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Shape equations

In order to calculate axisymmetric shapes of
capsules under the influence of external mag-
netic forces we numerically solve a closed set of
six shape equations, which are based on non-
linear Hookean elasticity of the material. We
recapitulate the shape equations in this section
briefly. For more details on the elastic model
and the derivation of the shape equations, see
Refs. S1,S2 and Ref. S3 in the presence of mag-
netic forces.

The capsules’ shells are thin enough to be
effectively treated as two-dimensional. We
parametrize the surface in cylindrical coordi-
nates (r, z, ϕ) (see Figure S1). Because of rota-
tional symmetry, the contour line of the capsule
can be written as z(r). The arc length s of the
contour line starts at the lower apex with s = 0
und ends at the upper apex with s = L.

Figure S1: Parametrization of the axisymmet-
ric capsule surface in cylindrical coordinates.
The red contour line is calculated numerically.

We use a Hookean elastic energy density

wS =
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(S1)

The strains ei are related to the stretch factors
λi via ei = λi−1 and the bending strains Ki are
related to the curvatures κi via Ki = λiκi−κi0 .
The index s describes the meridional direction
and ϕ the circumferential direction. The index
0 indicates the reference sphere. The bending

modulus EB is defined via

EB =
Y2Dh

3

12(1− ν2)
. (S2)

The constitutive relations

τs =
Y2D

1− ν2
1

λϕ
(es + νeϕ), (S3)

ms = EB
1

λϕ
(Ks + νKϕ) (S4)

for the ealstic stresses τi and the bending mo-
mentsmi (τϕ andmϕ with interchanged indices)
are obtained by variation of the energy density
with respect to the strains.

The shape equations follow from purely geo-
metric relations and the force and moment equi-
librium in the shell, which is described by the
following three equations (normal and tangen-
tial force equilibrium and moment equilibrium):

0 = (τs + γ)κs + (τϕ + γ)κϕ

− (p0∆ρgz + fm) +
1

r

d(rq)

ds
,

(S5)
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r
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ds
, (S6)
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1

r

d(rms)
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− cosψ

r
mϕ. (S7)

Rearranging these equilibrium equations and
geometrical relations for r, z and ψ, we get a
system of six differential equations, the shape
equations:

r′(s0) = λs cosψ, (S8)

z′(s0) = λs sinψ, (S9)

ψ′(s0) = λsκs, (S10)

τ ′s(s0) = λs

(
τϕ − τs
r

cosψ + κsq − ps
)
,

(S11)

m′s(s0) = λs

(
mϕ −ms

r
cosψ − q

)
, (S12)

q′(s0) = λs

(
− κs(τs + γ)− κϕ(τϕ + γ)

− q

r
cosψ + p0 + ∆ρgz + fm

)
.

(S13)

S2



The first three equations are geometrical rela-
tions, while the remaining three equations rep-
resent force and moment equilibrium. The pres-
sure p0 inside the capsule is modified by the hy-
drostatic pressure ∆ρgz and the magnetic pres-
sure fm. This system is closed by the following
relations:

λs = (1− ν2)λϕ
τs
Y2D
− ν(λϕ − 1) + 1, (S14)

λϕ =
r

r0
, (S15)

Ks =
1

EB

λϕms − νKϕ, (S16)

Kϕ =
sinψ − sinψ0

r0
, (S17)

κs =
Ks + κs0

λs
, (S18)

κϕ =
sinψ

r
, (S19)

τϕ =
Y2D

1− ν2
1

λs
((λϕ − 1) + ν(λs − 1)), (S20)

mϕ =
EB

λs
(Kϕ + νKs) (S21)

We solve the closed system of six shape equa-
tions numerically with a fourth order Runge-
Kutta scheme. Boundary conditions at the two
poles follow from the requirement of a closed
capsule and lead to a boundary value problem
that is solved by employing a multiple shooting
method in conjunction with the Runge-Kutta
scheme.

Analysis of elastic parame-

ters

For the spinning capsule experiments, we used
the SVT 20 of the DataPhysics Instruments
GmbH. We used Fluorinert 70 (FC 70) as outer
phase because of its high density. The initial
undeformed (quiescent) state was recorded at
2000 rpm. In Figure S2, a sketch of the spin-
ning capsule measurement technique is shown.

Capsule compression experiments were per-
formed with the DCAT11 tensiometer (Data-
Physics Instruments GmbH) with the respec-
tive software SCAT. The compression speed

Figure S2: Spinning capsule experiment.

was set to 0.02 mm/s. A sketch of the capsule
compression method is shown in Figure S3.

Figure S3: Capsule compression experiment.

Measurement of initial ra-

dius R0 and volume V0 of cap-

sules

The radius R0 of the initial undeformed spheres
can not be measured directly, because the cap-
sules are deformed by gravity even without an
external magnetic field. Therefore, we deter-
mine the capsules’ volume from the experimen-
tal images. The image analysis was performed
with FIJI/ImageJS4,S5) using capsule photos
taken with a OCA20 pendant drop tensiome-
ter (DataPhysics Instruments GmbH).

In order to determine the volume V0, we mea-
sure the axial radius ri at different heights zi
and calculate V0 =

∫
dzπr2(z) ≈

∑
i πr

2
i (zi+1−

zi) by summation over small cylindrical vol-
umes of radius ri at height zi. We then calcu-
late the initial radius by R0 = (3/(4π)V0)

(1/3).
We only assume that capsules are axisymmet-
ric, which is fulfilled to a good approximation.

We find that the volume inside the capsule
is constant during the whole experiment. The
elastic shell is impermeable for the involved flu-
ids.
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Scanning electron microscopy

(SEM) images

In order to estimate the shell thickness, SEM
measurements were performed. The resulting
images are shown in Figure S4. The capsule
was broken prior to the measurement to avoid
bursting in ultra high vacuum.

Figure S4: Scanning electron microscopy im-
ages of the ferrofluid-filled capsules. Center:
complete capsule, bottom right: outer capsule
shell. Top left, top right and bottom left: cross
sections through ruptured parts of the shell at
increasing megnification; yellow lines measure
shell thickness.

This gives only a rough estimate of the thick-
ness of the capsule shell. In addition to po-
tential errors due to optical effects like parallax
error it has to be taken into account that SEM
is performed in vacuum, i.e., in the dried unhy-
drated state. With our optical microscope we
were not able to resolve the hydrated shell of in-
tact capsules, from which we can conclude that
the shell thickness of the hydrated capsules has
to be below 5µm. From the SEM images we
find a shell thickness of approximately 600 nm
in vacuum in the dried state, see yellow lines
in Figure S4. For alginate capsules with thicker
shells we could perform both optical microscopy
measurements in the hydrated state and SEM
measurements in the dried state. These mea-
surements suggest swelling factors larger than
5 for the thickness increase by hydration. We

conclude that the shell thickness in the hy-
drated state is approximately 3µm with a rel-
atively high error around 1µm.

Fit of the external magnetic

field

The external magnetic field generated by a coil
with a conical iron core was measured with a
hall probe. The field was measured on different
positions on the central axis over the iron core
and in the vicinity of the axis.

We found that the field was nearly constant
in radial direction within a distance of about
2 mm next to the central axis. Our biggest cap-
sule had a radius of R0 = 1.044 mm and even
in the deformed state, its radial dimension did
not exceed 1.4 mm. So it is well justified to
treat the magnetic field as constant in radial
(r-) direction and to set the radial component
of the field Br to zero. Together with the cylin-
drical symmetry of the setup, we only have to
estimate the z-component Bz that depends on
the coordinate z and the current I. We use a
Langevin function to model the current depen-
dency and a hylerbolic function for the position
dependency. The measured magnetic field is in
good agreement with a fit

Bz(z, I) = a

(
coth(bII)− 1

bII

)(
az

z − bz
+ cz

)
(S22)

with parameters

a = 4.647 (S23)

bI = 0.332
1

A
(S24)

az = 286.7 · 10−6 Tm (S25)

bz = −1.104 · 10−3 m (S26)

cz = 10.86 · 10−3 T. (S27)

The fit describes the magnetic field with an er-
ror below 1 % in the neighborhood of the cap-
sule. A plot of the z- and I-dependence of the
Bz is shown in Figure S5.
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Figure S5: Magnetic flux density Bz in z-direction as a function of the vertical distance z to the
iron core for I = 2 A (left) and as a function of the current I in the coil for z = 3.6 mm (right).
The fit eq S22 is shown as solid lines.

Dynamic light scattering

To ensure the stability of the nanoparticles in-
side the ferrofluid dynamic light scattering mea-
surements were performed. We used the Zeta-
Sizer Nano ZS by Malvern instruments with the
Zetasizer Software 7.12. The results were anal-
ysed with the CONTIN fit. All particle size
values are given as the so-called number mean.

The capsules were produced by formation in
a layer of distilled water followed by sinking
into layer of aqueous sodium alginate solution
(1%w). The polymerisation time needed for
the formation of stable, ferrofluid-filled capsules
was 30 s. The procedure is shown in Figure 1
in the main text.

Additional interface tension

in capsule compression ex-

periments

The original Reissner formula

F =
4Y2Dh

R0

√
3(1− ν2)

d (S28)

for the force-displacement relation describes the
linear response of an unpressurized and initially
tension-free elastic shell with rest radius R0 to
a point force F in terms of the resulting in-
dentation d. In the presence of an additional
interfacial tension, the main difference to the

purely elastic shell is a non-vanishing pressure
p0, which is caused by the interfacial tension al-
ready in the initial state with F = 0 and which
satisfies the Laplace-Young equation

2γ/R0 = p0. (S29)

We generalize Reissner’s linearized shallow shell
theoryS6,S7 to include the interfacial tension and
the resulting internal pressure p0 (in Ref. S8 the
related problem of pressurized shells in the ab-
sence of an interfacial tension has been consid-
ered). This leads to a linearized shallow shell
equation

κB∇4w − γ∇2w +
Y2D
R2

0

w = − F
2π

δ(r)

r
(S30)

for the normal displacement w(r) in polar coor-
dinates, with r as the radial distance from the
origin where the point force F is applied; κB is
the shell’s bending modulus

κB =
Y2Dh

2

12(1− ν2)
. (S31)

Equation (S30) is identical to the linearized
shallow shell equation governing the indenta-
tion of pressurized shells with internal pres-
sure p0 in the absence of interfacial tension
(eq (3.2) in Ref. S8) with the interfacial ten-
sion γ = p0R0/2 (according to Laplace-Young
equation S29) replacing the pressure-induced
isotropic stress σ∞ = p0R0/2. This means both
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problems are equivalent: the interfacial ten-
sion gives rise to an internal pressure p0 in the
same way as an internal pressure p0 gives rise
to an isotropic tension σ∞ prior to indentation.
Consequently the solution of eq (S30) proceeds
as in Ref. S8. Integrating eq (S30) The solu-
tion w(r) for a given indentation d = −w(0)
has to be integrated over the whole reference
plane of shallow shell theory to obtain the force
F = −2π(Y2D/R

2
0)
∫∞
0
drrw(r). This finally

gives

F =
4Y2Dh

R0

√
3(1− ν2)

G(τ) d (S32)

with

G(τ) =
π

2

(τ 2 − 1)1/2

artanh (1− τ−2)1/2
(S33)

τ = 3(1− ν2) (γ/Y2D)2 (R0/h)2 .

For γ ≈ 0 the Reissner result (S28) is recovered
(note that in this case τ ≈ 0 and both the nu-
merator and the denominator in (S33) become
imaginary because 0 < τ < 1). For finite γ > 0
we find a stiffening of the shell, i.e., an increased
linear stiffness F/d as in Ref. S8 for pressurized
shells (G(τ) > 1 for τ > 0). The increase in lin-
ear stiffness remains small for τ � 1 (G(τ) ≈ 1
for τ � 1), which is fulfilled for capsule mate-
rials with ν sufficiently close to unity as for our
alginate capsules. Therefore, corrections due to
γ > 0 remain small.

Additional interface tension

in spinning drop experi-

ments

We also have to generalize the analysis of cap-
sule deformation in the spinning drop appara-
tus given in Ref. S9 in the presence of inter-
facial tension. The linear response of the cap-
sule deformation in spinning drop experiments
is actually equivalent to the deformation of a
ferrofluid-filled capsule in a small uniform ex-
ternal magnetic field as it has been analyzed
in Ref. S3 if we set the magnetic susceptibil-
ity to χ = −1 and the magnetic field strength

to µ0H
2 = ∆ρR2

0ω
2. Both magnetic forces on

the ferrofluid-filled capsule in an external field
and the centrifugal pressure exerted by a liquid
of different density inside the capsule are nor-
mal forces (as they are generated by liquids)
acting on the capsule surface. For a spheri-
cal shape the magnetic normal forces have the
same position-dependence on the polar angle
(between the radial vector and the symmetry
axis, i.e., field or rotation axis) for a suscepti-
bility χ = −1; for µ0H

2 = ∆ρR2
0ω

2 also the
magnitude of magnetic and centrifugal forces
becomes identical. In Ref. S3 the deformation
of a ferrofluid-filled magnetic capsule has al-
ready been considered also in the presence of an
interfacial tension γ, and we can simply adapt
the results for the linear response, which are de-
rived in Appendix A of Ref. S3, to the capsule
deformation in the spinning drop apparatus by
exploiting the equivalence of both problems.

For completeness we repeat the major steps
of the calculation. The linear response theory
is of first order in the displacements (ur, uϕ, uθ)
in spherical coordinates with the polar angle θ
and the azimuthal angle ϕ and θ = 0 as the
rotation axis (note that in Ref. S9 the notation
is different: the azimuthal angle is denoted by θ
and the polar angle by φ). In the elastic shell,
the equilibrium of forces has to be fulfilled in
tangential and normal direction. The tangen-
tial force equilibrium is given as

d

dθ
(R0τθ sin θ) = R0τϕ cos θ

and the normal equilibrium as

1

R0

(τθ + τϕ) + (κθ + κϕ)γ

= p0 +
1

2
∆ρR2

0ω
2 sin2 θ.

The curvatures κϕ and κθ are expanded to first
order in the displacements via

κθ + κϕ ≈
2

R0

− 1

R2
0

(2ur − ∂2θur + ∂θur cot θ).

The coupled equation system describing force
balance has to be solved using the constitutive

S6



relations

τϕ − ντθ =
Y2D
R0

(uθ cot θ + ur)

τθ − ντϕ =
Y2D
R0

(∂θ + ur)

and the boundary conditions ∂θur(0) =
∂θur(π/2) = 0 and uθ(0) = uθ(π/2) = 0. The
ansatz

ur = A+B cos2 θ

uθ = C sin θ cos θ,

describes a spheroidal shape, preservation of
volume requires A = −B/3. Using this
spheroidal ansatz we find the solution

A =
∆ρR4

0ω
2(5 + ν)

24[Y2D + (5 + ν)γ]

B = −3A

C =
∆ρR4

0ω
2(1 + ν)

4[Y2D + (5 + ν)γ]
.

To calculate the deformation parameter D, we
use r(θ) = R0 + ur and find

D =
r(0)− r(π/2)

r(0) + r(π/2)

≈ B

2R0

=
−∆ρR4

0ω
2(5 + ν)

16[Y2D + (5 + ν)γ]
. (S34)

For γ ≈ 0 we recover the well-known result from
Ref. S9,

D = −∆ρω2R3
0

(5 + ν)

16Y2D
, (S35)

This means that, in the presence of an inter-
facial tension γ > 0, we simply have to re-
place Y2D in eq S35 by Y2D + (5 + ν)γ resulting
in a reduction of the deformation D. Analyz-
ing the same experimental spinning capsule de-
formation data should give identical values of
Y2D+(5+ν)γ. Analyzing the same data assum-
ing γ > 0 will thus reduce the inferred result for
the Young’s modulus by (5 + ν)γ.

Including an interfacial tension γ into the
combined analysis of spinning drop and capsule
compression experimental data thus results in

a reduced elastic modulus Y2D → Y2D−(5+ν)γ
to fit the spinning drop data with eq (S34). If
γ/Y2D � 1 such that τ � 1 in eq (S32), ν is in-
creased at the same time such that Y2D/

√
1− ν2

remains approximately unchanged to fit the
capsule compression data with eq (S32).

Sensitivity of the capsule

deformation to the Poisson

number ν

A Poisson ratio close to unity gives rise to
a large area compression modulus K2D =
Y2D/2(1 − ν), which becomes sensitive to
changes in ν and, thus, also large elastic
stresses, which contain factors 1/(1 − ν) and
become very sensitive to changes in ν (see pref-
actors 1/(1 − ν2) in the elastic stresses in eq
S20. Small deviations in ν lead to considerable
changes in τi and visibly changing shapes of the
capsule. Figure S6 shows simulations of cap-
sule 1 with five slightly different Poisson ratios
ranging from ν = 0.926 to ν = 0.966. While
there are only minor deviations in the weakly
deformed state in the absence of magnetic fields
(I = 0 A), where the capsule is only deformed
by gravity and tensions are dominated by the
ν-independent interface tension, the capsule’s
side ratio a/b shows obvious differences in the
strongly deformed state (I = 5 A), which is
dominated by large elastic tensions. In conclu-
sion, strongly deformed shapes are better suited
to determine the value of ν. We can estimate
the error of the numerically determined value
of ν to be smaller than 0.01.

List of chemicals

All chemicals including purity are shown in ta-
ble S1. All chemicals were used without further
purification.

References

[S1] Knoche, S.; Kierfeld, J. Buckling of spher-
ical capsules. Phys. Rev. E 2011, 84,

S7



0 1 2 3 4 5
I [A]

0.6

0.7

0.8

0.9

1.0

a/
b

= 0.926
= 0.936
= 0.946
= 0.956
= 0.966
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