric field E0 we can introduce a dielectric
Bond number Be by Be = ε0εoutR0χεE

2
0/2γ , where χε is the analog of the magnetic susceptibility

χ and has been defined in Eq. (8).

III. ANALYTICAL APPROACHES

In this section we introduce three approximative analytical approaches to the problem, which
describe ferrofluid-filled elastic capsules in three different deformation regimes. The first approach
is the analysis of the linear response of the capsule to small magnetic forces. The second approach
applies to spheroidal shapes at moderate magnetic forces and is an approximative minimization of
the total magnetic and elastic energy under the assumption of a spheroidal shape and uniform stretch
factors. This extends the approximative energy minimization of Bacri and Salin [27] for ferrofluid
droplets to capsules. Finally, we investigate conical capsule shapes as they can arise under strong
magnetic forces. We investigate the existence of conical shapes and derive the governing equations
in a slender-body approximation by extending the approach of Ref. [32] from conical droplets to
conical capsules.

A. Linear shape response at small fields

In this section we derive the linear response of the spherical capsule shape to small magnetic
forces. In particular, we derive the elongation a/b of the capsule, where a denotes the capsule’s polar
radius and b its equatorial radius (see Fig. 1). Details of the derivation are given in Appendix A; here
we present the main results.

At small fields displacements change linearly in the magnetic force density fm. Therefore, radial
and tangential displacements uR(θ ) and uθ (θ ) (using spherical coordinates with a polar angle θ and
assuming axisymmetry) are of O(H 2). In order to calculate the displacements we consider the force
equilibria in normal direction, i.e., the Laplace-Young equation (14), and in tangential direction, i.e.,
Eq. (15). For a liquid ferrofluid droplet with an isotropic surface tension γ both force-equilibria give
equivalent results. Expanding to linear order in the displacements around the spherical shape, we
obtain two coupled differential equations for the functions uR and uθ .

These linearized force-equilibrium equations can be solved exactly. The solution takes the form

uR = A + B cos2 θ, uθ = C sin θ cos θ, (24)

where A, B, and C are determined in Appendix A explicitly. We find B = μ0(5 + ν)χ2H 2R2
0/

8[Y2D + (5 + ν)γ ] from the normal force equilibrium and C = −2(1 + ν)B/(5 + ν) from the
tangential force equilibrium and the pressure is adjusted such that A = −B/3 in order to fulfill
the volume constraint.

The functional form uR = A + B cos2 θ of the normal displacement leads to a spheroidal
shape in linear response. For a spheroid we can use the relation H = 3H0(3 + χ ) and obtain
B = R0Bm9(5 + ν)χ/4(3 + χ )2[Y2D/γ + (5 + ν)]. The linear response approach remains valid as
long as A,B,C � R0 or Bm/[Y2D/γ + (5 + ν)] � (3 + χ )2/χ ≈ χ .
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FIG. 4. Elongation a/b of a capsule filled with a ferrofluid with χ = 21 as a function of Bm/[Y2D/γ +
(5 + ν)] for different values of Y2D/γ in the region of small deformations. The solid line describes the linear
approximation from Eq. (25). The best agreement between the numerical data and the linear approximation is
given for a purely elastic system without wrinkling effects (closed purple circles). Wrinkling effects lead to
considerable deviations (squares).

From the displacement uR(θ ) we can calculate its elongation

a

b
≈ 1 + uR(0) − uR(π/2)

R0
= 1 + B

R0

in linear order in the displacement. For a ferrofluid droplet with surface tension γ and without any
elastic tensions, i.e., Y2D/γ = 0, we get, for the elongation a/b in linear order [see Eq. (A10)],

a

b
= 1 + 9μ0R0χ

2

8γ (3 + χ )2
H 2

0 .

For the general case Y2D/γ > 0, we find [see Eq. (A16)]

a

b
= 1 + 9μ0R0χ

2(5 + ν)

8[Y2D + γ (5 + ν)](3 + χ )2
H 2

0 = 1 + 9

4

χ

(3 + χ )2

Bm

Y2D/γ (5 + ν) + 1
, (25)

which gives a precise prediction of the capsule’s elongation for small fields, as a comparison with
the numerical results in Fig. 4 shows. To leading order in Bm Eq. (25) agrees with the results from a
similar small deformation approach in Ref. [21] for capsules filled with a dielectric liquid in electric
fields.

B. Approximative energy minimization for spheroidal shapes

In this section we derive an analytical approximation for the elongation a/b of the capsule at
moderate magnetic forces by minimizing an approximative total energy, which assumes a spheroidal
shape for magnetic and elastic contributions. For ferrofluid droplets, the spheroidal approximation is
based on the experimental observation that the droplet shape in uniform magnetic fields is very similar
to a prolate spheroid [26,27,35] for sufficiently small magnetic Bond numbers before a transition into
a conical shape can take place. Our numerical results show that this behavior remains qualitatively
unchanged with an additional elastic shell (see Sec. IV A).

Therefore, we consider a capsule with prolate spheroidal shape. Analogously to Bacri and Salin
[27], we use an energy argument by minimizing the total energy of the capsule at fixed volume
V = (4π/3)ab2 = V0. The total energy consists of three different contributions. First is the surface
energy Eγ , which is caused by the surface tension γ . It is proportional to the surface area A and
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given by

Eγ = γA = 2πab

[
b

a
+ 1

ε
arcsin ε

]
γ, (26)

where ε ≡
√

1 − b2/a2 is the eccentricity.
The second energy contribution is the magnetic field energy Emag. According to Ref. [70], Emag

can be written as

Emag = −V μ0

2

χ

1 + nχ
H 2

0 (27)

for μout = 1 and with the demagnetization factor n = (b2/2a2ε3){−2ε + ln [(1 + ε)/(1 − ε)]}.
The third energy contribution is the elastic stretching energy Eel, which we construct by taking

the energy density ws from Sec. II C,

Eel =
∫

wsdA0 =
∫

1

2

Y2D

1 − ν2

(
e2
s + 2νeseϕ + e2

ϕ

)
dA0,

with es = λs − 1 and eϕ = λϕ − 1, as defined in Sec. II C 1. At this point, the stretch factors λs and
λϕ are unknown and we need further approximations. An acceptable approximation for spheroidal
shapes, which is checked below by comparison with the numerics (see Fig. 6), is constant stretch
factors throughout the shell, i.e., λs,λϕ = const, which leads to

Eel = 1

2

Y2D

1 − ν2

(
e2
s + 2νeseϕ + e2

ϕ

)
A0. (28)

We approximate the circumferential stretch factor λϕ by the stretching of a fiber at the capsule equator
and set

λϕ = b

R0
.

In meridional direction we approximate λs by taking the ratio of the perimeter Pellipse of the
corresponding ellipse, which generates the prolate spheroid by rotation, and the perimeter Pcircle =
2πR0 of a great circle on the initial sphere. The perimeter of the ellipse is given by an elliptic integral.
Therefore, we use Ramanujan’s approximation [71], which leads us to

λs = Pellipse

Pcircle
≈ a + b

2R0

(
1 + 3η2

10 +
√

4 − 3η2

)
,

with η ≡ (b − a)/(b + a).
As the last step, we have to minimize the total energy Etot = Eγ + Emag + Eel with respect to the

elongation ratio a/b at fixed volume V = (4π/3)ab2 = V0 in order to get the equilibrium elongation
as a function of the magnetic Bond number Bm for spheroidal shapes. Details of the calculation
are presented in Appendix B. We obtain a closed but quite complicated analytical expression for
the inverse relation Bm = g(b/a), i.e., the magnetic Bond number Bm as a function of the inverse
elongation b/a < 1 for spheroidal shapes in Eq. (B1). The function g(k) in Eq. (B1) still depends on
three dimensionless parameters: the susceptibility χ , the dimensionless Young modulus Y2D/γ , and
Poisson’s ratio ν. This relation reduces to the results of Bacri and Salin [27] for ferrofluid droplets
in the limit Y2D = 0.

C. Conical membrane shapes with normal magnetic forces

For ferrofluid-filled droplets a shape transition into a stable conical shape with ψ(0) > 0 is possible
above a critical susceptibility χc and at high magnetic fields [27,30,32,72]. We want to show that
a conical shape with a strictly conical tip can also exist for an elastic capsule with spherical rest
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shape and normal magnetic stretching forces if the constitutive relation is of the nonlinear form (13).
Details of the argument are presented in Appendix C.

The existence of sharp cones in deformed membranes is an important issue in deformations of
membranes with planar rest shape [73]. A membrane of thickness D prefers bending deformations
(energy proportional to D3) over stretching deformations (energy proportional to D). If external
forcing or constraints are such that stretching can be avoided, the membrane responds by pure
bending. Any deformation of such an unstretched membrane has to preserve the metric and thus the
vanishing Gaussian curvature of a plane. This results in so-called developable cones, which have
zero Gaussian curvature everywhere except at the tip of the cone. Cones only develop in response to
external forces or constraints, typically under compressional constraints or forcing as in the crumpling
of paper. Then unstretched membranes develop folds or wrinkles around the developable cones in
order to accommodate the excess area that occurs under compression [73–75].

Our ferrofluid elastic membranes differ in several respects. The magnetic forces are always
stretching forces and they are always normal to the surface such that the tangential force equilibrium
(15) only involves internal stresses of the membrane. Under stretching forces the membrane cannot
respond by pure bending and changes in the metric are unavoidable. However, the forcing depends
on the magnetic field distribution [see Eq. (3)] and becomes concentrated in points of high fields,
which are typically points of high curvature. This establishes a positive feedback between shape and
magnetic field distribution that can stabilize conical tips. Moreover, we consider membranes with
spherical rest shape and thus nonzero Gaussian curvature K = 1/R2

0 . This is another reason why
deformation into a cone with K = 0 is impossible without stretching. Similar conditions (normal
forces and spherical rest shape) are fulfilled for spherical shells under point forces, where conical
solutions have also been obtained [13] and to which most of our results regarding the existence of
conical shapes should also apply.

The tangential force equilibrium (15) has to be fulfilled in the vicinity of the conical tip and
is independent of the stretching magnetic forces, which are always normal. In combination with
the nonlinear constitutive relations (13) this requires that the stretching tensions remain finite and
isotropic at the conical tip, i.e., τs(0) = τϕ(0) > 0 at s0 = 0. From the constitutive relations then also
follows the isotropy of the stretches λs(0) = λϕ(0) at the tip. However, stretches are not necessarily
finite at a conical tip.

For finite isotropic stretches λs(0) = λϕ(0) < ∞ at the pole, l’Hôpital’s rule applied at s0 = 0
gives λϕ(0) = λs(0) cos[ψ(0)] [see Eq. (C2)]. Then isotropy requires ψ(0) = 0 and it follows that
a sharp conical tip with ψ(0) > 0 is impossible if stretches remain finite at the tip. Finite isotropic
stretches at the pole thus always lead to flat tips with ψ(0) = 0 as for the spheroidal shapes.

For diverging and asymptotically isotropic stretches

λs(s0) ≈ λϕ(s0) ≈ const s−β

0 , (29)

with an exponent β > 0; however, l’Hôpital’s rule does not apply at s0 = 0. Then we find instead
that isotropy of the diverging stretches requires a conical tip with the relation

β = cos[ψ(0)] − 1 = sin α − 1 (30)

between the exponent β and the half opening angle α = π/2 − ψ(0) of the conical tip [see Eq. (C4)].
This result can be obtained from a modified l’Hôpital’s rule or directly from analyzing stretches for a
deformation into a conical tip under the constraint of isotropy of the stretches at the tip [see Eq. (C12)].
For the nonlinear constitutive relation (13) diverging and isotropic stretches are still compatible with
finite and isotropic tensions, which approach τs(0) = τϕ(0) = Y2D/(1 − ν) [see Eq. (C5)] at the tip.
Moreover, β > −1 according to (30) and therefore the divergence is such that the elastic energy [the
energy density (10) integrated over the tip area] remains finite.

Any numerical approaches to capsule shell mechanics and the calculation of the magnetic fields
rely on discretization. In the numerical solution of axisymmetric shape equations, the arc length s0

is discretized. After discretization in the numerics, stretches necessarily remain finite at potential
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conical tips at the apices. Then our results for finite stretches apply and we have to choose a boundary
condition ψ(0) = 0. Also, for the calculation of the magnetic fields, we discretize the boundary of
the capsule [see Eq. (7)]. Therefore, also magnetic fields remain finite at conical tips. Then also the
normal magnetic forces remain finite and can only support finite curvatures at the tip of the conical
shape. This leads to a rounding of conical tips and thus also requires ψ(0) = 0. This implies that, in
the numerical calculations, all shapes of ferrofluid capsules will have rounded tips with ψ(0) = 0;
the rounding of a conical tip for these numerical reasons will happen on the scale of the discretization
of the problem. A boundary condition ψ(0) for the numerical solution of the shape equations [see
Eq. (18)] has also been used in Refs. [34,54,55,59] for ferrofluid droplet shapes.

D. Slender-body approximation for conical capsules

For ferrofluid droplets, the conical shape could be investigated analytically using a slender-body
approximation [32], which we want to adapt for conical shapes of the ferrofluid-filled capsule.
We have shown that conical shapes can also exist for ferrofluid-filled capsules, but they involve
diverging isotropic stretches at the conical tip. Tensions are isotropic, remain finite at the conical tip,
and approach the limiting values τs(0) = τϕ(0) = Y2D/(1 − ν) [see Eq. (C5)].

The capsule shape is described by a function r(z) in cylindrical coordinates. In a slender-body
approximation, we assume ∂zr � 1; for a conical tip with half opening angle α = π/2 − ψ(0), we
have ∂zr ≈ tan α in the vicinity of the tip. Then we can neglect small radial field components and
approximate the magnetic field as parallel to the z axis, H = H (z)ez. The field H (z) is determined
by

H0 = H (z) − ln A

2
χ∂2

z [r2(z)H (z)], (31)

where A is the aspect ratio of the slender shape, which can be expressed in terms of the half opening
angle, A = 1/ tan α, for a conical shape [32]. This relation is unchanged as compared to fluid droplets
as it is a result of the slender shape and magnetic boundary conditions only and independent of the
surface elasticity underlying the shape.

In the slender-body approximation we also assume ∂2
z r � 1/r such that the meridional curvature

is small κs � κϕ ≈ 1/r(z). Then the Laplace-Young equation describing normal force equilibrium
becomes

1

r(z)
{τϕ[r(z)] + γ } = p0 + fm. (32)

This relation differs from the corresponding relation for fluid droplets by the appearance of the
additional elastic tension τϕ = τϕ(r). As shown in Appendix C 3, tangential force equilibrium is
fulfilled in the vicinity of the conical tip if stretches are diverging, and the resulting circumferential
tension is

τϕ(r) = Y2D

1 − ν
[1 − 2R0 sin α(a tan α)−1/ sin αr1/ sin α−1] (33)

[see Eq. (C14)] in the vicinity of the conical tip. Note that a still denotes the polar radius. In
Appendix C 2 we also outline how the tension τϕ(r) could be calculated for a general shape r(z), in
principle.

The Laplace-Young equation (32) with an elastic tension (33) and the slender-body field equation
(31) provide two coupled equations for r(z) and H (z). The pressure p0 has to be chosen such that
the resulting shape r(z) fulfills the volume constraint

V0 = π

∫ a

−a

r2(z)dz. (34)

The three equations (31), (32), and (34) governing slender (and, in particular, conical) shapes of
a ferrofluid-filled capsule only differ in the appearance of the additional elastic tension τϕ = τϕ(r)
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FIG. 5. Comparison of numerically calculated r(z) contour of a capsule with Y2D/γ = 100 and χ = 21, for
a value Bm chosen such that the elongation is a/b = 2 (the inset shows the location of the pictured shapes in
the Bm-a/b plane) with a spheroid. The shape calculated without wrinkling (blue solid line) shows very good
agreement with a spheroid of the same volume and elongation (red dashed line). Taking wrinkling into account
leads to visible deviations (green dotted line).

from the corresponding equations for ferrofluid droplets from Ref. [32]. They can be also be solved
analogously as for ferrofluid droplets, in principle.

IV. RESULTS

A. Spheroidal capsule shapes

While the capsule is spherical at Bm = 0, it becomes elongated for increasing magnetic field or
Bond number Bm similarly to a ferrofluid droplet. We can quantify the elongation by the ratio of
capsule length a in the z direction and capsule diameter b at the equator, a/b. At small or moderate
magnetic fields ferrofluid capsules assume a prolate spheroidal shape to a very good approximation;
one example is shown in Fig. 2(b).

For small fields we calculated the linear response of the capsule exactly in Sec. III A and
Appendix A and found displacements (24), which describe a prolate spheroid with an elongation
a/b > 1 given by Eq. (25). This analytical result is in excellent agreement with numerical results
for small fields (see Fig. 4). The linear response regime is valid as long as a/b − 1 � 1 or
Bm � [Y2D/γ (5 + ν) + 1](3 + χ )2/χ according to Eq. (25).

Small magnetic fields are easily accessible and for many ferrofluids, susceptibilities are rather
small (for example, χ � 0.36 in Ref. [36]). Therefore, spheroidal shapes in the linear response
regime are experimentally easily accessible. Then the linear response relation (25) can be used as
experimental method to deduce unknown capsule material properties, for example, Young’s modulus
Y2D if the magnetic properties of the ferrofluid are known.

At moderate magnetic fields, the capsule shape remains very similar to a prolate spheroid for all
elongations a/b � 3, which was one basic assumption of the approximative energy minimization
in Sec. III B. Figure 5 demonstrates this for shapes with a/b = 2. The spheroidal approximation
works better for systems dominated by the surface tension, i.e., for small ratios Y2D/γ . For fixed
Bond number Bm and susceptibility χ the elongation decreases with increasing Y2D/γ because of the
additional stretching energy of the shell as compared to a droplet, so a ferrofluid droplet (Y2D/γ = 0)
always shows the highest elongation. For small fields, this trend can be quantified with the linear
response relation (25). For smaller elongations, the spheroidal approximation tends to work better.

The other assumption in the approximative energy minimization in Sec. III B was constant stretch
factors throughout the shell, i.e., λs,λϕ = const (and thus constant elastic tensions τϕ and τs).
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FIG. 6. (a) Stretch factors in the meridional direction λs(s0) following the whole contour line from the
south pole (s0 = 0) to the equator (s0/R0 = π/2) for Y2D/γ = 100 and χ = 21. The left scale (red dashed line)
gives almost constant stretch factors for a spheroidal shape with a/b = 2. The right scale (blue solid line) gives
diverging stretch factors for a conical shape with a/b = 5.34. (b) Logarithmic plot of λs(s0) near the tip for
s0/R0 < 10−1. The function λs(s0) = const s−β

0 [see Eq. (29)] was fitted to the data of the conical shape, which
gave β = 0.562, corresponding to an angle α = 25.98◦ in Eq. (30). (c) Zoom in to the tip of the contour line
z(r) for the conical shape; the half opening angle is α ≈ 25◦.

Also this approximation works very well for spheroidal shapes with elongations a/b � 3, as the
numerical results in Fig. 6 for a/b = 2 (left scale, red line) show. As a result, the approximative
energy minimization in Sec. III B gives very good results for moderate magnetic fields, i.e., for
all elongations a/b � 3, where we always find prolate spheroidal shapes, as the comparison with
numerical results in Fig. 7 shows.

FIG. 7. Elongation a/b of a capsule filled with a ferrofluid with χ = 21 as a function of magnetic Bond
number Bm for different values of the dimensionless elastic parameter Y2D/γ . The magnetic Bond number
is rescaled by Y2D/γ + (5 + ν), which is motivated by the small field behavior [see Eq. (25)]. The solid
lines describe the theoretical results from approximative energy minimization (see Sec. III B). Open (closed)
symbols denote numerical data for increasing (decreasing) Bm. The agreement is good for small elongations;
the approximation fails for higher elongations, especially at the shape transition (close-up in the right diagram),
where a/b jumps for small changes of Bm. Hysteresis effects are clearly visible in that area. There are two
sets of numerical data for Y2D/γ = ∞: Square data points are based on the modified shape equations that
take wrinkling into account, while diamonds are calculated without wrinkling. There are also two sets of data
without elasticity: The upper data points (black) describe a droplet with a real conical tip with a cone angle of
ψ(0) = 70.2◦, as it was given in Ref. [32]; for the lower points (blue) we used the boundary condition ψ(0) = 0.
Dashed lines indicate the position of shape transitions. Above these lines, shapes are conical, while they are
spheroidal below. The markers (b) and (c) correspond to the shapes in Fig. 2.
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B. Conical capsule shapes and capsule rupture

For large magnetic fields or Bond numbers Bm and at sufficiently high susceptibilities χ , ferrofluid
capsules can also assume conical shapes, such as the shape in Fig. 2(c), which have also been found
for ferrofluid droplets [30,32]. We investigated the possibility of conical shapes for elastic capsules
with normal magnetic forces above in Sec. III C and found that stretch factors have to diverge at the
conical tips, λs(s0) ≈ λϕ(s0) ≈ const s−β

0 [see Eq. (29)], with an exponent β = sin α − 1, which is
determined by the half opening angle α = π/2 − ψ(0) of the conical tip [see Eqs. (30) and (C4)].
This behavior is confirmed by our numerical results in Fig. 6 (left scale, blue line). The stretch
factors diverge but are asymptotically isotropic at the tips. The nonlinear constitutive relations (13)
then result in finite and isotropic tensions τs(0) = τϕ(0) = Y2D/(1 − ν) [see Eq. (C5)].

Diverging stretch factors cannot be realized in an actual material without rupture. Typical alginate
capsule materials can only resist stretch factors of λ � 1.2 before rupture; highly stretchable
hydrogels can resist stretch factors up to λ ∼ 20 [76]. Therefore, a real capsule should rupture
at the poles at the transition into a conical shape and we conclude that investigations of conical
shapes are primarily of theoretical interest. Such rupture events have actually been observed in
Ref. [21] for capsules filled with a dielectric liquid in external electric fields. We expect that the
nonlinear Hookean material law will become invalid at such high stretch factors prior to rupture.
Then constitutive relations which are more realistic for high strains should be used. Nevertheless,
the appearance of large stress factors is a robust feature of the conical shape independently of the
material law.

Conical shapes cannot be described quantitatively by the approximative energy minimization from
Sec. III B as spheroidal shapes with a large elongation a/b, which is clearly shown by the deviations
between numerical results (data points) and the approximative energy minimization from Sec. III B
(solid lines) for the conical shapes in Fig. 7. For ferrofluid droplets, conical shapes can be described
by a slender-body theory [32], which we generalized in Sec. III D to ferrofluid-filled capsules. The
three governing equations (31), (32), and (34) from Sec. III D can be used to describe conical capsule
shapes quantitatively.

As pointed out above, the tensions remain finite and isotropic at the conical tip, i.e., τs(r) ≈
τϕ(r) ≈ Y2D/(1 − ν) for small r [see Eq. (C5)]. Then the slender-body equation (32) from normal
force balance actually becomes identical to the corresponding equation for a droplet from Ref. [32],
however, with an effectively increased surface tensions γeff = γ + τϕ(0). Also the other two equations
(31) and (34) are identical such that we obtain very similar slender conical shapes for capsules and
droplets, which can be mapped onto each other by a simple shift of the surface tension.

The mechanism underlying the stabilization of the conical shape is analogous to ferrofluid droplets
because tensions remain finite and isotropic at the conical tip. A sharp conical tip with curvatures
κϕ ∝ 1/r gives rise to diverging magnetic fields H ∝ r−1/2 and normal magnetic forces

fm ∝ H 2 ∝ r−1, (35)

both for ferrofluid droplets and capsules. These strong magnetic stretching forces stabilize the conical
tip against high elastic restoring forces. The normal component of the elastic force is mainly due to
the finite circumferential tension γ + τϕ(0) acting along the high circumferential curvature κϕ ∝ 1/r

at the conical tip, resulting in an elastic force fel ∝ [γ + τϕ(0)]κϕ ∝ r−1 with the same divergence.
Magnetic and elastic normal forces balance in the Laplace-Young equation (32) in the slender-body
approximation. The magnetic field exponent H ∝ r−1/2 is identical for capsules and droplets, as long
as the elastic tensions at the conical tip are finite. This exponent determines the critical susceptibility
χc above which a shape transition into conical shapes is possible and therefore we also find the
identical χc for capsules and droplets as discussed in the following section.

C. Spheroidal-conical shape transition of capsules

Upon increasing the magnetic field or the magnetic Bond number Bm at fixed capsule elasticity
Y2D/γ > 0 and for a sufficiently large and fixed ferrofluid susceptibility χ , we find a discontinuous
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shape transition from spheroidal to conical capsule shapes, similar to what has been found for
ferrofluid droplets (Y2D/γ = 0) [27,30,32]. One of our main results is the diagram of capsule
elongation a/b as a function of Bond number Bm in Fig. 7 for different values of elasticity
parameters Y2D/γ and for χ = 21, where a lower spheroidal branch and an upper conical branch
and a discontinuous transition between both branches can be identified. In the following sections we
will discuss different aspects of this shape transition in more detail.

1. Critical susceptibility χc

For ferrofluid droplets, a discontinuous shape transition was observed in experiments [27,77] and
numerical simulations [34,35] only for susceptibilities χ > χc, i.e., above a critical susceptibility
χc. In Ref. [30] a value χc = μc/μout − 1 � 16.59 was found below which no conical shape can
exist; the slender-shape approximation for droplets from Ref. [32], which we generalized to elastic
capsules in Sec. III D, gives χc = 16e/3 � 14.5. The approximative energy minimization of Bacri
and Salin [27], which we generalized to elastic capsules in Sec. III B, gives χc � 19.8 for ferrofluid
droplets. Numerically, a range of χc � 19 to χc � 19.5 is observed [72]. The question arises whether
a critical susceptibility χc can also be found for the existence of a discontinuous spheroidal-conical
transition for ferrofluid-filled elastic capsules.

For given χ and half opening angle α of the conical shape electromagnetic boundary conditions
determine the divergence H ∝ rμ−1 of the field via the equation [30,31]

Pμ(cos α)P ′
μ(− cos α) + (χ + 1)Pμ(− cos α)P ′

μ(cos α) = 0. (36)

Because of the finite elastic tension τϕ(0) at the conical tip, the magnetic field at the tip of a conical
capsule diverges with the same μ = 1/2 [see Eq. (35)] as for a conical droplet. Therefore, we find the
same critical susceptibility χc � 16.59, above which a conical solution can exist, for both capsules
and droplets.

In the slender-body approach, Eq. (31) determines χc and applies unchanged to both slender
conical droplets and ferrofluid-filled capsules. Also the magnetic field divergence H ∝ r−1/2 is
identical in both cases, so the analysis of Eq. (31) predicts the same critical value χc = 16e/3 � 14.5
for ferrofluid-filled capsules as for ferrofluid droplets.

In particular, both the analysis of Eq. (36) and the slender-body approach predict that the value
for χc to be independent of the Young modulus Y2D of the capsule. This result is corroborated by
our numerics for χ = 21, where we always observe a spheroidal-conical shape transition, even for
Y2D/γ → ∞ [see Eq. (7)].

This result is in contrast, however, to what we find using the approximative energy minimization
for spheroidal shapes from Sec. III B. Analyzing Eq. (B1), Bm = g(k) = g(b/a), for the saddle points
of the function g(k) gives the critical value of the susceptibility χc [the two equations g′(k) = 0 and
g′′(k) = 0 determine two critical parameter values k = kc and χ = χc]. Using this approach, we find
a χc, which is strongly increasing with the Young modulus Y2D/γ , such that we find χc > 21 already
for Y2D/γ > 0.015, which clearly disagrees with all our numerical and analytical results. The reason
for this disagreement is the failure of the approximative energy minimization to correctly describe
conical shapes as discussed in Sec. IV B.

It is interesting to consider the robustness of our result of a Y2D-independent χc that is identical
to the χc for ferrofluid droplets with respect to the constitutive relation. We used the nonlinear
Hookean constitutive relation (13), which can only support finite tensions at a conical tip, even for
diverging stretches (see Sec. III C). A simple linear Hookean constitutive relation [missing the 1/λ

factors in Eq. (13)] behaves differently and exhibits diverging tensions τϕ ∼ r−σ with σ > 0 at a
conical tip. Then tangential force equilibrium (C1) also requires τs ∼ τϕ ∼ r−σ but with an anisotropy
τϕ/τs = 1 − σ . With the linear constitutive relation this in turn leads to stretches λs ∼ λϕ ∼ r−σ with
an anisotropy λϕ/λs = (1 − ν − σ )/(1 − ν + νσ ) ≡ δ or δ(σ ) = (1 − 2σ )/(1 + σ ) for a Poisson
ratio ν = 1/2. Requiring this anisotropy in Eq. (C10) at a conical tip with half opening angle α leads
to a modified differential equation (C11) and a divergence λs ∼ λϕ ∼ r1−1/δ(σ ) sin α . Consistency with
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λs ∼ λϕ ∼ r−σ then requires

σ = 1

δ(σ ) sin α
− 1 = 1 + σ

1 − 2σ

1

sin α
− 1,

which determines the divergence σ = σ (α) of tensions τs ∼ τϕ ∼ r−σ as a function of the opening
angle α. At the conical tip we have now curvatures κϕ ∝ 1/r in combination with circumferential
tensions τϕ ∼ r−σ such that normal force balance also requires magnetic forces fm ∝ H 2 ∝ r−1−σ

[cf. Eq. (35)]. Thus, we have to use μ = 1 − σ (α) instead of μ = 1/2 in H ∝ rμ−1 in Eq. (36) and
obtain a modified equation for the cone angle α as a function of the parameter χ . This equation has
a solution only above χc � 40.5 and thus the critical value χc is strongly increased for a strictly
linear Hookean constitutive relation. Our numerical results corroborate this result as we find only
spheroidal capsule shapes for a strictly linear constitutive relation at a susceptibility χ = 21. This
shows that the value of χc is very sensitive to changes in the constitutive relation and a measurement
of χc allows us to draw conclusions about the constitutive relation of the capsule material.

2. Critical Bond numbers

Our numerical solutions of the shape equations show that the discontinuous spheroidal-conical
shape transition that exists for ferrofluid droplets [27,30,32] persists for ferrofluid-filled elastic
capsules and shows qualitatively similar features. Both for droplets and for capsules, the driving
force of the shape transition is the lowering of the magnetic field energy in the conical shape. Above
an upper critical Bond number Bm,c2 the spheroidal shape becomes unstable and the droplet or capsule
deforms into a much more elongated, conical shape. This shape transition is discontinuous, i.e., the
deformation into the conical shape is associated with a jump in a/b. The discontinuous transition
between spheroidal to conical shapes also exhibits hysteresis: Lowering the Bond number starting
from values Bm > Bm,c2, the conical shape becomes unstable at a lower critical Bond number Bm,c1

with Bm,c1 < Bm,c2. The discontinuous spheroidal-conical transition only exists above the critical
susceptibility χc. In other words, both droplets and capsules exhibit a line of discontinuous shape
transitions in the χ -Bm plane for χ > χc, which terminates at a critical point located at χ = χc. The
lines Bm,c1(χ ) and Bm,c2(χ ) are the limits of stability (spinodals) of this shape transition and meet
in the critical point.

Figure 7 shows the capsule elongation with respect to Bm for different values of the dimensionless
elastic parameter Y2D/γ of the capsule. We choose χ = 21, which is only slightly above χc. This
ensures that we have a shape transition for a ferrofluid droplet (corresponding to the limit Y2D/γ = 0),
on the one hand, and relatively small and thus numerically more stable elongations in the conical
shape, on the other hand. Figure 7 clearly shows a discontinuous jump in elongation and hysteresis
effects also for capsules with Y2D/γ > 0.

3. Stretch factors as an order parameter

The discontinuous jump in the elongation ratio a/b at the spheroidal-conical transition is difficult
to localize for larger values of Y2D/γ , as Fig. 7 shows. More suitable order parameters for the
spheroidal-conical transition are the stretch factors λs and λϕ . Because the stretch factors diverge
at the tips of the conical shape (the divergence is only limited by numerical discretization effects),
whereas they stay finite at the poles of spheroidal shape (see Fig. 6 and our above discussion), we
can directly employ the stretch factor λs(s0 = 0) at one of the poles as a convenient order parameter.

For χ = 21 and Y2D/γ = 100, the shape transition occurs where a/b has a rather small jump from
about 5.2 to 5.35 for increasing Bond number Bm, whereas the stretch factor λs(s0 = 0) exhibits a
much bigger jump by a factor of more than 10, as demonstrated in Fig. 8. Also the shape hysteresis
at the spheroidal-conical shape transition can be clearly seen for the order parameter λs(s0 = 0).
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FIG. 8. Meridional stretch factor λs at the capsule pole s0 = 0 as a function of Bond number Bm for
Y2D/γ = 100 and χ = 21. The stretch factor clearly exhibits a jump at the location of the discontinuous shape
transition and hysteretic behavior.

Using this order parameter, we can detect the spheroidal-conical shape transition of ferrofluid-
filled capsules by the criterion

lim

Bm→0

|λs(s0 = 0,Bm) − λs(s0 = 0,Bm + 
Bm)| > 0, (37)

where we use values 
Bm = 0.005 for Y2D/γ < 1 up to values 
Bm = 0.5 for Y2D/γ = 100 in
practice [Bm,c1 and Bm,c2 grow approximately linearly with Y2D/γ (see Fig. 9 below) such that larger
values 
Bm can be used for larger Y2D/γ ; smaller values of 
Bm give more precise results]. For
ferrofluid droplets, i.e., in the limit Y2D/γ ≈ 0, we still have to use jumps in the elongation a/b for
small changes 
Bm in the magnetic Bond number to detect the spheroidal-conical shape transition.

We note that the discretization problem at the sharp conical tip mentioned above causes high
relative errors in the numerical values of stretch factors in the tip area. Therefore, our numerical
results for the diverging stretch factors at the tips of conical capsule shapes cannot be numerically
exact. The detection of a divergence in λs at the poles, which we use to detect the transition into a
conical shape, is, however, still possible even in the presence of numerical errors.

(a) (b)

FIG. 9. (a) Critical Bond numbers Bm,c1 (lower data points) and Bm,c2 (upper data points) for varying Y2D/γ

with χ = 21. The solid lines describe the prediction by the approximative energy minimization for spheroidal
shapes. Both critical Bond numbers increase for increasing Y2D/γ . In the region Bm,c1 < Bm < Bm,c2 there are
hysteresis effects in the spheroidal-conical shape transition. (b) Relative size 
Bm,c of the hysteresis area for a
wider range of Y2D/γ .
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4. Shape hysteresis

In order to track the range of elastic control parameters Y2D/γ , where a discontinuous shape
transition with hysteresis can be observed (for fixed χ = 21), we use the stretch factor λs(s0 = 0)
as the order parameter and the criterion (37) to determine Bm,c1 and Bm,c2. We determine Bm,c2

by increasing the Bond number in small steps 
Bm > 0 to locate the jump in the stretch factor
λs(s0 = 0) at the pole, when the spheroidal shape becomes unstable. Analogously, we determine
Bm,c1 by decreasing the Bond number in small steps 
Bm < 0 to locate the jump in λs(s0 = 0),
when the conical shape becomes unstable (see Fig. 8).

Repeating this procedure for increasing values of the elastic control parameter Y2D/γ , we obtain
the location and size of the hysteresis loop Bm,c1 < Bm < Bm,c2 for a fixed susceptibility as a function
of Y2D/γ (see Fig. 9). We see that Bm,c1 and Bm,c2 increase (approximately linear) for increasing
Y2D/γ because of the increasing elastic energy needed for the same deformation. Note that the
absolute numerical values of Bm,c1 and Bm,c2 cannot be considered exact as they are depending on
the discretization of the magnetic field calculation (see also Appendix D).

The approximative energy minimization for spheroidal shapes from Sec. III B can be used
to calculate approximative values for Bm,c1 and Bm,c2 from Eq. (B1), Bm = g(k) = g(b/a) [the
two equations g′(k) = 0 and Bm = g(k) determine the critical Bond numbers Bm = Bm,c1/2 and a
corresponding critical inverse aspect ratio k = kc]. We find that the hysteresis loop closes already for
Y2D/γ > 0.015 for χ = 21 (see Fig. 9), which is equivalent to our above finding (see Sec. IV C 1)
that χc > 21 for Y2D/γ > 0.015 in the approximative energy minimization. Comparison with our
numerical results in Fig. 9 shows that the approximative energy minimization gives quite accurate
results for the upper critical Bond number Bm,c2, i.e., the stability limit of the spheroidal shape. It
fails completely to predict the lower critical Bond number Bm,c1, i.e., the stability limit of the conical
shape, because it is not able to describe conical shapes quantitatively (see Sec. IV B).

The numerical calculation shows hysteresis behavior for all values of Y2D/γ (see Fig. 9). Only the
relative size of the hysteresis loop, 
Bm,c ≡ 2(Bm,c2 − Bm,c1)/(Bm,c2 + Bm,c1), decreases slightly
for increasing Y2D/γ in the numerical results.

D. Wrinkling

1. Wrinkled shapes

As opposed to liquid droplets, elastic capsules can develop wrinkles if a part of the shell is
under compressive stress [14–17]. Wrinkles have also been considered for the equivalent problem
of capsules filled with a dielectric liquid in an external electric field in Ref. [21].

As it was stated in Sec. II C 3, wrinkles appear if the total hoop stress becomes compressive,
τϕ + γ < 0. Then we have to use modified shape equations (19) in the numerical calculation of the
shape.

As can be seen in Fig. 7, taking wrinkling into account has a visible effect on the capsule’s
elongation for higher values of Y2D/γ . If wrinkling is taken into account capsules elongate because
wrinkling reduces the compressional stretch energy, which is stored near the equator. This elastic
energy gain can be used for a further elongation of the capsule at the same field strength to lower
the magnetic energy. This also results in stronger deviation from the spheroidal shape. To visualize
this effect, Fig. 5 shows the projection of the contour line of the upper right quadrant of capsules
with and without wrinkling using the same elongation a/b = 2. While the shape is indistinguishable
from a spheroid without wrinkling, the wrinkled shape deviates from a spheroid.

Also in the presence of wrinkling, the discontinuous spheroidal-conical shape transition where
the elongation increases persists. In the following, we will focus on the effect of wrinkles on the
spheroidal branch of shapes.

2. Extent of wrinkled region

In order to characterize the wrinkling tendency of spheroidal capsules we calculate the extent of
the wrinkled region Lw [cf. Eq. (20) and Fig. 3], which can easily be measured in experiments. First
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FIG. 10. Extent of the wrinkled region represented by the polar angle θw as a function of Bm/[1 + (5 +
ν)γ /Y2D]. The lines are the linear response result (38), crosses and stars are numerical data points for different
values of Y2Dγ , which all collapse to the linear response result. The red (dashed) line gives the asymptotic result
cos2 θw = 5/9 for large values of Bm/[1 + (5 + ν)γ /Y2D] and for purely elastic capsules (γ /Y2D = 0).

we use the wrinkle criterion τϕ + γ < 0 to calculate the extent of the wrinkled region in the linear
response regime for small magnetic fields as outlined in Sec. III A and Appendix A. In the linear
response regime, we calculate the deviation from a sphere with radius R0 to leading order. We can
characterize the size of the wrinkled region in terms of the polar angle θ as θw < θ < π − θw where
θw is the smallest polar wrinkle where wrinkles appear, τϕ(θw) + γ = 0. This angle is related to the
length Lw of the wrinkled region by Lw = R0(π − 2θw): An angle of θw = π/2 implies the absence
of wrinkles, while θw = 0 means that the wrinkles extend from pole to pole. Using Eq. (A17) for τϕ ,
we find

cos2 θw = 5

9
− γR0

Y2DB

5 + ν

3
= 5

9
− 4(3 + χ )2

27χ

1 + (5 + ν)γ /Y2D

Bm

. (38)

Interestingly, θw is universal and given by cos2 θw = 5/9 for purely elastic capsules (γ /Y2D = 0),
i.e., it does not depend on the magnetic field or capsule elongation. This is also the limiting result for
large values of Bm/[1 + (5 + ν)γ /Y2D] (see Fig. 10). We note, however, that linear response theory
is only applicable if Bm/[1 + (5 + ν)γ /Y2D] � χY2D/γ . For small magnetic fields, the results for
θw from the linear response prediction (38) agree well with numerical results, as Fig. 10 shows.

Now we address the extent of the wrinkled region beyond linear response and calculate numerically
the relative extent of the wrinkled region, Lw/L. A value Lw/L = 0 means that there are no wrinkles,
while Lw/L = 1 describes a system where wrinkles extend from pole to pole. In Fig. 11 we change
Bm and calculate Lw/L for different values of the capsule elongation a/b in the spheroidal shape,
i.e., for a/b < 5. We use χ = 21 and consider several values of the elastic parameter Y2D/γ .

As Fig. 11 shows, there are no wrinkles for thin stretchable capsules, i.e., wrinkles only occur
above a critical value of the dimensionless elastic parameter for

Y2D

γ
> 8.93 for χ = 21. (39)

This result is only very weakly dependent on χ : We find Y2D/γ > 9.03 for χ = 1 and Y2D/γ > 8.87
for χ = 100. For small Y2D, wrinkles are energetically unfavorable, i.e., the reduction of stretching
energy Eel by wrinkles is smaller than the increase of Eγ due to the increase of the surface area.
Slightly above the critical value (39), wrinkles can only occur for capsules with elongations a/b �
2.4. Further increasing Y2D (or shell thickness), the wrinkles become longer and appear for a wider
range of elongations. The extent of wrinkling is still limited by two effects. At the lower elongation
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FIG. 11. Relative wrinkle length Lw/L as a function of elongation a/b for spheroidal capsules with fixed
χ = 21 and different values of Y2D/γ . There are no wrinkles (Lw/L = 0) for Y2D/γ � 8.93. The range of
Lw/L > 0 and the extent of wrinkles increase with Y2D/γ until they converge to an asymptotic curve for thick
shells.

a/b, where Lw/L = 0, a certain elongation is needed to create a sufficient compressional stress at
the equator to overcome the surface tension. The upper elongation a/b, where Lw/L = 0, is the
point where the capsule is elongated so much that the transverse strain, which is related to Poisson’s
number ν and tends to shrink the capsule in the circumferential direction, counteracts any energy
gain by the wrinkles. The wrinkles’ length Lw/L for different elongations a/b turn out to be almost
independent of the susceptibility χ .

In systems completely dominated by the elasticity and with negligible surface tension, there are
wrinkles for almost all elongations. The wrinkle length quickly rises to a maximum and then slowly
decreases due to the transverse strain.

V. DISCUSSION AND CONCLUSION

Magnetic or electric fields provide an interesting and fairly easily realizable route to the
manipulation of elastic capsules if capsules can be filled with ferrofluids or dielectric substances.
In this work we investigated the deformation of ferrofluid-filled capsules with thin elastic shells
in uniform external magnetic fields numerically and using several analytic approaches. Our results
apply unchanged to elastic capsules filled with a dielectric liquid in an external uniform electric field
(see Sec. II B 3).

Numerically, we obtained equilibrium shapes by solving the coupled elastic and the magnetostatic
problems in an iterative manner. To calculate the magnetic field, we used a combination of the finite
element method and the boundary element method for a given capsule shape. The elastic capsule was
described by nonlinear shell theory with a Hookean elastic law. By neglecting the bending rigidity
we had to solve a system of four shape equations describing the force equilibrium in the absence
of wrinkling and modified shape equations to take the effect of wrinkling into account. In addition
to the dimensionless control parameters, the magnetic Bond number Bm and susceptibility χ , that
characterize ferrofluid drops, we used the dimensionless ratio Y2D/γ as an elastic control parameter.

As for ferrofluid droplets, we found spheroidal shapes at small and moderate magnetic fields,
conical shapes at high magnetic fields, and a discontinuous shape transition between spheroidal and
conical shapes. The general behavior of ferrofluid-filled capsules is comparable to drops but higher
Bond numbers Bm are needed to reach the same elongation due to the additional elastic forces.

For small fields, the capsule shape is exactly spheroidal and its elongation is very well described
by a linear response theory, which is in good agreement with our numerical results (see Fig. 4). The
small field regime is easily accessible in experiments and our result (25) for the elongation a/b can
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be used to determine the Young modulus Y2D of the capsule material from elongation measurements
if the magnetic properties of the ferrofluid are known. Also at moderate magnetic fields, capsule
shapes with elongations a/b � 3 are prolate spheroids to a very good approximation and can be well
described by an approximative energy minimization, as Fig. 7 shows.

For high fields a conical shape is possible. Capsules in a conical shape must have finite isotropic
tensions and diverging isotropic stretches at the conical tip [see Eq. (29)] with a divergence exponent,
which is given by the half opening angle α of the conical tip [see Eqs. (30) and (C4)]. The finiteness
of tensions at the tip is a consequence of the nonlinear constitutive relations (13). An important
consequence of the divergence of stretches at the tips of a conical shapes is that conical shapes are
probably not observable experimentally because the high stretch factors give rise to rupture close
to the capsule tips. Another consequence of such high stretch factors is that the nonlinear Hookean
material law will become locally invalid. A real elastic capsule material will show plastic behavior
for high stretches, followed by strain hardening and finally the material’s destruction [78]. Our
results can explain experimental observations of rupture of capsules filled with a dielectric liquid in
external electric fields, where the capsules’ shells were destroyed near the tip [21]. Then the existence
of the sharp discontinuous shape transition into a conical shape can provide an interesting tool to
trigger capsule rupture at rather well-defined magnetic (for ferrofluid-filled capsules) or electric (for
dielectric-filled capsules) field values in future applications of such capsules as delivery systems.

Capsule rupture at the tips has some analogies with the disintegration of droplets in electric fields
by emitting fluid jets at the tip [43,44]. Real fluid drops, which are not perfect conductors or perfect
insulators, disintegrate at higher external electric fields by emitting jets of fluid at the tip. This is
known from experiments [39] as well as quite precisely understood in theory [43,44]. In our setup
of a fluid inside an elastic shell, the emission of a fluid jet is prevented by the shell at first. However,
the tangential stresses at the tip that lead to the formation of a fluid jet may support the destruction of
the shell near the tip. Once the shell is broken, a jet can be emitted. The rupture process itself cannot
be described by our numerical approach and is an interesting topic for future work. Our elastic shape
equation approach provides a very precise tool to solve the static elastic part of the problem, as long
as nonlinear Hookean elasticity can be used. Also the generalization to other material laws, which are
more appropriate for large strains, is possible [79]. Breaking of axisymmetry and topology changing
rupture events cannot be easily incorporated into the shape equation approach, however. Also the
magnetic field calculation should be improved if rupture is addressed, in particular in the capsule’s
tip region by using, for example, an elliptic mesh generation for the finite element method. One
idea for a future improved simulation method that captures possible rupture processes at the tip is
a dynamic simulation, where the magnetohydrodynamics of the fluid and the viscoelastic dynamics
of the capsule shell including rupture processes can be calculated explicitly, similarly to what has
been achieved for droplets in electric fields [43,44].

We presented a complete shape diagram in Fig. 7 and characterized the discontinuous shape
transition between spheroidal and conical shapes. The slender-body theory predicts that this
discontinuous shape transition only exists above the same critical value χc as for ferrofluid droplets,
which was predicted to lie between χc � 14.5 [32] and χc � 16.59 [30]. It also predicts that χc is
independent of the Young modulus Y2D of the capsule. We predict that the critical χc will be very
sensitive to the constitutive relation of the material. A strictly linear constitutive relation, for example,
could give rise to diverging tensions at a conical tip, resulting in much higher values for χc.

We used the meridional stretch factor λs at the pole as a suitable order parameter to detect
the spheroidal-conical transition, because stretches diverge at the tip of conical shapes but remain
finite for spheroidal shapes, resulting in a pronounced jump of the stretch factor in the numerical
calculations. The spheroidal-conical transition exhibits hysteresis effects in an interval Bm,c1 < Bm <

Bm,c2 between two critical Bond numbers, which are the limit of stability of the spheroidal and conical
shapes. In the hysteresis interval both types of shapes are metastable. The interval has its maximum
size for ferrofluid droplets and decreases slightly with increasing Young’s modulus of the elastic
shell. In the numerical calculations for χ = 21, we observe hysteresis effects for all Y2D/γ , which
shows that, indeed, χc < 21 for all the Young moduli.
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It turned out that the formation of wrinkles is an important effect in systems with low surface
tension γ . It has a visible effect on the elongation and the specific shape. Wrinkles appear for the first
time for Y2D/γ � 8.93 (for χ = 21) and are almost always present for systems with lower surface
tension, even at very low elongations. Using this knowledge, it is possible to determine, for example,
Y2D/γ in experiments by a simple measurement of the wrinkle length Lw, which should be easy to
perform in practice.

APPENDIX A: LINEAR RESPONSE AT SMALL MAGNETIC FIELDS

In this Appendix we derive the linear response of the capsule elongation a/b for small applied
magnetic fields. Without applied field, the capsule is spherical with a rest radius R0. In the presence
of a surface tension γ , this also requires an internal pressure p0 = 2γ /R0 (Laplace-Young equation).
If a small magnetic field is applied the additional position-dependent normal magnetic force density
fm = O(H 2) [see Eq. (3)] acts on the spherical surface, resulting in normal displacements uR(θ )eR

and tangential displacements uθ (θ )eθ , where we use spherical coordinates with the polar angle θ

(i.e., θ = 0 at the upper pole and θ = π/2 at the equator) and the spherical coordinate unit vectors
eR and eθ . Because of axisymmetry the displacements do not depend on the azimuthal angle ϕ

and there is no displacement in direction eϕ . The deformed capsule surface is parametrized as
r(θ,ϕ) = [R0 + uR(θ )]eR(θ,ϕ) using polar and azimuthal angles θ and ϕ.

The new equilibrium shape has small displacements uR,uθ = O(H 2) and fulfills force equilibrium
in two independent directions on the surface. We will consider normal force equilibrium as described
by the Laplace-Young equation [see Eq. (14)] and tangential force equilibrium [see Eq. (15)]. We
start with the Laplace-Young equation

κs(τs + γ ) + κϕ(τϕ + γ ) = p0 + fm, (A1)

where γ is a surface tension, τs and τϕ are elastic tensions, and fm = (μ0χ/2)[H 2 + χ (n · H)2] is
the small normal magnetic force density (3) causing small displacements. The pressure will change
to linear order in the displacements p0 = 2γ /R0 + O(uR,uθ ) to ensure a fixed volume. In spherical
coordinates and in linear order in the displacements, the stretch factors can be calculated using
r = √

gϕϕ = |∂ϕr| (r0 = R0 sin θ ) and ds = √
gθθ dθ = |∂θr|dθ (ds0 = R0dθ ):

λs = ds

ds0
= |∂θr|

R0
= 1 + 1

R0
(uR + ∂θuθ ),

λϕ = r

r0
= |∂ϕr|

R0 sin θ
= 1 + 1

R0
(uR + uθ cot θ ).

In linear order in the displacements the constitutive relations (13) can then be written as [80]

τϕ − ντs = Y2D(λϕ − 1) = Y2D

R0
(uθ cot θ + uR), (A2)

τs − ντϕ = Y2D(λs − 1) = Y2D

R0
(∂θuθ + uR). (A3)

Elastic tensions are small for small magnetic fields, τs,τϕ = O(uR,uθ ) = O(H 2), whereas the
fluid surface tension γ cannot be considered small. Therefore, we also need to consider curvature
corrections up to linear order O(uR,uθ ) in Eq. (A1):

κs + κϕ ≈ 2

R0
− 1

R2
0

(
2uR − ∂2

θ uR + ∂θuR cot θ
)
.
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On the right-hand side of Eq. (A1), we can use n = eR for the outward unit normal to O(H 2). This
results in the following normal force balance to linear order in the displacements, i.e., to O(H 2):

−γ
(
2uR − ∂2

θ uR + ∂θuR cot θ
) + R0(τs + τϕ)

= (
p0R

2
0 − 2R0γ

) + μ0

2
χH 2R2

0(1 + χ cos2 θ ). (A4)

We first solve this equation for a ferrofluid droplet (Y2D/γ = 0), where the elastic stresses and thus
uθ are zero. Boundary conditions are ∂θuR(0) = ∂θuR(π/2) = 0 and uθ (0) = uθ (π/2) = 0 to avoid
kinks (we are not considering conical shapes in the linear response) or holes in the shape. Then
uθ = 0 and an ansatz

uR = A + B cos2 θ (A5)

leads to a solution

B = μ0

8γ
χ2H 2R2

0 ≈ 9μ0χ
2

8γ (3 + χ )2
H 2

0 R2
0, (A6)

A = −1

2

(
p0R0

γ
− 2

)
R0 − μ0

4γ
χ

(
1 + χ

2

)
H 2R2

0 . (A7)

To leading order in uR = O(H 2), the ansatz (A5) describes a spheroid such that we can replace the
magnetic field H in Eq. (A6) by the analytically known value for a field inside a spheroid [70],

H = H0/(1 + nχ ), (A8)

where n denotes the demagnetization factor. To leading order O(H 2) it is also correct to use the
result n = 1/3 for a sphere (A8). Moreover, volume conservation requires

A = −B/3, (A9)

which determines the pressure correction p0 = 2γ /R0 + O(H 2) from Eq. (A7). For the deformation
a/b we find, to leading order in uR = O(H 2),

a

b
= R0 + uR(0)

R0 + uR(π/2)
≈ 1 + B

R0
= 1 + 9μ0R0χ

2

8γ (3 + χ )2
χH 2

0 . (A10)

For a ferrofluid-filled elastic capsule we also need to consider the force equilibrium in the tangential
direction because the total tensions γ + τs 	= γ + τϕ become anisotropic now (for a liquid interface
with τs = τϕ = 0 the force equilibrium in tangential direction becomes exactly equivalent to the
normal force equilibrium, i.e., the Laplace-Young equation). The tangential force equilibrium (15)
can be written as

τϕ = ∂r (rτs) = τs + r∂rτs = τs + ∂θτs

∂θ r
.

Using r = |∂ϕr| = sin θ (R0 + uR + uθ cot θ ) and Eq. (A3) for the elastic stresses, the tangential
force equilibrium becomes

τϕ − τs = Y2D

(1 + ν)R0
(uθ cot θ − ∂θuθ )

= ∂rτs = Y2D

(1 − ν2)R0

(
tan θ∂2

θ uθ + ν∂θuθ − νuθ

cos θ sin θ
+ (1 − ν) tan θ∂θuR

)
. (A11)

For the ferrofluid capsule, the two force equilibria (A4), where τs and τϕ have to be expressed in
terms of the displacements using the constitutive relations (A3),

τs + τϕ = Y2D

(1 − ν)R0
(2uR + uθ cot θ + ∂θuθ ),
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and Eq. (A11) have to be solved for the deformed capsule shape. Boundary conditions are ∂θuR(0) =
∂θuR(π/2) = 0 and uθ (0) = uθ (π/2) = 0. For the fluid limit Y2D/γ = 0, we derived an exact solution
above. For the ferrofluid capsule, we make an ansatz

uR = A + B cos2 θ, uθ = C sin θ cos θ, (A12)

which still describes a spheroid to leading order in the displacements because uθ 	= 0 only generates
an additional tangential displacement. Then the tangential force equilibrium gives

C = −2(1 + ν)

5 + ν
B. (A13)

For the ferrofluid capsule, the normal force equilibrium (A4) gives

B = μ0(5 + ν)

8[Y2D + (5 + ν)γ ]
χ2H 2R2

0, (A14)

A = 1 − ν

2

(
p0R0

Y2D
− 2

γ

Y2D

)
R0 + μ0

4(1 − ν)Y2D
χH 2R2

0

(
1 + χ

2

)
− C

1 + ν
(A15)

and the relation A = −B/3 [see Eq. (A9)] from the fixed volume constraint determines the pressure
p0. For the deformation a/b we find, to leading order in uR = O(H 2),

a

b
= R0 + uR(0)

R0 + uR(π/2)
≈ 1 + B

R0
= 1 + 9μ0R0χ

2(5 + ν)

8[Y2D + γ (5 + ν)](3 + χ )2
H 2

0 . (A16)

The criterion for wrinkling is τϕ + γ < 0, where

τϕ = Y2D

(1 − ν2)R0
[uθ cot θ + (1 + ν)uR + ν∂θuθ ] ≈ B

1 − ν2

5 + ν

(
−5

3
+ 3 cos2 θ

)
(A17)

from Eq. (A3) and using Eq. (A12) with Eqs. (A13) and (A9).

APPENDIX B: APPROXIMATIVE ENERGY MINIMIZATION FOR SPHEROIDAL SHAPES

In this Appendix we derive an analytical approximation for the elongation a/b of the capsule at
moderate magnetic forces by minimizing an approximative total energy, which assumes a spheroidal
shape for magnetic and elastic contributions and constant elastic stretch factors throughout the shell.
We minimize the total energy, the sum of surface, magnetic, and elastic energies with respect to the
inverse elongation ratio k ≡ b/a < 1 at fixed volume V = (4π/3)ab2 = V0 (quantities · · · |V are at
fixed volume V ):

0 = dEγ |V
dk

+ dEmag|V
dk

+ dEel|V
dk

.

For fixed volume V = (4π/3)ab2 = (4π/3)R2
0 = V0 we have

a|V = R0k
−2/3, b|V = R0k

1/3.

The surface energy (26), which is proportional to the surface area A at fixed volume, can then be
written as

Eγ |V = γA|V with A|V = A0
1

2
k−1/3

(
k + 1

ε
arcsin ε

)
,

where ε = ε(k) ≡ √
1 − k2 is the spheroid’s eccentricity and A0 = 4πR2

0 the area of the undeformed
sphere. The magnetic energy (27) is given as

Emag|V = −V0μ0

2

χ

1 + nχ
H 2

0 = −γA0Bm

1

3(1 + nχ )
,
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where n is the demagnetization factor

n = n(k) = k2

2ε3(k)

(
−2ε(k) + ln

1 + ε(k)

1 − ε(k)

)
and Bm = μ0R0χH 2

0 /2γ is the Bond number. Finally, we calculate the elastic stretch energy (28)
via

Eel|V = A0
Y2D

2(1 − ν2)
[(es |V )2 + 2νes |V eϕ|V + (eϕ|V )2]

using the approximation of constant es and eϕ . At fixed volume, we find

es = Pellipse

Pcircle
− 1 ≈ a + b

2R0

(
1 + 3η2

10 +
√

4 − 3η2

)
− 1,

es |V = k−2/3(1 + k)

2

(
1 + 3η2(k)

10 +
√

4 − 3η2(k)

)
− 1,

eϕ = b

R0
− 1, eϕ|V = k1/3 − 1,

with η = η(k) ≡ (b − a)/(b + a) = (k − 1)/(k + 1).
Now we can find the elongation k that minimizes the total energy at fixed volume; k can only be

determined implicitly as a function of the magnetic field H0 by the following relation between the
Bond number Bm = μ0R0χH 2

0 /2γ and a complicated function g(k) of the elongation k, which also
depends on the susceptibility χ , the dimensionless Young modulus Y2D/γ , and Poisson’s ratio ν:

Bm = μ0R0χH 2
0

2γ
= g(k)

with

g(k) ≡ −3

(
1

χ
+ n(k)

)2

χ
c1(k) + Y2D

2γ (1−ν2)c2(k,ν)

c3(k)
, (B1)

where

c1(k) ≡ 1

A0

dA|V
dk

,

c2(k,ν) ≡
[

2es |V des |V
dk

+ 2ν

(
eϕ|V des |V

dk
+ es |V deϕ |V

dk

)
+ 2eϕ|V deϕ|V

dk

]
,

c3(k) ≡ dn

dk
= −3k

ε4(k)
+

(
k

ε3(k)
+ 3k3

2ε5(k)

)
ln

1 + ε(k)

1 − ε(k)
.

The functions c1(k) and c3(k) from surface and magnetic energies depend on the inverse elongation
ration k = b/a < 1 only, whereas the function c2(k,ν) from the elastic energy also depends on
Poisson’s ratio ν (which is set to ν = 1/2 and thus fixed throughout this paper). This relation reduces
to the results of Bacri and Salin [27] for ferrofluid droplets in the limit Y2D = 0, where the function
c2(k,ν) drops from Eq. (B1). The solid lines in Fig. 7 show plots of 1/k = a/b versus Bm as given
by the relation Bm = g(k).
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APPENDIX C: CONICAL SHAPES FOR ELASTIC MEMBRANES
WITH SPHERICAL REST SHAPE

1. Stretches and tensions at a conical tip with normal magnetic forces

In this Appendix we show that a conical shape, as it is observed for ferrofluid drops at a critical
field strength, is also possible for an elastic capsule with a spherical rest shape and stretched by
normal magnetic forces but requires diverging and asymptotically isotropic stretches with an exponent
determined by the opening angle of the cone, whereas elastic tension have to remain finite and
isotropic at the tip of the cone. A sharp conical tip implies a nonzero slope angle ψ(s0 = 0) > 0,
where α = π/2 − ψ(0) is half of the opening angle of the cone. In contrast to a ferrofluid droplet
with constant and isotropic surface tension γ , an elastic capsule develops additional elastic tensions
τs and τϕ , which depend on the state of stretching, i.e., the stretches λs and λϕ with respect to the
spherical rest shape via the nonlinear constitutive relations (13), and which have to fulfill an additional
tangential force equilibrium (15) that we rewrite as

τϕ = ∂r (rτs) = τs + r∂rτs . (C1)

It is important to note that the tangential force equilibrium does not contain external magnetic
forces, which are always normal to the surface [see Eqs. (16) and (14)]. The internal tangential force
equilibrium has to be compatible with the deformation into a conical tip.

First we show that τs(0) and τϕ(0) have to remain finite at the tip at s0 = 0 (corresponding to
r = 0). The reason for a divergence of one of the tensions can only be a divergence of one or both
of the stretches. According to the nonlinear constitutive relations (13), only one of the tensions can
exhibit a divergence (λs/λϕ and λϕ/λs cannot both diverge). Then it is easy to verify that a single
divergent tension at r = 0 contradicts the force equilibrium (C1). Therefore, both tensions have to
remain finite at s0 = 0 (or r = 0).

Next we show that finiteness of the tensions at the conical tip necessarily leads to tension isotropy
τs(0) = τϕ(0) at the tip. Because magnetic forces are stretching forces, both tensions are equal and
stretching, τs(0) = τϕ(0) > 0. If τs(0) 	= τϕ(0), the tangential force equilibrium (C1) immediately
leads to ∂rτs ≈ [τϕ(0) − τs(0)]/r for small r , resulting in a logarithmically diverging τs ∝ − ln r for
small r contradicting finiteness.

The equality τs(0) = τϕ(0) at the tip also leads to isotropy of the stretches λs(0) = λϕ(0) at the
tip because of the constitutive relations (13), however, not necessarily to finiteness of the stretches
at the tip. Therefore, we have to discuss the cases of finite and diverging stretches λs = λϕ at the
conical tip separately.

We start with finite isotropic stretches λs(0) = λϕ(0) < ∞. Then we can apply l’Hôpital’s rule at
the tip s0 = 0:

λϕ(0) = lim
s0→0

r

r0
= lim

s0→0

r ′

r ′
0

= λs cos[ψ(0)]

cos[ψ0(0)]
= λs(0) cos[ψ(0)] (C2)

[where we used ψ0(0) = 0 for the spherical rest shape]. Equality of the stretches λs(0) = λϕ(0) then
leads to the conclusion ψ(0) = 0, i.e., a sharp conical tip is impossible if stretches remain finite at
the tip.

L’Hôpital’s rule can no longer be applied if the stretches diverge at the tip (remaining
asymptotically isotropic), i.e.,

λs(s0) ≈ λϕ(s0) ≈ consts−β

0 (C3)

for s0 ≈ 0 with an exponent β > 0. Because of λs = r ′/ cos ψ , this requires r(s0) ≈ consts1−β

0 /(1 −
β) cos ψ(0) for s0 ≈ 0, whereas r0(s0) = R0 sin(s0/R0) ≈ s0 for the spherical rest shape. Then
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(a) (b)

FIG. 12. Illustration of the geometry at the capsule’s south pole (not true to scale) for (a) a conical tip and
(b) the spheroidal reference shape.

Eq. (C2) is replaced by

λϕ(s0) = lim
s0→0

r

r0
= consts−β

0

(1 − β) cos ψ(0)
= lim

s0→0

1

1 − β

r ′

r ′
0

= λs(s0)
cos[ψ(0)]

1 − β

for s0 ≈ 0. The equality λs(s0) ≈ λϕ(s0) necessarily leads to the condition

β = cos[ψ(0)] − 1 = sin α − 1 (C4)

between the exponent β of the divergent stretches and the half opening angle α = π/2 − ψ(0) of
the conical tip.

In conclusion, a deformation of the spherical rest shape into a sharp conical tip with ψ(0) > 0
is only possible if stretches are asymptotically isotropic and diverge as λs(s0) ≈ λϕ(s0) ∼ s

−β

0 with
an exponent β, which is related by Eq. (C4) to the opening angle 2α of the cone. Because of the
nonlinear constitutive relation (13), diverging and isotropic stretches are compatible with finite and
isotropic tensions at the tip with

τs(0) = τϕ(0) = Y2D

1 − ν
. (C5)

Note that away from the tip (s0 > 0), tensions and stretches feature anisotropic corrections.

2. Governing equations for stretches and tensions in a conical shape with spherical rest shape

In this section we present how to systematically calculate stretches and elastic tensions in a
deformation from a spherical rest shape into a conical shape by deriving the governing equations.
This is the basis of the generalization of the slender-body theory of Stone et al. from ferrofluid conical
droplets to capsules.

We assume that the conical shape is given by a function r(z), where z runs from the bottom
of the cone at z = −a to its top at z = a. We will show that, if the conical shape r(z) is
known, we can calculate all stretches and tensions in this shape. The rest shape is spherical and
parametrized analogously by a function r0(z0) = (R2

0 − z2
0)1/2 with z0 ∈ [−R0,R0]. For the following

it is advantageous to replace z and z0 by coordinates d = a + z measuring the distance from the lower
conical tip and d0 = R0 + z0 measuring the distance from the corresponding south pole of the sphere.
This geometry is illustrated in Fig. 12.

Given a conical shape r(d) and the spherical rest shape

r0(d0) = (
2R0d0 − d2

0

)1/2
, (C6)

we want to show how the function d(d0) describing the stretching in the z direction can be calculated
systematically from the tangential force equilibrium (C1) or (15) and the constitutive relations (13).
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If the conical shape r(d) and the function d(d0) are given [and the spherical rest shape r0(d0)] the
meridional and hoop stretches can be calculated as a function of d0 by

λϕ = r(d(d0))
r0(d0)

= r(d(d0))(
2R0d0 − d2

0

)1/2 ,

λs = ds

ds0
= [1 + r ′(d(d0))2]1/2

[1 + r ′
0(d0)2]1/2

d ′(d0) = [1 + r ′(d(d0))2]1/2

(
2R0d0 − d2

0

)1/2

R0
d ′(d0), (C7)

where λz ≡ d ′(d0) = dz/dz0 is the stretch in the z direction.
If both stretches are known then the constitutive relations (13) can be used to express tensions τs

and τϕ as algebraic functions of the stretches λs and λϕ from Eq. (C7) and thus as functions of d0, the
conical shape r(d), and the unknown function d(d0) and its derivative. These tensions have to fulfill
the tangential force equilibrium (C1), which we rewrite in terms of stretches using the constitutive
relations (13),

τϕ = τs + r∂rτs,

λ3
ϕ − (1 + ν)λ2

ϕ = λ2
s λϕ − (1 + ν)λsλϕ + rλs{λϕ(∂rλs) − (∂rλϕ)[λs − (1 + ν)]}. (C8)

Plugging in the stretches from (C7) and using

∂r = 1

∂d0r
∂d0 = 1

r ′(d(d0))d ′(d0)
∂d0 ,

we obtain a complicated nonlinear differential equation for the unknown function d(d0) and its
derivative λz(d0) = d ′(d0). If this differential equation can be solved, all stretches and tensions
arising from the deformation from r0(d0) into r(d) are determined, in principle. Unfortunately, this
equation cannot be solved in general. In the next section we obtain features of a solution close to the
conical tip.

3. Stretches and tensions in the vicinity of a conical tip for a spherical rest shape

In the vicinity of a the conical tip the conical shape r(d) with a half opening angle α becomes
strictly conical and we can use

r(d) = d tan α, (C9)

resulting in stretches

λϕ = tan α(
2R0d0 − d2

0

)1/2 d(d0),

λs = 1

cos α

(
2R0d0 − d2

0

)1/2

R0
d ′(d0). (C10)

Close to the conical tip, λs and λϕ are diverging and asymptotically equal according to
Appendix C 1. Requiring λs = λϕ for small d0 gives a differential equation

d ′(d0) = sin α
R0

2R0d0 − d2
0

d(d0), (C11)

which is solved by

d(d0) = a

(
d0

2R0 − d0

)(sin α)/2

≈ a

(
d0

2R0

)(sin α)/2

∝ d
(sin α)/2
0 ,
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where we use a boundary condition d(R0) = a resulting from the conservation of the mirror symmetry
plane at z = z0 = 0. This results in

r(d(d0)) = tan α[d(d0)] ≈ a tan α

(
d0

2R0

)(sin α)/2

and, using (C10),

λs = λϕ ≈ a

2R0
tan α

(
d0

2R0

)(sin α−1)/2

= a tan α

2R0

(
r

a tan α

)1−1/ sin α

. (C12)

Noting that d0 ≈ R0[1 − cos(s0/R0)] ≈ s2
0/2R0 for the spherical rest shape, the exponent in

Eq. (C12) is exactly equivalent to our above result (C4), β = 1 − sin α, for the relation between
the exponent β of the divergent stretches λs(s0) ≈ λϕ(s0) ≈ s

−β

0 and the half opening angle α of the
conical tip.

Away from the tip, the stretches and tensions acquire anisotropic corrections. Therefore, we start
with an ansatz

λs = br−β̃ + bsr
−γ , λϕ = br−β̃ + bϕr−γ ,

β̃ = 1/ sin α − 1, b ≈ (a tan α)1+β̃ /2R0 (C13)

for small r in the vicinity of the conical tip, where γ < β̃. We use this ansatz in the tangential force
balance relation (C8) derived in Appendix C 2. First we obtain the tensions, which are isotropic and
in agreement with (C5) to leading order but also acquire anisotropic corrections

τs

1 − ν2

Y2D
= 1 + ν + bs − bϕ

b
rβ̃−γ − 1 + ν

b
rβ̃ + (1 + ν)bs

b2
r2β̃−γ − bϕ(bs + bϕ)

b2
r2β̃−2γ ,

τϕ

1 − ν2

Y2D
= 1 + ν + bϕ − bs

b
rβ̃−γ − 1 + ν

b
rβ̃ + (1 + ν)bϕ

b2
r2β̃−γ − bs(bs + bϕ)

b2
r2β̃−2γ ,

neglecting terms O(r3β̃−2γ ). These expression are used in the tangential force balance relation (C8),
τϕ − τs = r∂rτs , in which we compare coefficients order by order in r in order to determine the
exponent γ and the coefficients bs and bϕ .

If we assume γ > 0 the leading-order terms are O(rβ̃−γ ), and comparing coefficients gives a
contradictory relation 2 = γ − β̃ < 0. It follows that

γ = 0,

i.e., the leading anisotropic corrections in the stretches (C13) are constant.
Continuing with γ = 0, terms O(rβ̃−γ ) and O(rβ̃) are of equal order and comparing all coefficients

gives

bs − bϕ = β̃(1 + ν)

2 + β̃
> 0,

i.e., the anisotropy close to the tip is such that λs > λϕ and τs > τϕ . For the tensions this results in

τs = Y2D

1 − ν

(
1 − 1

b

1

1 + β̃/2
rβ̃

)
, τϕ = Y2D

1 − ν

(
1 − 1

b

1

1 + β̃
r β̃

)
, (C14)

which specifies the leading anisotropic corrections to Eq. (C5). Finally, we can compare coefficients
of all terms O(r2β̃) for γ = 0 to obtain

b2
ϕ − b2

s + (1 + ν)(bϕ − bs) = 2β̃(1 + ν)bs − 2β̃bϕ(bs + bϕ)

which can be used to go on and determine both bs and bϕ if needed.
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(a) (b)

FIG. 13. Comparison of data from Fig. 9 for l0 = 0.1 (blue) with data for l0 = 0.2 (red). There is an
increasing deviation for higher values of Y2D/γ .

APPENDIX D: DISCRETIZATION ERRORS

To observe the transition to a conical shape, it is necessary to have a high resolution for the finite
element–boundary element method in the tip of the capsule. If we consider the number of boundary
elements to be fixed to N = 250, we can vary the density of elements near the tip by changing the
parameter l0 [see Sec. II B 2 and Eq. (7)]. For different values of l0, we see a quite different numerical
behavior. Every result in the text above is calculated with l0 = 0.1. For significantly smaller values
of l0, we cannot calculate conical shapes. The problem is that our shooting method for the elastic
shape equations does not find solutions anymore due to extremely high and rapidly changing stretch
factors at the tip [λs(s0 = 0) > 104]. On the other hand, with constant element density (l0 = 1), a
shape transition cannot be found anymore; the capsule’s shape stays rounded. This indicates that the
numerical calculation of the shape transition is prone to changes of l0. An example of this phenomenon
can be seen in Fig. 13, which is identical to Fig. 9 but with additional data for l0 = 0.2. Lowering
the elements’ density at the tip leads to slightly different values for the critical Bond numbers and
lowers the relative sizes of the hysteresis loops, especially for higher values of Y2D/γ .
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