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Instead of Entanglement in the Polarization of the light, it is also possible to entangle photons in time

For this, the time is sectioned in consecutive time-bins |ti⟩ of width tB, spaced by a time T .

This features several advantages for fibre-based communication:

• fibres do not need to be
polarization-maintaining, existing infracstructure
could be used

• vibrations or temperature fluctuations that lead
to dephasing of the polarization do not matter

• however, precise synchronization is necessary
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⇒ How can time-bin entangled photons be created
and how can we theoretically describe them?

Introduction

Several schemes exist for creating time-bin entangled photon pairs, including spontaneous four-wave
mixing in fibres, or spontaneous parametric down-conversion to create the photon pairs.
However, these approaches can not create time-bin entangled photons on-demand

In general, two time bins are of interest, which are labelled early (E) and late (E). The desired
entangled two-photon state is

|ψ⟩ = 1√
2
(|EE⟩ + |LL⟩) .

In this state, the photon pair is either present in the early or the late time-bin, but never distributed
about both.

Here, we want to focus on the creation of photon pairs using a semiconductor quantum dot (QD)
as a photon pair source.

• QD can be modelled as a six-level system

• features two bright excitons X, Y , biexciton
state B and two dark excitons DX , DY

• bright excitons are controlled using pulsed
lasers

• photon pairs are created in the
biexciton-exciton cascaded emission

• spin-selection rules suppress optical
transitions to dark states

• dark states can be coupled with a
magnetic field
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Using this system, time-bin entangled photons can be created using different approaches.

Systems for generating timebin-entangled photons

• In this scheme, time-bin entangled photon pairs are created using two consecutive two-photon
excitation processes with a low preparation fidelity Nat Commun 5, 4251 (2014)

• The low preparation fidelity is necessary, as the probability to re-excite the quantum dot, leading to
four photons in total, needs to be as low as possible.
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• the input laser pulse is split, one of the parts is delayed by the time-bin separation T

• early and late pulse both excite the quantum dot, leading to photon pair generation

• if a single pulse excites |B⟩ with probability p1, the chance to get four photons is p21
⇒ for p1 = 10%, p21 = 1% and the probability for the desired two-photon state is 2p1(1− p1) = 18%

• simple to use excitation protocol

• in most of the cases, no photon is emitted

→ on-demand generation not possible!
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Probabilistic approach

• Time-bin entangled photon pairs can be produced relying on the metastable dark states in quantum
dots. Applying a tilted magnetic field of Bx ∼ 3T leads so sufficient brightening of these states

• The scheme is a multi-step process starting in the dark state:
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2
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Phys. Rev. Lett. 94, 030502 (2005)

• First, the population is transferred to the dark state using for example chirped excitation

• next, a superposition of equal parts |D⟩ and |B⟩ has to be prepared

• the time-bin separation T is chosen such that the biexciton decays completely

• the rest of the population stored in |D⟩ is transferred to |B⟩

• experimentally more challenging

• using the dark state ensures emission of
exactly one photon pair

→ on-demand generation! t1 t2 t3
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Using the dark exciton

• For the calculation of the photon density matrix, we simulate multi-time correlation functions of the
transition operators σb,x, that correlate the events in different time-bins.

• σb = |X⟩ ⟨B| + |Y ⟩ ⟨B| (σx = |G⟩ ⟨X| + |G⟩ ⟨Y |) is the source of the electric field that corresponds
to the emission of a biexciton (exciton) photon.

• the operators depend on the time-bin early or late, i.e., σE
b/x

= σb/x(t), σ
L
b/x

= σb/x(t + T )

• with i, j, k, l ∈ E,L, the two-photon density matrix is calculated using

ρ
2p
ij,kl =

G
(2)
ij,kl

Tr
{
G
(2)
}

• special care has to be given to the time-ordering of the operators:

G
(2)
ij,kl =

∫ tB

0
dt1

∫ tB

0
dt2 ⟨T −

[
σ
i †
B (t1)σ

j †
X (t2)

]
T +

[
σlX(t2)σ

k
B(t1)

]
⟩

• T − orders the smallest time argument to the left, T + to the right

• For the case of two delayed two-photon ex-
citations, the concurrence and photon yield
is shown depending on the pulse area

• only for very small pulse areas, a good en-
tanglement can be achieved

• however, this goes in hand with a low pho-
ton yield

• for the deterministic scheme, the con-
currence is XX with a considerably
higher photon rate!

Theoretical description of the photon density matrix

• on-demand generation of time-bin entangled photon pairs is a challenging task, but if achieved, it
has many potential advantages over polarizaiton entanglement

• exciting the QD twice with a delay T can lead to time-bin entangled photons, however this is not
deterministic and features only a low efficiency

• using the dark exciton enables highly efficient, on-demand generation of time-bin entangled
photon pairs

Conclusions


