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The Supporting Material contains details of the simulation methods for the feedback sys-
tem of polymerizing microtubules, localized Rac1 and cytosolic stathmin. We also present
additional model equations and simulation results on the stathmin activation gradient. We
show additional results on the interrupted feedback subsystem without Rac and constitu-
tively active stathmin. For the full system with closed feedback, we present details of the
theoretical bifurcation analysis. Finally, we present additional results on the robustness of
our results with respect to changes in the catastrophe model and the system length.

1 Simulation methods

The model described in the main text is the basis for our one-dimensional stochastic sim-
ulation. We employ a stochastic simulation with equal time steps ∆t = 0.001s, i.e., the
simulation time is discretized into equidistant discrete times tn = n∆t. We model the MTs
as straight polymers with continuous length, and Rac and Stathmin distributions via dis-
crete particles, which can be activated and deactivated according to the rates specified in
the main text. Stathmin particles can diffuse freely within the simulation box, whereas Rac
particles are localized at the cell-edge region.

In Table 2 in the main text we present our choice of parameters to perform simulations.
We assume a tubulin concentration [T0] = 19.4µM, and we assign a volume 0.86µm3 to our
simulation box, which is equivalent to a total number of NT = 10000 tubulin dimers in the
simulation box. We choose a simulation box of length L = 10µm with a cell-edge region of
size δ = 20nm, where Rac can be activated by MTs.
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1.1 Microtubule simulation

In order to simulate one single MT in a box, we use the following approximations:

1) The MT is rigid and grows and shrinks in only one direction, along the x-axis. The
MT tip position is described by a continuous variable xMT.

2) The one-dimensional box has fixed rigid walls at x = 0, L. At xMT = L (the cell
edge), a growing MT experiences an immediate catastrophe event. For simplicity, we
assume that at xMT = 0, a shrinking MT starts to grow again.

3) Tubulin is not simulated explicitly. The interaction with stathmin is implemented
indirectly by a change of the growth velocity via the concentration [T ] of free tubulin
following Eq. (6) in the main text. The total number NT = 10000 of tubulin dimers is
only needed to calculate values of stathmin/tubulin s = S/[T0] = NS/NT conveniently.

The MT is completely described by the position xMT of the tip and its growth state
(growing or shrinking). The switching of the MT state is described as a stochastic event
with the time constant probabilities for catastrophe pc = ωc∆t and rescue pr = ωr∆t in
each time step. Whereas the rescue rate ωr is always independent of the MT tip position
xMT, the catastrophe rate ωc(xMT) becomes a function of xMT in the presence of a stathmin
concentration profile as further explained below. If the MT has grown in the last time step
and a random number c ∈ [0; 1] is smaller than pc, then the MT shrinks in the current time
step, and if c > pc the MT continues to grow (and vice versa). The new coordinate is

xMT,n+1 = xMT,n + v+,n∆t or xMT,n+1 = xMT,n − v−∆t (S1)

for growing or shrinking respectively. At the boundary of the simulation box for positions
xMT > L a catastrophe is enforced, pc = 1, and for xMT < 0, we enforce immediate rescue,
pr = 1. The growth velocity v+,n depends on the local concentration of free tubulin at
xMT,n via Eq. (6) in the main text and, for tubulin-sequestering stathmin, on the local
concentration of active stathmin via Eq. (14) in the main text.

In general, we perform simulations with m MTs, in a sufficiently big ensemble (in av-
erage 100 independent systems compose an ensemble). In order to minimize fluctuations,
the observables are measured in the steady state and averaged over sufficiently large time
intervals.

In order to measure the length distribution, i.e., the probability to find a MT of length
x during the simulation, we divide the box into bins of the length ∆L and typically use
∆L = L/50.

1.2 Rac simulation

The NR Rac proteins are described as point-like objects which are all situated in the right
boundary at x = L, which represents the cell edge. In each simulation time step ∆t, each
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Rac protein is deactivated with the constant probability poff,R = koff,R∆t. If a Rac protein
is active, we draw a random number c ∈ [0; 1]; if c is smaller than poff,R it is deactivated in
the following time step.

In order to activate Rac, a membrane contact of the MT is necessary. If one of themMTs
is at the cell edge region, each Rac protein is activated with a probability pon,R = kon,R∆t
in each time step ∆t. If one MT is at the position xMT ∈ [L− δ;L] and a random number
c ∈ [0; 1] is smaller than pon,R the protein is activated in the next time step. Since the
details of the Rac activation are not known, we include δ � L as a reaction distance.

1.3 Stathmin simulation

The NS stathmin proteins are point-like objects which diffuse freely within the one-dimen-
sional box x ∈ [0, L]. The probability density function for the distance ∆x that a diffusing
particle moves in a simulation time step ∆t is a Gauss distribution

p(∆x,∆t) =
1√

4πD∆t
e−

∆x2

4D∆t . (S2)

The mean square distance a particle moves during the time step ∆t is 〈∆x2〉 = 2D∆t. We
determine the new position of a stathmin protein (index j) as

xj,n+1 = xj,n + d
√

2D∆t, (S3)

where d denotes a random number drawn from a standard normal distribution. using a Box-
Muller algorithm. The position xj,n ∈ [0;L] is limited to the box by reflecting boundary
conditions.

We activate each stathmin protein regardless of its position within the cell with the
probability pon,S = kon,S∆t in each simulation time step ∆t. This is implemented by
comparison of pon,S with a random number c ∈ [0; 1]. The deactivation of a stathmin
protein, on the other hand, only takes place if it is positioned in the interval [L − δ;L].
Then, it is deactivated with the probability poff,S = ronkoff,S∆t, with ron being the fraction
of active Rac proteins at this time step. Activation and deactivation are implemented by
comparison of pon,S and poff,S, respectively, with a random number c ∈ [0; 1].

We compare two mechanisms for the inhibition of MT growth by stathmin: (a) tubulin
sequestering by stathmin resulting in reduced free tubulin concentrations, reduced MT
growth velocities, and increased MT catastrophe rates and (b) a purely MT catastrophe-
promoting activity of stathmin.

For both mechanisms, we measure the local concentration Son(x) of active stathmin
during the simulation, in order to simulate the local impact of stathmin on the growth
velocity of a MT with tip position x. In order to define and measure the local concentration
Son(x) of active stathmin during the simulation, we divide the box into bins of the length
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∆L and count the active and inactive stathmin proteins. Because we choose ∆L much
smaller than the stathmin gradient scale χS , see (S8) below, the total number of stathmin
proteins is nearly constant in each bin. Typically, we choose ∆L = L/50.

1.3.1 Tubulin-sequestering stathmin

For the tubulin-sequestering model of stathmin, we do not simulate the binding of tubulin
dimers to stathmin explicitly but assume that the binding to stathmin is fast compared
to the other processes. Therefore, we can determine the local concentration t(son(x)) of
free tubulin from the local concentration of active stathmin son(x) = Son(x)/[T0] via the
chemical equilibrium relation (14) for a fixed total tubulin concentration [T0] corresponding a
number NT = [T0]V of tubulin dimers in a volume V . Once we know the local concentration
[T ](x) = [T0]t(son(x)) of free tubulin, Eq. (6) in the main text determines the local growth
velocity,

v+ = v+([T ](x)) = v+([T0]t(son(x))) (S4)

(see Eq. (15) in the main text). This quasi-equilibrium relation allows us to determine the
local MT growth velocity v+ = v+(x) uniquely from the local concentration Son(x) of active
stathmin.

Because the catastrophe rate ωc is determined by v+ = v+(x) via relation (7) in the
main text, a local growth velocity also gives rise to a local catastrophe rate ωc = ωc(v+(x))
in the tubulin-sequestering model of stathmin.

1.3.2 Catastrophe-promoting stathmin

For the catastrophe-promoting model of stathmin, the local concentration Son(x) of active
stathmin does not affect the MT growth velocity v+ but directly the catastrophe rate via the
relation (16) in the main text. This gives rise to a local catastrophe rate ωc = ωc(Son(x)).

2 Gradient in stathmin activation

The interplay of stathmin diffusion and phosphorylation by active Rac at the cell edge
establishes a spatial gradient of stathmin activation, for which we provide a detailed math-
ematical model here.

Stathmin proteins are either in an active dephosphorylated state with concentration
profile Son(x) or in an inactive phosphorylated state with concentration profile Soff(x) (with
a total stathmin concentration Stot(x) = Son(x)+Soff(x)). In both states, stathmin diffuses
freely within the model box x ∈ [0;L] with a constant diffusion coefficient D, which is equal
for both states. Switching between active and inactive state is a stochastic process with
rates kon,S and koff,S.
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Figure S1: Spatial gradient of stathmin activation for constitutively active Rac. Data
points show results from stochastic simulations, lines the analytical result (11) (for ron = 1).
Parameters are as in Table 2 in the main text resulting in χS ' 3.87µm. There are no fit
parameters.

Moreover, active Rac deactivates stathmin at the cell edge x = L as simple second order
reaction with a rate proportional to ron. The resulting chemical kinetics for the boundary
value Soff(L) (strictly speaking the values in the cell-edge region [L−δ, L]) including diffusion
away from the cell edge can then be described by

∂Soff(L)

∂t
= −D

δ

∂Soff

∂x

∣∣∣∣
x=L

+ koff,SronSon(L)− kon,SSoff(L). (S5)

We assume that the phosphatase responsible for stathmin activation is homogeneously
distributed within the cytosol such that stathmin dephosphorylates everywhere within the
box with the constant rate kon,S (1) (which depends on the concentration of the homoge-
neously distributed stathmin phosphatase). The distribution of deactivated stathmin in the
one-dimensional box is then described by the reaction-diffusion equation

∂Soff

∂t
= D

∂2Soff

∂x2
− kon,SSoff. (S6)

This equation is complemented by the boundary condition (S5) for Soff(L) and by a zero
diffusive flux condition D ∂Soff/∂x|x=0 = 0 at x = 0. The distribution of active stathmin
Son(x) can be obtained analogously (using also Stot(x) = Son(x) + Soff(x)).
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Equations (S6) and (S5) describe the stathmin kinetics at the mean-field level; equation
(S5) neglects temporal correlations between Rac and stathmin number fluctuations. by
using the mean fraction ron in the deactivation process.

In the steady state, the time derivatives in (S5) and (S6) vanish, and the total stathmin
concentration Stot = Son(x) + Soff(x) = const becomes homogeneous due to diffusion. The
corresponding stationary solution of (S5) and (S6) for the stathmin activation gradient is

Son(x)

Stot
= 1− 2A cosh(x/χS), (S7)

see Eq. (11) in the main text, with the characteristic decay length

χS =
√
D/kon,S. (S8)

The integration constant A depends on the degree of stathmin deactivation by Rac at the
cell edge x = L and, thus, on the fraction ron of activated Rac. For a fixed level ron of Rac
activation, we find

A =
1

2

ronkoff,S

(D/δχS) sinh(L/χS) + (ronkoff,S + kon,S) cosh(L/χS)
, (S9)

see also Eq. (12) in the main text.
We can compare the analytical result (S7) for the concentration profile of active stathmin

at a fixed fraction ron of active Rac in Eq. (S9) with stochastic simulation results for a
fixed level ron of Rac activation (i.e., keeping NRron of NR Rac proteins in the simulation
permanently in the activated state). In Fig. S1, we show this comparison for a subsystem
with constitutively active Rac corresponding to ron = 1 in Eq. (S9) and see very good
agreement without any adjustable fit parameters.

3 Interrupted feedback for constitutively active stathmin in
the absence of Rac

In this section, we present additional results on MT length distributions for a subsystem
without Rac, i.e., with constitutively active stathmin.

Without Rac, the constitutively active stathmin is homogeneously distributed, Stot =
Son = const. Therefore, also the length parameter λ is constant, see Eq. (4) in the main
text, and the MT mean length is given by Eq. (5) in the main text.

Fig. S2 shows results for the mean MT length 〈xMT〉 as a function of stathmin/tubulin
s = Stot/[T0], and insets show the corresponding MT length distribution at three different
stathmin/tubulin s. Fig. S2 (A) shows results for tubulin-sequestering stathmin, Fig. S2
(B) for catastrophe-promoting stathmin. We find good agreement between the analytical
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Figure S2: Stochastic simulation data and analytical master equations results for the system
without Rac (ron = 0) and constitutively active stathmin for tubulin-sequestering stathmin
(A) and catastrophe-promoting stathmin (B). We show results for the mean MT length
〈xMT〉 in the steady state as a function of stathmin/tubulin s = Stot/[T0]. The black curves
correspond to the analytical result Eq. (5) in the main text, black symbols to stochastic
simulation results. The critical concentrations sλ and sv are indicated. The insets (a), (b),
(c) show MT length distributions for three particular values of s, which are also indicated
in the main plot, with (a) s < sλ, (b) s = sλ and (c) s > sλ; curves are the analytical result
Eq. (3) in the main text, symbols are stochastic simulation results.

result (5) from the main text (lines) and stochastic simulation results (data points) both
for tubulin-sequestering and catastrophe-promoting stathmin.

The two critical concentrations sλ and sv control the mean length 〈xMT〉, as we see in
Fig. S2. For s = sλ, we have 〈xMT〉 = L/2, for s ≥ sv, we have 〈xMT〉 = 0 according to
their definition (see main text).

For tubulin-sequestering stathmin and simulation parameters as given in Table 2 in
the main text corresponding to [T0] = 19.4µM or a total number of NT = 10000 tubulin
molecules in the simulation box, the critical concentrations of stathmin molecules (normal-
ized by the total tubulin concentration [T0]) are

sλ =
Sλ
[T0]

=
NS,λ

NT
= 0.419 and sv =

Sv
[T0]

=
NS,v

NT
= 0.528. (S10)

The values sλ and sv are only weakly [T0]-dependent; for [T0] in the range [T0] = 10−20µM,
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we find sλ = 0.34− 0.42 and sv = 0.51− 0.53.
For catastrophe-promoting stathmin, the MT growth velocity is not affected by stath-

min, which formally results in an infinite Sv. A critical concentration Sλ can still be
defined in the same way, and we find Sλ = (v+ωr − v−ωc(0))/kcv− from Eqs. (4) and
(16) in the main text. The MT growth velocity v+ is linearly increasing with [T ] = [T0],
see Eq. (6) in the main text, and ωc(0) correspondingly decreasing according to Eq. (7)
in the main text. For high tubulin concentrations, sλ approaches the [T0]-independent
limit sλ ≈ κondωr/v−kc = 0.91, which is significantly above the typical values close to 0.5
for tubulin-sequestering stathmin. For the simulation parameters as given in Table 2 in
the main text corresponding to [T0] = 19.4µM or a total number of NT = 10000 tubulin
molecules in the simulation box, the critical concentration of stathmin molecules (normal-
ized by the total tubulin concentration [T0]) is

sλ =
Sλ
[T0]

=
NS,λ

NT
= 0.866. (S11)

The value sλ is only weakly [T0]-dependent, for [T0] in the range [T0] = 10− 20µM, we find
sλ = 0.79− 0.87.

The stochastic simulation results for the MT length distribution also agree with the
analytical result (3) in the main text. At the critical stathmin concentration s = sλ, the
condition λ−1 = 0 results in a flat MT length distribution, as confirmed in inset (b) in Fig.
S2. For s > sλ, we find the length distribution of the MT to be a negative exponential (see
inset (c) in Fig. S2). For s < sλ, we find the length distribution of the MT to be a positive
exponential (see inset (a) in Fig. S2). For a system which contains constitutively active
stathmin and no Rac, the growth velocity v+ is independent of the position (not taking
into account the small diffusion-induced fluctuations of the local stathmin concentration).
Therefore, we always expect an exponential MT length distribution according to Eq. (3)
in the main text. In particular, we do not expect bimodal MT length distributions in the
absence of Rac, as confirmed by the stochastic simulation in the insets in Fig. S2.

4 Bifurcation analysis for closed feedback

In the bifurcation analysis we consider the stationary system state for a closed feedback
loop.

A given fraction ron of activated Rac then determines the MT contact probability
pMT = m

∫ L
L−δ p+(x, t) (see Eq. (9) in the main text) via (i) a stationary gradient in stath-

min activation (a decreasing profile Son(x)), (ii) a resulting MT growth velocity gradient
(an increasing growth velocity vx(x)) established by tubulin sequestering, and (iii) the re-
sulting stationary MT length distribution and, in particular, the probability p+(x) to find a
particular MT in the growing state. These three dependencies can be described analytically
and the resulting equations can be easily evaluated numerically:
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Figure S3: Function g(f(ron))/ron for m = 1 and three different values of stathmin/tubulin
s = Stot/[T0] for (A) tubulin-sequestering stathmin and (B) catastrophe-promoting stath-
min. For tubulin-sequestering stathmin (A), the lines are for s = sc,l = 0.446 (blue),
s = sc,u = 0.459 (red), and s = 0.453 (black). For sc,l < s < sc,u (black line s = 0.453)
there exist three fixed points (circles). The middle fixed point is unstable. For catastrophe-
promoting stathmin (B) the lines are for s = 0.1 (blue), s = 1.7 (red), and s = 1.1 (black).
There is always a single fixed point.

(i) The stationary gradient in stathmin activation can be calculated by Eq. (11) in the
main text, where ron enters the gradient amplitude A, which is given by Eq. (12) in
the main text. This allows us to calculate the stathmin activation profile Son(x)/Stot

for any fixed level ron of activated Rac. For constitutively active Rac, ron = 1, the
result is shown and tested versus stochastic simulations in Fig. S1.

(ii) From the stathmin activation gradient Son(x)/Stot we obtain son = Son(x)/[T0] =
s(Son(x)/Stot) with the total stathmin/tubulin s = Stot/[T0]. For tubulin-sequestering
stathmin, this is used to determine the spatially dependent tubulin concentration
[T ](x) = [T0]t(son(x)) through Eq. (14) in the main text. This free tubulin con-
centration profile can be used to calculate the MT growth velocity profile v+ =
v+([T0]t(son(x))) according to Eq. (15) in the main text.

(iii) For tubulin-sequestering stathmin, the position-dependent growth velocity v+(x) also
gives rise to a position-dependent catastrophe rate ωc = ωc(v+(x)) (see Eq. (7) in the
main text). For catastrophe-promoting stathmin, the stathmin activation gradient
directly gives rise to position-dependent catastrophe rate ωc = ωc(Son(x)) via relation
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(16) in the main text. Finally, we obtain a position dependent MT growth parameter
λ(x) = v+(x)v−/(v+(x)ωr − v−ωc(x)) for both models of stathmin action (see Eq. (4)
in the main text). This allows us to calculate the relevant MT length distribution
p+(x) according to Eq. (17) from the main text.

This scheme allows us to calculate p+(x) and, thus, pMT for any fixed level ron, i.e.,
to implement a function pMT = f(ron). Vice versa, for a closed feedback, the contact
probability also determines the Rac activation level ron via (10) in the stationary state,
which specifies a second function ron = g(pMT). At the stationary state for closed feedback,
the fixed point condition ron = g(f(ron)) has to hold, which selects possible fixed point
values r∗on for the Rac activation level ron. If

dg(f(r))

dr

∣∣∣∣
r=r∗on

< 1 (S12)

the fixed point is stable, otherwise it is unstable. For a stable fixed point, an increase δron

in ron by perturbation gives rise to a down-regulation of ron because the corresponding
increase δpMT is not sufficient to maintain the increased level ron + δron.

Analyzing the function g(f(ron)) for tubulin-sequestering stathmin, we find two saddle-
node bifurcations typical for a bistable switch. For stathmin/tubulin s = Stot/[T0] between
a lower critical value sc,l (sc,l = 0.446 for m = 1 increasing to sc,l = 0.453 for m = 10) and
an upper critical value sc,u (sc,u = 0.459 for m = 1 increasing to sc,u = 0.492 for m = 10
and approaching sc,u ≈ sv = 0.528 for large m) there exist three fixed points, the middle
one of which is unstable (see Fig. S3 A).

This bifurcation behavior represents a bistable switch with stathmin/tubulin s as control
parameter as can be clearly seen from Fig. S4. In the left Fig. S4, the Rac activation fixed
points r∗on are shown as a function of s. In the right Fig. S4, the corresponding average MT
length 〈xMT〉 is shown.

For catastrophe-promoting stathmin we always find a single fixed point and no sign of
a bifurcation for all stathmin/tubulin s = Stot/[T0] values (see Fig. S3 B).

5 Robustness of results

In this section, we address the robustness of our results with respect to changes in the
catastrophe model and the system length.

5.1 Robustness with respect to the catastrophe model

The catastrophe model described by Eq. (7) in the main text and used throughout the
manuscript is based on the experimental results by Janson et al. (2) and, in this sense, of
phenomenological nature. Other catastrophe models have been formulated in the literature.
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Figure S4: Left: Rac activation fixed points r∗on for tubulin-sequestering stathmin as a
function of stathmin/tubulin s = Stot/[T0] for m = 1 (black data points) and m = 10 (red
data points). For sc,l < s < sc,u there exist three fixed points. The middle fixed point are
unstable (light red and light black data points). Right: Corresponding average MT length
〈xMT〉 for the fixed point values r∗on as a function of s. Lines show the average MT length
〈xMT〉 for a system without Rac and constitutively active stathmin (ron = 0, blue line) and
for constitutively active Rac (ron = 1, red line).

Because there is no strict consensus on a particular catastrophe model, it is important that
results are robust with respect to a change of the catastrophe model.

Another frequently used catastrophe model due to Flyvbjerg et al. is based on an
analytical calculation of the first passage rate to a state with vanishing GTP-cap for a
model for cooperative hydrolysis of GTP-tubulin (3). In a cooperative model, hydrolysis
proceeds by a combination of both random and vectorial mechanisms (4). In Ref. (3), the
catastrophe rate has been calculated as implicit function of the growth velocity v+ and
two hydrolysis parameters vh (characterizing the vectorial part) and r (characterizing the
random part). The exact dimensionless catastrophe rate α ≡ ωcD−1/3r−2/3 is given by the
smallest solution of

Ai′(γ2 − α) = −γAi(γ2 − α) (S13)

with γ ≡ vD−2/3r−1/3/2, where v ≡ v+ − vh and D ≡ (v+ + vh)d/2 [Ai′(x) ≡ dAi(x)/dx].
Here Ai denotes the first Airy function. We use a numerical implementation of this ana-
lytical result in simulations and mean-field calculations: We solve Eq. (S13) numerically to
calculate the function α = ωcD

−1/3r−2/3 as a function of γ. From this numerical solution
we obtain the catastrophe rate as function of the MT growth velocity, ωc = ωc(v+). The
hydrolysis parameters vh ' 4.2 × 10−9 m/s and r ' 3.7 × 106 m−1s−1 (3) are fixed during
the simulation.

Results for this alternative catastrophe model by Flyvbjerg et al. are shown in Fig.
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Figure S5: Results for the alternative Flyvbjerg catastrophe model analogously to Fig. 3
in the main text. Stochastic simulation data (data points) and analytical master equation
results (solid lines) for the mean MT length 〈xMT〉 as a function of stathmin/tubulin s =
Stot/[T0]. We compare the system with constitutively active Rac (ron = 1, black lines
and crosses) in comparison to the system without Rac (ron = 0, gray lines and circles)
both for tubulin-sequestering stathmin (A) and catastrophe-promoting stathmin (B). The
hatched area indicates the possible MT length gain by Rac regulation. The gray shaded area
indicates the region, in which MTs exhibit bimodal length distributions for constitutively
active Rac. The insets (a), (b), (c) show the corresponding MT length distributions for
three particular values of s with (a) s < sλ, (b) s = sλ and (c) s > sλ.

S5. Analogously to Fig. 3 in the main text, we show both results for tubulin-sequestering
stathmin (Fig. S5 A) and catastrophe-promoting stathmin (Fig. S5 B). We obtain the
same main features using the alternative catastrophe model: We find a switchlike depen-
dence of MT length on the overall stathmin/tubulin both for tubulin-sequestering and
catastrophe-promoting stathmin. We obtain bimodal MT length distributions both for
tubulin-sequestering and catastrophe-promoting stathmin. We find bistability for tubulin-
sequestering stathmin (see Fig. S6), whereas there is no bistability for catastrophe-promoting
stathmin.

5.2 Robustness with respect to the system length

Cells have different lengths. Therefore we also investigated the robustness of our results
with respect to changes in the system length L. In the main text we used L = 10µm,
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Figure S6: As in Fig. S4 but for the Flyvbjerg catastrophe mode. Left: Rac activation fixed
points r∗on for tubulin-sequestering stathmin as a function of stathmin/tubulin s = Stot/[T0]
for m = 1. For sc,l < s < sc,u there exist three fixed points. The middle fixed point are
unstable (light black data points). Right: Corresponding average MT length 〈xMT〉 for
the fixed point values r∗on as a function of s. Lines show the average MT length 〈xMT〉
for a system without Rac and constitutively active stathmin (ron = 0, blue line) and for
constitutively active Rac (ron = 1, red line).

here we present additional simulation results for a longer system L = 20µm in Fig. S7.
It is important to notice that one fixed length scale within the feedback loop is set by the
characteristic scale χS =

√
D/kon,S (see Eq. (S8)) of the stathmin activation gradient. For

parameters as in Table 2 in the main text, we have χS ' 3.87µm. The length scale χS is
the typical size of the cell-edge region L − χS < x < L in which stathmin is deactivated.
The stathmin activation profile becomes very flat in the remaining region 0 < x < L− χS ,
which increases in size if the system size L is increased.

Qualitatively, we find the same behavior for a longer system L = 20µm as for the
shorter system L = 10µm with a switchlike dependence of MT length on the overall
stathmin/tubulin, a bimodal MT length distributions both for tubulin-sequestering and
catastrophe-promoting stathmin and bistability only for tubulin-sequestering stathmin. As
a result of the more shallow gradient in large parts of the cell, however, the switching be-
havior of the MT length as a function of the total stathmin level becomes steeper, see Fig.
S7 for tubulin-sequestering stathmin. Accordingly, for tubulin-sequestering stathmin, the
windows of stathmin concentrations, where we find bimodal MT length distributions and
where we find bistability, are narrower for longer cells.
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Figure S7: Results for a larger system of length L = 20µm, analogously to Fig. 3 in the
main text, which is for L = 10µm. Stochastic simulation data (data points) and analytical
master equation results (solid lines) for the mean MT length 〈xMT〉 as a function of stath-
min/tubulin s = Stot/[T0]. We compare the system with constitutively active Rac (ron = 1,
black lines and crosses) in comparison to the system without Rac (ron = 0, gray lines and
circles) both for tubulin-sequestering stathmin (A) and catastrophe-promoting stathmin
(B). The gray shaded area indicates the region, in which MTs exhibit bimodal length dis-
tributions for constitutively active Rac. The insets (a), (b), (c) show the corresponding
MT length distributions for three particular values of s with (a) s < sλ, (b) s = sλ and (c)
s > sλ.
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