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ABSTRACT: We present a new system based on alginate
gels for the encapsulation of a ferrofluid drop, which allows us
to create millimeter-sized elastic capsules that are highly
deformable by inhomogeneous magnetic fields. We use a
combination of experimental and theoretical work in order to
characterize and quantify the deformation behavior of these
ferrofluid-filled capsules. We introduce a novel method for the
direct encapsulation of unpolar liquids by sodium alginate. By
adding 1-hexanol to the unpolar liquid, we can dissolve
sufficient amounts of CaCl2 in the resulting mixture for
ionotropic gelation of sodium alginate. The addition of polar alcohol molecules allows us to encapsulate a ferrofluid as a single
phase rather than an emulsion without impairing ferrofluid stability. This encapsulation method increases the amount of
encapsulated magnetic nanoparticles resulting in high deformations of approximately 30% (in height-to-width ratio) in
inhomogeneous magnetic field with magnetic field variations of 50 mT over the size of the capsule. This offers possible
applications of capsules as actuators, switches, or valves in confined spaces like microfluidic devices. We determine both elastic
moduli of the capsule shell, Young’s modulus and Poisson’s ratio, by employing two independent mechanical methods, spinning
capsule measurements and capsule compression between parallel plates. We then show that the observed magnetic deformation
can be fully understood from magnetic forces exerted by the ferrofluid on the capsule shell if the magnetic field distribution and
magnetization properties of the ferrofluid are known. We perform a detailed analysis of the magnetic deformation by employing
a theoretical model based on nonlinear elasticity theory. Using an iterative solution scheme that couples a finite element/
boundary element method for the magnetic field calculation to the solution of the elastic shape equations, we achieve
quantitative agreement between theory and experiment for deformed capsule shapes using the Young modulus from mechanical
characterization and the surface Poisson ratio as a fit parameter. This detailed analysis confirms the results from mechanical
characterization that the surface Poisson ratio of the alginate shell is close to unity, that is, deformations of the alginate shell are
almost area conserving.

■ INTRODUCTION

Ferrofluids contain dispersed magnetizable nanoparticles,
which are long-time stable and exhibit superparamagnetic
behavior.1 Ferrofluids can be actuated by magnetic fields and
have various technical and medical applications.2−4 In many
applications it is of interest to prevent a ferrofluid from
interaction with its environment, especially considering its
corrosive effects on metals. This can be achieved by
encapsulation of a ferrofluid drop with a thin protective shell
made, for example, from a gel or soft elastic material. The
result is an elastic capsule with a stable ferrofluid droplet
inside. The elastic shell protects the inner fluid from direct
interaction with the environment but it can be deformed by
various external forces.5,6 Elastic capsules are stable under
uniform pressure up to a buckling threshold.7−9 Buckling
indentations can also be induced by point forces5,10 and
capsules can be deformed in hydrodynamic flow.11 Other
deformation techniques include compression between parallel
plates6,12 or in a spinning drop apparatus,13 or pendant capsule
elastometry.14,15 These mechanical deformation techniques

can be employed to determine the elastic moduli of capsule
shells. Whereas these deformation techniques require direct
mechanical interaction with the capsules, deformation can also
be driven by external electric or magnetic fields if the capsules
are filled by a dielectric liquid or ferrofluid16−18 or if the shell
itself contains magnetizable particles.19,20 In particular, we
demonstrate in this paper that magnetic actuation and
mechanical characterization of a capsule filled with a ferrofluid
is possible by deformation in a magnetic field.
The aim of this work is the encapsulation of a stable

ferrofluid drop with high magnetic nanoparticle concentration
in order to achieve strong deformation in an external magnetic
field and a quantitative understanding of the deformation
behavior by comparison to theoretical predictions based on
nonlinear elasticity theory. Encapsulation of stable ferrofluids
was achieved in refs 21 and 22 for example, for magnetic
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resonance imaging.22 Ferrofluid concentration inside the
capsules were low, however, such that there are no reports
on actuation and deformation properties in magnetic fields. On
the other hand, magnetic deformation of capsules filled with
magnetic particles was reported in refs 23 and 24 these
magnetic particles, however, aggregated and did not remain in
a stable ferrofluid state. The aim of this work is a reliable
capsule system, into which a stable ferrofluid can be loaded at
high concentration such that it can strongly deform in
magnetic fields, which is important for possible applications
of capsules as actuators, switches, or valves.
We present a new method to achieve stable ferrofluid

encapsulation at high concentrations. Generally, encapsulation
of magnetic nanoparticles in a stable dispersion in the liquid
core is a difficult task. Here, we use alginate gel as shell
material. Because of its mild gelation conditions, nontoxicity,
and biocompatibility, it is a widely used encapsulation
material24−29 Sodium alginate is soluble in water, and
ionotropic gelation takes place upon contact with bi- or
trivalent cations;30,31 usually, calcium is used for the gelation.
Magnetic nanoparticles, which are sterically stabilized by
amphiphiles such as lauric acid or electrostatically stabilized,
destabilize and flocculate in the presence of calcium ions if
both ions and nanoparticles are in the aqueous phase in the
liquid core of the capsule.24 To reduce this effect oil-soluble
magnetic particles can be used, which are encapsulated in an
oil in water emulsion, where calcium is solved in the aqueous
emulsion phase.26 In previous work, we showed that
encapsulation of a stable ferrofluid is possible with this
technique and that a significant deformation in magnetic fields
can be achieved.32 The deformation was, however, limited to
approximately 10% because magnetic nanoparticles are only
contained in the oil emulsion phase, whereas a certain amount
of unmagnetizable aqueous emulsion phase is needed to solve
calcium ions. In order to further increase the magnetic
nanoparticle content in the liquid core of the capsule we use 1-
hexanol as a solvent with high polarity but low water-solubility
to dissolve significant amounts of calcium chloride. We mix 1-
hexanol with chloroform as a second solvent because the
magnetite nanoparticles are not dispersable in pure 1-hexanol.
Chloroform also increases the density of the liquid core which
improves experimental handling of the capsules. The general
principle of using 1-hexanol as an additive can be extended to a
variety of oils. The advantage of direct oil encapsulation
concerning the encapsulation of ferrofluids is the higher
magnetic content, which leads to higher deformation in the
same magnetic field. In emulsion-based systems the need for a
second phase reduces the overall nanoparticle concentration
and thus the reaction to magnetic fields.
The ferrofluid-filled capsule represents a magnetic dipole. In

order to achieve strong deformation we use inhomogeneous
magnetic fields, which are easily realizable and result in a net
force onto the ferrofluid-filled capsule. We use this net force to
deform the capsule by pushing the flexible particle against the
bottom wall of the cuvette. In principle, deformation and shape
transitions are also possible in homogeneous magnetic fields,
which tend to stretch the capsule in order to increase the
dipole moment.18 For a quantitative understanding of the
deformation behavior we measure the magnetic field
distribution, calculate the magnetic properties of the ferrofluid
from the nanoparticle size distribution and compare the
experimental capsule shapes to theoretical shapes calculated
using nonlinear elasticity theory by a coupled finite element

method (FEM) for the elastic problem and a boundary
element method (BEM) for the magnetic field calculation.
This enables us to also obtain additional information not easily
accessible in experiments such as a detailed picture of the
magnetic field distribution and the elastic stress distribution in
the capsule, which are important, for example, to predict
capsule rupture because of magnetic deformation.

■ MATERIALS AND METHODS
Preparation of the Magnetic Nanoparticles. The magnetite

nanoparticles (Fe3O4) used in this work were synthesized following a
procedure by Sun et al.33 These particles are crystalline, and usually
show a narrow size distribution around an average of 6 nm diameter.
The small size is important for the stability of the resulting ferrofluid.
Additional stabilization is provided by the surfactants oleic acid and
oleyl amine which hinder agglomeration.

Preparation of Capsules. We encapsulate a mixture of
chloroform and 1-hexanol (7:3) containing dispersed magnetite
nanoparticles with a mass concentration cm = 516 g/mol in an alginate
gel shell. Initially, calcium chloride is dissolved in the 1-hexanol/
chloroform mixture (by volume 3:7) in order to perform the alginate
gelation. Two additional surfactants stabilizing the nanoparticles, oleic
acid, and oleylamine, also accelerate the gelation and are added with
1%V (volume percent) each to improve the process.

The high chloroform content requires to adjust the capsule
preparation process, which is normally done by dripping one
component, either sodium alginate or calcium chloride solution,
directly (from air) into the other liquid. Because of the high
chloroform content of 70 %V, dripping of the 1-hexanol/chloroform
mixture containing the calcium chloride from air into the alginate
solution is not feasible because the mixture spreads on the interface.
Instead we first overlay a cylinder which is filled to 7/8 with sodium
alginate solution (1% by weight) with distilled water and form a
droplet of the 1-hexanol/chloroform mixture in the water layer using a
capillary, see Figure 1. The droplet then falls through the interface
between water and alginate solution without spreading. Within the
alginate solution, the calcium chloride dissolved in the 1-hexanol/
chloroform droplet starts the gelation. In order to avoid contact with

Figure 1. Procedure for the production of ferrofluid-filled capsules,
dark blue = 1-hexanol/chloroform mixture containing calcium
chloride and magnetic nanoparticles, light blue = water, green =
sodium alginate solution.
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the glass surface a seal (shown in grey in Figure 1) can be placed over
the opening and the cylinder can be turned for 30 s.
The capsules are washed with water to stop the polymerisation and

placed in saturated sodium alginate solution. This lowers the elastic
moduli of alginate systems and thus lead to capsules that are easier to
deform.32

Experimental Setup for Mechanical Characterization. For
mechanical characterization of the capsule shells we use two methods,
compression between parallel plates and deformation in a spinning
drop apparatus. Combination of the results from both measurements
will enable us to determine both the two-dimensional Young modulus
Y2D and the surface Poisson ratio ν.
In the compression method a capsule is placed between two

parallel plates and the force is measured as a function of the
displacement. A sketch of the method is shown in the Supporting
Information. Compression between parallel plates was performed with
the DCAT11 tensiometer (DataPhysics Instruments GmbH) with the
software SCAT. The compression speed was set to 0.02 mm/s.
In a spinning drop apparatus, a capsule is placed in a capillary filled

with a liquid of higher density ρ and monitored with a camera (see
Supporting Information). During rotation of the capillary, the capsule
moves to the horizontal axis of the capillary and deforms. The
deformation is measured as a function of angular rotation frequency.
For the spinning capsule experiments, we used the SVT 20 of the
DataPhysics Instruments GmbH. We used Fluorinert 70 (FC 70) as
outer phase because of its high density. The initial undeformed
(quiescent) capsule state was recorded at 2000 rpm.
Capsule radii were determined by image analysis of capsule photos

(see Supporting Information). For the shell thickness this image
analysis could not be used because of the small thickness. Thus,
scanning electron microscopy (SEM) measurements were performed
to estimate the shell thickness. From the images shown in the
Supporting Information, it can also be concluded that the nano-
particles were not incorporated in the shell.
Experimental Setup for Magnetic Deformation. The

ferrofluid filled capsule is placed at the bottom of a nonmagnetic
cuvette. This cuvette was placed right above the conical iron core of a
coil. This way, the capsule was as close as possible to the tip of the
cone (the bottom of the capsule was about 2.6 mm above the iron
core) and exceeded a maximum field strength. In Figure 2, the
experimental setup for the deformation of capsules in magnetic fields
is shown.

Elastic and Magnetic Model for Deformation. In order to
model the magnetic deformation of a capsule we need an elastic
material model for the capsule shell and a magnetic model for the
calculation of the magnetic forces. To calculate the shape of a
deformed capsule, we use a small strain nonlinear shell theory with a
Hookean elastic law.9,14,34 In our model, we assume a very thin,
effectively two-dimensional elastic shell and rotational symmetry. We
also assume that the capsule attains a perfectly spherical stress-free
reference shape with rest radius R0 during the polymerization process.
All these assumptions hold to a good approximation in the
experimental realization. Once the elastic shell is polymerized, there
is no exchange of fluid between the inner phase and the outer phase

possible anymore, at least under the employed experimental
conditions and during magnetic deformation. So the volume V0 of
the capsule remains constant. The capsule is then deformed by a
hydrostatic pressure caused by the density difference Δρ between the
inner phase and the outer phase. In the presence of an additional
magnetic field, the magnetic stress caused by the ferrofluid deforms
the capsule as well. We consider capsules which sink to the bottom of
a cuvette where also the magnetic deformation takes place, and both
gravity and magnetic forces press the capsule against the bottom wall
of the cuvette. In a steady state without motion, the fluid can only
exert normal forces on the surface. The normal forces caused by the
ferrofluid are given by1

∫μ
μ

= ′ +f r z M r z H r z M r z( , ) ( , )d ( , )
2

( , )
H r z

m 0 0

( , )
0

n
2

(1)

(M and Mn are absolute value and normal component of the
magnetization M, H the magnetic field, and we use cylindrical
coordinates r and z; for a ferrofluid we can safely assume that M and
H are parallel). The deformed shape of the capsule can be calculated
by using a system of six nonlinear differential equations, the shape
equations, see ref 9 for a derivation and the Supporting Information
for more details.

There are two material parameters, the two-dimensional Young
modulus Y2D and the surface Poisson ratio ν, that enter the theoretical
model. These parameters are obtained from the mechanical
characterization of the capsule by plate compression and spinning
capsule deformation as explained below in the Experiments and
Results section. Moreover, the rest radius R0 of the initially spherical
capsule and the thickness h of the shell are needed. The thickness h
determines the bending modulus via EB = Y2Dh

2/12(1 − ν2) and R0
determines the initial rest shape with respect to which elastic strains
and stresses are obtained and the fixed volume V0. Moreover, the
density difference Δρ between the interior and exterior liquid phases
is needed for the hydrostatic pressure.

In addition, the effective interface tension γ between the inner
liquid phase and the elastic shell and between the shell and the outer
liquid phase has to be estimated, but is very difficult to be measured.
Generally, we expect solid−liquid surface tensions to be smaller than
liquid−liquid surface tensions.35 Because the shell can still contain
pores leading to liquid−liquid contact, we expect the interface tension
γ to be lower than but similar to the interfacial tension between outer
and inner liquid. The interfacial tension of a similar system without
elastic shell and without nanoparticles inside was determined to be
14.6 mN/m by pendant drop tensiometry. The presence of
surfactants from the synthesis of the nanoparticles as well as the
elastic shell should lower the interface tension below this value. In
addition, it should be mentioned that the interfacial tension of the
ferrofluid is probably increasing for increasing external magnetic field
as Afkhami et al. observed.36 We expect γ ≈ 10 ± 4 mN/m to be a
valid average value.

The parameter values that are used for the numerical calculation of
capsule shapes are summarized in Table 1. The surface Poisson ratio
deviates slightly from the value measured in the experiment (eq 11).
This will be discussed below in the Experiments and Results section.

Finally, the exact distribution of the applied inhomogeneous
magnetic field and the magnetic properties of the ferrofluid, that is, its
magnetization curve M = M(H) have to be known as well in order to
calculate the magnetic forces (eq 1), see following sections.

Figure 2. Experimental setup and measured flux density for the
magnetic deformation of capsules with a current of I = 2 A.

Table 1. Numerical Parameters

name symbol value

2D Young’s modulus Y2D 0.186 N/m
surface Poisson ratio ν 0.946
shell thickness h 3 μm
radius R0 0.903−1.044 mm
density difference Δρ 0.24 g/cm3

surface tension γ 10 mN/m
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Magnetic Field. We used a Hall probe to measure the magnetic
field depending on the position and the applied current I in the coil
(see Figure 2). The capsules are very small in relation to the size of
the coil and the conical iron core, so the radial component of the
magnetic field can be neglected. In addition, the z-component of the
field is nearly constant in radial direction over the capsule size and
thus only depends on the z-coordinate. In the numerical calculations
we use a fit to the measured external magnetic field with a Langevin
function to model the dependence on current I and a hyperbolic
function for the dependence on height z

= −
−

+
i
k
jjjjj

y
{
zzzzz
i
k
jjjjj

y
{
zzzzzB z I a b I

b I
a

z b
c( , ) coth( )

1
z I

I

z

z
z

(2)

with fit parameters a = 4.647, bI = 0.332 A−1, az = 286.7 × 10−6 mT,
bz = −1.104 × 10−3 m, and cz = 10.86 × 10−3 T. A plot of the fit curve
together with the measured magnetic field is shown in the Supporting
Information. The fit describes the magnetic field with an error below
1% in the neighborhood of the capsule.
Magnetization Curve. The magnetization curve of the ferrofluid

is calculated from the particle size distribution of the magnetite
nanoparticles. The particle size distribution is obtained from dynamic
light scattering (see Supporting Information) and given in Table 2,
where the relative frequency ni of particle diameters di = 5−14 nm are
given. The particle size distribution has a maximum around d = 7−8
nm.

According to ref 1 the magnetization M as a function of the field
strength H is then given by

∑ ∑μ π= − × −
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
M H M n d d L

M H

k T
d d n d( ) ( )

6
( ) /

i
i i i

i
i is s

3 0 d

b
s

3 3

(3)

with the Langevin function L(x) = coth(x) − 1/x. Ms = 34 650 A m−1

is the saturation magnetization of the magnetite particles without
sterical stabilization and Md = 446 000 A m−1 denotes the bulk
magnetization of magnetite. The diameters of the nanoparticles are
reduced by ds, because the crystal order of the outer surface layer of
magnetite is disturbed by the dispersing agent. This lowers also the
effective saturation magnetization of the ferrofluid. Following ref 1 we
use ds = 1.66 nm. The resulting magnetization curve is shown in
Figure 3.

Numerical Procedure. The calculation of the magnetic field
inside the capsule and the ferrofluid is done numerically by a coupled
FEM/BEM.37−44 The shape of the elastic shell and the magnetic field
inside the capsule form a coupled problem that has to be solved self-
consistently: changes in the shape of the elastic shell cause changes in
the magnetic field distribution inside the capsule, which, in turn,
changes the magnetic forces in eq 1 onto the capsule shell and thus
the capsule shape. Therefore, an iterative solution scheme has to be
used. For a given trial shape, we calculate the magnetic field inside the
capsule using only the externally applied field. Using the new field, we
can recalculate the magnetic forces and a new equilibrium shape. This
is iterated until shape and field converge to a fixed point. This iterative
solution scheme for a ferrofluid-filled capsule has been introduced and
is explained in detail in ref 18.

■ EXPERIMENTS AND RESULTS
Mechanical Characterization of the Capsule Shell. We first

characterize the capsules mechanically and determine the two-
dimensional Young modulus Y2D and the surface Poisson ratio ν.
These values are subsequently used in the theoretical model for
magnetic deformation. We determine mechanical parameters of the
shell with two independent methods, compression between parallel
plates and spinning capsule deformation. If the Poisson’s ratio ν is
known both methods give the two-dimensional elastic modulus Y2D. A
separate measurement of ν is, however, difficult and often a generic
value is assumed.45,46 By combining the results of the two
independent measurements, we overcome this problem and obtain
two independent equations for the two unknowns Y2D and ν, which
enables us to determine both quantities.47

The first method, the compression between parallel plates (capsule
squeezing) is a well-known technique for the mechanical character-
ization of capsules.6,12 A capsule is placed between two parallel plates
and the force is measured as a function of the displacement. From the
force−displacement compression curve, elastic moduli of the capsule
shell can be calculated. There are different methods to analyze the
force−displacement curves. Some methods, like the one developed by
Barthes̀-Biesel et al., use a fit of the whole curve.6,12 As shown in an
earlier publication, water leaks out of alginate capsules during
compression.24 Therefore, we only analyze the linear regime with low
forces in order to minimize the influence of water leakage.

To describe the compression of a capsule between parallel plates in
the initial linear regime, the model of Reissner for a point force acting
on the apex of the capsule can be used.6,48,49 In this model the force F
depends linearly on the displacement d as

ν
=

−
F

Y h

R
d

4

3(1 )
2D

0
2

(4)

Reissner’s linear theory applies to an unpressurized shell with
purely elastic tensions and rest radius R0. Here, we need to generalize
this model to include the interfacial tension γ, which generates a
stretching tension in the shell already before indentation by the force.
We find that the effect of an additional interfacial tension γ is
equivalent to the effect of an internal pressure p0 = 2γ/R0 given by the
Laplace−Young equation; such pressurized capsules have been
studied previously by Vella et al. in ref 10. Using this equivalence
we obtain a modified linear force−displacement relation

ν
τ=

−
F

Y h

R
G d

4

3(1 )
( )2D

0
2

(5)

with

τ π τ
τ

τ ν γ

= −
−

= −

−G
ar

Y R h

( )
2

( 1)
tanh(1 )

3(1 )( / ) ( / )

2 1/2

2 1/2

2
2D

2
0

2 (6)

(more details on the derivation are given in the Supporting
Information). Note that a vanishing interface tension (γ = 0) leads
to G(0) = 1, and we recover the Reissner result (eq 4). To obtain the

Table 2. Particle Size Distribution: Relative Frequency ni of
Particle Diameter di

di [nm] ni [%] di [nm] ni [%]

5 2.0 10 8.6
6 14.1 11 7.6
7 23.9 12 5.5
8 23.9 13 3.8
9 16.1 14 2.4

Figure 3.Magnetization curve of the ferrofluid used in the experiment
according to eq 3.
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elastic moduli from this linear model, also the radius of the
undeformed capsule R0 and the thickness of the shell h are needed.
The second method for the determination of Y2D and ν is the

spinning capsule method. Originally, the spinning drop method was
developed for interfacial tension measurements.50,51 A drop is placed
in a capillary filled with a liquid of higher density ρ. During rotation of
the capillary the drop deforms; the shape of the deformed drop
depends on the rotation frequency and interfacial tension γ. For the
deformation of liquid-filled capsules, Pieper et al. developed a model
that allows one to obtain in an analogous fashion 2D elastic moduli
from the capsule deformation.13 A sketch of the method is shown in
the Supporting Information. Initially (at small rotation speed), the
capsule is in an undeformed (quiescent) state. Then capsule
deformation is measured as a function of the angular rotation
frequency ω. The capsule deformation is quantified by the Taylor
deformation D

= −
+

D
l b
l b (7)

which is determined from the length l and the width b of the capsule.
For deformations within the linearly elastic regime, the Taylor
deformation depends on the angular rotation frequency ω via13

ρω ν= −Δ +
D R

Y
(5 )

16
2

0
3

2D (8)

where R0 is the radius of the undeformed capsule, Δρ is the density
difference between the inside and outside liquid phases. Equation 8 is
only valid for shells with purely elastic tensions and without an
interfacial tension. Again we need to generalize the theory to include
an interfacial tension γ. This can be done by observing that the linear
response of the capsule deformation in spinning drop experiments is
actually equivalent to the linear deformation response of a ferrofluid-
filled capsule in a uniform external magnetic field18 with a magnetic
susceptibility χ = −1 and a magnetic field strength μ0H

2 = ΔρR0
2ω2.

This equivalence arises because both centrifugal forces exerted by the
interior liquid in the spinning capsule geometry and magnetic forces
exerted by the ferrofluid in an external field are normal surface forces.
Moreover, for a spherical shape they have the same position-
dependence for χ = −1 and the same magnitude if we set μ0H

2 =
ΔρR0

2ω2. In ref 18 the deformation of a ferrofluid-filled magnetic
capsule has already been considered also in the presence of an
interfacial tension γ, and we can exploit the equivalence of both
problems and adapt the results of ref 18 for the linear response (more
details are given in the Supporting Information). We find

ρω ν
ν γ

= −Δ +
[ + + ]

D R
Y

(5 )
16 (5 )

2
0

3

2D (9)

that is, in the presence of an interfacial tension we simply have to
replace Y2D in eq 8 by Y2D + (5 + ν)γ.
The two unknown material parameters Young’s modulus Y2D and

surface Poisson ratio ν can now be obtained from solving the two eqs
5 and 9 simultaneously, which can only be done numerically for γ ≠ 0
in general. In order to do so, also the rest radius R0 and the shell
thickness h of the spherical capsules are needed. The mean capsule
radius was determined from image analysis (see Materials and
Methods) as 794 ± 87 μm. The shell thickness was determined by
SEM (see Materials and Methods and Supporting Information). The
shell thickness estimated by SEM was under 1 μm. As SEM is
performed in ultra-high vacuum, swelling has to be taken into
account. Because we were not able to resolve the hydrated capsule
shell by optical microscopy, its thickness has to be below 5 μm. We
conclude that the shell thickness of hydrated capsules is approximately
3 μm but with a relatively high error around 1 μm.
Figure 4 shows the results for the force−displacement curves in the

capsule compression tests. We measured 15 individual capsules, and
the respective force values for the displacement were averaged to gain
information on replicability. In Figure 4 the averaged force−
displacement curve is shown. The linear regime can be seen clearly.
In this regime the error bars are also relatively low. Higher error bars

with increasing compression are an effect of capsule size variations.
For the calculation of the elastic moduli, the analysis was performed
for each capsule separately with the respective radii and an average
value FR0/d is extracted from the linear regime (blue curve in Figure
4).

Figure 5 shows the results of the spinning capsule experiments for
one exemplary capsule. Because of small mechanical forces which act

during the capsule synthesis, we observed small initial Taylor
deformation values of Di = 1−2%, which were not caused by
deformation in the centrifugal field. Also the initial quiescent capsule
state is measured at ωi > 0. Therefore, we subtract the initial
deformation and initial angular frequency and use the Taylor
deformation difference ΔD = D − Di and the difference Δω = ω −
ωi for the analysis. Figure 5 shows the expected linear dependence of
ΔD from the parameter Δ(Δρω2R0

3) according to eq 9. The
deviations at higher rotation frequencies are caused by water leakage
from the capsule, which was also observed in previous studies.32 For
the calculation of the elastic moduli, the slope ΔD/Δ(Δρω2R0

3) is
determined from the initial linear regime (blue curve in Figure 5).

The results from both capsule deformation methods are used to
calculate the surface Poisson ratio ν and the 2D Young modulus Y2D
by solving eqs 5 and 9 simultaneously. We find

= ±Y 0.186 0.040 N/m2D (10)

and

ν− = ± × −1 (1.9 2.8) 10 7 (11)

Because ν is extremely close to unity, the two eqs 5 and 9 can be
decoupled with negligible error, which leads to the following
simplification: we set ν = 1 in eq 9 and calculate Y2D only from the
spinning capsule experiment. This value is then used to calculate ν via
eq 5. This decoupling has the additional benefit that we can determine
Y2D from eq 9 for the spinning capsule experiment effectively
independently of the shell thickness h, which can only be measured
with a relatively high error as explained above.

As compared to other calcium alginate capsules, the moduli are
very low.32,45 This is likely an effect of the encapsulated components,
that is, the nanoparticles or the specific oils used. In emulsion

Figure 4. Averaged force (F)−displacement (d) curve for capsule
compression between parallel plates and fit to the linear regime.

Figure 5. Results of an exemplary spinning capsule experiment for the
difference in Taylor deformation ΔD (see eq 7) between deformed
and initial state as a function of Δ(Δρω2R0

3).
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encapsulation, the moduli were lowered by the addition of
nanoparticles.24 As the main goal was to obtain easily deformable
capsules, this was achieved by creating very thin shells. A remarkable
result is the high surface Poisson ratio, which points to an area-
incompressible shell.13 Therefore, we further check this finding by
adjusting this parameter in the numerical calculation and analysis of
the magnetic deformation of the capsule shape to fit the experimental
shapes. For Young’s modulus we use the measured value Y2D = 0.186
N/m in the numerical calculations (see Table 1).
Magnetic Deformation. We prepared different capsules and

deformed them with the previously described inhomogenous field by
increasing the electric current in the coil up to 5 A. This corresponds
to magnetic field variations up to 50 mT over the size of the capsule.
Photos of three exemplary capsules that have reached their steady
state of deformation are shown in Figure 6. In Figure 6 we compare

these photos with numerically calculated contours (with dashed
lines), which were generated with the parameter values in Table 1.
These are the experimentally measured parameter values except for
the surface Poisson ratio ν. In particular, we consider the mechanical
measurements of the Young modulus Y2D = 0.186 N/m to be exact
and employ this value in the numerics. The Poisson ratio ν = 1 − 1.9
× 10−7 from mechanical characterization is extremely close to unity; it
depends very sensitively on the shell thickness h, which is not easy to
determine reliably. Therefore, we regarded ν as a free parameter and
adjusted ν for the best fit to the experimental shapes, which gives a
slightly lower value ν ≈ 0.946. This confirms that the surface Poisson
ratio of the shell is close to unity.
There are minor deviations between experimental capsule shapes

and the calculated contours, which are probably caused by
inhomogeneities and asymmetries in the shell thickness. In addition,
we also observe in Figure 6 that a small amount of transparent
nonmagnetic liquid was also caught inside the capsules. As the
transparent phase spreads lense-like at the surface of the ferrofluid
droplet, we assume that this liquid is polar and likely contains water
that diffused through the membrane. This liquid is pushed to the
upper part of the capsule when the ferrofluid is pushed downwards by
the inhomogeneous magnetic field as can be seen in the deformed
capsules in Figure 6 and in the close-up in Figure 7. Because this fluid
does not contain magnetic nanoparticles, it accumulates at the top of
the capsule and, thus, at the place with the lowest field strength during
deformation. The appearance of this liquid could not be prevented.
The additional error in comparison to the numerical model caused by
that liquid should be small; however, because the magnetic stress from
the ferrofluid acts on the interface between the ferrofluid and the
nonmagnetic liquid and is transmitted to the elastic shell by the liquid.

Therefore, the behavior of the whole capsule should be comparable to
a capsule with only a ferrofluid inside.

In order to perform a quantitative comparison between numerics
and the experiment, we measure the ratio of the capsule’s height (a)
to the maximum width (b), measured parallel to the plate below the
capsule. The results of these measurements are shown in Figure 8. We

achieve the best agreement between numerical calculations and
experimental data for ν ≈ 0.946. As also the comparison of capsule
shapes in Figure 6 indicates, there is a good agreement between
numerical calculations and the experiment for ν ≈ 0.946. The only
point with some higher deviation is at I = 0, that is, in the absence of
any magnetic field. Then the deformation of the capsule is only
caused by gravity and, thus, is in total relatively small. This makes the
capsule side ratio a/b very prone to asymmetries of the shell. In
addition, the capsule is not a perfect sphere after membrane gelation
as it is assumed in the numerical calculation.

We can also check that the capsule’s volume V0 remains constant
during the magnetic deformation process. Any loss of the inner fluid
through the shell would be visually detectable during contact with the
outer fluid. In addition, analysis of the capsule photos for the capsule
contour r(z) and calculation of the volume V0 = ∫ dzπr2(z) does not
indicate any loss of volume (see Supporting Information). We
conclude that the elastic shell is impermeable for the inner and outer
fluid under the employed experimental conditions and during
magnetic deformation.

An important characteristic for possible applications is the question
if the material is weakened by the deformation, that is, whether aging
effects occur. We checked this by performing a second deformation
cycle. The results are shown in Figure 9 exemplarily for the first
capsule. Second and first deformation cycles agree well which
indicates that no significant damage or aging in the elastic shell occurs
during the deformation process. Also the preserved volume during
deformation hints at a reversible deformation process.

Figure 6. Photographic images of three different capsules with radii
(1) R0 = 0.903 mm, (2) R0 = 1.044 mm, and (3) R0 = 0.965 mm, each
for increasing magnetic fields with I = 0 A (left), I = 2 A (middle) and
I = 5 A (right). The dashed lines describe numerically calculated
capsule contours using the parameters in Table 1. A surface Poisson
ratio ν = 0.946 gives the best fit to the experimental shapes.

Figure 7. Magnified photographic image of capsule 1 for I = 5 A. A
non-magnetic transparent liquid, which is clearly phase-separated
from the ferrofluid, is pushed to the upper part of the capsule.

Figure 8. Ratio of capsule height a to width b for increasing current I.
Markers denote capsules from the experiment, while solid lines
represent numerical data generated with the best fit ν ≈ 0.946. The
upper curve (blue, squares) are data for capsule 1 from Figure 6, the
middle curve (red, triangles) and lower curve (green, circles) data for
capsules 3 and 2, respectively.
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Having established a good agreement between experiment and
theory as evidenced by Figures 6 and 8, we can use the theoretical
model to access important physical quantities that are experimentally
hardly accessible, such as the detailed distributions of magnetic field
and stresses. The distribution of the magnetic field inside the
deformed capsules is easy to calculate from our model. Figure 10
shows the magnetic field inside and outside of capsule 1 at I = 5 A, the
stray field generated by the magnetized capsule, and the magnet-
ization inside the capsule. The external magnetic field has a high
gradient, but the total field inside the capsule is surprisingly
homogenous. The magnetization of the ferrofluid decreases the
total field in the lower section of the capsule, whereas it increases the
total field in the upper part because it counteracts the external
magnetic field according to Lenz’s law. This results in smaller field
gradients inside the capsule. Magnetization variations inside the
capsule are small.
Also the elastic stress state inside the elastic shell as given by the

stress and strain distribution becomes accessible by numerical
calculation. Figure 11 shows the force/stress/strain distribution
along the capsule contour for capsule 1 in different stages of
deformation. The position of the highest elastic stress is marked,
which is at the highly curved region at the bottom of the capsule. We
can infer that the capsule will most likely rupture at this position if the
magnetic field is further increased.
Poisson’s Ratio ν. For the numerics, we consider the measure-

ment of the Young modulus to be exact with a value of Y2D = 0.186
N/m. Varying the surface Poisson ratio ν, we find the best match
between numerics and experiment for ν ≈ 0.946. This confirms a
surface Poisson ratio of the shell very close to unity and is only slightly
lower than the value ν = 1 − 1.9 × 10−7 from mechanical
characterization. This represents an explicit measurement of the
surface Poisson ratio for an alginate membrane. Other measurements
of the surface Poisson ratio of alginate shells are only available for
barely comparable systems and solely rely on mechanical character-
ization;32,47 in the literature often a generic value (such as ν = 1/3 or
ν ≈ 0.5) is assumed.45,46

The two-dimensional area compression modulus K2D = Y2D/2(1 −
ν) diverges for ν close to unity. Therefore, surface Poisson ratios close
to unity are remarkable as they imply a polymerized shell that is nearly
area preserving during deformation. For Poisson ratios ν close to
unity, strong elastic deformations also become quite sensitive to
changes of ν, as the diverging compression modulus also gives rise to
diverging elastic stresses containing factors 1/(1 − ν). This allows us
to determine ν rather precisely by fitting numerical to experimental
shapes (see also Supporting Information).

In a three-dimensional material volume-incompressibility during
deformation corresponds to a three-dimensional Poisson ratio ν3D =
0.5 (the three-dimensional compression modulus is K3D = Y3D/3(1 −
2ν3D)). Three-dimensional Poisson ratios close to ν3D = 0.5 are
common for three-dimensional polymeric materials, where volume-
incompressibility is, for example, explicitly implemented in the
Mooney−Rivlin constitutive relation commonly used for polymeric
materials.52 For polymeric materials incompressibility can be
attributed to the effectively incompressible densely packed liquid of
monomers. Also alginate gels are typically regarded as volume-
incompressible materials as confirmed by measurements, for example,
in refs 53 and 54. A material that is volume-incompressible in three
dimensions (ν3D = 0.5) forms an area-incompressible thin shell if the
shell has constant thickness during deformation. If the thickness can
adapt, on the other hand, we expect ν = ν3D = 0.5 and the thickness
grows (shrinks) if the shell area is compressed (expanded). Therefore,
our findings are consistent with an alginate shell consisting of a
volume-incompressible material that maintains a shell of constant
thickness during deformation. It remains to be clarified whether the
inherently anisotropic structure of the alginate gel which results from
the ionotropic gelation process55 can contribute to the observed high
surface Poisson ratios. From a chemical point of view, we expect the
Poisson number to depend on the cross-linking and swelling degree of
the encapsulating alginate membranes.

■ CONCLUSIONS
Ferrofluids are an interesting tool for different applications
involving the actuation of a fluid by magnetic fields. The
encapsulation of the ferrofluid can prevent the interaction of
the fluid with its environment. In this work, we presented a
novel method to encapsulate a ferrofluid drop with a very thin
elastic shell.
Using this method, a direct encapsulation of oils in alginate

gels could be achieved. We used 1-hexanol as an additive to
directly dissolve CaCl2 for ionotropic gelation of sodium
alginate in an organic solvent. The magnetic nanoparticles
remained stable throughout the whole process and formed a
stable ferrofluid. The produced elastic capsules showed low
Young moduli, especially compared to other calcium alginate
gels. This enables a strong deformation in relatively weak
magnetic fields, which opens possibilities for applications as,
for example, switches or valves in confined spaces like
microfluidic devices. In these applications, it is essential to

Figure 9. Ratio of the height a of capsule 1 to the width b for
increasing current I. Squares denote the first deformation. Circles
represent a second measurement with the same capsule after
deforming and relaxing the capsule.

Figure 10. Numerically calculated distributions of magnetic field strength (left), stray field (middle), and magnetization (right) for capsule 1 (see
Figure 6) at I = 5 A. The solid line represents the capsule’s elastic shell. Left: Color codes for the absolute value of the total magnetic field |H| (in
A/m). Middle: Color codes for the absolute value of the capsule’s own magnetic stray field Hstray = H − Hextern (in A/m), arrows indicate the field
direction. Right: Color codes for the absolute value of the magnetization |M| (in A/m). Note that magnetization variations are very small.
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protect the components from contact with the ferrofluid, as it
is likely to cause unwanted reactions due to its high reactivity.
Concerning a transfer to the biological or medical sector as
motion-controllable and deformable capsule systems, applica-
tions in micromanipulation are imaginable. For any sort of
industrial or medical application, a change of the system is
necessary as chloroform is a highly volatile and toxic
compound. This is, however, easily achieved as the oil is
exchangeable and chloroform was only used because of its high
density. It is also likely that the 1-hexanol can be substituted by
other alcohols.
We first characterized the capsules mechanically using a

combination of compression and spinning capsule techniques.
We produced nearly spherical capsules with radii about R0 = 1
mm and mechanical characterization showed a two-dimen-
sional Young modulus of Y2D = 0.186 N/m. The surface
Poisson ratio was close to unity.
Then we performed magnetic deformation in an inhomoge-

neous field in front of a hard constraining wall. Our results in
Figure 8 demonstrate that high deformations with height to
width ratios as low as 0.6 could be achieved in inhomogeneous
magnetic fields which vary by 50 mT over the size of the
capsule. Maximal strains of about 17% occur in the capsule
shell during deformation (see Figure 11). The volume inside
the capsules was constant during magnetic deformation, that is,
the alginate shells were impermeable. The inclusion of a
nonmagnetic, transparent, water-based liquid inside every
capsule was observed. Moreover, magnetic deformation was
shown to be completely reversible over several deformation
cycles without plastic or aging effects.
We presented a theoretical model and a numerical method

to predict the deformation behavior in magnetic fields by
numerical calculations using parameter values from the
experimental characterization as input parameters. The
comparison of the capsule deformation with numerical
calculations based on a nonlinear small strain shell theory
showed a good agreement between theory and experiment (see
Figures 6 and 8). In the numerical calculations we used the
surface Poisson ratio ν, which is notoriously hard to measure

experimentally, as a fit parameter, which was adjusted to
optimally fit experimental shapes. In agreement with the
mechanical characterization we obtained values ν close to unity
(ν = 0.946). Therefore, our results constitute the first reliable
measurement of the surface Poisson ratio of alginate gel
capsule shells. Surface Poisson ratios close to one suggest that
the alginate shell deforms nearly area-preserving. The
molecular reasons for this behavior remain to be clarified.
Having established the agreement between the theoretical

model and experimental results, we can use the numerical
results to gain further insight into details of the deformation
behavior, which are not experimentally accessible. The
numerical approach gives access, for example, to the complete
magnetic field distribution inside and outside the ferrofluid-
filled capsule, the exerted magnetic forces, the stress
distribution, and the exact deformation state in terms of
strains, see Figures 10 and 11.
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Figure 11. Stresses and strain distributions for different deformation states of capsule 1 (see Figure 6) for zero magnetic field (left), I = 2 A
(middle) and I = 5 A (right). The left scales show the strain in meridional (es) and circumferential (eφ) direction and the corresponding elastic
stresses (τs, τφ in units of Y2D) inside the shell. The right scale shows the magnetic pressure fm (in units of Y2D/R0). The corresponding positions on
the surface are given by the arc length s0 of the undeformed reference sphere (in units of R0, s0 ∈ [0, π]). For comparison, the interface tension has
a value γ = 0.054Y2D. This shows that the interfacial tension γ is the dominating stress for small deformations (es,φ < 0.05) by gravity and at small
magnetic field, while the strongly deformed shell is completely dominated by elasticity.
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