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Dynamics and length distribution of microtubules under force and confinement
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We investigate the microtubule polymerization dynamics with catastrophe and rescue events for three different
confinement scenarios, which mimic typical cellular environments: (i) The microtubule is confined by rigid and
fixed walls, (ii) it grows under constant force, and (iii) it grows against an elastic obstacle with a linearly increasing
force. We use realistic catastrophe models and analyze the microtubule dynamics, the resulting microtubule
length distributions, and force generation by stochastic and mean field calculations; in addition, we perform
stochastic simulations. Freely growing microtubules exhibit a phase of bounded growth with finite microtubule
length and a phase of unbounded growth. The main results for the three confinement scenarios are as follows:
(i) In confinement by fixed rigid walls, we find exponentially decreasing or increasing stationary microtubule
length distributions instead of bounded or unbounded phases, respectively. We introduce a realistic model for
wall-induced catastrophes and investigate the behavior of the average length as a function of microtubule growth
parameters. (ii) Under a constant force, the boundary between bounded and unbounded growth is shifted to higher
tubulin concentrations and rescue rates. The critical force fc for the transition from unbounded to bounded growth
increases logarithmically with tubulin concentration and the rescue rate, and it is smaller than the stall force.
(iii) For microtubule growth against an elastic obstacle, the microtubule length and polymerization force can be
regulated by microtubule growth parameters. For zero rescue rate, we find that the average polymerization force
depends logarithmically on the tubulin concentration and is always smaller than the stall force in the absence of
catastrophes and rescues. For a nonzero rescue rate, we find a sharply peaked steady-state length distribution,
which is tightly controlled by microtubule growth parameters. The corresponding average microtubule length
self-organizes such that the average polymerization force equals the critical force fc for the transition from
unbounded to bounded growth. We also investigate the force dynamics if growth parameters are perturbed in
dilution experiments. Finally, we show the robustness of our results against changes of catastrophe models and
load distribution factors.
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I. INTRODUCTION

Microtubules (MTs) are one of the main components of
the cytoskeleton in eukaryotic cells. Their static and dynamic
properties are essential for many cellular processes. MTs serve
as pathways for molecular motor proteins [1] and contribute
to cell stiffness [2]. Dynamic MTs play a crucial role in the
constant reorganization of the cytoskeleton, and single MTs
can generate polymerization forces up to several pN [3]. These
forces are used in various intracellular positioning processes
[4], such as positioning of the cell nucleus [5] or chromosomes
during mitosis, establishing cell polarity [6], or regulation of
cell shapes [7,8]. In many cellular processes, MTs establish and
maintain a characteristic length in response to forces exerted,
for example, from the confining cell cortex [7].

The fast spatial reorganization of MTs is based on the
dynamic instability: Polymerization phases are stochastically
interrupted by catastrophes which initiate phases of fast
depolymerization; fast depolymerization terminates stochas-
tically in a rescue event followed again by a polymerization
phase [9]. This complex dynamic behavior with catastrophes
and rescue events is central to a rapid remodeling of MTs in
the cytoskeleton, but it also affects their ability to generate
polymerization forces. We will show that, in general, the
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dynamic instability decreases the average polymerization
force of a single MT.

In this article we theoretically investigate the polymeriza-
tion dynamics of a single MT under force or confinement and in
the presence of the MT dynamic instability. We use a coarse-
grained polymerization model with dynamic instability and
characterize spatial and temporal behavior in three different
scenarios, which mimic typical cellular environments that
can also be reproduced in vitro: (i) Confinement: The MT is
confined between fixed rigid walls, which cannot be deformed
by the microtubule. Such confinement is realized in fixed solid
chambers [10]. (ii) Constant force: A constant force is acting
on the MT. Constant forces can be realized by optical tweezers
with a force clamp control [11]. (iii) Elastic obstacle: The
microtubule grows against an elastic obstacle, which resists
further growth by a force growing linearly with displacement.
Elastic forces can be realized by optical tweezers without force
clamp [12,13]. For all three confinement scenarios (i)–(iii),
we focus on the resulting length distributions of MTs, and for
scenarios (ii) and (iii), we calculate the polymerization force
that a single MT can generate.

Dynamic MTs also initiate regulation processes or are
subject to regulation. Dynamic MTs can activate or deactivate
proteins upon contacting the cell membrane [14], or they can
activate actin polymerization within the cell cortex [15,16]. At
the same time, polymerizing MTs are also targets of cellular
regulation mechanisms [17], which affect their dynamic
properties.
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TABLE I. Literature values for parameters. TUB: in vitro results for tubulin solutions, cell: in vivo results, MAPS: effect from MT associated
proteins. Values for ωon are estimated from measured growth velocities via ωon ≈ v+(0)N/d neglecting ωoff = 6 s−1 [23]. Here N = 13 denotes
the number of protofilaments within a single MT.

Ref. v+(0) (m/s) ωon (1/s) v− (m/s) ωr (1/s)

Drechsel [41] (0.7–2) × 10−8 (11–32) ∼1.8 × 10−7

Gildersleeve [42] ∼4.2 × 10−8 ∼68 ∼4.2 × 10−7

Walker [43] (4–8) × 10−8 (63–130) ∼5 × 10−7 (0.05–0.08) (TUB)
Laan [13] ∼4.2 × 10−8 68.25
Janson [23] (3–4.3) × 10−8 (53–74)
Pryer [44] . . . 0.5 (TUB) . . . 0.15 (MAPS)
Dhamodharan [45] . . . 0.07 (Cell) . . . 0.085 (MAPS)
Nakao [46] . . . 0.1 (TUB)
Shelden [47] (0.03–0.2) (Cell)

The dynamic instability of MTs enables various regulation
mechanisms of MT dynamics. Catastrophes and rescues
result from the hydrolysis of GTP-tubulin within MTs. When
GTP-tubulin is incorporated into the tip of a growing MT,
it forms a stabilizing GTP-cap. The loss of this GTP-cap
due to hydrolysis of GTP-tubulin to GDP-tubulin causes a
catastrophe [9]. In living cells, there are various microtubule
associated proteins (MAPs) that either stabilize or destabilize
microtubules and regulate microtubule dynamics both spatially
and temporally [18]. Recently, the importance of MAPs
associating with the plus end of growing MTs has been
recognized [19]. Stabilizing MAPs bind to assembled MTs,
thereby reducing the catastrophe rate or increasing the rescue
rate. Destabilizing MAPs such as OP18/stathmin bind to GTP-
tubulin dimers, thus decreasing the available GTP-tubulin
concentration, which in turn decreases the growth velocity of
the GTP-cap and makes catastrophes more likely. Therefore,
such mechanisms can regulate basic parameters in our model,
such as the available GTP-tubulin concentration or the rescue
rate, and we will systematically study their influence on
the generated polymerization force for the three confinement
scenarios (i)–(iii).

The paper is structured as follows: In Sec. II, the MT model
and the basic notation are introduced. We also discuss the
catastrophe model and the underlying hydrolysis mechanism
in the absence and in the presence of a resisting force.
Section III deals with the simulation model. In Secs. IV, V,
and VI, results for the three scenarios (i)–(iii) are presented
and discussed. In Sec. VII, the elastic obstacle is reconsidered
using an alternative catastrophe model based on experimental
measurements to show that our results are robust with respect
to this change in the catastrophe model. In Sec. VIII, we
show that our results are also robust with respect to possible
generalization of the force-velocity relation by introducing
load-distribution factors. Section IX contains a final discussion
and outlook.

II. MICROTUBULE MODEL

A. Single MT dynamics

The MT dynamics in the presence of its dynamic instability
is described in terms of probability densities and switching
rates [20,21]. In the growing state, a MT polymerizes with

average velocity v+. The MT stochastically switches from
a state of growth (+) to a state of shrinkage (−) with
the catastrophe rate ωc. In the shrinking state, it rapidly
depolymerizes with an average velocity v− � 3 × 10−7 m/s
(Table I). With the rescue rate ωr , the MT stochastically
switches from a state of shrinkage back to a state of growth. We
model catastrophes and rescues as Poisson processes such that
〈τ+〉 = 1/ωc and 〈τ−〉 = 1/ωr are the average times spent in
the growing and shrinking states, respectively. The stochastic
time evolution of an ensemble of independent MTs, growing
along the x axis, can be described by two coupled master
equations for the probabilities p+(x,t) and p−(x,t) of finding
a MT with length x at time t in a growing or shrinking state,

∂tp+(x,t) = − ωcp+(x,t) + ωrp−(x,t) − v+∂xp+(x,t), (1)

∂tp−(x,t) = ωcp+(x,t) − ωrp−(x,t) + v−∂xp−(x,t). (2)

In the following, we will always use a reflecting boundary
at x = 0: A MT shrinking back to zero length undergoes a
forced rescue instantaneously. This corresponds to

v+p+(0,t) = v−p−(0,t). (3)

A more refined model including a nucleating state has been
considered in Ref. [22]. For a constant and fixed catastrophe
rate ωc, Eqs. (1) and (2) together with the boundary
condition (3) can be solved analytically on the half-space
x > 0, and we can determine the overall probability density
function (OPDF) of finding a MT with length x at time t ,
P (x,t) ≡ p+(x,t) + p−(x,t) [20,21]. The solution exhibits
two different growth phases: a phase of bounded growth and
a phase of unbounded growth.

In the phase of bounded growth, the average length loss
during a period of shrinkage, v−〈τ−〉 = v−/ωr , exceeds the
average length gain during a period of growth, v+〈τ+〉 =
v+/ωc. The steady-state solution of P (x,t) assumes a simple
exponential form P (x) = |λ|−1e−x/|λ| with an average length
〈x〉 = |λ| and a characteristic length parameter

λ ≡ v+v−
v+ωr − v−ωc

, (4)

with λ−1 < 0 for bounded growth [20]. The transition to the
regime of unbounded growth takes place at λ−1 = 0, where the
average length gain during growth equals exactly the average
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length loss during shrinkage,

v+ωr = v−ωc, (5)

such that 〈x〉 diverges.
In the regime of unbounded growth (λ > 0), the average

length gain during a period of growth is larger than the
average length loss during a period of shrinkage. There is no
steady-state solution, and for long times P (x,t) asymptotically
approaches a Gaussian distribution [20]

P (x,t) ≈ 1

2
√

πDJ t
exp

(
− (x − J t)2

4DJ t

)
(6)

centered on an average length which approaches linear growth
〈x〉 ≈ J t with a mean velocity J and with diffusively growing
width 〈x2〉 − 〈x〉2 ≈ 2DJ t with a diffusion constant DJ . The
average growth velocity is given by

J = v+ωr − v−ωc

ωr + ωc

(7)

because the asymptotic probabilities to be in a growing or
shrinking state are π+ = ωr/(ωc + ωr ) and π− = ωc/(ωc +
ωr ), respectively. The diffusion constant DJ is

DJ = ωcωr (v+ + v−)2

(ωc + ωr )3
. (8)

The transition between the two growth phases can be
achieved by changing one of the four parameters of MT
growth, ωc, ωr , v+, or v−. In the following, we will use
catastrophe models, where the catastrophe rate ωc is a function
of the growth velocity v+, which in turn is determined by
the GTP-tubulin concentration via the GTP-tubulin on-rate
ωon (assuming a fixed off-rate ωoff). Moreover, experimental
data suggest that v− is fixed to values close to ∼10−7 m/s
(Table I). As a consequence, there are two tunable control
parameters left, the GTP-tubulin concentration or, equiva-
lently, the tubulin on-rate ωon and the rescue rate ωr . These
are the control parameters we will explore for MTs in
confinements and under force. These parameters are also
targets for regulation by MAPs, such as OP18/stathmin, which
reduces ωon by binding to GTP-tubulin dimers or MAP4, which
increases the rescue rate ωr .

B. Force-dependent catastrophe rate

In a growing state, GTP-tubulin dimers are attached to
any of the 13 protofilaments with the rate ωon, which is
directly related to the GTP concentration. We explore a regime
ωon = 30, . . . ,100 s−1; see Table I. GTP-tubulin dimers are
detached with the rate ωoff = 6 s−1 [23] such that we can
typically assume ωon 	 ωoff. In the absence of force or
restricting boundaries, the velocity of growth is given by

v+(0) = d (ωon − ωoff) . (9)

Here d denotes the effective dimer size d ≈ 8 nm/13 ≈
0.6 nm.

The classical view of the MT catastrophe mechanism is
based on a purely chemical model of catastrophes, where the
catastrophe rate ωc is determined by the hydrolysis dynamics
of GTP-tubulin [9]. When GTP-tubulin is incorporated into
the tip of a growing MT, it forms a stabilizing GTP-cap.

In a chemical model, the loss of this GTP-cap due to
hydrolysis of GTP-tubulin to GDP-tubulin directly causes
a catastrophe. However, recent research indicates that the
“structural plasticity” of the MT lattice can play a role for
the kinetics of catastrophes [24]. This structural plasticity
mechanism is based on the assumption that GDP-tubulin
prefers a curved configuration, which generates additional
mechanical stresses in the MT by hydrolysis. Also in the
presence of structural plasticity, the loss of the GTP-cap has
a destabilizing effect, but the kinetics leading to a catastrophe
can be more complicated because the initiation of a catastrophe
event is similar to the nucleation of a crack in the stressed MT
lattice within this model. In this article, we focus on purely
chemical catastrophe models and neglect mechanical effects
on the catastrophe kinetics.

Within a chemical catastrophe model, the loss of the GTP-
cap due to hydrolysis of GTP-tubulin to GDP-tubulin triggers
a catastrophe immediately. Therefore, the catastrophe rate ωc

is given by the first-passage rate to a state with vanishing GTP-
cap and has been discussed within a model with cooperative
hydrolysis [25,26], where GTP-tubulin is hydrolyzed by a
combination of random and vectorial mechanisms; similar
models have also been discussed for hydrolysis in F-actin
[27,28]. In random hydrolysis, GTP-tubulin is hydrolyzed at
a random site within the GTP-cap with a rate per length r �
3.7 × 106 m−1 s−1, while in vectorial hydrolysis, only GTP-
tubulin with adjacent GDP-tubulin is hydrolyzed. This results
in hydrolysis fronts propagating through the microtubule with
average velocity vh � 4.2 × 10−9 m/s. The inverse catastro-
phe rate can then be calculated as the mean first-passage time
to a state with zero cap length, as a function of hydrolysis
parameters and v+. With v = v+ − vh, D = 0.5d(v+ + vh),
and γ = 0.5vD1/3r−1/3, the exact analytical result for the
dimensionless catastrophe rate α = ωcD

−1/3r−2/3 is given by
the smallest solution of

Ai′(γ 2 − α) = −γ Ai(γ 2 − α). (10)

Here Ai denotes the first Airy function and Ai′ is its derivative
[29]. We solved Eq. (10) numerically and obtained a high-
order polynomial for the function α = α(γ ). This polynomial
is used in simulations and analytical calculations to compute
the catastrophe rate ωc = α(γ )D1/3r2/3 as a function of the
growth velocity v+, while the hydrolysis parameters vh and r

are fixed.
Under a force F , the tubulin on-rate ωon is modified by

an additional Boltzmann factor [30] and the force-dependent
growth velocity becomes

v+(F ) = d[ωon exp (−Fd/kBT ) − ωoff]. (11)

Here Fd is the work that has to be done against the force F

to incorporate a single dimer of size d; kB is the Boltzmann
constant and T = 300 K is the temperature. In the following,
we use the dimensionless force

f ≡ F/F0 with F0 = kBT /d, (12)

in terms of which the force-dependent growth velocity is given
by

v+(f ) = d[ωone
−f − ωoff]. (13)
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The characteristic force F0 has a value F0 = kBT /d ≈ 7 pN.
The dimensionless stall force

fstall = ln (ωon/ωoff) (14)

is defined by the condition of vanishing growth velocity
v+(fstall) = 0. We typically have fstall � 1.5, . . . ,3 or Fstall �
10, . . . ,20 pN for ωon = 30, . . . ,100 s−1. The stall force is
the maximal force that the MT can generate in the absence of
catastrophes. We will investigate how the forces that can be
generated in the presence of catastrophes compare to this stall
force.

The velocity dependence of the catastrophe rate as cal-
culated from Eq. (10) gives rise to a force dependence
ωc = ωc[v+(f )]. We assume that this is the only effect of force
on the catastrophe rate [39]. As a result, the catastrophe rate
increases exponentially when v+(f ) is decreased by applying
a force f , but a finite value is maintained at v+(f ) = 0, which
is ωc(v+ = 0) ≈ 2.9 s−1. We assume that v− is independent
of force. For qualitative approximations, the force dependence
of the catastrophe rate can be described by an exponential
increase above the characteristic force F0,

ωc(f ) ∼ ωc(f =0)ef . (15)

In Sec. VII, we introduce an alternative catastrophe model
which is based on experimental measurements. The expo-
nential approximation (15) applies to the catastrophe model
described above as well as to the alternative catastrophe model;
see Fig. 11. Our results are robust for all catastrophe models
with an exponential increase above the characteristic force F0.
Our results do not directly apply to more elaborate multistep
catastrophe models with more than two MT states [31].

III. SIMULATION MODEL

In the simulations, we solve the stochastic Langevin-like
equations of motion for the length x(t) of a single MT using
numerical integration with fixed time steps 	t and including
stochastic switching between growth and shrinkage. In a
growing state, x(t) is increased by v+	t , while in a state
of shrinkage it is decreased by v−	t . In the growing state, v+
is calculated from Eq. (9) for zero force and from Eq. (11)
under force. In each time step, a uniformly distributed random
number ξ ∈ [0,1] is compared to ωr,c	t . If ξ < ωr,c	t , the
MT changes its state of growth. The catastrophe rate ωc

is calculated from the high-order polynomial obtained from
Eq. (10) as mentioned above. To assure ωr,c	t � 1, we
used a time step 	t = 0.1 s. During the simulations, all
parameters of growth, d = 0.6 nm, r = 3.6 × 106 m−1 s−1,
vh = 4.2 × 10−9 m/s, kB = 1.38 × 10−23 J/K, T = 300 K,
and ωoff = 6 s−1, are fixed, see Table II, except for ωon, which
is varied in the range ωon = 30–100 s−1, and ωr , which is
varied in the range ωr = 0.03–0.2 s−1; see Table I. Averages
are taken over many realizations of stochastic trajectories.

(a) (b)

FIG. 1. (Color online) (a) Schematic representation of the con-
finement and possible MT configurations. From top to bottom:
MT growing with v+; MT shrinks with v−. MT in a state of
growth and stuck to the boundary wall with v+ = 0 and ωc,L.
(b) Schematic representation of a single MT growing against the
elastic obstacle. From top to bottom: MT shrinks with v−. MT
under force F (x) = k (x − x0) with f (x) ≡ F (x)/F0, v+[f (x)], and
force-dependent catastrophe rate ωc[f (x)].

IV. CONFINEMENT BETWEEN FIXED RIGID WALLS

A single MT is confined to a one-dimensional box of
fixed length L with rigid boundary walls at x = 0 and x = L

as shown schematically in Fig. 1(a) [32,33]. There is no
force acting on the MT, but within the box catastrophes are
induced upon hitting the rigid walls. We propose the following
mechanism for these wall-induced catastrophes: When the MT
hits the boundary at x = L, its growth velocity v+ has to
reduce to zero, which leads to an increase of the catastrophe
rate to ωc,L ≡ ωc(v+ = 0). Since ωc,L is finite, wall-induced
catastrophes are not instantaneous but the MT sticks for an
average time 1/ωc,L to the boundary before the catastrophe,
which is in contrast to previous studies [34]. For the average
time spent at the boundary before a catastrophe, we find
ω−1

c,L ≈ 0.29 s. The catastrophe rate at the wall, ωc,L, is much
higher than the bulk catastrophe rate ωc(v+). For ωon = 50 s−1,
we find ωc,L/ωc � 2300.

To include the mechanism of wall-induced catastrophes into
the description by master equations, we introduce the proba-
bilities Q+ and Q− of finding the MT stuck to the boundary
in a growing state and in a shrinking state, respectively. The
stochastic time evolution of Q+(t) and Q−(t) is given by

∂tQ+(t) = −ωc,LQ+(t) + ωrQ−(t) + v+p+(L), (16)

∂tQ−(t) = +ωc,LQ+(t) − ωrQ−(t) − v−
	

Q−(t). (17)

The quantity v+p+(L) is the flow of probability from the
interior of the confining box onto its boundary and is given by
the solution of Eqs. (1) and (2) for x = L, while (v−/	)Q− is
the probability current from the boundary back into the interior,
where 	 denotes a small interval in which the flow v−Q− can
be measured. This implies that there is a boundary condition
v−p−(L,t) = (v−/	)Q− for the backward current density at
x = L, in addition to the reflecting boundary condition (3) at

TABLE II. Fixed parameter values for calculations and simulations.

Parameter v− (m/s) (see Table I) ωoff (s−1) d (m) r (m−1s−1) vh (m/s) 	t (s)

Value 3 × 10−7 6 0.6 × 10−9 3.7 × 106 4.2 × 10−9 0.1
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x = 0. An identical model for wall-induced catastrophes has
been introduced in Ref. [22] recently.

In the steady state and in the limit 	 ≈ 0, we find

Q+ ≈ v+
ωc,L

p+(L), (18)

Q− ≈ 0, (19)

and v−p−(L,t) = (v−/	)Q− = v+p+(L). Equation (18)
shows that there is a nonzero probability Q+ of finding a
MT in a state of growth and stuck to the boundary, which
is given by the flow of probability from the interior of the
confining box onto its boundary divided by the average time
being stuck to the boundary. In contrast, Eq. (19) states
that there is no MT in a shrinking state and stuck to the
wall. This is intuitively clear since a MT undergoing a
catastrophe begins to shrink instantaneously. In the steady
state, we solve Eqs. (1), (2), and (18) simultaneously with
the additional normalization

∫ L

0 [p+(x) + p−(x)]dx + Q+ =
1. We find v+p+(x) = v−p−(x) and

P (x) = Nex/λ

(
1 + v+

v−

)
, (20)

Q+ = N
v+
ωc,L

eL/λ (21)

with λ from Eq. (4) and a normalization

N−1 = λ

(
1 + v+

v−

)
(eL/λ − 1) + v+

ωc,L

eL/λ. (22)

Equation (20) shows that we find an exponential OPDF P (x)
in confinement with the same characteristic length |λ|. If the
growth is unbounded in the absence of confinement, which
corresponds to λ−1 > 0, the OPDF is exponentially increasing;
if the growth is bounded in the absence of confinement, which
corresponds to λ−1 < 0, the OPDF remains exponentially
decreasing in confinement. The same result has been obtained
in Ref. [34] within a discrete growth model. In independent
in vivo experiments, both exponentially increasing [35] and
exponentially decreasing OPDFs [20] have been found.

In the following, we focus on the case λ−1 > 0 of exponen-
tially increasing OPDFs. In the steady state, the average length
of a MT within the confining box is given by

〈x〉 =
∫ L

0
xP (x)dx + Q+L

= N

{(
1+v+

v−

)
λ2

[
1 + eL/λ

(
L

λ
− 1

)]
+ L

v+
ωc,L

eL/λ

}
.

(23)

In the limit of instantaneous wall-induced catastrophes, Q+ ≈
0, we obtain

〈x〉
L

≈ 1

1 − e−L/λ
− λ

L
, (24)

i.e., the average MT length 〈x〉/L depends on the two
control parameters ωr and ωon only via the ratio L/λ. This
scaling property is lost if wall-induced catastrophes are not
instantaneous because Eq. (23) then exhibits additional v+
and thus ωon dependences. Within our model, the increased
catastrophe rate at the boundary gives rise to an increased
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FIG. 2. The average length 〈x〉 as a function of ωon and ωr

for confinement by fixed rigid walls. Data points are results
from stochastic simulations, lines are analytical results (23). Top
row: the average length 〈x〉 as a function of ωon for different
values of ωr = 0.03 s−1 (�), 0.05 s−1 (�), 0.1 s−1 (�), 0.2 s−1(•),
and 0.3 s−1 (
). (a) L = 10 μm. (b) L = 1 μm. Lower row: the
average length 〈x〉 as a function of ωr for different values of
ωon = 25 s−1 (�), 50 s−1 (�), 75 s−1 (�), and 100 s−1 (�). (c) L =
10 μm. (d) L = 1 μm.

overall average catastrophe rate

ωc,eff = ωc(v+) + Q+[ωc,L − ωc(v+)], (25)

for which we find ωc,eff � 0.03 s−1 for L = 1 μm and ωc,eff �
0.006 s−1 for L = 10 μm as compared to ωc � 0.0015 s−1 for
these conditions.

We set the length of the confining box to L = 1 and 10 μm,
which are typical length scales in experiments [10,11] and
cellular environments [5], and we calculate 〈x〉 and Q+ as
functions of ωon and ωr . The parameter regimes displayed in
Figs. 2 and 3 correspond to regimes L/λ 	 1 for L = 10 μm
and L/λ � 1 for L = 1 μm. Results obtained from stochastic
simulations agree with analytical findings (Figs. 2 and 3). It
is clearly visible that the size L of the confinement has a
significant influence on 〈x〉, mainly via the ratio L/λ.

The probability Q+ to find the MT at the wall increases
with increasing rates in the range of Q+ ≈ 0, . . . ,0.03 and
exhibits only a weak dependency on L; see Fig. 3. Even
for maximum rates, the probability of finding a MT in a
growing state and stuck to the wall is limited to several
percent, due to the large catastrophe rate ωc,L at x = L.
Therefore, in most cases, wall-induced catastrophes can be
viewed as instantaneous, and the approximation (24) works
well. For increasing on-rate ωon or rescue rate ωr , the ratio
L/λ approaches L/λ ≈ Lωr/v− from below. According to
the approximation (24), the mean length 〈x〉 then increases and
approaches 〈x〉/L ≈ 1/(1 − e−Lωr/v− ) − v−/Lωr from below.
For L = 10 μm, we have L/λ 	 1 and the length distribution
is exponential, P (x) ∼ ex/λ. The ratio 〈x〉/L saturates at a
high value 〈x〉/L ≈ 0.7, . . . ,0.9 [Figs. 2(a) and 2(c)]. For
L/λ 	 1, the MT length distribution becomes very narrow
around the maximal length L. In contrast, for L = 1 μm,

041918-5
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FIG. 3. The probability Q+ to find the MT at the wall as a
function of ωon and ωr for confinement by fixed rigid walls. Data
points are results from stochastic simulations, lines are analytical
results (18). Top row: Q+ as a function of ωon for different
values of ωr = 0.03 s−1 (�), 0.05 s−1 (�), 0.1 s−1 (�), 0.2 s−1 (•),
and 0.3 s−1 (
). (a) L = 10 μm. (b) L = 1 μm. Lower row:
Q+ as a function of ωr for different values of ωon = 25 s−1 (�),
50 s−1 (�), 75 s−1 (�), and 100 s−1 (�). (c) L = 10 μm. (d)
L = 1 μm.

we have L/λ � 1, and L is too small to establish the
characteristic exponential decay of the length distribution.
The length distribution P (x) is almost uniform, and the ratio
〈x〉/L ≈ 0.5, . . . ,0.6 deviates only slightly from the result
〈x〉/L = 1/2 characteristic for a broad uniform distribution
[Figs. 2(b) and 2(d)].

V. CONSTANT FORCE

In the second scenario, a constant force F is applied to
the MT and the right boundary is removed, so that the MT
is allowed to grow on x ∈ [0,∞[. According to Eq. (13), the
growth velocity under force is smaller, but it remains constant
for fixed f . With Eq. (10), this results in a higher, but also
constant, catastrophe rate ωc[v+(f )] > ωc[v+(0)]. Since v−
and ωr are independent of force, the stochastic dynamics
of the MT is described by Eqs. (1) and (2) with the same
solutions P (x,t) as in the absence of force, but with a decreased
velocity of growth v+(f ) and an increased catastrophe rate
ωc(f ) [20,21]. In particular, we still find two regimes, a regime
of bounded growth and a regime of unbounded growth.

In the regime of bounded growth, P (x,t) is again expo-
nentially decreasing, and the force-dependent average length
is 〈x(f )〉 = |λ(f )| with the corresponding force-dependent
length parameter

λ(f ) ≡ v+(f )v−
v+(f )ωr − v−ωc(f )

(26)

as compared to Eq. (4) in the absence of force. In the
regime of unbounded growth, 〈x(f )〉 increases linearly in time
with the force-dependent mean velocity J (f ) = [v+(f )ωr −
v−ωc(f )]/[ωr + ωc(f )]; cf. Eq. (7). The MT length distribu-
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FIG. 4. (a) Phase boundary between bounded (B) and un-
bounded growth (UB) as a function of ωon and ωr for
MT growth under constant force. Data points for f =
0 (�), 0.3 (�), 0.6 (�), 0.9 (•), 1.2 (
), and 1.4 (�) represent results
from simulations. Lines represent solutions of v+(f )ωr = v−ωc(f )
for a constant force f . (b) Critical force fc as a function of ωon for
ωr = 0.03 s−1 (�), 0.05 s−1 (�), 0.1 s−1 (�), and 0.2 s−1(•). Data
points represent results from simulations, lines represent the solution
of Eq. (27) for a fixed combination of ωon and ωr .

tion P (x,t) assumes again a Gaussian form (6) where also
the diffusion constant DJ (f ) follows the same Eq. (8) with
force-dependent growth velocity v+(f ) and catastrophe rate
ωc(f ).

In the presence of a constant force f , the transition
between bounded and unbounded growth is governed by the
force-dependent parameter λ(f ). The regimes of bounded
and unbounded growth are now separated by the condition
λ−1(f ) = 0, which is shifted compared to the case f = 0;
see Fig. 4(a). The inverse length parameter λ−1(f ) is a
monotonously decreasing function of force f and changes
sign from positive to negative values for increasing force f .
Therefore, λ−1(fc) = 0 or

v+(fc)ωr = v−ωc(fc) (27)

defines a critical force for the transition from unbounded to
bounded growth. A single MT exhibiting unbounded growth
[λ−1(0) > 0] in the absence of force undergoes a transition to
bounded growth with λ−1(f ) < 0 by applying a supercritical
force f > fc. On the other hand, starting with a combination
of on-rate ωon and rescue rate ωr and a force f , which results
in bounded growth with λ−1(f ) < 0, the MT can still enter the
regime of unbounded growth by increasing ωon or ωr so that
the force f becomes subcritical, λ−1(f ) > 0 or f < fc.

Rewriting condition (27) as v+(fc) = v−ωc(fc)/ωr > 0
and using that v+(f ) decreases with f , it follows that the
critical force is always smaller than the stall force, fc < fstall,
which satisfies v+(fstall) = 0, and it approaches the stall force
only for vanishing catastrophe rate. Qualitatively, we can
obtain an explicit result for the critical force fc by using
the approximations of an exponentially decreasing growth
velocity, v+(f ) ≈ v+(0)e−f , which is valid for ωon 	 ωoff

[see Eq. (13)], and an exponentially increasing catastrophe rate
above the characteristic force F0, Eq. (15), in the condition (27)
for the critical force. This leads to

fc ∼ 1

2
ln

(
v+(0)ωr

v−ωc(0)

)
∼ 1

2
ln

(
ωondωr

v−ωc(0)

)
, (28)

which shows that the critical force grows approximately
logarithmically with on-rate ωon [note that the catastrophe rate
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in the absence of force decreases with ωon as ωc(0) ∝ 1/ωon

[26]] and rescue rate ωr . A negative fc for small on-rates and
rescue rates signals that the MT is for all forces f > 0 in the
bound phase. In Fig. 4(b), we show exact results for the critical
force fc as a function of the on-rate ωon and for different rescue
rates ωr from solving condition (28) numerically and from
stochastic simulations. Agreement between both methods is
good.

The condition λ−1(f ) = 0 specifies the boundary between
bounded and unbounded growth at a given force f . In Fig. 4(a),
the resulting phase boundary is shown as a function of ωon and
ωr . There is good agreement between numerical solutions of
λ−1(f ) = 0 and stochastic simulations. With increasing force,
the boundary between the two regimes of growth shifts to
higher values of ωon and ωr , and forces up to F ∼ 1.4F0 can
be overcome by a single MT in the parameter regimes of ωon

and ωr considered.

VI. ELASTIC FORCE

In the third scenario, an elastically coupled barrier is placed
in front of the MT as shown in Fig. 1(b), which models the
optical traps used in Refs. [11,13] or the elastic cell cortex in
vivo. If the barrier is displaced from its equilibrium position
x0 by the growing MT with length x > x0, it causes a force
F (x) = k(x − x0) resisting further growth. For x < x0, there
is no force. We use x0 = 0 μm in the case of vanishing rescue
rate and x0 = 10 μm in the case of finite rescue rate and a
spring constant k in the range 10−7 N/m (soft) to 10−5 N/m
(stiff as in the optical trap experiments in [13]).

An elastic force F (x) = k(x − x0) represents the simplest
and most generic x-dependent force. Whereas for a con-
finement of fixed length or a constant force, the MT length
x was the only stochastic variable, the force F (x) itself is
now coupled to x and becomes stochastic as well. Therefore,
not only are the MT length distributions of interest but also
the maximal and average polymerization forces which are
generated during MT growth.

A. Vanishing rescue rate

We first discuss growth in the absence of rescue events,
ωr = 0. This situation corresponds to optical trap experiments
[11,13], which are performed on short time scales and no
rescue events are observed. In a state of growth, the MT grows
against the elastic obstacle with velocity v+[f (x)] and f (x)
increases. For simplicity, we suppress the x dependency in the
notation in the following. At a maximal polymerization force
fmax, the MT undergoes a catastrophe and starts to shrink back
to zero and the dynamics stops due to missing rescue events. No
steady state is reached. Since switching to the state of shrinkage
is a stochastic process, the maximal polymerization force fmax

is a stochastic quantity which fluctuates around its average
value. We calculate the average maximal polymerization force
〈fmax〉 within a mean field approach. Here 〈· · · 〉 denotes
an ensemble average over many realizations of the growth
experiment.

Because no steady state is reached in the absence of rescue
events, we have to use a dynamical mean field approach, which
is based on the fact that the MT growth velocity dx/dt =

v+(f ) is related to the time evolution of the force by df/dt =
(k/F0)dx/dt . In mean field theory, this results in the following
equation of motion for 〈f 〉:

d

dt
〈f 〉 = k

F0
v+(〈f 〉), (29)

where we used the mean field approximation 〈v+(f )〉 ≈
v+(〈f 〉). With the initial condition 〈f 〉(0) = 0, we find a time
evolution

〈f 〉(t) = ln[(1 − ωon/ωoff)e
−t/τ + ωon/ωoff] (30)

≈ fstall + ln[1 − exp(−t/τ )] (31)

with a characteristic time scale τ = F0/dkωoff ≈ 102–104 s
for k ≈ 10−5–10−7 N/m. For long times t 	 τ , Eq. (30)
approaches the dimensionless stall force 〈f 〉 = fstall, see
Eq. (14), which is the maximal polymerization force in the
absence of catastrophes. The approximation (31) holds for
ωon/ωoff 	 1.

MT growth is ended, however, by a catastrophe, and the
average time spent in the growing state is t = 1/ωc(〈fmax〉).
Together with Eq. (30), this gives a self-consistent mean field
equation for the maximal polymerization force 〈fmax〉,
〈fmax〉 = ln[(1 − ωon/ωoff)e

−1/ωc(〈fmax〉)τ + ωon/ωoff]. (32)

The maximal polymerization force 〈fmax〉 is always smaller
than the stall force fstall, as can be seen from Eqs. (30) and (31).
Since ωon/ωoff 	 ωcτ 	 1 for realistic force and parameter
values, Eq. (32) can be approximated by

〈fmax〉 ≈ ln

(
ωon

ωoffτωc(〈fmax〉)
)

= fstall − ln [τωc(〈fmax〉)] .

(33)

For a catastrophe rate increasing exponentially above the
characteristic force F0, Eq. (15), we find

〈fmax〉 ∼ 1

2
ln

(
ωondk

F0ωc(0)

)
, (34)

i.e., the maximal polymerization force grows logarithmically
in ωon [note that the catastrophe rate in the absence of
force decreases as ωc(0) ∝ 1/ωon [26]]; see Fig. 5 for k =
10−5 N/m. Within a slightly different catastrophe model
obtained from experimental data and discussed in Sec. VII,
this logarithmic dependence can be shown exactly.

Figure 5 shows 〈fmax〉 as a function of ωon. Analytical
results from Eq. (32) agree with numerical findings from
stochastic simulations. The maximal polymerization force
〈fmax〉 increases with increasing k, see Eq. (34), but it remains
smaller than the stall force fstall. Stochastic simulations show
considerable fluctuations of fmax, which are caused by broad
and exponentially decaying probability distributions for fmax

and which we quantify by measuring the standard deviation
〈f 2

max〉 − 〈fmax〉2. For increasing k, probability distributions
become more narrow and mean field results approach the
simulation results for 〈fmax〉.

B. Nonzero rescue rate

For a nonzero rescue rate ωr , phases of growth, in which
f (x) increases and which last 1/ωc(f ) on average, are
ended by catastrophes which are followed by phases of
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FIG. 5. Average maximal polymerization force 〈fmax〉 for an
elastic obstacle and in the absence of rescues as a function of
ωon for different values of k = 10−5 N/m (�), 10−6 N/m (�), and
10−7 N/m (•). Data points represent results from simulations, solid
lines are solutions of Eq. (32). Error bars represent the standard de-
viation of the stochastic quantity 〈fmax〉. Dashed line: dimensionless
stall force fstall = ln (ωon/ωoff).

shrinkage. Shrinking phases last 1/ωr on average, and during
shrinkage the elastic obstacle is relaxed and f (x) decreases.
After rescue, the MT switches back to a state of growth.
In contrast to the case without rescue events, the system
can attain a steady state. In this steady state, the average
length loss during shrinkage, v−/ωr , equals the average length
gain during growth, v+(f )/ωc(f ), and the MT oscillates
around a time-averaged stall length 〈x〉, which is directly
related to the time-averaged polymerization force by 〈f 〉 =
(k/F0)(〈x〉 − x0). In the following, the steady-state dynamics
and the average polymerization force are characterized. We
start with an analysis of the full master equations focusing on
the stationary state followed by a dynamical mean field theory,
which can also be applied to dilution experiments.

In the presence of an x-dependent force f (x), the master
equations for the time evolution of p+,−(x,t) become

∂tp+(x,t) = −ωc(x)p+(x,t) + ωrp−(x,t)

− ∂x[v+(x)p+(x,t)], (35)

∂tp−(x,t) = ωc(x)p+(x,t) − ωrp−(x,t) + v−∂xp−(x,t),

(36)

which differ from Eqs. (1) and (2) by the x dependence of
growth velocity and catastrophe rate. Both growth velocity
v+(x) = v+[f (x)] and catastrophe rate ωc(x) = ωc{v+[f (x)]}
become x-dependent via their force dependence. There-
fore, also the force-dependent length parameter λ(f ) from
Eq. (26) becomes x-dependent via its force dependence,
λ(x) = λ[f (x)]. Equations (1) and (2) are supplemented by
reflecting boundary conditions v+(0)p+(0,t) = v−p−(0,t) at
x = 0, similar to Eq. (3).

For the steady state, Eqs. (35) and (36) are solved on the
half-space x > 0 with reflecting boundary conditions at x =
0, and we can calculate the overall MT length distribution

P (x) = p+(x) + p−(x) explicitly,

P (x) = N

(
1 + v−

v+(x)

)
ex0/λ(0) exp

[∫ x

x0

dx ′/λ(x ′)
]

(37)

with a normalization

N−1 =
∫ ∞

0
dx

(
1 + v−

v+(x)

)
ex0/λ(0)e

∫ x

x0
dx ′/λ(x ′)

, (38)

where λ(x) = λ(f =0) in the force-free region x < x0 and
λ(x) = λ[f (x)] for x > x0 and, likewise, v+(x) = v+(f =0)
for x < x0 and v+(x) = v+[f (x)] for x > x0. This implies

ex0/λ(0)e
∫ x

x0
dx ′/λ(x ′) = ex/λ(0) and, thus, a simple exponential

dependence of P (x) for x < x0. A similar OPDF has been
found for dynamic MTs in the presence of MT end-tracking
molecular motors [36].

With increasing length x, also the force f (x) increases and,
thus, v+[f (x)] decreases and ωc[f (x)] grows exponentially. If
x becomes sufficiently large that the condition λ−1[f (x)] < 0
holds, the distribution P (x) starts to decrease exponentially.
In this length regime, the MT undergoes a catastrophe with
high probability. Because the distribution always decreases
exponentially for sufficiently large x, a single MT growing
against an elastic obstacle is always in the regime of bounded
growth regardless of how large the values of ωon and ωr are
chosen. This behavior is a result of the linearly increasing
force, which gives rise to arbitrarily large forces for increasing
x in contrast to growth under constant or zero force, where a
MT can either be in a phase of bounded or unbounded growth
as mentioned above.

The behavior is also in contrast to length distributions in
confinement between fixed rigid walls, where we found a
transition between exponentially decreasing and increasing
length distributions: The elastic obstacle typically leads to
a nonmonotonic length distribution with a maximum in
the region x > x0 (as long as the on-rate ωon and rescue
rate ωr are sufficiently large and the obstacle stiffness k

sufficiently small). While rescue events (and an exponential
decrease in the growth velocity v+[f (x)]) cause P (x) to
increase exponentially for small MT length, catastrophes are
responsible for an exponential decrease for large x. The
interplay between rescues and catastrophes gives rise to
strongly localized probability distributions with a maximum.
Figures 6(a)–6(d) show the steady-state distribution P (x)
obtained from Eq. (37) for different values of ωon and ωr .
We chose k = 10−7 N/m and x0 = 10 μm. In the steady
state, a stable length distribution with a well defined average
length 〈x〉 = ∫ ∞

0 P (x)x dx is maintained, although the MT is
still subject to dynamic instability. The length distributions
drop to zero for large x, where λ−1(x)∼−ωc(x)/v+(x) and
ωc(x)/v+(x) increases exponentially with increasing force.

The most probable MT length xmp maximizes the stationary
length distribution (37). Because v− 	 v+(x) and using the
approximation of an exponentially decreasing growth velocity,
v+[f (x)] ≈ v+(0)e−f (x), which is valid for ωon 	 ωoff [see
Eq. (13)], we obtain a condition λ−1(xmp) = −∂xf (xmp) =
−k/F0 or

v+(fmp)ωr − v−ωc(fmp) = −(k/F0)v−v+(fmp) (39)

for the corresponding most probable force fmp =
(k/F0)(xmp − x0).
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FIG. 6. Stationary MT length distribution P (x) in the steady state for growth against an elastic obstacle with ωon = 25, 50, 75, and 100 s−1

and different values of ωr . We set k = 10−7 N/m and x0 = 10−5 m. (a) ωr = 0.03 s−1. (b) ωr = 0.05 s−1. (c) ωr = 0.1 s−1. (d) ωr = 0.2 s−1.
Dashed line represents x0. In (a), the stall length xs for ωon = 25 s−1, obtained from simple polymerization kinetics, is indicated by an arrow.
(e) P (x) for ωon = 50 s−1, ωr = 0.05 s−1, and different values of the spring constant k.

For an exponentially increasing catastrophe rate above the
characteristic force F0, Eq. (15), we find

fmp ∼ 1

2
ln

[
v+(0)ωr

v−ωc(0)

(
1 + kv−

F0ωr

)]
. (40)

We can distinguish two limits: (i) For a soft obstacle with
kv−/F0ωr � 1, the most probable force fmp is identical to
the critical force fc for MT dynamics under constant force,
see (28), because the right-hand side in the condition (39) for
fmp can be neglected and we exactly recover condition (27) for
fc. The most probable MT length thus “self-organizes” into
a “critical” state with fmp ≈ fc, and a MT pushing against a
soft elastic obstacle generates the same force as if growing
against a constant force. This force grows logarithmically in
the on-rate ωon and the rescue rate ωr . (ii) For a stiff obstacle
with kv−/F0ωr 	 1, on the other hand, the most probable
force is larger than the critical force, fmp 	 fc, and the MT
growing against a stiff obstacle generates a higher force. This
limit can also be realized for vanishing rescue rate ωr , and
for kv−/F0ωr 	 1 we indeed recover the maximal pushing
force in the absence of rescue events, i.e., fmp ≈ 〈fmax〉 from
Eq. (34) with v+(0) ≈ ωond. This force grows logarithmically
in the on-rate ωon. Furthermore, if fmp becomes negative
for small on-rates and rescue rates [leading to λ−1(0) <

−k/F0; see Eq. (40)] the stationary length distribution has no
maximum; see, for example, Figs. 6(a) and 6(b) at the lowest
on-rates.

With respect to the MT’s ability to generate force, the two
limits can be interpreted also in the following way: F0 is the
characteristic force above which the catastrophe rate increases
exponentially. For kv−/F0ωr � 1, the average length loss
during a period of shrinkage, v−/ωr , is much smaller than the
length F0/k, which is the displacement x − x0 of the elastic
obstacle under the characteristic force F0. Therefore, the MT
tip always remains in the region x > x0 under the influence of
the force for a soft obstacle with kv−/F0ωr � 1, whereas
it typically shrinks back into the force-free region x < x0

before the next rescue event for a stiff obstacle kv−/F0ωr 	 1.
The force generation by the MT can only be enhanced by
rescue events if rescue takes place under force in the regime
x > x0. Therefore, we find an increased polymerization force
fmp ≈ fc 	 〈fmax〉 as compared to the force fmax without
rescue events discussed in the previous section only in the limit
kv−/F0ωr � 1, i.e., for a soft obstacle or sufficiently large
rescue rate. In the limit kv−/F0ωr 	 1 of a stiff obstacle, the
MT only generates the same force as in the absence of rescues,
fmp ≈ 〈fmax〉.

By comparing the condition (27) or v+(fc) = v−ωc(fc)/ωr

for the critical force fc, the condition (39) or v+(fmp) =
v−ωc(fmp)/ωr (1 + kv−/F0) < v−ωc(fmp)/ωr for the most
probable force fmp, and the condition v+(fstall) = 0 for the
stall force, see Eq. (14), it follows that

fc � fmp � fstall, (41)

i.e., force generated against an elastic obstacle is between
critical and stall force but typically well below the stall
force, which is the maximal polymerization force in the
absence of catastrophes. Therefore, the stall length xstall =
(F0/k) ln (ωon/ωoff) + x0 is always much larger than the most
probable MT length xmp at the maximum of the stationary
length distribution; see Fig. 6(a). This shows that the dynamic
instability reduces the typical MT length significantly com-
pared to simple polymerization kinetics.

To quantify the width of the stationary distribution P (x),
we expand the exponential in (37) up to second order about
the maximum at xmp. To do so, we first expand λ−1(x) up to
first order:

λ−1(x) ≈ − k

F0

[
v+(xmp)ωr + v−ωc(xmp)

v+(xmp)v−

]
(x − xmp), (42)

where we used v+[f (x)] ≈ v+(0)e−f (x), which is valid for
ωon 	 ωoff [see Eq. (13)], and where we approximated the
catastrophe rate by an exponential ωc[f (x)] ≈ ωc(0)ef (x)

according to Eq. (15) resulting in ω′
c[f (x)] ≈ kωc[f (x)]/F0.

The prime denotes a derivative with respect to the length
x. Using the expansion (42) in Eq. (37), we obtain an
approximately Gaussian length distribution

P (x) ≈ N

(
1 + v−

v+(x)

)
ex0/λ(0) exp

[
(xmp − x0)2

2σ 2

]

× exp

[
− (x − xmp)2

2σ 2

]
(43)

with a width

σ 2 = F0

k

[
v+(xmp)v−

v+(xmp)ωr + v−ωc(xmp)

]

≈
(

F0

k

)2 (
1 + 2F0ωr

kv−

)−1

, (44)

where we used the saddle point condition (39) in the last ap-
proximation and the exponential approximations v+[f (x)] ≈
v+(0)e−f (x) and ωc[f (x)] ≈ ωc(0)ef (x). Again we have to
distinguish the two limits of soft and stiff obstacles: (i) For a
soft obstacle with kv−/F0ωr � 1, we find σ 2 ≈ F0v−/2kωr .
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This shows that the width of the length distribution decreases
with increasing ωr but is roughly independent of the on-rate
ωon, as can also be seen in the series of simulation results shown
in Fig. 6. Closer inspection of the simulation results shows that
the width of the stationary length distribution P (x) is slightly
decreasing with the on-rate ωon. (ii) For a stiff obstacle with
kv−/F0ωr 	 1, on the other hand, we find σ 2 ≈ (F0/k)2,
which only depends on obstacle stiffness. All in all, σ 2 is
monotonously decreasing for increasing stiffness k.

For a soft obstacle kv−/F0ωr � 1, high rescue rates
thus lead to a sharply peaked length distribution P (x) and
suppress fluctuations of the MT length around x = xmp, and
we expect 〈x〉 ≈ xmp to a very good approximation. This
property of a sharp maximum in P (x) will make the mean
field approximation that is discussed in the next section very
accurate.

If the obstacle stiffness k is increased, the most probable MT
length xmp = x0 + fmpF0/k approaches x0, and a considerable
probability weight is shifted to MT lengths x below x0 [see
Fig. 6(e)]. The average length approaches and finally drops
below x0. This signals that the force generated by the MT is
no longer sufficient to push the obstacle out of its equilibrium
position x0. The obstacle now serves as a fixed rigid boundary
and P (x) approaches the results Eqs. (21) and (22). The
dynamics of a single MT within confinement can therefore
be seen as a special case of the dynamics in the presence of an
elastic obstacle, i.e., for small ωon and ωr or for large spring
constants k.

So far we have quantified the generated force by the most
probable force fmp. The generated force can also be quantified
by the average steady-state force 〈f 〉 = ∫ ∞

0 f (x)P (x)dx.
Using the stationary distribution (37) with normalization (38),
we can calculate 〈f 〉; results are shown in Fig. 7 in comparison
with the most probable force fmp, which is determined
numerically from the maximum of P (x), and the stall force
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FIG. 7. Average steady-state force 〈f 〉 as a function of ωon

for growth against an elastic obstacle with ωr = 0.03 s−1 (�),
0.05 s−1 (�), 0.1 s−1 (�), 0.2 s−1 (•), and k = 10−7 N/m. Solid
lines: 〈f 〉 = ∫ ∞

0 f (x)P (x)dx with P (x) given by Eqs. (37) and
(38). Dashed lines: 〈f 〉 calculated from mean field equation (46).
Dotted lines: most probable force fmp, measured in simulations, for
ωr = 0.03 and 0.05 s−1. Also shown is the dimensionless stall force
fstall obtained from simple polymerization kinetics (14).

fstall in the absence of dynamic instability from Eq. (14). For
〈f 〉, there is excellent agreement with stochastic simulations
over the complete range of parameter values. The results
clearly show that the dynamic instability reduces the ability to
generate polymerization forces since, even for large values
of ωon and ωr , the average force 〈f 〉 is always smaller
than the stall force. Nevertheless, forces up to F ∼ 1.5F0

can be obtained in the steady state for realistic parameter
values. Comparing 〈f 〉 and fmp, we find 〈f 〉 � fmp, and
both forces become identical, 〈f 〉 ≈ fmp, in the limit of large
rescue rates or a soft obstacle kv−/F0ωr � 1, where also the
length distributions P (x) become sharply peaked; see Fig. 6.
Comparing different combinations of ωon and ωr and the
corresponding forces, one finds that the influence of the on-rate
ωon on force generation is more significant than the influence
of the rescue rate ωr . For ωon = 100 s−1, a fourfold increase
of the rescue rate ωr gives rise to an increase of 〈f 〉 by a factor
of ∼1.5, while for ωr = 0.1 s−1, a fourfold increase of the
on-rate ωon results in an amplification of the force 〈f 〉 by a
factor of ∼9. These results can be explained within a mean
field theory presented in the next section.

C. Mean field approach (nonzero rescue rate)

In the following, we show that we can reproduce many
of the results for the average polymerization force 〈f 〉 for
nonzero rescue rate using a simplified mean field approach.
Using the mean field approach, we can also address the time
evolution of the average force 〈f 〉, for example in dilution
experiments. Since the switching between the two states of
growth is a stochastic process, the length x and the force
f (x) are stochastic variables. Therefore, the velocity of growth
v+[f (x)] and the catastrophe rate ω+[f (x)] also become
stochastic variables which, in the steady state, fluctuate around
their average values. Within the mean field approach, we
neglect these fluctuations and use 〈v+[f (x)]〉 = v+(〈f 〉) and
〈ω+[f (x)]〉 = ω+(〈f 〉). In the mean field approximation, the
average time in the growing state is given by 1/ωc(〈f 〉)
and the average growth velocity is v+(〈f 〉). The average
time in a shrinking state is 1/ωr . Therefore, the mean
field probabilities to find the MT growing or shrinking are
p+ = ωr/[ωr + ωc(〈f 〉)] and p− = ωc(〈f 〉)/[ωr + ωc(〈f 〉)],
respectively. This results in the following mean field average
velocity v of a single MT under force:

v(〈f 〉) = v+(〈f 〉)ωr − v−ωc(〈f 〉)
ωr + ωc(〈f 〉) . (45)

In the steady state, the barrier is pushed so far that 〈f 〉 stalls
the MT. We require v(〈f 〉) = 0 and obtain the condition

v+(〈f 〉)ωr = v−ωc(〈f 〉) (46)

for the stationary state. This condition corresponds to
a force, where the average length gain during growth,
v+(〈f 〉)/ωc(〈f 〉), equals the average length loss during shrink-
ing, v−/ωr . From the mean field equation (46), the average
steady-state force 〈f 〉 can be calculated as a function of ωr

and ωon. The average length 〈x〉 can be obtained from the
relation 〈f 〉 = (k/F0)(〈x〉 − x0). Results obtained from the
mean field equation (46) match numerical results from
stochastic simulations very well, as shown in Figs. 7 and 8.
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FIG. 8. Average steady-state force 〈f 〉 as a function of ωon

for growth against an elastic obstacle with ωr = 0.03 s−1 (�),
0.05 s−1 (�), 0.1 s−1 (�), 0.2 s−1 (•), and k = 10−5 N/m. Solid
lines: 〈f 〉 = ∫ ∞

0 f (x)P (x)dx with P (x) given by Eqs. (37) and (38).
Dashed lines from bottom to top: 〈f 〉 calculated from mean field
equation (46) for ωr = 0.03, 0.05, 0.1, and 0.2 s−1.

The mean field condition (46) is identical to the condi-
tion (27) for the critical force fc for MT dynamics under
constant force such that

〈f 〉 = fc, (47)

which can be interpreted as “self-organization” of the average
MT length or the average force to the “critical” state.
Therefore, the curves presented in Fig. 7 for 〈f 〉 are identical
to the curves shown in Fig. 4(b) for fc.

This also allows us to take over the results we derived
for the critical constant force fc. Using the approximation
of an exponentially decreasing growth velocity, v+[f (x)] ≈
v+(0)e−f (x), which is valid for ωon 	 ωoff [see Eq. (13)],
and an exponentially increasing catastrophe rate above the
characteristic force F0, Eq. (15), we find

〈f 〉 ∼ 1

2
ln

(
v+(0)ωr

v−ωc(0)

)
, (48)

which is identical to the result (28) for fc.
Comparing with the stall force and the most probable force,

we use relation (41) and find

〈f 〉 = fc � fmp � fstall. (49)

In the limit of a soft obstacle, kv−/F0ωr � 1, the average force
〈f 〉 approaches the most probable force 〈f 〉 ≈ fmp, whereas
the mean field average force 〈f 〉 is always smaller than the stall
force fstall in the absence of dynamic instability from Eq. (14).

Finally, we discuss the limits of validity of the mean field
approximation. The mean field approximation is based on the
existence of a pronounced maximum in the stationary MT
length distribution P (x), which contains most of the weight of
the probability density P (x). It breaks down if this maximum
broadens or vanishes, such that a considerable amount of
probability density is shifted below x0 into the regime of
force-free growth. Then the MT typically shrinks into the
force-free region x < x0 during phases of shrinkage such
that the growing phase explores the whole range of forces

starting from f = 0 up to f > 〈f 〉, and the approximation of
a constant average force f ≈ 〈f 〉 during growth is no longer
fulfilled. For small spring constants k or large values of ωr ,
the length distribution P (x) assumes a Gaussian shape with
width σ ; see Eqs. (43) and (44). When k is increased for
a fixed combination of ωon and ωr , the average length 〈x〉
approaches x0 as 〈x〉 − x0 ∝ 1/k, whereas the width σ of the
length distribution only decreases as σ ∝ 1/

√
k in the regime

of a soft obstacle kv−/F0ωr � 1, as can be seen from Eq. (44).
Therefore, an increasing amount of probability density is
shifted below x0, where no force is acting on the MT ensemble
[see Figs. 6(a) and 6(e)]. The mean field approximation is only
valid for spring constants k which fulfill 〈x〉 − x0 	 σ/2 for
given parameters ωon and ωr . With 〈f 〉 = (k/F0)(〈x〉 − x0),
this is equivalent to a condition

〈f 〉 	 kσ

2F0
≈ 1

2

(
1 + 2F0ωr

kv−

)−1/2

(50)

according to Eq. (44). This condition can only be fulfilled
in the limit of a soft obstacle with kv−/F0ωr � 1; see
Fig. 8. For the validity of the mean field approximation, we
therefore recover the condition that the average length loss
during a period of shrinkage, v−/ωr , is much smaller than
the typical displacement F0/k of the elastic obstacle under the
characteristic force F0. Then the MT tip always remains in the
region x > x0 under the influence of the force.

D. Dynamics and dilution experiments

Within the mean field approach, we can also derive an
analytical time evolution of the average time-dependent force
〈f 〉(t). The time evolution is based on Eq. (45), which gives a
mean field approximation for the average MT velocity v(〈f 〉)
as a function of the average force. On the other hand, the
average MT growth velocity is related to the time derivative of
the average force by

d

dt
〈f 〉 = k

F0

d

dt
〈x〉 = k

F0
v(〈f 〉). (51)

Using Eq. (45) for v(〈f 〉), this gives a mean field equation of
motion for 〈f 〉 similar to Eq. (29) in the absence of rescue
events. Integrating this equation numerically, we obtain mean
field trajectories for the average force 〈f 〉(t) as a function of
time t . Figure 9 shows such trajectories for k = 10−7 N/m and
an initial condition 〈f 〉(0) = 0 at t = 0. Also shown in Fig. 9
are results from stochastic simulations, which show excellent
agreement with the mean field trajectories.

We now address the question of how fast a single MT
responds to external changes of one of its growth parameters.
Here we focus on fast dilution of the tubulin concentration,
which is directly related to the tubulin on-rate ωon. In vivo
tubulin concentration can be changed by tubulin binding
proteins like stathmin [37], while in in vitro experiments,
the tubulin concentration can be diluted within seconds [38].
In the following, we give a mean field estimate of the
typical time scale, which governs the return dynamics of the
MT back to a new steady state after the tubulin on-rate is
suddenly decreased. In the initial steady state, the average
velocity v(〈f 〉i) vanishes and the average polymerization force
〈f 〉i (and, thus, the average length 〈x〉i) can be calculated
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FIG. 9. (a) Average force 〈f 〉(t) as a function of time for
k = 10−7 N/m, ωr = 0.05 s−1, and different values of ωon. Sym-
bols: time-dependent average force 〈f 〉(t) measured in simulations.
Solid lines: time-dependent average force trajectory calculated from
Eq. (51). (b) Average force 〈f 〉(t) as a function of time for k =
10−7 N/m, ωon = 50 s−1, and different values of ωr . Symbols: time-
dependent average force 〈f 〉(t) measured in simulations. Solid lines:
time-dependent average force trajectory calculated from Eq. (51).

from the condition v+(〈f 〉i)ωr = v−ωc(〈f 〉i); cf. Eq. (46)
for a given combination of ωon and ωr . If ωon is suddenly
decreased, this leads to a sudden decrease in the growth
velocity to ṽ+(f ) < v+(f ) and an increase of the catastrophe
rate to ω̃c(f ) > ωc(f ), resulting in a negative average ve-
locity v(〈f 〉) = [ṽ+(〈f 〉)ωr − v−ω̃c(〈f 〉)]/[ωr + ω̃c(〈f 〉)] <

0 according to Eq. (45). Consequently, the MT starts to shrink
with an average velocity v(〈f 〉) < 0. This relaxes the force
from the elastic obstacle, i.e., 〈f 〉(t) starts to decrease from the
initial value fi ≡ 〈f 〉i . With decreasing average force 〈f 〉(t),
the average growth velocity v(〈f 〉(t)) increases again (because
ṽ+ increases and ω̃c decreases) until the steady-state condition
ṽ+(〈f 〉f )ωr = v−ω̃c(〈f 〉f ) holds again and a new steady-state
force 〈f 〉f < 〈f 〉i is reached (see Fig. 10).

The relaxation dynamics to the new steady state after
tubulin dilution is therefore governed by the average velocity
v(〈f 〉) given by Eq. (45). To extract a characteristic relaxation
time scale, we expand the average velocity v(〈f 〉) to first order
around the final steady-state polymerization force ff ≡ 〈f 〉f ,
which is the solution of Eq. (46) with ωr and the decreased
tubulin on-rate ωon, which takes its dilution value. Using
v(ff ) = 0, one finds in first order

v(〈f 〉) ≈ −
[
v+(ff )ωr + v−ω′

c(ff )

ωr + ωc(ff )

]
(〈f 〉 − ff ), (52)
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FIG. 10. Average force 〈f 〉(t) as a function of time t . Symbols
are results obtained from simulations. We set k = 10−7 N/m, ωr =
0.05 s−1, and ωon = 75 s−1. At t = 20 000 s, ωon is diluted down
to ωon = 50 s−1. Solid line represents a fit with an exponential
decay (53) to the simulated data with fit parameter τd = 1762 s.
Dashed lines indicate the average force in the initial state fi before
dilution and in the new final state ff after dilution.

where the prime denotes the derivative with respect to the force.
In the last approximation, we used the mean field condition
Eq. (46) and v+[f (x)] ≈ v+(0)e−f (x), which is valid for ωon 	
ωoff [see Eq. (13)]. This expansion is only valid for average
forces close to the new average polymerization force ff . Using
this expansion, the time evolution (51) of the average force
after dilution exhibits an exponential decay

〈f 〉(t) = ff + (fi − ff )e−t/τd (53)

with a characteristic dilution time scale

τd = F0

k

ωr + ωc(ff )

v+(ff )ωr + v−ω′
c(ff )

≈ F0

k

ωr + ωc(ff )

2v−ωc(ff )
, (54)

where we approximated the catastrophe rate by an exponential
ωc[f (x)] ≈ ωc(0)ef (x) according to Eq. (15), and we used the
mean field condition Eq. (46). In the limit ωc(ff ) 	 ωr , i.e.,
at forces ff 	 1, we obtain the simple result τd ≈ F0/2v−k.
In general, the relaxation time τd is proportional to the square
σ 2 of the width of the stationary distribution; cf. Eq. (44): A
narrow length distribution gives rise to fast relaxation to the
new average force.

VII. EXPERIMENTAL CATASTROPHE MODEL

So far we have employed the catastrophe rate derived
by Flyvbjerg et al., to which we will refer as ωc,Flyv in the
following. This expression for the catastrophe rate was based
on theoretical calculations of the inverse passage time to a
state with a vanishing GTP-cap, see Eq. (10). To investigate
the robustness of our results with respect to changes of
the catastrophe model, we now investigate an alternative
expression for the catastrophe rate that has been obtained
from experimental results. Throughout this section, we focus
on the third confinement scenario of an elastic obstacle, and
we compare results from the two different catastrophe models
for zero rescue rate ωr = 0 and nonzero rescue rate ωr > 0. In
addition, we restrict the comparison to mean field results, since
numerical and stochastic calculations match mean field results
well over the complete range of parameters (see Sec. VI).

Experimentally, it has been found that the average time
〈τ+〉 spent in a growing state is a linear function of the growth
velocity v+ [39]. The force-dependent catastrophe rate is then
given by

ωc,Jans(f ) = 1

av+(f ) + b
(55)

with constant coefficients a = 1.38 × 1010 s2 m−1 and b =
20 s. At v+(f ) = 0, ωc,Jans(f ) = 0.05 s−1, and for v+(f ) =
−b/a, the catastrophe rate ωc,Jans(f ) diverges. This is in
contrast to the theoretical model, where ωc,Flyv(f ) is finite
for all v+(f ). Also, ωc,Jans(f ) increases exponentially for
forces F > F0 or f > 1. This common feature is essential
and leads to similar results for both catastrophe models. In
Fig. 11, both catastrophe rates are shown as a function of the
dimensionless force f . The catastrophe model (55) is based on
experimental data and, thus, is phenomenological. It assumes
neither a purely chemical model, as in the model by Flyvbjerg
et al., nor a chemomechanical model in the sense of “structural
plasticity” [24].
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FIG. 11. Catastrophe rate ωc(f ) as a function of force f for
ωon = 50 and 75 s−1. Solid lines: ωc,Flyv from the catastrophe model
by Flyvbjerg et al. Dashed lines: ωc,Jans from the experimental
catastrophe model by Janson et al.

A. Vanishing rescue rate

We start with the case ωr = 0 without rescue events, and
we calculate the average maximal polymerization force within
the experimental catastrophe model using the self-consistent
mean field Eq. (32), which holds independently of the choice
of catastrophe model (see Sec. VI A). As for the catastrophe by
Flyvbjerg et al., we have ωc,Jansτ 	 1 for realistic parameter
values and v+(〈f 〉) < −b/a, and Eq. (32) can be solved
explicitly for 〈fmax〉 in this limit. We find an average maximal
polymerization force

〈fmax〉 ≈ ln([(A2 + B)1/2 − A]) (56)

with

A ≡ (ωon/ωoff − 1)adωoff − (ωon/ωoff − 1)b − τ

2τ
,

B ≡ (ωon/ωoff − 1)adωon

τ
.

Since ωon/ωoff 	 1, Eq. (56) can be approximated by

〈fmax〉 ≈ ln (ωon/ωmax) (57)

with

ωmax ≡ 2τωoff

[(adωoff − b)2 + 4adωoffτ ]1/2 − [adωoff − b]
.

(58)

For realistic parameter values, we have τ 	 adωoff � b, and
we recover the expression (34) derived using the Flyvbjerg
catastrophe model:

〈fmax〉 ≈ 1

2
ln

(
ω2

onad

ωoffτ

)
≈ 1

2
ln

(
ωondk

F0ωc,Jans(0)

)
. (59)

In Fig. 12(a), 〈fmax〉 as obtained from Eq. (32) with the Fly-
vbjerg catastrophe model and Eq. (56) with the experimental
catastrophe model are shown as a function of ωon. Results
match qualitatively and quantitatively well, although they are
obtained from two different catastrophe models. The maximal
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FIG. 12. (a) Average maximal polymerization force 〈fmax〉 as
a function of ωon and ωr = 0 for k = 10−7, 10−6, and 10−7 N/m
(top to bottom). Dotted line: dimensionless stall force fstall. Solid
lines: 〈fmax〉 obtained from ωc,Flyv [Eq. (32)]. Dashed lines: 〈fmax〉
obtained from ωc,Jans [Eq. (56)]. (b) Average steady-state force 〈f 〉
as a function of ωon. k = 10−7 N/m, ωr = 0.2 s−1 (top), and ωr =
0.03 s−1(bottom). Solid lines: 〈f 〉 obtained from ωc,Flyv [Eq. (46)].
Dashed lines: 〈f 〉 obtained from ωc,Jans [Eq. (60)]. Dotted line:
dimensionless stall force fstall.

polymerization force 〈fmax〉 always remains smaller than the
stall force fstall.

B. Nonzero rescue rate

Now we compare both catastrophe models for a nonzero
rescue rate, and we calculate the average steady-state force.
For the experimental catastrophe rate (55), the mean field
equation (46) can be solved explicitly, and the average steady-
state force 〈f 〉 is given by

〈f 〉 = ln (ωon/ωav) , (60)

with

ωav ≡
[(

b

2ad

)2

+ v−
ωrad2

]1/2

− b

2ad
+ ωoff. (61)

Again 〈f 〉 < fstall since ωav > ωoff. Figure 12(b) shows 〈f 〉
as a function of ωon. For realistic parameter values, we have
v−/ωr 	 b2/a and (v−/ωrad2)1/2 	 ωoff, and we recover the
expression (48) derived using the Flyvbjerg catastrophe model:

〈f 〉 ≈ 1

2
ln

(
ω2

onωrad2

v−

)
≈ 1

2
ln

(
v+(0)ωr

v−ωc,Jans(0)

)
. (62)

In Fig. 12(b), results for 〈f 〉 from both catastrophe models are
shown as a function of on-rate ωon. The average steady-state
force obtained from ωc,Flyv is always slightly larger than 〈f 〉
obtained from ωc,Jans, since ωc,Jans(f ) > ωc,Flyv(f ) for forces
smaller than or comparable to F0. Otherwise, both results agree
qualitatively and quantitatively well.

VIII. FORCE-VELOCITY RELATION

Finally, we discuss the influence of the force-velocity
relation on the MT dynamics. We restrict our analysis to
mean field results obtained for the third scenario, i.e., the
elastic obstacle. A change in the force-velocity relation directly
modifies the velocity of growth v+(f ), but it also affects the
catastrophe rate ωc[v+(f )], which are both crucial parts of the
MT dynamics. In the following, we employ a more general
form of the force-velocity relation, which is consistent with
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thermodynamic constraints, and we show that our results are
robust with respect to this generalization.

In their investigation of experimental data, Kolomeisky
et al. used a generalized growth velocity

v+(f,θ ) = d{ωon exp(−θf ) − ωoff exp[(1 − θ )f ]}, (63)

which depends on a dimensionless “load distribution factor” θ

[40]. The load distribution factor θ ∈ [0,1] determines whether
the on- or off-rates are affected by external force, while keeping
the ratio of overall on- and off-rate unaffected. Under force,
both the tubulin on-rate ωon and the tubulin off-rate ωoff now
acquire an additional Boltzmann-like factor. For θ = 1, we
obtain again v+(f ) as given by Eq. (13). The dimensionless
stall force is unaffected by θ and is still given by fstall =
ln (ωon/ωoff).

A. Vanishing rescue rate

We use the generalized force-velocity relation v+(f,θ )
given by Eq. (63) and the catastrophe rate ωc,Flyv(f ) in order
to calculate the average maximal polymerization force 〈fmax〉
from the self-consistent mean field Eq. (32). In Fig. 13(a),
〈fmax〉 is shown as a function of the load distribution factor θ

for k = 10−5 N/m and different values of ωon. At θ = 1, the
maximal force 〈fmax〉 equals the maximal polymerization force
obtained with v+(f ) from Eq. (13). With decreasing θ , 〈fmax〉
increases but remains below the dimensionless stall force. The
growth velocity v+(f,θ ) increases with decreasing θ for a
fixed force f and, therefore, the maximal polymerization force
〈fmax〉 increases. For high tubulin on-rates, ωon = 75–100 s−1

and small θ ≈ 0, . . . ,0.2, the maximal polymerization force
〈fmax〉 approaches the dimensionless stall force.

B. Nonzero rescue rate

For nonzero rescue rate, the average steady-state force 〈f 〉
is calculated from the mean field Eq. (46), where we use the
force-velocity relation v+(f,θ ) [Eq. (63)] and the catastrophe
rate ωc,Flyv(f ). In Fig. 13(b), results for 〈f 〉 are shown as a
function of θ for k = 10−7 N/m, ωr = 0.05 s−1, and different
values of ωon. At θ = 1, 〈f 〉 equals the average steady-state
force obtained with a velocity v+(f ) taken from Eq. (13). The
average steady-state force 〈f 〉 increases with decreasing θ , as
explained above. For high tubulin on-rates ωon = 75–100 s−1
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FIG. 13. (a) Solid lines: Average maximal polymerization force
〈fmax〉 as a function of θ for k = 10−5 N/m and different values of
ωon. Dashed line: dimensionless stall force fstall for ωon = 100 s−1.
(b) Solid lines: average steady-state force 〈f 〉 as a function of θ for
k = 10−7 N/m, ωr = 0.05 s−1, and different values of ωon. Dashed
line: dimensionless stall force fstall for ωon = 100 s−1.

and small θ ≈ 0, . . . ,0.2, also the average steady-state force
〈f 〉 again approaches the dimensionless stall force but remains
smaller.

IX. DISCUSSION AND CONCLUSION

We studied MT dynamics in three different confining
scenarios: (i) confinement by fixed rigid walls, (ii) an open
system under constant force, and (iii) MT growth against an
elastic obstacle with a force that depends linearly on MT
length. These three scenarios represent generic confinement
scenarios in living cells or geometries, which can be realized
experimentally in vitro. For all three scenarios, we are able
to quantify the MT length distributions. In scenario (iii) of
an elastic obstacle, stochastic MT growth also gives rise to a
stochastic force. For this model, we also quantify the average
polymerization force generated by the MT in the presence of
the dynamic instability.

The parameter λ, see (4) and (26), governs the MT length
distributions in confinement by fixed rigid walls and under a
constant force. For confinement by rigid walls, we introduced
a realistic model for wall-induced catastrophes. There is
a transition from exponentially increasing to exponentially
decreasing length distributions if λ changes sign. The average
MT length is increasing for increasing on-rate and increasing
rescue rate, as shown in Fig. 2. Wall-induced catastrophes lead
to an overall increase in the average catastrophe frequency,
which we quantify within the model.

For MT growth under a constant force, there exists a
transition between bounded and unbounded growth as in
the absence of force. This transition takes place where the
parameter λ(f ) changes sign. Under force, the transition to
unbounded growth is shifted to higher on-rates or higher rescue
rates and determines a critical force fc; see Fig. 4.

MT growth under a MT length-dependent linear elastic
force allows for regulation of the generated polymerization
force by experimentally accessible parameters such as the
on-rate or the rescue rate. The force is no longer fixed but
a stochastically fluctuating quantity because the MT length is
a stochastic quantity. For zero rescue rate, i.e., in the absence of
rescue events, we find that the average maximal polymerization
force 〈fmax〉 before a catastrophe depends logarithmically
on the tubulin concentration and is always smaller than the
stall force in the absence of dynamic instability, as shown in
Fig. 5.

For a nonzero rescue rate, we find a steady-state length
distribution, which becomes increasingly sharply peaked for
increasing rescue rate and is tightly controlled by microtubule
growth parameters; see Fig. 6. Interestingly, the average
microtubule length self-organizes such that the average steady-
state polymerization force 〈f 〉 equals the critical force for
the boundary of bounded and unbounded growth, 〈f 〉 = fc.
Because of the sharply peaked MT length distribution, the
average polymerization force 〈f 〉 can be calculated rather
accurately within a mean field approach, as can be seen in
Figs. 7 and 8. The average polymerization force is always
smaller than the stall force in the absence of dynamic
instability.

Within this mean field approach, we can also describe the
dynamics of the average force; see Fig. 9. This might be
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useful in modeling dilution experiments, where the response
to sudden changes in the on-rate is probed. For this type
of experiment, we estimate typical polymerization force
relaxation times.

Finally, we show that our findings are robust against
changes of the catastrophe model (Fig. 12) as long as the
catastrophe rate increases exponentially above a characteristic
force, and that results are also robust against variations of

the relation between force and polymerization velocity in the
growing phase (Fig. 13), which are obtained by introducing a
load distribution factor.
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