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1. Abstract

In 2008, Kamihara et al. [1] reported superconductivity in the iron based compound LaO1−xFxFeAs
with a relatively high critical temperature of Tc = 26 K. Soon, superconductivity was discovered in
other members of this family called iron pnictides with critical temperatures up to Tc = 55 K [2].
More than 20 years after the discovery of superconductivity in the copper oxides by Bednorz and
Müller [3], where the critical temperatures were quickly pushed up to Tc ∼ 150 K, these are the
highest critical temperatures in copper-free compounds reported so far. Recently, pressure-induced
superconductivity with Tc = 36.7 K has also been detected in the simple binary compound FeSe
[4], which belongs to the class of ferro-chalcogenides. Most of the superconducting compounds dis-
covered since the discovery of superconductivity in the copper oxides in 1986, for example the iron
based LaOFeP [5], exhibit critical temperatures which are located more in the range of those found
in conventional superconductors like mercury and lead.

Conventional superconductors are based on the formation of Cooper pairs, which is caused by an
effective attraction between the electrons due to electron-phonon coupling. This is described very
well by the famous Bardeen-Cooper-Schrieffer (BCS) theory proposed in 1957. For the copper-oxide-
based superconductors, the underlying microscopic mechanism is still unknown. Current research
activities concentrate mostly on the superconducting mechanism in the iron pnictides. Similar to the
situation in the copper-oxides, the superconducting mechanism in the iron pnictides is not mediated
via electron-phonon coupling [6].

The iron pnictides share similarities and dissimilarities with the copper-oxide based superconduc-
tors. Therein lies hope that iron pnictides lead to a deeper understanding of the microscopic mecha-
nisms at high temperatures, which are not restricted to certain classes of materials.

Certainly, one important key role in the copper oxide-based as well as in the iron-based superconduc-
tors is assigned to the magnetism in these compounds. An attractive interaction between the charge
carries might be induced by magnetic fluctuations. In the phase diagrams of both classes of materials,
the antiferromagnetic long-range ordered phase is located close to the superconducting phase. In the
iron pnictides, the superconducting and long-range ordered phase even overlap [7]. The long-range
order in the pnictides shows an collinear order unequal to the Néel order. In the square lattice formed
by the iron ions, the spins are aligned parallel in b-direction and antiparallel in a-direction.

In this thesis, we study the magnetic excitations in the three dimensional collinear phase for an frus-
trated Heisenberg model within self-consistent spin wave theory at zero temperature. The collinear
ordered spin pattern is the one relevant for the iron pnictides. The three dimensional character of
the magnetism in iron pnictides has recently been revealed by inelastic neutron scattering studies
[8, 9, 10]. In addition, we introduce a biquadratic exchange in the collinear ordered layers to in-
crease the anisotropy between the effective exchange constants perpendicular and parallel to the spin
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stripes. Therefore, the quantitative accuracy of the mean field approximation has to be checked and
compared with other methods. Finally, the model is fitted to experimental data of the iron pnictides
to check its applicability. This work is based on previous studies by Uhrig et al. [11]. With respect
to the results of Uhrig et al., we discuss the possibility that iron pnictides reside in the vicinity of a
quantum phase transition for our model in three dimensions and with biquadratic exchange. Our
studies are concluded by the discussion of the dynamical structure factor of our model, which gives
evidence how inelastic neutron scattering counting rates look for our model.

The basic technique is self-consistent spin wave theory, which leads to a renormalization of the ex-
change constants due to quantum fluctuations. Namely, the Dyson-Maleev and the Schwinger bosons
representation are applied to the extended Heisenberg model within an appropriate mean field ap-
proximation. The spin wave theory corresponds to an expansion in 1/S, which is known to give very
accurate results for S = 1. Then, the Hamiltonians can be diagonalized with standard techniques.
The set of self-consistency equations, which we obtain for the quantum correction parameters, has to
be solved numerically.

Outline

In Chapter 2, we briefly introduce the iron pnictides and some of their properties, which can be
captured by a localized model. The Heisenberg model and the basics of collective magnetism are
discussed. Furthermore, the biquadratic exchange, which leads to a strengthening of the anisotropy
of the effective exchange constants, is motivated. In addition, we briefly present other eligible ap-
proaches to explain the magnetism in the iron pnictides.

Chapter 3 gives an introduction in spin wave theory and the corresponding basic techniques. As an
example, the dynamical structure factor is evaluated within the Dyson-Maleev representation.

The relevant technique and the mean field decoupling for biquadratic exchange terms is discussed in
Chapter 4. The Dyson-Maleev as well as the Schwinger bosons representation are applied to the two
dimensional Néel phase with additional biquadratic exchange. By comparing our results to data from
other theoretical techniques, the Dyson-Maleev representation is identified as the best choice for our
purposes.

The three dimensional collinear phase is introduced and studied in Chapter 5. The numerics and the
general results for different interlayer couplings are discussed and presented. In addition, special
attention is paid to the critical point, where the collinear phase ceases to exist.

In Chapter 6, the biquadratic exchange between in-plane nearest neighbor sites, as introduced in
Chapter 4, is included to our model of the three dimensional collinear phase. The discussed results
show that the biquadratic exchange indeed helps to strengthen the anisotropy of the effective in-
plane exchange constants.

To prove the relevance of our model for the iron pnictides, it is fitted to two different scenarios in
Chapter 7. In detail, a merely theoretical scenario for the compounds BaFe2As2 and SrFe2As2 and

12



the experimental scenario for CaFe2As2 as determined from neutron scattering studies are discussed.
Both scenarios are compared and the closeness to a quantum phase transition is discussed. In ad-
dition, the scenario of CaFe2As2 is discussed under the influence of the biquadratic exchange from
Chapter 6. For a comparison with experimental data, constant-energy cuts are extracted from the
dynamical structure factor and compared with constant-energy cuts obtained from neutron scatter-
ing.

Finally, Chapter 8 summarizes the results and gives a possible outlook for future work.

Further calculations and details about the used notation and conventions can be found in the appen-
dices.
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2. Introduction

In this chapter, we introduce the iron pnictides and some of their properties. Based on experimental
and theoretical results, we motivate the localized approach for studying the magnetic excitations in
the iron pnictides. The Heisenberg model is introduced briefly and the basics of collective magnetism
are presented. Furthermore, a brief overview of the J1-J2 model and the collinear phase is given. In
addition, we discuss the origin of biquadratic exchange and its relevance for the iron pnictides. For
the sake of completeness, a short overview of alternative approaches for studying magnetism in the
iron pnictides is given.

2.1. Iron pnictides

Since the discovery of superconductivity upon doping of the iron-based compound LaOFeAs by
Kamihara et al. [1], it has emerged that there are basically two classes of iron pnictides with super-
conducting properties up to critical temperatures of Tc = 56 K [7].

The compound LaOFeAs belongs to the class of the 1111 pnictides, which are also known as oxyp-
nictides since they contain oxygen. In general, these are the compounds ReOFeAs where Re are rare
earth elements such as lanthanum (La) or gadolinium (Gd). Shortly after the discovery of supercon-
ductivity in LaOFeAs, superconductivity in BaFe2As2 was realized via hole doping by Rotter et al.
[12]. BaFe2As2 is a member of the second class of iron pnictides, namely the 122 pnictides which do
not contain oxygen. Superconductivity up to high temperatures can also be found in compounds
where the alkaline earth metal barium (Ba) is replaced by calcium (Ca) [13] or strontium (Sr) [14].

All compounds consist of negatively charged FeAs layers, which alternate with positively charged
layers depending on the corresponding parent compound. As an example, the schematic structures
of LaO1−xFxFeAs and BaFe2As2 are shown in Fig. 2.1. Thus, it is very likely that the two dimen-
sional physics of these layers plays an important role. The situation has similarities to the one of the
cuprates, but the exchange between the layers in the iron pnictides is much larger than in the cuprates
[15]. Consequently, the magnetism in the iron pnictides is rather of three than of two dimensional na-
ture. This will be confirmed by our results below.

In both classes, the system undergoes a structural and magnetic phase transition when it is cooled
down. At first, the in-plane lattice constants (a, b) become unequal and the crystal structure changes
from a tetragonal to an orthorhombic structure. Afterwards, a long-range antiferromagnetic order
sets in. In contrast to the 1111 pnictides [17, 18], both transitions happen at the same temperature
in the 122 compounds and cannot be distinguished [19, 20]. Typical Néel temperatures, where the
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(a) LaO1−xFxFeAs (Figure taken from Ref.
[16])

(b) BaFe2As2 (Figure taken from
Ref. [12])

Fig. 2.1.: Schematic crystal structure of doped La1−xFxFeAs and the parent compound BaFe2As2.

collinear order sets in, are located in the range of TN ∼ 100− 200 K. Above TN , the compounds are
paramagnetic.

The magnetic long-range order is a striped phase where the spins of the irons show an antiferromag-
netic order in a-direction and a ferromagnetic order in b-direction (see Fig. 2.2). Between the layers
(c-direction), the spins are also aligned antiparallel [9, 10]. Hence, the magnetic ordering vector of the
three dimensional phase reads Q = (1, 0, 1). For simplicity, the reciprocal lattice vectors are denoted
in units of π/(lattice constant) where the lattice constants are the lattice constants of the orthorhom-
bic/tetragonal lattice formed by the iron ions. The experimental results agree with theoretical band
structure calculations, which show that the striped phase is the most stable one [21, 22].

b

a

Fig. 2.2.: Schematical order of the spins of the irons in an FeAs layer.
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2.2. Why a strongly localized model?

The long-range ordered magnetic phase is located in the vicinity of the superconducting phase. Upon
doping the parent compounds, superconductivity emerges and the magnetic long-range order is sup-
pressed [23]. In the phase diagram in Fig. 2.3, even a coexistence of superconductivity and magnetic
long-range order can be observed [7].

Fig. 2.3.: Schematic phase diagram for the 122 pnictides (Figure taken from Ref. [7]).

As an example of doping, the oxygen ions in LaFeAsO are substituted with fluoride ions (F−), which
increases the concentration of electrons in the FeAs layer [1], see Fig. 2.1a. For optimal doping, the
critical temperature increases up to Tc ∼ 26 K. By additionally applying a static pressure of 4 GPa,
the critical temperature can be increased up to Tc ∼ 43 K [16]. In case of the 122 pnictides, super-
conductivity was first detected upon hole doping. By doping the Ba layer of BaFe2As2 with K+ ions,
Rotter et al. [12] determined a critical temperature Tc ∼ 38 K. Furthermore, it is possible to directly
dope the iron arsenide layers. Leithe-Jasper et al. [24] reported superconductivity up to Tc ∼ 20 K
under doping of the iron arsenide layer with electrons using cobalt. The 122 pnictides also show
pressure-induced superconductivity without any doping [25, 26].

2.2. Why a strongly localized model?

In contrast to the undoped parent compounds of the copper-oxides, which are insulators, the iron
pnictides can be regarded as bad metals [1]. Studies with localized as well with itinerant approaches
have both been successful. Hence, the strength of the effective Coulomb repulsion is still under de-
bate. In this section, we summarize experimental and theoretical arguments in favor and in disfavor
of a localized model and motivate our choice of an extended Heisenberg model.

In general, the interaction in the pnictides seems to be less important than in the copper oxides. The
success of density functional theory (DFT) underlines this argument. For the pnictides, the proper-
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ties of the ground state are described quite well by DFT [6, 22, 27], which speaks in favor of a less
important interaction. This is not the case for the stronger interacting copper oxides. [28]. In addition,
perturbative calculations based on diagrammatic techniques were successful [29]. A less important
Coulomb repulsion is also supported by X-ray data. Yang et al. [30] measured a value of U ≈ 2 eV,
which is moderate compared to the bandwidth W ≈ 4 eV.

However, there are also several successful calculations with a Coulomb repulsion of the order of the
bandwidth (U ≈ 2− 4 eV) [31, 32, 33]. Furthermore, the bandwidth of W ≈ 4 eV results from all
d-bands of the iron while the bandwidth of the individual d-bands is at most Wind ≈ 2.8 eV [34].
Thus, it is comparable or even smaller than the effective Coulomb repulsion. Another argument for
a localized model is the kinetic energy. Measurements of the optical conductivity by Qazilbash et
al. [35] showed that the kinetic energy of the electrons is reduced to half of the value obtained by
band structure calculations with nearly free electrons. A strong interaction is also stressed by angle-
resolved photoemission (ARPES) results [36]. While it was possible to explain the data for LaOFeP
with results from band structure calculations using the local density approximation (LDA), it failed
for LaOFeAs. For LaOFeP, the DFT data had to be renormalized by a factor of two. Even no qualitative
agreement was found for LaOFeAs. Consequently, the interactions are more important in the iron
pnictides based on arsenide than in those based on phosphorus. In addition, magnetic excitations are
detected with neutron scattering experiments [9, 10] up to energies as high as 200 meV. The observed
weak damping of the excitations is another argument in favor of a localized model.

A related question still under debate is the reduced size of the local magnetic moment. Neutron scat-
tering studies determined a reduced staggered magnetic moment of (0.31-0.41)µB for LaOFeAs [17],
(0.8-0.9)µB for the 122 pnictide BaFe2As2 [37], (0.90-0.98)µB for SrFe2As2 [20] and 0.8µB for CaFe2As2
[10, 15]. In contrast, theoretical band structure calculations determined much higher values, e.g. up
to 2.3µB for LaOFeAs [38].

It was suggested that the reduction of the local moment is due to a strong frustration within a local-
ized model [32], which drives the system in the vicinity of a quantum phase transition. Studies of the
two dimensional collinear ordered phase within self-consistent spin wave theory by Uhrig et al. [11]
confirmed this result. The situation with respect to the interlayer coupling is discussed in this thesis.
Strong frustration is also in agreement with LDA calculations which indicate that the ratio of the
exchange perpendicular to the spin stripes and the next nearest neighbor exchange follows the trend
of J1a/J2 ∼ 2 [34], which is also in agreement with recent neutron scattering studies [10]. Because the
exchange between nearest and next nearest neighbor ions is mediated via the arsenic ions, they are
both estimated to be of similar magnitude.

However, the local magnetic moment depends on many parameters, especially on the local electronic
situation. In band structure calculations, the magnetic moment is extremely sensitive to the position
of the arsenic ions.

All in all, there are many arguments pointing towards a localized model for studying the magnetic
excitations in the iron pnictides. But we have to keep in mind that an itinerant approach is also
justified.
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2.3. The Heisenberg model

2.3. The Heisenberg model

Based on the summary of the last section, it is certainly justified, though not undisputed, to consult a
localized model for studying the magnetic excitations in the iron pnictides.

A simple, but very successful model for studying the kinetic and interacting properties of electrons
on a crystal lattice is the Hubbard model [39, 40, 41]

H = −t ∑
〈i,j〉,σ

(
c†

i,σcj,σ + h. c.
)

+ U ∑
i

c†
i,↑ci,↑c

†
i,↓ci,↓ − µ ∑

i,σ
c†

i,σci,σ , (2.1)

where the fermionic operators c†
i,σ, ci,σ create (annihilate) an electron with spin σ ∈ {↑, ↓}. The pa-

rameter t is the hopping integral, U > 0 the Coulomb repulsion and µ the chemical potential. For
simplicity, the sums have already been restricted to nearest neighbor sites (N.N.) on a lattice with
arbitrary dimension, which is indicated by the brackets 〈i, j〉.

In case of very strong repulsion U → ∞ and at half filling, it is generally acknowledged that the
Hubbard model is mapped to the antiferromagnetic Heisenberg model in second order perturbation
theory in the hopping t

H = J ∑
i,j

Si · Sj, (2.2)

where Si,j are the spin vector operators and J > 0 the exchange constant, which is related to the
parameters of the Hubbard model via J = 4t2/U. The Hamiltonian (2.2) is SU(2) symmetric. In
general, the eigenvalue S of the spin operators in (2.2) can adopt any value S = 0, 1/2, 1, 3/2, . . ..

For the iron pnictides, the possible values of the spin are S = 0, 1, 2 because Fe2+ has got an even
number of electrons in its outer shell. According to Hund’s rules, the maximum spin S = 2 should
be realized. But this would result in a too strong local moment for the iron pnictides. For S = 0, the
local moment is too small compared to the measured moment. Hence, S = 1 is an appropriate choice
for the iron pnictides [11].

In addition, it has already been shown by Reischl et al. [42] that the two dimensional Hubbard model
in the vicinity of half filling can be mapped on generalized t-J models when the interaction is compa-
rable to the bandwidth or larger. Therewith, the charge degrees of freedom are included, which lies
beyond this thesis.

In the antiferromagnetic Heisenberg model, the classical ground state at T = 0 is the so called Néel
order, where the lattice separates into two bipartite sublattices A and B. Two spins on different sub-
lattices are orientated antiparallel. Within one sublattice, all spins are aligned parallel, which is in-
dicated by the same color in Fig. 2.4a. An interaction only exists between spins on two different
sublattices, not within one sublattice. The classical ground state in Fig. 2.4a is not a true eigenstate of
the Hamiltonian (2.2) because of quantum mechanical zero-point fluctuations.

For J < 0, all spins are aligned parallel at T = 0 and the Hamiltonian (2.2) describes the ferromagnetic
Heisenberg model (Fig. 2.4b). For a ferromagnet, the classical ground state is identical to the quantum
mechanical ground state.
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(a) Antiferromagnetic: J > 0 (Néel order). (b) Ferromagnetic: J < 0.

Fig. 2.4.: Classical ground states of the Heisenberg model.

2.4. Collective magnetism

2.4.1. Spontaneous symmetry breaking

We add an external ordering magnetic field h > 0 along the z-direction to the Hamiltonian (2.2)

H
(
h
)

= H − hSz
k, (2.3)

where Sz
k is the Fourier transform of the spin operator in momentum space according to A.2a and k

the wave vector. For convenience, vectors in real and momentum space are not branded with arrows
or printed in bold. Under the influence of the magnetic field, the spins are aligned along the field
which is characterized by the magnetization per site

mk
(
h
)

=
1

NZ
Tr
(

e−βH Sz
k

)
. (2.4)

N is the number of lattice sites, β = 1/T the inverse temperature and Z the canonical partition
function. In general, units are used in this thesis where h̄ = kb = 1.

The system experiences a spontaneous symmetry breaking if

lim
h→0+

lim
N→∞

mk
(
h, N, T

)
6= 0, (2.5)

which implies a finite magnetization in the thermodynamic limit of the system in the limit of the
vanishing ordering field h. Singularities can only be observed in the thermodynamic limit, so the
order of the limits in (2.5) is crucial.
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2.4. Collective magnetism

Consequently, the system has less symmetry than the studied Hamiltonian itself. For the Heisen-
berg model (2.2), a preferred orientation of the spins exists which breaks the rotational symmetry.
The non-vanishing magnetization in the limit of h → 0+ is called spontaneous magnetization. In an
antiferromagnet, the spontaneous magnetization alternates from site to site, but its absolute value is
identical in both sublattices. In contrast to the ferromagnet, this so called spontaneous staggered mag-
netization is always smaller than S because of quantum mechanical zero-point fluctuations. These
quantum mechanical fluctuations are discussed in this thesis. At finite temperatures, the magnetiza-
tion is additionally reduced by thermal fluctuations.

Without an ordering field, spontaneous broken symmetry is characterized by the two point corre-
lation function (spin-spin correlation), which implies true long-range order when the symmetry is
broken.

2.4.2. Mermin and Wagner’s theorem

Mermin and Wagner’s theorem [43] specifies the conditions under which a spontaneously symmetry
breaking can be excluded.

We consider the quantum Heisenberg model

H =
1
2 ∑

i,j
Jij Si · Sj − hSz

k, (2.6)

where the interaction is of short-range so that

J̄ =
1

2N ∑
i,j
|Jij||ri − rj|2 < ∞. (2.7)

Then there is no spontaneously broken symmetry at finite temperatures in one and two dimen-
sions.

The proof can be found in Mermin and Wagner’s letter [43]. Furthermore, it can be extended to
other models which show a continuous symmetry. The theorem does not make any statement at zero
temperature in one and two dimensions. In fact, one finds that there is no long range order in the
antiferromagnetic Heisenberg chain at T = 0. In contrast, the ground state of the two dimensional
system has long range order at zero temperature [44].

For finite temperatures, three is the lowest dimension where a spontaneous broken symmetry can
be expected. The broken symmetry persists up to a critical temperature Tcrit, where the magnetic
ordering vanishes due to thermal fluctuations. For an antiferromagnet, this temperature is called Néel
temperature TN , while it is called Curie temperature TC for a ferromagnet. At the critical temperature,
the systems undergo a phase transition to a paramagnet.

However, the restrictions of Mermin and Wagner’s theorem do not affect our studies, since we study
two and three dimensional systems at zero temperature.
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2.4.3. Goldstone’s theorem

A consequence of the spontaneously broken symmetry of a Hamiltonian with short-range interaction
are bosonic excitations without energy gap, which are the famous Goldstone modes. For example,
acoustic phonons are the Goldstone bosons for a broken translational symmetry of the lattice. For the
Heisenberg model (2.2), the rotational spin symmetry is broken and the corresponding Goldstone
modes are spin waves or magnons.

Goldstone’s theorem was originally formulated for relativistic field theories, where the excitations
are massless. The non-relativistic version of Goldstone’s theorem was proven by Lange [45].

Outgoing from Mermin and Wagner’s theorem, we study a Hamiltonian

H =
1
2 ∑

i,j
Jij Si · Sj, (2.8)

with short-range interaction

J̄ =
1

2N ∑
i,j
|Jij| |ri − rj|2 < ∞. (2.9)

When the equal-time correlation function

S
(
k
)

=
1
N

〈
Sz

kSz
−k

〉
(2.10)

diverges at a wave vector Q

lim
k→Q

S
(
k
)
→ ∞, (2.11)

there exists a Goldstone mode with wave vector k and its excitation energy becomes gapless at Q:

lim
k→Q

E
(
k
)

= 0. (2.12)

Of great importance is the corrolary, which states that in case of spontaneously broken symmetry
Goldstone modes exist. The converse of the theorem is not true, e.g. there are systems with gapless
excitations which do not have a spontaneously broken symmetry.

Different from the ferromagnet, the antiferromagnet has two gapless modes which are located at
Q = (0, 0, . . .) and Q = (1, 1, . . .). The latter one is the magnetic ordering vector of the Néel phase.
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2.4. Collective magnetism

2.4.4. Spin waves

As mentioned before, spin waves or magnons are the Goldstone bosons of the Heisenberg model.
This insert gives an idea how a magnon can be interpreted. For simplicity, we now restrict ourselves
to the case of the ferromagnet. We also do not distinguish between spin wave and magnons. Both
terms could be distinguish by identifying the magnon as the quantized spin wave.

A single magnon state, characterized by its momentum k, is a superposition of all possible states
where the quantum number of Sz

i acting on lattice site i is reduced by one. For S = 1/2, the spin
is flipped (Fig. 2.5). In total, this leads to a total spin deviation of one for the complete lattice with
N sites. Thus, the average spin deviation from S at each site is 1/N. This can be interpreted as a
collective excitation where the spin deviation of one is distributed over the whole lattice.

In a semi-classical model (Fig. 2.6), the spins are interpreted as vectors precessing around the z-
axis. Their projection onto the z-axis is S − 1/N. The phase shift from site to site is defined by the
momentum k = 2π/λ. Hence, they define a wave.

In an antiferromagnet, the spins on different sublattices precess in opposite directions.

(a) S = 1/2

(b) S > 1/2

Fig. 2.5.: Ferromagnetic states with one excitation.

Fig. 2.6.: Semi-classical picture of a spin wave (Figure taken from Ref. [46]).
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2.5. Frustration

A frustration of spins with an antiferromagnetic coupling can be induced in different ways. On the
one hand, it might be caused by the lattice topology, for example on the triangular lattice (Fig. 2.7a).
If two spins are perfectly aligned antiparallel, the third one is frustrated because it is not possible for
the spin to align itself antiferromagnetically to both other spins at the same time. Consequently, the
classical ground state energy cannot be optimally minimized.

On the other hand, additional exchange constants can be introduced. For our purposes, we intro-
duce a next nearest neighbor coupling between the iron spins on the square lattice (Fig. 2.7b). The
Hamiltonian then reads

H = J1 ∑
〈i,j〉

Si · Sj + J2 ∑
〈〈i,j〉〉

Si · Sj, (2.13)

where J1,2 > 0 are the exchange constants and the newly introduced double brackets 〈〈i, j〉〉 indicate a
summation over all next nearest neighbor (N.N.N.) sites. For J2 < 0, no frustration is present. Hence,
frustration always depends on the lattice topology and the signs of the couplings.

?

(a) Triangular lattice.

?

J2

J1

(b) Square lattice.

Fig. 2.7.: Frustrated spins with antiferromagnetic couplings J1,2 > 0.

2.6. The J1-J2 Heisenberg model & the collinear phase

The J1-J2 Heisenberg model (2.13) and its ground states have been of general interest in research. The
ground state of the simple Heisenberg model with J2 = 0 on the square lattice is the Néel order which
is reduced by quantum fluctuations (classical ground state see Fig. 2.4a). For J2 6= 0, the ground state
depends on the ratio J2/J1 of the couplings. With increasing J2/J1, the Néel phase is destabilized. It
persists up to a critical value where the system becomes unstable and undergoes a phase transition
to a quantum disordered state. The intermediate phase is stable in the range of 0.4 . J2/J1 . 0.6 and
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2.7. Biquadratic exchange

is dominated by short-range singlet (dimer) formation [47, 48]. For J2/J1 > 0.6, the spins arrange in
a collinear pattern (see Fig. 2.2). In the classical limit S → ∞, the transition between the Néel and
collinear order occurs at J2/J1 = 0.5.

Singh et al. [49] studied the excitation spectra of the collinear phase with series expansion and mean
field spin wave theory. They calculated the spin wave velocities which depend heavily on the cou-
pling ratio J2/J1. Gapless excitations were only found at k = (0, 0) and k = (1, 0), while the modes
at k = (0, 1) and k = (1, 1) are gapped because of the order by disorder effect. In contrast to Mermin
and Wagner’s theorem, it was proposed by Chandra et al. [50] that the spontaneously broken sym-
metry can survive up to finite temperatures in two dimensions. No evidence for a phase transition at
finite temperatures was found by Sing et al., insted they proposed a scenario for a zero temperature
transition based on quantum fluctuations. However, later studies by Capriotti et al. [51] reported an
Ising-type phase transition at finite temperatures for every value of the spin when the system is in
the collinear phase.

Furthermore, Shannon et al. [52] studied the J1-J2 Heisenberg model with competing ferromagnetic
and antiferromagnetic exchange. They reported an additional instability at J1 ≈ −2J2, where the
system undergoes a phase transition from the collinear ordered state to a ferromagnetic state.

For the application to iron pnictides, the spin wave excitations in the collinear phase have been stud-
ied in two dimensions by Yao and Carlson [53]. Their analysis does not include the effect of quantum
fluctuations. Thus, they also find gapless excitations at the conventional Néel magnetic ordering vec-
tor Q = (1, 1) and at Q = (0, 1). In their second paper [54], they studied the magnetic excitations in
the three dimensional collinear phase with ab-initio anisotropic in-plane exchange constants J1a and
J1b.

The spin wave spectra of the two dimensional J1a-J1b-J2 model were also studied with series expan-
sion techniques [55] by Applegate et al. [56].

Attempts with spin wave approximation and in part with exact diagonalization methods for the J1a-
J1b-J2 model were recently made by Schmidt et al. [57]. According to their results, a strong reduction
of the local moment due to quantum fluctuations can be excluded.

2.7. Biquadratic exchange

In this section, we discuss the evidence for an additional biquadratic exchange in the Heisenberg
model (2.2) for S ≥ 1, which reads

Hbq = −Jbq ∑
〈i,j〉

(
Si · Sj

)2
(2.14)

with Jbq > 0. Together with the usual bilinear terms, the biquadratic term induces an anisotropy in
the effective exchange constants between ferromagnetic and antiferromagnetic ordered spins.
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2.7.1. Anisotropy

In Section 2.1, it has already been mentioned that the iron pnictides undergo a structural phase tran-
sition to an orthorhombic structure, which means that the lattice constants a and b of the collinear
ordered layers (see Fig. 2.2) become inequivalent. The orthorhombic distortion is less than 1% [9, 37].
In contrast, a large anistropy between the exchange constants parallel and perpendicular to the spin
stripes is required to fit a frustrated Heisenberg model to spin wave dispersions measured by inelastic
neutron scattering (INS) [9, 10]. The exchange perpendicular to the spin stripes J1a is much stronger
than the exchange parallel to stripes J1b, which can even be negative [10]. Due to the very small lat-
tice distortion, a significant deviation in the in-plane nearest neighbor exchange constants parallel
and perpendicular to the spin stripes is rather unlikely and an ab-initio introduction of anisotropic
exchange constants cannot be justified.

Thus, the anisotropy has to be caused by other mechanisms. One plausible origin is a biquadratic
exchange between nearest neighbor sites. Consistently, the biquadratic exchange also has to be intro-
duced between next nearest neighbor sites because there is no reason why it should not be important
for the interaction between next nearest neighbors when it is important for the interaction between
nearest neighbors. However, we only discuss the biquadratic exchange between nearest neighbor
sites in this thesis.

2.7.2. DFT results

Evidence for biquadratic exchange has already appeared in self-consistent LSDA (local spin-density
approximation) calculations by Yaresko et al. [22]. They obtained DFT results for the energy depen-
dence on the angle between the magnetic moments of nearest neighbor ions. The results for BaFe2As2
and LaOFeAs are are shown in Fig. 2.8. The angle α is measured relatively between the moments of
the ions. The dependence of E(α) = A · sin2 α on α is a typical fingerprint of a biquadratic terms. A
term ∼ sin2 α does not appear in the frustrated J1-J2 Heisenberg model. The classical energy per spin
in dependence of the angle α for a biquadratic exchange term (2.14) reads

E (α) = 2Jbq sin2 α, (2.15)

which is simply derived by treating the spins as classical vectors. Thereby, appropriate values for the
biquadratic exchange are determined by the maximum E(α = 90◦) in Fig. 2.8. The obtained values
are

Jbq = 21.5 meV for LaOFeAs,

Jbq = 10.1 meV for BaFe2As2.

Yaresko et al. also performed spin spiral calculations. The magnetic moment in the a-b-plane rotates
upon a lattice translation t by an angle

ϕ (t) = π k · t. (2.16)
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Fig. 2.8.: Dependence of the energy on the relative angle α between the magnetic moments of nearest
neighbor ions. The data was provided by A.N. Yaresko [58].

In this section, vectors are printed in bold for clarity. Their DFT results of the total energy show
that the collinear ordered phase k = (ka, kb) = (1, 0) is the global minimum of the total energy. By
applying the definition of spin spirals to classical vectors, the classical energy per spin as a function
of the wave vector k = (ka, kb) for the J1-J2 Heisenberg model (2.13) can be derived as

E
(
k
)

= J1
(
cos ka + cos kb

)
+ 2J2 cos ka cos kb − E (0) . (2.17)

In Fig. 2.9, the total energy calculated by Yaresko et al. is shown along with fits to (2.17). The J1-J2
Heisenberg model describes the main aspects of the total energy quite well, but it cannot catch all
details.

Fits of the classical energy of the J1-J2 Heisenberg model (2.13) with an additional biquadratic ex-
change (2.14)

E
(
k
)

= J1
(
cos ka + cos kb

)
+ 2J2 cos ka cos kb − Jbq(cos2 ka + cos2 kb)− E (0) (2.18)

to the total energy appeared to be insufficient because the shape of the total energy can only be
reproduced properly for Jbq ∼ −1 meV, which is too small compared to Fig. 2.8. In addition, the
results are very ambiguous and depend strongly on the choice of the initial values of the exchange
constants because as many as four fitting parameters are required. Two examples are presented in
Fig. 2.10.

However, by combining the results of the total energy (Fig. 2.9) and the angle dependence (Fig. 2.8)
we see that biquadratic exchange seems to be important. According to our analysis, we obtain a ratio
of Jbq/J1 ≈ 0.5 which shows that the biquadratic exchange is of significant size. A strong biquadratic
exchange for the iron chalcogenide FeSe was recently reported by Pulikkotil et al. [59]. According to
their results, a similar behavior was also found for other pnictides.
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Fig. 2.9.: Total energy as a function of the wave vector obtained from spin spiral calculations and fits
to the classical J1-J2 Heisenberg model. The total energies were provided by A.N. Yaresko [58].
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(a) The determined value of Jbq is too small compared to Fig. 2.8.

-100

-50

 0

Γ(0,0) X(1,0) M(1,1) Γ(0,0)

E
(k

)-
E

(0
) 

[m
eV

]

Fitted parameters:
J1 = 21.3501 meV
J2 = 21.486 meV
Jbq = 10.1 meV
E(0) = 8.59314 meV J1-J2-Jbq fit

total energy

(b) Fit with fixed value of Jbq = 10.1 meV taken from the calculation of the angle dependence
(see Fig. 2.8). The obtained fit does not reproduce the total energy in all details.

Fig. 2.10.: Total energy as a function of the wave vector obtained from spin spiral calculations for
BaFe2As2 and fits to the classical J1-J2-Jbq Heisenberg model. The obtained exchange constants
depend strongly on the initial values. The standard deviation of J1, J2 and E0 is ∼ 1011-1013. The
total energies were provided by A.N. Yaresko [58].
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2. Introduction

2.7.3. Many-electron exchange

The electronic situation in the iron pnictides is very complex as up to five bands are important
[27, 38, 22]. At least, two band models are necessary [60]. Hence, one is actually confronted with
a many-electron exchange than with a single-electron exchange. For a many-electron exchange be-
tween nearest neighbor sites with N > 1 electrons in an unfilled atomic shell, it has already been
shown that it leads to an Hamiltonian with bilinear and biquadratic exchange of similar magnitude
[61].

2.8. Alternative approaches

The discovery of the high-temperature superconducting iron pnictides has lead to an enormous re-
search activity in theoretical and experimental physics.

During our justification of a localized model in Section 2.2 it was clear that also an itinerant approach
is supported by experimental results. Thus, the nature of the magnetism in the iron pnictides is not
completely clarified by now.

In stark contrast to our localized starting point, the magnetism can be caused by the itinerant band
electrons. The situation can be described by an extended multi-band Hubbard model with at least
two bands. In this scenario, the interaction between the electrons is small compared to the band-
width and only the electrons close to the Fermi surface are important. Hence, the interaction can be
treated as a small perturbation and diagrammatic techniques can be applied. In the limit of weak
interaction, a nesting of the Fermi surface leads to a spin-density wave (SDW) instability from which
the magnetism originates [29, 62, 63, 64, 65].

Furthermore, the success of localized as well as itinerant approaches may point towards a combina-
tion of both approaches, which was shown recently by Lv et al. [66]. They studied a model where
the local moments are described by a strongly frustrated Heisenberg model. In addition, the itinerant
electrons of the degenerate dxz and dyz bands are included. The local moments and itinerant electrons
are coupled by a ferromagnetic Hund’s coupling. Under the influence of super- and double-exchange
via the As+ ions, the calculated spin wave dispersion is fitted to an effective Heisenberg model with
effective exchange constants parallel and perpendicular to the spin stripes which show a very strong
anisotropy. It is even possible to obtain a ferromagnetic exchange parallel to the stripes. Therewith,
they are able to reproduce the spin wave dispersion measured by Zhao et al. [10].
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3. Spin wave theory

Our main objective is to diagonalize Hamiltonians based on the Heisenberg model (2.2) to obtain
the spin wave dispersion. Since spin waves or magnons are bosonic excitations, it is self-evident to
replace the spin operators by expressions of bosonic operators.

Therefore, the spin operators Sx and Sy are written in terms of spin ladder operators

S+
i = Sx

i + iSy
i (3.1a)

S−i = Sx
i − iSy

i . (3.1b)

Consequently, the Hamiltonian (2.2) is given by

H = J ∑
〈i,j〉

[
Sz

i Sz
j +

1
2

(
S+

i S−j + S+
j S−i

)]
. (3.2)

If there is an antiferromagnetic coupling between the spins on nearest neighbor sites, the lattice sep-
arates into two bipartite sublattices A and B and it is convenient to rotate all spins on sublattice B by
an angle of π about the x-axis. Then we have ∀ i ∈ B

S+
i → S−i (3.3a)

S−i → S+
i (3.3b)

Sz
i → −Sz

i (3.3c)

and the Hamiltonian for the antiferromagnet reads

H = J ∑
〈i,j〉

[
−Sz

i Sz
j +

1
2

(
S+

i S+
j + S−j S−i

)]
. (3.4)

The replacement of the spin ladder operators can be realized by many different representations. The
next section introduces three of them.

In addition, a general expression for the dynamical structure factor is derived, which is evaluated
afterwards within the Dyson-Maleev representation for the collinear ordered phase. The decision for
this representation is based on an anticipated result from Chapter 4. There, we apply both, the Dyson-
Maleev and Schwinger bosons representation to the antiferromagnetic Heisenberg model with bi-
quadratic exchange and compare our results with results from numerical calculations.



3. Spin wave theory

3.1. Spin representations

3.1.1. Holstein-Primakoff bosons

This widely acclaimed spin representation was introduced by Holstein and Primakoff in 1940 [67].
Originating from the symmetry broken phase, the components of the spin operator are expressed in
terms of bosonic creation and annihilation operators b†

i and bi,

S+
i =

√
2S− n̂i bi (3.5a)

S−i = b†
i

√
2S− n̂i (3.5b)

Sz
i = S− n̂i , (3.5c)

where n̂i = b†
i bi is the occupation number operator on site i. It describes the deviation of the spin

from its maximum value.

The operators conserve the spin commutation relations[
Sα, Sβ

]
= i ∑

γ

εαβγSγ, (3.6)

where εαβγ is the totally antisymmetric tensor. Although the bosonic Hilbert space is actually infinite,
the operators are constructed in a way that the physical subspace is never left. It contains 2S + 1 states
with the bosonic occupation numbers 0, 1, . . . , 2S.

To obtain a Hamiltonian which only consists of terms with one, two, . . . particle operators, the square
roots in (3.5) have to be expanded in powers of 1/S. This corresponds to an expansion in the semiclas-
sical limit S → ∞. Keeping the terms of O(S2) and O(S) of the complete Hamiltonian, the Hamil-
tonian only contains constant terms and quadratic terms of bosonic operators. Consequently, the
interaction between magnons is neglected. This method is called linear spin wave theory. The interac-
tion between magnons first appears inO(1) of the Hamiltonian, which corresponds toO(1/S) in the
expansion of the square root. Terms of this order and higher can be treated by a mean field approx-
imation. Then, physical quantities such as the staggered magnetization or the spin wave velocities
are renormalized due to fluctuations.

Holstein-Primakoff bosons are not going to be further investigated in this thesis. They are mentioned
because of their widely acceptance and application. Furthermore, the dispersions used by experi-
mentalists are usually derived from linear spin wave theory.

3.1.2. Dyson-Maleev representation

In the Holstein-Primakoff representation, the necessary expansion of the square root is the main
obstacle. This is not the case in the following representation, which was introduced by Dyson [68, 69]
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3.1. Spin representations

and Maleev [70]. The expression of the spin operators in terms of bosonic operators here reads

S+
i = b†

i

(
2S− n̂i

)
(3.7a)

S−i = bi (3.7b)

Sz
i = −S + n̂i . (3.7c)

Note that the operators S+ and S− are no longer manifest Hermitian conjugates in this spin repre-
sentation, which may invoke unphysical results. As in the case of the Holstein-Primakoff bosons, the
disadvantageous origin in the symmetry broken phase still persists. However, for the simple Heisen-
berg model (2.2) one only receives terms which are quadratic and quartic in the bosonic operators.
The latter one can easily be treated within a mean field approximation, which consequently leads to
a renormalized or self-consistent spin wave theory.

For an antiferromagnet with two bipartite lattices, the representation on sublattice B reads

S+
i = b†

i (3.8a)

S−i =
(

2S− n̂i

)
bi (3.8b)

Sz
i = −S + n̂i , (3.8c)

after a π-rotation of the spins around the x-axis.

In addition, it is possible to regard diagrams of higher orders. For example, the ground state energy of
the Heisenberg antiferromagnet has been calculated in fourth order by Weihong and Hamer [71].

3.1.3. Schwinger bosons

In this representation, there are two Schwinger bosons a and b at each lattice site. Therewith, the spin
operators can be expressed as

S+
i = a†

i bi (3.9a)

S−i = b†
i ai (3.9b)

Sz
i =

1
2

(
a†

i ai + b†
i bi

)
. (3.9c)

The constraint

a†
i ai + b†

i bi = 2S (3.10)

guarantees that the physical subspace is never left. It is illustrated in Fig. 3.1. Consequently, the
Schwinger bosons of type a stand for positive eigenvalues of Sz, whereas the bosons of type b stand
for negative eigenvalues. The ladder operators also satisfy the commutator relation (3.6).
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3. Spin wave theory

In case of the Heisenberg model (2.2), one only obtains quartic terms of bosonic operators. Within a
mean field theory, they yield two independent excitations per lattice site. In contrast to the represen-
tations mentioned before, the Schwinger bosons do not single out a specific spin direction. So they
can also be used to describe the symmetric phases, which is a clear advantage.

Furthermore, the representation can easily be extended up toN boson flavors. The mean field theory
is then derived as an expansion in 1/N [44].

Fig. 3.1.: Illustration of Schwinger bosons and the constraint of SU(2) (Figure taken from Ref. [72]).

3.2. Dynamical structure factor

The most important experimental method for investigating spin waves is inelastic neutron scatter-
ing. Consequently, it is very useful to compare the measured scattering intensities with theoretical
predictions. The neutron cross section is proportional to the dynamical structure factor Sαβ

T (k, ω) [73],
which can be calculated within our theory.

In this section, we derive a general expression for the dynamical structure factor. Its inelastic part is
then evaluated within the Dyson-Maleev formalism for a lattice, which decomposes into two bipartite
sublattices A and B. In the upcoming chapter 4, it is proven that the Dyson-Maleev representation
works best for our purposes.
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3.2. Dynamical structure factor

3.2.1. General expression

At first, we start with the retarded dynamical susceptibility [73, 74]

χ
αβ
T
(
k, ω

)
= i

∞∫
−∞

dt eiωt ∑
r,r0

e−ik(r−r0)
〈[

Sα
r (t) , Sβ

r0 (t = 0)
]〉

Θ (t) , (3.11)

which is connected to the dynamical structure factor Sαβ
T (k, ω) via the relation

Sαβ
T
(
k, ω

)
=

1
1− e−βω

Im χ
αβ
T
(
k, ω

)
. (3.12)

The indices of the spin operators are α, β ∈ {x, y, z} and Θ(t) is the Heaviside function. For simplifi-
cation, it has already been taken into account that the Hamiltonian is translational invariant and time
independent.

The expectation value 〈. . .〉 is given by the trace

〈. . .〉 :=
1
Z

Tr
(

e−βH . . .
)

=
1
Z ∑

n
〈n| e−βH . . . |n〉

=
1
Z ∑

n
e−βEn 〈n | . . . | n〉 , (3.13)

which is taken over the eigenbase of the Hamiltonian with H |n〉 = En |n〉. Z := Tr(e−βH) is the
partition function of the system.

Because the Hamiltonian is time independent, the time evolution of Sα
r (t) in the Heisenberg picture

reads

Sα
r (t) = eiHt Sα

r e−iHt . (3.14)
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3. Spin wave theory

All together, the susceptibility reads as follows

χ
αβ
T
(
k, ω

)
= i

∞∫
0

dt eiωt ∑
r,r0

e−ik(r−r0) 1
Z ∑

n
e−βEn

·
[
〈n| eiHt Sα

r e−iHt Sβ
r0 |n〉 − 〈n| S

β
r0 eiHt Sα

r e−iHt |n〉
]

=
i
Z

∞∫
0

dt eiωt ∑
r,r0

e−ik(r−r0) ∑
n,m

e−βEn

·
[
ei(En−Em)t 〈n| Sα

r |m〉 〈m| S
β
r0 |n〉 − ei(Em−En)t 〈n| Sβ

r0 |m〉 〈m| Sα
r |n〉

]
=

i
Z

∞∫
0

dt eiωt ∑
r,r0

e−ik(r−r0) ∑
n,m

ei(En−Em)t

· 〈n| Sα
r |m〉 〈m| S

β
r0 |n〉

[
e−βEn − e−βEm

]
.

(3.15)

In the last step, n and m have been swapped in the second summand.

Next, the Fourier representation of the spin operators (A.2a) is inserted. The two sums in position
space yield Dirac delta functions (A.4), which simplify the susceptibility to

χ
αβ
T
(
k, ω

)
=

i
Z

∞∫
0

dt ei(ω+i0+)t ∑
n,m

∑
k′,k′′

ei(En−Em)t

· 〈n| Sα
k′δ(k− k′) |m〉 〈m| Sβ

k′′δ(k + k′′) |n〉
[
e−βEn − e−βEm

]
=

i
Z

∞∫
0

dt ∑
n,m

ei(En−Em+ω+i0+)t 〈n| Sα
k |m〉 〈m| S

β
−k |n〉

[
e−βEn − e−βEm

]
. (3.16)

To ensure the convergence of the integration in time, an infinitesimal positive number 0+ has been
inserted. After carrying out the integration, one obtains the expression

χ
αβ
T
(
k, ω

)
= − 1

Z ∑
n,m
〈n| Sα

k |m〉 〈m| S
β
−k |n〉

e−βEn − e−βEm

En − Em + ω + i0+

= − 1
Z ∑

n,m
〈n| Sα

k |m〉 〈m| S
β
−k |n〉

[
e−βEn − e−βEm

]
·
{
P
(

1
En − Em + ω

)
− iπδ (En − Em + ω)

}
,

(3.17)

for the retarded dynamical susceptibility. In the last step, the identity

1
x∓ i0+ = P

(
1
x

)
± iπδ (x) (3.18)
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3.2. Dynamical structure factor

has been used to decompose χ
αβ
T into its real and imaginary part. P(1/x) denotes the principal value

of 1/x.

Inserting (3.17) in (3.12), a general expression for the dynamical structure factor is given by

Sαβ
T
(
k, ω

)
=

1
1− e−βω

π

Z ∑
n,m
〈n| Sα

k |m〉 〈m| S
β
−k |n〉

[
e−βEn − e−βEm

]
δ (En − Em + ω) . (3.19)

3.2.1.1. Limit of vanishing temperature

In the limit of T → 0, the partition function can be approximated by

Z ≈ e−βE0 , (3.20)

as the ground state is the most important contribution for very low temperatures. Consequently, only
terms with n = 0 or m = 0 contribute, which correspond to transitions from/to the ground state |0〉
(vacuum).

With ωn/m = En/m − E0, the dynamical structure factor reduces to

Sαβ
T
(
k, ω

)
=

1
1− e−βω

π

{
∑
m
〈0| Sα

k |m〉 〈m| S
β
−k |0〉 δ (ω−ωm) (3.21)

−∑
n
〈n| Sα

k |0〉 〈0| S
β
−k |n〉 δ (ω + ωn)

}
.

The sums ∑n,m indicate a summation over all excited states with energy ωn/m and momentum k.
Hence, the indices m, n can also be replaced by the momentum k. The first term contributes for ω > 0
and therefore corresponds to magnon emission processes, whereas the second one contributes for
ω < 0 and is connected to magnon absorption processes.

Furthermore, we restrict ourselves to the excitation of single magnons, as no excited states exist at
T = 0. Thus, only terms with ω > 0 contribute and the temperature dependent prefactor becomes
unity in the limit of T → 0.
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3. Spin wave theory

3.2.2. Evaluation of the dynamical structure factor within the
Dyson-Maleev representation

Our next aim is to calculate the dynamical structure factor within the Dyson-Maleev representation
(3.7) and (3.8). The ladder operators S+

i on the A lattice and S−i on the B lattice can be simplified with
the mean field approximation

S+
i = 2 (S− n) b†

i for i ∈ A (3.22a)
S−i = 2 (S− n) bi for i ∈ B, (3.22b)

where n := 〈b†
i bi〉 > 0 is the average occupation number on each lattice site. The factor 2 is a conse-

quence of Wick’s theorem [75], because there are two possibilities to uncontract the operator

b†
i b†

i bi ≈ b†
i b†

i bi + b†
i b†

i bi

= 2nb†
i ,

so that all spin operators are now linear in b†
i or bi , respectively.

Now we have to derive the spin operators in momentum space. As the operators bk and b†
k are not

in the basis of the diagonal Hamiltonian, they have to be transformed to new operators βk and β†
k ,

using a bosonic Bogoliubov transformation

bk = βk cosh θk + β†
−k sinh θk (3.23a)

b†
k = β†

k cosh θk + β−k sinh θk. (3.23b)

This transformation is unitary and canonical. The vacuum of the diagonalized Hamiltonian is char-
acterized by βk |0〉 = 0. The angle θk is determined during the diagonalization of the Hamiltonian.
It is inserted later in Section 7.3, when the structure factor is evaluated numerically for a specific
scenario.

We restrict ourselves to the single mode approximation. Hence, the spin operator Sz does not change
the number of magnons and therefore contributes only to the elastic part of the dynamical structure
factor, in which we are not interested.

At first, we have to express the spin operators in terms of the creation/annihilation operators

Sx
i =

1
2

(
S+

i + S−i
)

(3.24a)

Sy
i =

1
2i

(
S+

i − S−i
)

. (3.24b)
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3.2. Dynamical structure factor

Following the conventions (A.2a), the Fourier transform into momentum space reads

Sx
k = ∑

i
e−ikri Sx

i

=
1
2

{
∑
i∈A

[
2 (S− n) b†

i + bi

]
e−ikri + ∑

i∈B

[
b†

i + 2 (S− n) bi

]
e−ikri

}

=
1
2

1√
N

∑
k′

{
∑
i∈A

[
2 (S− n) b†

k′ e
−iri(k+k′) +bk′ e

−iri(k−k′)
]

+ ∑
i∈B

[
b†

k′ e
−iri(k+k′) +2 (S− n) bk′ e

−iri(k−k′)
]}

=
1

2
√

N
N
2 ∑

k′

{[
δ(k + k′) + δ(k + k′ + Q)

]
2 (S− n) b†

k′

+
[
δ(k− k′) + δ(k− k′ + Q)

]
bk′ +

[
δ(k + k′)− δ(k + k′ + Q)

]
b†

k′

+
[
δ(k− k′)− δ(k− k′ + Q)

]
2 (S− n) bk′

}
=
√

N
2

[(
S− n +

1
2

)(
b†
−k + bk

)
+
(

S− n− 1
2

)(
b†
−k−Q − bk+Q

)]
, (3.25)

where the identities (A.8a) and (A.8b) for the collinear phase have been used for the two sums over
the sublattices. The vector Q is the magnetic ordering vector, which reads Q = (1, 0, 1) for the three
dimensional collinear phase. For convenience, we denote all reciprocal lattice vectors in units of
π/(lattice constant).

Next, the operators are transformed using the Bogoliubov transformation (3.23)

Sx
k =
√

N
2
(
cosh θk + sinh θk

)
·
[(

S− n +
1
2

)(
β†
−k + βk

)
+
(

S− n− 1
2

)(
β†
−k−Q − βk+Q

)]
.

(3.26)
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3. Spin wave theory

Finally, the spin operators are inserted into the dynamical structure factor

Sxx
T
(
k, ω

)
=

π

1− e−βω

N
4
(
cosh θk + sinh θk

)2

·
{

∑
m
〈0|
(

S− n +
1
2

)(
β†
−k + βk

)
+
(

S− n− 1
2

)(
β†
−k−Q − βk+Q

)
|m〉

· 〈m|
(

S− n +
1
2

)(
β†

k + β−k

)
+
(

S− n− 1
2

)(
β†

k−Q︸ ︷︷ ︸
β†

k+Q

−β−k+Q

)
|0〉 δ (ω−ωm)

−∑
n
〈n|
(

S− n +
1
2

)(
β†
−k + βk

)
+
(

S− n− 1
2

)(
β†
−k−Q − βk+Q

)
|0〉

· 〈0|
(

S− n +
1
2

)(
β†

k + β−k

)
+
(

S− n− 1
2

)(
β†

k−Q − β−k+Q︸ ︷︷ ︸
β−k−Q

)
|n〉 δ (ω + ωn)

}

(3.27)

When we restrict ourselves to the creation and annihilation of single magnon states, only the high-
lighted operators contribute. The periodicity of the creation/annihilation operators can easily be seen
in their Fourier transform (A.1)

β−k+Q =
1√
N

∑
i

e−iri(−k+Q) βi · e−iQri eiQri︸ ︷︷ ︸
=1

=
1√
N

∑
i

e−iri(−k−Q) · e−2iriQ︸ ︷︷ ︸
=1

= β−k−Q (3.28)

Now, we have obtained the final result for the inelastic part of the dynamical structure factor

Sxx
T
(
k, ω

)
=

π

1− e−βω

N
4
(
cosh θk + sinh θk

)2

[(
S− n +

1
2

)2

−
(

S− n− 1
2

)2
]

·
[
δ (ω−ωk)− δ (ω + ωk)

]
=

Nπ

1− e−βω
(S− n)

1
2
(
cosh θk + sinh θk

)2 [
δ (ω−ωk)− δ (ω + ωk)

]
. (3.29)

Analogous to Sx
k , the Fourier transform of Sy

i reads

Sy
k =
√

N
2i
(
cosh θk + sinh θk

)
·
[(

S− n− 1
2

)(
β†
−k + βk

)
+
(

S− n +
1
2

)(
β†
−k−Q − βk+Q

)]
. (3.30)
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3.2. Dynamical structure factor

Therewith, Syy
T (k, ω) is identical to Sxx

T (k, ω), which is consistent with the rotational symmetry about
Sz.

Note that the inelastic part of the dynamical structure factor Sxx and Syy is linear in the spin S, while
the elastic part Szz is quadratic in S [76]. A very similar result for (3.29) is mentioned in Ref. [54].
The wave vector dependence of (3.29) is manifested in the angle θk, which depends on the studied
Hamiltonian.
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4. 2D Néel phase with biquadratic exchange

In this section, the two dimensional Néel phase with an additional biquadratic exchange Jbq is stud-
ied. The Néel phase is the ground state of the antiferromagnetic Heisenberg model with nearest
neighbor exchange (2.2). The schematic spin pattern can be found in Fig. 2.4a.

The relevance of a biquadratic exchange ∝ (Si · Sj)2 for S ≥ 1 has already been discussed in Section
2.7. Biquadratic exchange terms are of special importance in the case of a many-electron exchange
with a total spin of S ≥ 1 [61].

For S = 1/2, the spin operators Sα = σα/2 are represented by the Pauli matrices σα. Because of the
identity

σασβ = δαβ + i ∑
γ

εαβγσγ (4.1)

of the Pauli matrices, a biquadratic term always reduces to bilinear one for S = 1/2.

We apply the Schwinger bosons as well as the Dyson-Maleev representation to the Heisenberg model
with biquadratic exchange and introduce the correspondent mean field approximation for each of
them. Our aim is to study the influence of the biquadratic exchange and to compare our results to
results obtained by exact diagonalization and series expansion.

The studied Hamiltonian reads

H =J ∑
〈i,j〉

Si · Sj − Jbq ∑
〈i,j〉

(
Si · Sj

)2
(4.2a)

=J ∑
〈i,j〉

(
−Sz

i Sz
j +

1
2

(
S+

i S+
j + h. c.

))

− Jbq ∑
〈i,j〉

(
−Sz

i Sz
j +

1
2

(
S+

i S+
j + h. c.

))2

, (4.2b)

with J, Jbq > 0. The spins on one sublattice have already been rotated.



4. 2D Néel phase with biquadratic exchange

4.1. Dyson-Maleev representation

4.1.1. Mean field approximation

At first, we study the Hamiltonian (4.2b) in terms of the Dyson-Maleev representation (3.7) and (3.8).
The bilinear product of the spin operators in (4.2b) reads

Si · Sj = −S2 + S
(

n̂i + n̂j + b†
i b†

j + bi bj

)
− n̂in̂j −

1
2

(
b†

i n̂ib†
j + bi n̂jbj

)
, (4.3)

where i ∈ A and j ∈ B. O(S0) is quartic in the bosonic creation and annihilation operators. Thus,
these terms have to be decoupled to bilinear expressions within a mean field approximation.

We introduce the expectation values

n :=
〈

b†
i bi

〉
=
〈

b†
j bj

〉
(4.4a)

a :=
〈

b†
i b†

j

〉
=
〈

bi bj

〉
, (4.4b)

where i, j are nearest neighbor sites with i ∈ A and j ∈ B. All other expectation values precisely

0 =
〈

b†
i bj

〉
=
〈

b†
j bi

〉
0 =

〈
b†

i b†
i

〉
=
〈

bi bi

〉
,

vanish because of the symmetry about Sz. It is assumed that all values are real. The quartic expres-
sions are now decoupled according to Wick’s theorem [75], which yields

n̂in̂j = b†
i bi b†

j bj

≈ n
(

n̂i + n̂j

)
+ a

(
b†

i b†
j + bi bj

)
− n2 − a2

(4.5a)

b†
i n̂i b†

j = b†
i b†

i bi b†
j

≈ 2ab†
i bi + 2nb†

i b†
j − 2na

(4.5b)

bi n̂j bj = bi b†
j bj bj

≈ 2ab†
j bj + 2nbi bj − 2na.

(4.5c)

The constant terms are unimportant and consequently neglected from now on. Therewith, the mean
field approximation for the bilinear exchange results in

Si · Sj

∣∣∣MF
=
(

S︸︷︷︸
O(S)

−n− a︸ ︷︷ ︸
O(S0)

) (
n̂i + n̂j + b†

i b†
j + bi bj

)
+ const. . (4.6)
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4.1. Dyson-Maleev representation

All operators have the same prefactor S− n− a, so that the spin rotation is conserved, as we will see
later.

Now, we concentrate on the biquadratic term. Naturally, the decoupling is more complicated and
challenging. The biquadratic term in the Dyson-Maleev representation sorted in orders of S has the
form (

Si · Sj

)2
= S4

− 2S3
(

n̂i + n̂j + Î0

)
+ S2

[
n̂2

i + n̂2
j + 4n̂in̂j + Î2

0 +
(

n̂i + n̂j

)
Î0 + Î0

(
n̂i + n̂j

)
+ Î′0

]
− S

[
2
(

n̂in̂2
j + n̂2

i n̂j

)
+ n̂in̂j Î0 + Î0n̂in̂j

+
1
2

(
Î0 Î′0 + Î′0 Î0 +

(
n̂i + n̂j

)
Î′0 + Î′0

(
n̂i + n̂j

))]
+ n̂2

i n̂2
j +

1
4

Î′20 +
1
2

(
n̂in̂j Î′0 + Î′0n̂in̂j

)
,

(4.7)

where

Î0 := b†
i b†

j + bi bj (4.8a)

Î′0 := b†
i n̂i b†

j + bi n̂j bj (4.8b)

with i, j on nearest neighbor sites.

Analogously to the bilinear term, the biquadratic term has to be treated in the same mean field ap-
proximation. For clarity, we do not list the prefactors of all terms here. They can be found in the
Appendix B.1. Therewith, we obtain the mean field approximation(

Si · Sj

)2
∣∣∣∣MF

= −
[
2S3 − 2S2 (1 + 5 (n + a)

)
+ S

(
18 (n + a)2 + 8 (n + a) + 1

)
−12 (n + a)3 − 9 (n + a)2 − 2 (n + a)

] (
n̂i + n̂j + b†

i b†
j + bi bj

)
+ const.

(4.9)

for the biquadratic exchange.

Neglecting all constant terms, the mean field Hamiltonian corresponding to (4.2b) is

HMF =
{

J (S− α) + Jbq

[
2S3 − 2S2 (1 + 5α) + S

(
18α2 + 8α + 1

)
−12α3 − 9α2 − 2α

]}
∑
〈i,j〉

(
n̂i + n̂j + b†

i b†
j + bi bj

)
= J̃(α) (S− α) ∑

〈i,j〉

(
n̂i + n̂j + b†

i b†
j + bi bj

)
, (4.10)
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4. 2D Néel phase with biquadratic exchange

where

J̃(α) := J + Jbq
2S3 − 2S2(1 + 5α) + S(18α2 + 8α + 1)− 12α3 − 9α2 − 2α

S− α
, (4.11)

and the new parameter α := n + a have been introduced for convenience. The neglected constant
terms are the classical ground state energy E0 := NdJS2 + NdJbqS4 for a d-dimensional lattice (d = 2
in our case).

Our next aim is to diagonalize the Hamiltonian. Therefore, we rewrite the sum over all nearest neigh-
bors

HMF =
1
2

J̃(α) (S− α) ∑
i,δ

(
n̂i + n̂i+δ + b†

i b†
i+δ + bi bi+δ

)
, (4.12)

where δ ∈ {(±1, 0), (0,±1)} is the vector between two nearest neighbor sites on the square lattice.
The factor 1/2 prevents that bonds are over counted. Furthermore, we insert the Fourier transform
(A.1) of the creation/annihilation operators

HMF =
1
2

J̃(α) (S− α)
1
N ∑

i,δ,k,k′

[
e−iri(k−k′) b†

k bk′ + e−iri(k−k′) e−iδ(k−k′) b†
k bk′

+ e−iri(k+k′) e−iδk′ b†
k b†

k′ + e−iri(−k−k′) eiδk′ bk bk′

]
=

1
2

J̃(α) (S− α) ∑
δ,k

[
2b†

k bk + e−iδk b†
k b†
−k + eiδk bk b−k

]
= J̃(α) (S− α) ∑

k

[
4b†

k bk +
(
cos ka + cos kb

) (
b†

k b†
−k + bk b−k

)]
= 4 J̃(α) (S− α) ∑

k>0

[
b†

k bk + b†
−kb−k + γk

(
b†

k b†
−k + bk b−k

)]
, (4.13)

where the sum over all lattice sites yields Dirac delta functions (A.4) and the sum over the four
nearest neighbors yields

4γk := ∑
δ

e±iδk = 2
(
cos ka + cos kb

)
. (4.14)

In the final step, we have to transform the Hamiltonian by a Bogoliubov transformation (3.23) whereby

HMF = 4 J̃(α) (S− α) ∑
k>0

{ [
cosh 2θk + γk sinh 2θk

] (
β†

k βk + β†
−kβ−k

)
[
sinh 2θk + γk cosh 2θk

] (
β†

k β†
−k + β†

k β†
−k

)
+2 sinh2 θk + γk sinh 2θk

} (4.15)

is the Hamiltonian expressed in the new bosonic creation and annihilation operators β†
k and βk .
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4.1. Dyson-Maleev representation

In order to diagonalize the Hamiltonian, the prefactor in front of the non-diagonal operators has to
vanish, which fixes the angle θk to

sinh 2θk + γk cosh 2θk
!= 0

⇔ tanh 2θk = −γk. (4.16)

The prefactor in front of the diagonal operators is the spin wave dispersion. With trigonometric iden-
tities, one obtains

ωk = 4 J̃(α) (S− α)
√

1− γ2
k

= 4 J̃(α) (S− α)

√
1− 1

4
(
cos ka + cos kb

)2,
(4.17)

by using the result

sinh2 2θk =
γ2

k
1− γ2

k

⇔ sinh 2θk = ± γk√
1− γ2

k

. (4.18)

According to (4.16), we have to select the negative solution, because cosh x ≥ 1 ∀ x. The constant
term in (4.15) is the ground state energy of HMF

EMF = ∑
k

(
ωk

2
− 2 J̃(α) (S− α)

)
= 2 J̃(α) (S− α) ∑

k

(√
1− γ2

k − 1
)

.
(4.19)

Finally, the diagonalized Hamiltonian reads

HMF = ∑
k

ωkβ†
k βk + EMF. (4.20)

The gapless excitations at k = (1, 1) (the magnetic ordering vector of the Néel phase) and k = (0, 0)
are the expected Goldstone modes (see Section 2.4.3), because the ground state of the system has
broken symmetry. The existence of these gapless excitations is secured by the systematical expansion
in 1/S and not self-evident because of the mean field approximation.

4.1.2. Self-consistency

We now have to determine the value of α = n− a self-consistently. Therefore, we calculate the energy
correction of the ground state energy of HMF for a single lattice site in first order perturbation theory,
where α is treated as a small perturbation.
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4. 2D Néel phase with biquadratic exchange

In general, we split our Hamiltonian HMF in two parts H = H0 + χHχ where χ is regarded as a small
perturbation. Thus, the leading correction of the ground state energy EMF/N = 1/N 〈0|HMF |0〉 per
spin is given as

1
N

∂EMF

∂χ
=

1
N

∂

∂χ
〈0|HMF |0〉 (4.21a)

= 〈0|Hχ |0〉 . (4.21b)

In terms of the quantum correction parameter α, one obtains

1
N

∂EMF

∂α
=

1
N
〈0| ∂

∂α
HMF |0〉

=
1
2 ∑

δ

〈0| n̂i + n̂j + b†
i b†

j + bi bj |0〉︸ ︷︷ ︸
=2n+2a=2α

·∂( J̃(α) (S− α))
∂α

= ∑
δ

α · ∂( J̃(α) (S− α))
∂α

(4.22a)

where the partial derivative only acts on J̃(α)(S− α). Hence, α is determined by the self-consistency
equation

1
N

∂EMF

∂α
= 4α

∂

∂α

(
J̃(α) (S− α)

)
. (4.23)

Utilizing the mean field energy per site in thermodynamic limit

1
N

EMF =
1

(2π)2 2 J̃(α) (S− α)
∫∫
BZ

d2k
(√

1− γ2
k − 1

)

=
1

(2π)2 2 J̃(α) (S− α)
∫∫
BZ

d2k

√
1− 1

4
(
cos ka + cos kb

)2 − 2 J̃(α) (S− α) ,
(4.24)

we derive the equation

α =
1
2

1

(2π)2

∫∫
BZ

d2k

√
1− 1

4
(
cos ka + cos kb

)2 − 1
2

(4.25)

for α, where the integration runs over the Brillouin zone (BZ). We note that the value of α is indepen-
dent of J and Jbq.
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4.2. Schwinger bosons

4.1.3. Numerics

To evaluate (4.25) numerically, one integration is done analytically by introducing a density of states
$(γ) (C.6). For a detailed derivation, see Appendix C. Thereby, (4.25) is rewritten as

α =
1∫

0

dγ $
(
γ
)√

1− γ2 − 1
2

=
2

π2

1∫
0

dγ K
(√

1− γ2

)√
1− γ2 − 1

2
,

(4.26)

where K(x) denotes the complete elliptic integral of the first kind (C.5). The integration is done with
MAPLE and the determined value of α for S = 1 is

α = −0.0789737105. (4.27)

We are interested in the influence of the biquadratic exchange on the excitation energies. Thus, the
ratios of the dispersions with and without biquadratic exchange is an appropriate quantity, which is
given by

J̃(α)
J

= 1 + ν
2S3 − 2S2(1 + 5α) + S(18α2 + 8α + 1)− 12α3 − 9α2 − 2α

S− α

= 1 + 1.277081189 · ν,
(4.28)

for S = 1 with ν := Jbq/J. It increases linearly with a gradient of 1.277081189, which is compared to
gradients obtained by other theoretical techniques at the end of this section.

4.2. Schwinger bosons

4.2.1. Mean field approximation

We now study the same Hamiltonian (4.2b) as before, but in the Schwinger bosons representation.

At first, we concentrate on the usual bilinear term. Replacing the spin operators in the bilinear term
with the Schwinger bosons representation (3.9), leads to the expression

Si · Sj = −1
4

(
a†

i a†
j ai aj + b†

i b†
j bi bj − a†

i b†
j ai bj − b†

i a†
j bi aj + 2a†

i a†
j bi bj + 2b†

i b†
j ai aj

)
. (4.29)

As the constraint (3.10) applies to each lattice site individually, we use

(2S)2 =
(

a†
i ai + b†

i bi

) (
a†

j aj + b†
j bj

)
, (4.30)
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4. 2D Néel phase with biquadratic exchange

to rewrite the bilinear term as

Si · Sj − S2 = −1
2

(
a†

i a†
j + b†

i b†
j

) (
ai aj + bi bj

)
= −1

2
A†

ij Aij, (4.31)

where the bond operators

A†
ij = a†

i a†
j + b†

i b†
j (4.32a)

Aij = ai aj + bi bj (4.32b)

have been introduced. They connect neighboring sites on different sublattices. Inserting the operators
Aij and A†

ij in the bilinear and in the biquadratic term, one obtains

H = − J
2 ∑
〈i,j〉

(
A†

ij Aij − 2S2
)
−

Jbq

4 ∑
〈i,j〉

(
A†

ij Aij − 2S2
)2

(4.33a)

= − J
2 ∑
〈i,j〉

(
A†

ij Aij − 2S2
)
−

Jbq

4 ∑
〈i,j〉

(
4S4 − 4S2A†

ij Aij +
(

A†
ij Aij

)2
)

(4.33b)

= − J
2 ∑
〈i,j〉

A†
ij Aij −

Jbq

4 ∑
〈i,j〉

(
−4S2A†

ij Aij +
(

A†
ij Aij

)2
)

+ const. (4.33c)

Next, we introduce an appropriate mean field approximation in terms of the bond operators. To
illustrate and justify this approximation, we extend to N Schwinger boson flavors in the next steps,
because the Schwinger bosons mean field theory is based on an expansion in 1/N [44, 77, 78].

For N flavors, the bilinear term reads

Si · Sj = − 1
N A†

ij Aij + S2 (4.34)

with the generalized bond operators

A†
ij =

N
∑

m=1
a†

i,ma†
j,m (4.35a)

Aij =
N
∑

m=1
ai,maj,m (4.35b)

and the constraint
N
∑

m=1
a†

i,mai,m = N S. (4.36)

We define the expectation value

A := 〈Aij〉 = 〈A†
ij〉 ∈ R+

0 , (4.37)
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4.2. Schwinger bosons

which is proportional to N according to the generalized constraint (4.36). Hence, the bilinear term is
decoupled by

Si · Sj

∣∣∣
MF
≈ 1
N

(
A†

ij

〈
Aij

〉
+
〈

A†
ij

〉
Aij

)
− A2

≈ 1
N︸︷︷︸

O(1/N )

(
AA†

ij + h. c.
)

︸ ︷︷ ︸
O(N )︸ ︷︷ ︸

O(1)

, (4.38)

where we only keep the non-constant terms of the leading order O(1) in the expansion in 1/N .

In the same way, the quartic term of bond operators is decoupled in leading order by

1
N 2

(
A†

ij Aij

)
·
(

A†
ij Aij

)
≈ 2A2

N

(
A†

ij A + AAij

)
+ const. . (4.39)

The factor 2 is a consequence of Wicks’s theorem [75], as there are two possibilities to contract the
operator A†

ij or Aij, respectively. Thus, the mean field decoupling of the entire biquadratic term is

(
Si · Sj

)2
∣∣∣∣
MF
≈ −2S2

N A

(
1− A2

N S2

)(
A†

ij + Aij

)
+ const. . (4.40)

We omit all constant terms from now on. Since A ∝ N S, Eq. (4.40) overall obtains a minus sign.
Together with the bilinear exchange (4.38), the antiferromagnetic exchange in the Hamiltonian (4.33)
is strengthened.

Returning to N = 2, the mean field Hamiltonian is given by

HMF = −A
2

J − 2JbqS2

(
1− A2

2S2

)∑
〈i,j〉

(
A†

ij + h. c.
)

+ λ ∑
i

(
a†

i ai + b†
i bi

)
. (4.41a)

The Lagrange multiplier λ has been introduced to respect the constraint (3.10). As before, we rewrite
the sum over all nearest neighbors as a sum over all lattice sites and vectors δ to the nearest neighbor
sites. The additional prefactor of 1/2 prevents that bonds are over counted. The Hamiltonian reads

HMF = − J̃(A)A
4 ∑

i,δ

(
a†

i a†
i+δ + b†

i b†
i+δ + h. c.

)
+ λ ∑

i

(
a†

i ai + b†
i bi

)
(4.41b)

with the short cut

J̃(A) := J − 2JbqS2

(
1− A2

2S2

)
. (4.42)
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4. 2D Néel phase with biquadratic exchange

The following steps are analogous to the calculation made in the Dyson-Maleev representation.
Therefore, only the intermediate results are shown here. Following the conventions according to
(A.1), the Hamiltonian (4.41b) in momentum space reads

HMF = − J̃(A)A
4 ∑

k

(
a†

k a†
−k + b†

k b†
−k + h. c.

)
∑

δ

e−ikδ

︸ ︷︷ ︸
:=4γk

+λ ∑
k

(
a†

k ak + b†
k bk

)

= −2 J̃(A)A ∑
k>0

(
a†

k a†
−k + b†

k b†
−k + h. c.

)
γk + λ ∑

k>0

(
a†

k ak + b†
k bk +

(
k→ −k

))
.

(4.43)

Again, we use a Bogoliubov transformation (3.23) to diagonalize the Hamiltonian. Therewith, it trans-
forms to

HMF = ∑
k>0

[
Ak

(
α†

k αk + α†
−kα−k +

(
α→ β

))
+ Bk

(
α†

k α†
−k + β†

k β†
−k + h. c.

)]
+ EMF, (4.44)

in terms of the new bosonic operators α and β, with

Ak = −2 J̃(A)Aγk sinh 2θk + λ cosh 2θk (4.45a)
Bk = −2 J̃(A)Aγk cosh 2θk + λ sinh 2θk (4.45b)

EMF = ∑
k

(
−2 J̃(A)Aγk sinh 2θk + 2λ sinh2 θk

)
. (4.45c)

The Hamiltonian is diagonal for Bk
!= 0. Thus, the relation1 for the angle θk is given by

tanh 2θk =
2 J̃(A)A

λ
γk . (4.46)

This leads to the dispersion

Ak =: ωk :=

√
λ2 −

(
2 J̃(A)Aγk

)2
(4.47a)

and the mean field energy

EMF = ∑
k

(√
λ2 −

(
2 J̃(A)Aγk

)2
− λ

)
. (4.47b)

In thermodynamic limit, the mean field energy per spin reads

1
N

EMF =
1

(2π)2

∫∫
BZ

d2k

√
λ2 −

(
2 J̃(A)A

)2
γ2

k − λ. (4.47c)

1The relation obtains no minus sign compared to the one in the Dyson-Maleev representation (4.16). The missing minus
sign is not important and is caused by the replacement of the bilinear term with Eq. (4.31).
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4.2. Schwinger bosons

4.2.2. Self-consistency

The procedure for deriving the self-consistency equations was explained in detail for the Dyson-
Maleev representation (see Section 4.1). Treating λ and A as a small perturbation, one derives two
self-consistency equations with Eq. (4.21). One for the Lagrange multiplier (the constraint)

2S =
1
N

∂EMF

∂λ
(4.48a)

and one for the quantum correction parameter

−2A
∂

∂A

(
J̃(A)A

)
=

1
N

∂EMF

∂A
. (4.48b)

The self-consistency equation for λ results in

2S + 1 =
1

(2π)2

∫∫
BZ

d2k
λ√

λ2 −
(

2 J̃(A)A
)2

γ2
k

(4.49a)

and the one for A in

A =
1

(2π)2

∫∫
BZ

d2k
2 J̃(A)Aγ2

k√
λ2 −

(
2 J̃(A)A

)2
γ2

k

. (4.49b)

Note that the integrand in (4.49b) diverges for certain values of k, which was not the case for the
Dyson-Maleev representation. There, numerator and denominator of the integrand vanish for the
same k-values, so that there is no divergence.

The divergences in (4.49b) can be eliminated by considering the difference λ · (4.49a) − 2 J̃(A)A ·
(4.49b) implying

λ (2S + 1)− 2 J̃(A)A2 =
1

(2π)2

∫∫
BZ

d2k

√
λ2 −

(
2 J̃(A)A

)2
γ2

k . (4.50)

4.2.3. Evaluation in the symmetry broken phase

As mentioned before, the Schwinger bosons (3.9) can be used to describe the phase with sponta-
neously broken symmetry as well as the symmetric phase. We know that the ground state of the
studied system has a spontaneously broken symmetry. Hence, there exist Goldstone modes. For these
gapless excitations, the Lagrange multiplier λ has to be fixed to the value

λ = 2 J̃(A)A. (4.51)
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4. 2D Néel phase with biquadratic exchange

The resulting Hamiltonian in the symmetry broken phase reads

HMF = ∑
k

ωk

(
α†

k αk + β†
k βk

)
+ EMF (4.52)

with

ωk = 2 J̃(A)A

√
1− 1

4
(
cos ka + cos kb

)2 (4.53a)

EMF = 2 J̃(A)A ∑
k

(√
1− 1

4
(
cos ka + cos kb

)2 − 1

)
. (4.53b)

The self-consistent equation for A (4.50) is given by

A = 2S + 1− 1

(2π)2

∫∫
BZ

d2k

√
1− 1

4
(
cos ka + cos kb

)2 (4.54a)

or as

A = 2S + 1− 2
1∫

0

dγ $
(
γ
)√

1− γ2 (4.54b)

in terms of a density of states (C.6). As before, the value of A is independent of J̃(A). The evaluation
of (4.54b) with MAPLE yields the result

A = 2.1579474210 (4.55)

for S = 1. Therewith, we obtain

J̃(A)
J

= 1− 2S2

(
1− A2

2S2

)
ν

= 1 + 2.65673707 · ν,

(4.56)

which is more than twice as much as in the Dyson-Maleev representation. In the upcoming section,
both results are compared to results obtained by other methods. This helps us to decide, which spin
representation and mean field approximation fits our purposes best.

4.3. Results & discussion

The huge difference in the gradient for the Schwinger bosons (4.56) and the Dyson-Maleev repre-
sentation (4.28) is very surprising. Fortunately, our results for the 2D Néel phase with biquadratic
exchange can be compared to gradients which are obtained by two other methods.
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method gradient
Schwinger bosons 2.65674

Dyson-Maleev 1.27708
exact diagonalization (4x4) 1.24505

series expansion 1.13423

Tab. 4.1.: Gradients for the influence of the biquadratic exchange on the excitation energies.

On the one hand, we have results calculated by an exact diagonalization of the Hamiltonian (4.2b).
The Hamiltonian is exactly diagonalized on a finite 4x4 lattice to obtain the excitation energies as a
function of the momentum k [79]. The calculations are repeated for several coupling ratios ν = Jbq/J.
The data points in Fig. 4.1 are the maximum excitation energies found at k = (0.5, 0.5) normalized to
the excitation energy without biquadratic exchange.

On the other hand, the excitation energies can be calculated with a series expansion [55, 80]. Again,
we calculated the ratios of the maximum excitation energies at k = (0.5, 0.5).

For both methods, the gradient is determined by a linear fit. All results are compared in Tab. 4.1 and
displayed in Fig. 4.1.

The Schwinger bosons result immediately catches ones eye, because the gradient outnumbers all
other results by a factor greater than two. On the contrary, the Dyson-Maleev result matches very
well with the exact diagonalization. The gradient of the series expansion, which is essentially ex-
act, is slightly smaller. The exact diagonalization is hampered by finite-size effects, which cause the
deviation to the result of the series expansion.

The deviation of the Dyson-Maleev gradient from the series expansion is in the range of 10-15%,
which is still a bit too high but acceptable. Extending to a third dimension, the result should im-
prove, since a mean field approximation becomes more accurate or even exact in higher dimensions.
Therefore, we stick to the Dyson-Maleev representation and the corresponding mean field approxi-
mation for our upcoming analysis.

Discrepancies in the Schwinger boson mean field theory without biquadratic exchange have already
appeared when the theory was introduced by Auerbach and Arovas. In their calculations, the coeffi-
cients of the mean field free energy exceed previous results by a factor of 2 and the spin correlation
function by a factor of exactly 3/2 [78]. In the mean field approximation for the Schwinger bosons,
we treat both Schwinger bosons sitting on one lattice site independently. Thus, the constraint (3.10) is
violated because because a change in the occupation of the a boson is always connected to a change
of the occupation of the b boson sitting on the same lattice site (or vice versa). Hence, we suggest
that the additional factors appear because of the missed fluctuations due to the interaction of the
Schwinger bosons. As a consequence, Takahashi formulated a modified spin wave theory for the
square lattice antiferromagnet [81]. Implying the Dyson-Maleev representation, the exact prefactor
of the spin correlation function is preserved.
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4. 2D Néel phase with biquadratic exchange
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Fig. 4.1.: Influence of the biquadratic exchange on the excitation energies in the 2D Néel phase (S = 1).
The dashed lines are fits to the corresponding data points.
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5. 3D collinear phase

In this chapter, the frustrated Heisenberg model in the two dimensional collinear phase at T = 0 is
extended to three dimensions.

The J1-J2 model (2.13) and the collinear phase have been of general interest. A brief overview is given
in Section 2.6. For the iron pnictides, the upcoming chapter extends the work on the two dimensional
collinear phase by Uhrig et al. [11] to three dimensions. The three dimensional character of the iron
pnictides was revealed in recent neutron scattering studies because non-vanishing spin wave veloci-
ties and dispersions have been measured in all directions a, b and c [9, 10, 15]. The interlayer exchange
Jc between the collinear ordered planes is antiferromagnetic and smaller in size than the in-plane ex-
change constants J1 and J2 due to the lattice structure (see Fig. 5.1). Hence, the interlayer exchange is
also restricted to nearest neighbor sites. Furthermore, the spin wave velocity vc is much smaller than
va and vb. Suitable ratios of vc/va extracted from neutron scattering studies are ∼ 20-25 % [10, 9].

Thus, we study the Hamiltonian

H = J1 ∑
〈i,j〉

Si · Sj + J2 ∑
〈〈i,j〉〉

Si · Sj + Jc ∑
[i,j]

Si · Sj (5.1)

with J1, J2, Jc > 0. The brackets [i, j] indicate the exchange between inter-plane nearest neighbors. The
small orthorhombic distortion within the collinear ordered layers is neglected.

c
b
a

J2
Jc

J1

Fig. 5.1.: Three dimensional collinear phase with antiferromagnetic interlayer exchange Jc.



5. 3D collinear phase

As a consequence of the results of the previous chapter, we choose the Dyson-Maleev representa-
tion. The mean field theory for the antiferromagnetic bilinear exchange has already been introduced.
Hence, we now concentrate on the mean field approximation for the ferromagnetic bilinear exchange
parallel to the spin stripes in b-direction. Combining the corresponding approximation for all ex-
change terms, we derive the mean field Hamiltonian, which is diagonalized with the previously
introduced methods. In addition, the staggered magnetization is calculated. The obtained set of self
consistent equations has to be evaluated numerically. Finally, the behavior of the critical point where
our spin wave theory breaks down, is discussed.

5.1. Model

5.1.1. Mean field approximation

In total, we have to deal with four different types of bonds: One for each direction a, b and c and
one for the next nearest neighbor exchange. All of them, except the ferromagnetic exchange parallel
to the spin stripes (b-direction), are antiferromagnetic. Besides the average occupation number per
lattice site

n :=
〈

b†
i bi

〉
=
〈

b†
j bj

〉
, (5.2a)

we define the following expectation values:

• in-plane antiferromagnetic nearest neighbor exchange perpendicular to the spin stripes (a-
direction)

a1 :=
〈

b†
i b†

j

〉
=
〈

bi bj

〉
(5.2b)

• interlayer antiferromagnetic nearest neighbor exchange (c-direction)

ac :=
〈

b†
i b†

j

〉
=
〈

bi bj

〉
(5.2c)

• in-plane antiferromagnetic next nearest neighbor exchange

a2 :=
〈

b†
i b†

j

〉
=
〈

bi bj

〉
(5.2d)

• in-plane ferromagnetic nearest neighbor exchange parallel to the spin stripes (b-direction)

f :=
〈

b†
i bj

〉
=
〈

b†
j bi

〉
(5.2e)
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5.1. Model

All other expectation values are zero. Again, we assume that all values are real. The mean field de-
coupling of the antiferromagnetic bonds (4.5) has already been introduced in Section 4.1. It is applied
individually to all antiferromagnet bonds with the corresponding expectation values (5.2) and is not
recapitulated again.

For ferromagnetic bonds, the scalar product of the spin operators is expressed in the Dyson-Maleev
representation as

Si · Sj = S2 − S
(

n̂i + n̂j − b†
i bj − b†

j bi

)
+ n̂i n̂j −

1
2

(
b†

i n̂i bj + b†
j n̂j bi

)
(5.3)

because the spins are not rotated with respect to each other. Thus, the Wick decoupling of the quartic
terms reads

n̂in̂j = b†
i bi b†

j bj

≈ n
(

n̂i + n̂j

)
+ f

(
b†

i bj + b†
j bi

)
− n2 − f 2

(5.4a)

b†
i n̂ibj = b†

i b†
i bi bj

≈ 2nb†
i bj + 2 f b†

i bi − 2n f
(5.4b)

b†
j n̂jbi = b†

j b†
j bj bi

≈ 2nb†
j bi + 2 f b†

j bj − 2n f .
(5.4c)

Consequently, the decoupling of a ferromagnetic bilinear exchange term results in

Si · Sj

∣∣∣
MF

= −
(

S︸︷︷︸
O(S)

−
(
n− f

)︸ ︷︷ ︸
O(S0)

) (
n̂i + n̂j − b†

i bj − b†
j bi

)
+ const. . (5.5)

The constant terms are dropped in the upcoming steps. This is all we need for writing down the
mean field Hamiltonian

HMF =
J1

2
(S− α1) ∑

i,δa

(
n̂i + n̂i+δa

+ b†
i b†

i+δa
+ bi bi+δa

)
− J1

2
(
S− β

)
∑
i,δb

(
n̂i + n̂i+δb

− b†
i bi+δb

− b†
i+δb

bi

)
+

Jc

2
(S− αc) ∑

i,δc

(
n̂i + n̂i+δc

+ b†
i b†

i+δc
+ bi bi+δc

)
+

J2

2
(S− α2) ∑

i,∆

(
n̂i + n̂i+∆ + b†

i b†
i+∆ + bi bi+∆

)
(5.6)

for the three dimensional collinear phase. The new parameters are defined as

α1 := n + a1 (5.7a)
αc := n + ac (5.7b)
α2 := n + a2 (5.7c)
β := n− f . (5.7d)
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5. 3D collinear phase

The vectors δa, δb and δc connect nearest neighbors along the specific direction, ∆ denotes the vectors
between the four in-plane next nearest neighbors.

Replacing all operators with their Fourier transform (A.1), the mean field Hamiltonian is given in
k-space by

HMF =
J1

2
(S− α1) ∑

k,δa

(
2b†

k bk + e−iδak b†
k b†
−k + eiδak bk b−k

)
− J1

2
(
S− β

)
∑
k,δa

(
2− e−iδbk− eiδbk

)
b†

k bk

+
Jc

2
(S− αc) ∑

k,δc

(
2b†

k bk + e−iδck b†
k b†
−k + eiδck bk b−k

)
+

J2

2
(S− α2) ∑

k,∆

(
2b†

k bk + e−i∆k b†
k b†
−k + ei∆k bk b−k

)
.

(5.8)

The δi and ∆ sums yield cosines

∑
δi

e−iδik = 2 cos ki (5.9a)

∑
∆

e−i∆k = 4 cos ka cos kb, (5.9b)

where ki is the reciprocal lattice vector corresponding to the direction i. Next, we define the abbrevi-
ations

Ak := 2J2 (S− α2) + J1 (S− α1) + Jc (S− αc) + J1
(
S− β

) (
cos kb − 1

)
(5.10a)

Bk := J1 (S− α1) cos ka + Jc (S− αc) cos kc + 2J2 (S− α2) cos ka cos kb (5.10b)

to simplify the Hamiltonian to

HMF = ∑
k>0

2Ak

(
b†

k bk + b†
−kb−k

)
+ ∑

k>0
2Bk

(
b†

k b†
−k + bk b−k

)
. (5.11)

Inserting a bosonic Bogoliubov transformation (3.23), we get

HMF = ∑
k>0

2
[
Ak cosh 2θk + Bk sinh 2θk

] (
β†

k βk + β†
−kβ−k

)
+ ∑

k>0
2
[
Ak sinh 2θk + Bk cosh 2θk

] (
β†

k β†
−k + βk β−k

)
+ ∑

k>0
2
[
2Ak sinh2 θk + Bk sinh 2θk

]
.

(5.12)

To eliminate the non-diagonal term, θk is fixed by the condition

tanh 2θk = − Bk

Ak
. (5.13)
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5.1. Model

Therewith, the spin wave dispersion is given as

ωk := 2
[
Ak cosh 2θk + Bk sinh 2θk

]
= 2

√
A2

k − B2
k ,

(5.14)

where

sinh 2θk = − Bk√
A2

k − B2
k

(5.15a)

cosh 2θk =
Ak√

A2
k − B2

k

(5.15b)

have been used. As before, the constant term is identified as the mean field energy, which states

EMF = ∑
k

(√
A2

k − B2
k − Ak

)
. (5.16a)

Consequently,

1
N

EMF =
1

(2π)3

∫∫∫
BZ

d3k
(√

A2
k − B2

k − Ak

)
(5.16b)

is the mean field energy per spin in thermal limit.

All in all, the diagonal mean field Hamiltonian reads

HMF = ∑
k

ωk β†
k βk + EMF. (5.17)

The Goldstone modes are now found at k = (0, 0, 0) and k = (1, 0, 1). The latter one is the magnetic
ordering vector of the three dimensional collinear phase. In contrast to linear spin wave theory, the
modes at (0, 1, 0), (1, 1, 1), (0, 1, 1) and (1, 1, 0) are gapped due to the renormalization of the exchange
constants.

For the upcoming numerical evaluation, it is convenient to introduce the two parameters

x :=
J1

J2
(5.18a)

µ :=
Jc

J1
(5.18b)

and the dispersion ω̄k in units of J2

ω̄k := 2
√

Ā2
k − B̄2

k (5.19)

with

Āk := 2 (S− α2) + x (S− α1) + xµ (S− αc) + x
(
S− β

) (
cos kb − 1

)
(5.20a)

B̄k := x (S− α1) cos ka + xµ (S− αc) cos kc + 2 (S− α2) cos ka cos kb. (5.20b)
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5. 3D collinear phase

5.1.2. Spin wave velocities

The dispersion (5.14) is expanded for small momenta

ω2
k ≈ v2

ak2
a + v2

bk2
b + v2

c k2
c (5.21)

to derive the spin wave velocities

va = 2
√[

2J2 (S− α2) + J1 (S− α1) + Jc (S− αc)
] [

2J2 (S− α2) + J1 (S− α1)
]

(5.22a)

vb = 2
√[

2J2 (S− α2) + J1 (S− α1) + Jc (S− αc)
]
[2J2 (S− α2)− J1

(
S− β

)
] (5.22b)

vc = 2
√[

2J2 (S− α2) + J1 (S− α1) + Jc (S− αc)
]

Jc (S− αc). (5.22c)

Hence, their ratios with respect to va read

vb

va
=

√
2 (S− α2)− x

(
S− β

)
2 (S− α2) + x (S− α1)

(5.23a)

vc

va
=

√
xµ (S− αc)

2 (S− α2) + x (S− α1)
. (5.23b)

These ratios are important quantities for fitting the model to experimentally measured spin wave ve-
locities. Mind the expression 2(S− α2)− x(S− β) in vb because it might lead to unphysical imaginary
spin wave velocities in b-direction.

5.1.3. Self-consistency equations

The self-consistency equations for the quantum correction parameters α1, α2, αc and β are given by

1
N

∂EMF

∂α1
= −2J1α1 (5.24a)

1
N

∂EMF

∂α1
= 2J1β (5.24b)

1
N

∂EMF

∂αc
= −2Jcαc (5.24c)

1
N

∂EMF

∂α2
= −4J2α2. (5.24d)
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5.1. Model

By differentiating the mean field energy per spin with respect to the parameters, we obtain the fol-
lowing set of self-consistency equations

α1 =
1
2

1

(2π)3

∫∫∫
BZ

d3k
Āk − B̄k cos ka√

Ā2
k − B̄2

k

− 1
2

(5.25a)

β = −1
2

1

(2π)3

∫∫∫
BZ

d3k
Āk
(
cos kb − 1

)√
Ā2

k − B̄2
k

− 1
2

(5.25b)

αc =
1
2

1

(2π)3

∫∫∫
BZ

d3k
Āk − B̄k cos kc√

Ā2
k − B̄2

k

− 1
2

(5.25c)

α2 =
1
2

1

(2π)3

∫∫∫
BZ

d3k
Āk − B̄k cos ka cos kb√

Ā2
k − B̄2

k

− 1
2

, (5.25d)

where
∫ π
−π du cos u = 0 was used to simplify the equation for β. Note that the numerators always

vanish when the dispersion is gapless. Thus, the integrands never diverge.

5.1.4. Staggered magnetization

The staggered magnetization mst is defined1 as the expectation value of the spin operator Sz
i

mst :=
〈
Sz

i
〉
(−1)σ , (5.26)

where σ = 0 for i ∈ A and σ = 1 for i ∈ B. The spins on sublattice B are rotated by an angle of π about
the x-axis so that Sz

i → −Sz
i ∀ i ∈ B. Since the system is translationally invariant after the rotation on

sublattice B, the prefactor of (−1)σ is not required anymore and the staggered magnetization simply
reads

mst = S− 〈n̂i〉 . (5.27)

The expectation value n := 〈n̂i〉 is given by

n =
1
N ∑

i

〈
b†

i bi

〉
=

1
N ∑

k

〈
b†

k bk

〉
=

1
N ∑

k

〈(
β†

k cosh θk + β−k sinh θk

) (
βk cosh θk + β†

−k sinh θk

)〉
. (5.28)

1Consistently, we would have to define mst := |〈Sz
i 〉| (−1)σ because of the definition Sz

i = −S + n̂i in the Dyson-Maleev
representation (3.7).
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5. 3D collinear phase

At zero temperature, 〈. . .〉 is the ground state expectation value and only the highlighted operators
contribute. Thus, the average occupation number per site is

n =
1
N ∑

k
sinh2 θk

=
1

2N ∑
k

(
sinh2 θk + cosh2 θk︸ ︷︷ ︸

cosh 2θk

+ sinh2 θk − cosh2 θk︸ ︷︷ ︸
−1

)
=

1
2N ∑

k

(
cosh 2θk − 1

)
. (5.29)

The value of cosh 2θk has already been determined in (5.15b). Therewith, the staggered magnetization
(5.27) in thermodynamic limit reads

mst = S +
1
2
− 1

2
1

(2π)3

∫∫∫
BZ

d3k
Āk√

Ā2
k − B̄2

k

. (5.30)

In contrast to the set of self-consistency equations (5.25), the integrand of the staggered magnetization
diverges at k = (0, 0, 0) and k = (1, 0, 1).

5.2. Numerics

The set of self-consistency equations (5.25) as well as the staggered magnetization (5.30) have to
be evaluated numerically. The evaluation is implemented in a C++ program, which uses standard
Numerical recipes [82] routines. During the entire runtime of the program, the value of µ is fixed.

The multidimensional integration is broken up into repeated one dimensional integrations, which are
realized either with Gaussian quadrature or Romberg’s integration. In general, the integration in the
Brillouin zone is reduced by symmetry to a cube with 0 ≤ ka ≤ 1, 0 ≤ kb ≤ 1 and 0 ≤ kc ≤ 1 because
cos ki is symmetric about ki = 0. Furthermore, B2

k (5.20) is point symmetric about (0.5, kb, 0.5) in the
ka-kc-plane so that the integration for kc can be limited to 0 ≤ kc ≤ (1− ka). The complete domain of
integration is sketched in Fig. 5.2.

The nonlinear system of self-consistency equations is solved via a multi-dimensional root finding
routine, more precisely Broyden’s multidimensional secant method.

The program always starts with x = 0 in the two dimensional collinear phase, where α1 = αc = β = n
and the integration is reduced to two dimensions. In addition, it is sufficient to integrate ka and kb
from 0 to 0.5 because the k-dependence of the integrand is ∝ (cos ka · cos kb)2. The integral for α2
is non-critical, whereas the integrand of the other parameters and the staggered magnetization mst
diverges at k = (0, 0). Thus, it has to be expanded and integrated analytically around (0, 0). The
domain of integration is then split up in the expanded part and two rectangles, which are handled as
usual with the numerical integration routines. For the expansion, a cube with side length ∆k = 10−3
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5.2. Numerics

kc

kb

ka

1

1

1

Fig. 5.2.: Domain of integration for the self-consistency equations and the staggered magnetization
in the three dimensional collinear phase.

has proven to be suitable. A detailed description of the expansion and the decomposition of the
domain of integration in two dimensions is given in Appendix D.1.

Then, the frustration x is de- or increased with a common increment of 10−3. The procedure in each
step is the following:

At first, the quantum correction parameters α1, α2, αc and β are determined by Broyden’s method.
This requires an initial guess for the solutions for which the values from the previous step are used.
Since there are no divergences in the integrands of the self-consistency equations (5.25), a special
treatment of the equations is not required. After that, the staggered magnetization is calculated by
numerical integration. The domain of integration is split into five parts and the integrand has to be
expanded for small momenta. In contrast to the case for x = 0, the integration of the expansion is
now also done numerically. Therefore, k is substituted by k2 to eliminate the divergence. The complete
description of the decomposition of the domain of integration and the expansion of the integrand of
the staggered magnetization can be found in Appendix D.2. It is checked if the calculation of mst
was successful because the magnetization is strongly renormalized for higher values of x and thus
vanishes very fast. If the numerics fails, the increment is decreased and the program jumps back to
the previous value of x and continues with the new increment. Otherwise, it simply proceeds.

The calculations are stopped either when the program exceeds the predefined maximum value of x
or the maximal number of steps, or when the magnetization cannot be calculated anymore. Further-
more, the spin wave velocity vb (5.22) can vanish, which also causes the program to quit. Physically,
this is related to the break down of the collinear phase driven by the vanishing spin wave velocity
vb. In detail, this is discussed in Section 5.4.

In each step, all exchange constants, the quantum correction parameters, the ratios of the spin wave
velocities and the staggered magnetization are saved. In general, the visualization of the data is real-
ized with gnuplot.
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5. 3D collinear phase

The correctness of the results is verified in various ways. At first, the program has to reproduce the
results for the two dimensional collinear phase for µ = 0. Secondly, the results of the two and three
dimensional Néel phases are obtained when the frustration is switched off and all other exchange
constants are set equal. Furthermore, the two dimensional result is independent of the chosen plane.
This means that the result for the a-b-plane is identical to the one in the a-c-plane and so on in the
isotropic case.

In addition, we implemented the same program in the Schwinger bosons representation. The devia-
tion in the staggered magnetization between both representations is usually in the order of 10−12 −
10−8 due to numerical inaccuracies and a different handling of the diverging integrands. As expected,
the deviation increases when the coupling ratio x approaches its critical value where the numerical
calculations are stopped because of the growing influence of quantum fluctuations. This is a very
nice proof of the equivalence of the equations derived with the Dyson-Maleev representation and
the Schwinger bosons for the three dimensional collinear phase. For the two dimensional Néel phase
(Chapter 4), the equivalence of both representations can easily be seen by comparing the renormal-
ization of the exchange constant in the dispersion for the Dyson-Maleev (4.17) and Schwinger bosons
representation (4.53a). One obtains the result

2 (S− α) ≡ A.

By inserting the corresponding equation for α (4.25) and A (4.50), it is verified that both equations are
equivalent. The same equivalence can be obtained for the three dimensional collinear phase, which
is not shown here.

5.3. Results & discussion

We now present and discuss the results for S = 1/2 and S = 1 for different interlayer couplings
µ = Jc/J1.

For a better understanding of the upcoming results, some results of Section 5.4 are now anticipated.
We define the critical point xcrit as the point where our spin wave theory for the collinear phase breaks
down. We stress that our definition of the critical point does not necessarily have to be identical to
the analytical point of the phase transition. Very likely, our spin wave theory breaks down before.
The exact phase transition can be determined by a direct analysis of the Hamiltonian (5.1). We un-
derline that the resolution of our numerics is limited. Hence, our program is only able to calculate all
parameters up to close proximity to the critical point xcrit and not up to the point where the three di-
mensional collinear phase breaks down entirely. At the critical point, the three dimensional collinear
phase is destabilized because of two different scenarios, which are indicated by the solid and dashed
lines in all plots.

We call the first scenario, indicated by the solid lines, the magnetization-driven scenario where the stag-
gered magnetization vanishes first and the spin wave velocities (5.22) always obtain finite values.
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5.3. Results & discussion

Due to the very sensitive numerics and the strongly growing renormalization of mst, it is only pos-
sible to drive the staggered magnetization close to the point where it vanishes. However, mst can be
extrapolated to zero in the magnetization-driven scenario, which is explained in Section 5.4.

In the second scenario, the spin wave velocity vb (5.22) vanishes first while the staggered magneti-
zation (5.30) always stays finite. Thus, it is called the velocity-driven scenario, which is indicated by
dashed lines in the upcoming plots.

Which scenario occurs depends on the interlayer coupling µ and the value of the spin S. In general,
the magnetization-driven scenario is relevant for small values of µ and S = 1/2 or S = 1. In the
case of strong interlayer couplings or S ≥ 1, the velocity-driven scenario occurs. A more detailed
discussion of the critical point follows in Section 5.4.

5.3.1. Spin S = 1/2

At first, we discuss the results for S = 1/2. The staggered magnetization (Fig. 5.3) first increases with
growing x = J1/J2. While it approaches the critical point, the influence of the quantum fluctuations
grows. Close to xcrit, the staggered magnetization is strongly renormalized and steeply descends.
In the magnetization-driven scenario (solid lines), the curves are extrapolated to zero. The dashed
curves, which belong to the velocity-driven scenario, end at a finite value of mst. The transition be-
tween the magnetization- (solid lines) and velocity-driven (dashed lines) scenario can roughly be
estimated between µ ≈ 0.130-0.135. For µ = 0.135, the staggered magnetization (Fig. 5.3) as well
as the ratio vb/va (Fig. 5.4a) are both very close to zero when the calculation is stopped. This is an
indicator for the transition between both scenarios.

With increasing interlayer coupling µ, the maximum value of the staggered magnetization increases
and the critical point is shifted towards higher values of x. Thus, an increasing interlayer coupling µ
stabilizes the collinear ordered phase, so that it persists over a wider range of x.

The ratios of the spin wave velocities are plotted in Fig. 5.4. The ratio vb/va (Fig. 5.4a) decreases
almost linearly and stays finite in the magnetization-driven scenario (solid lines), while it vanishes
in the velocity-driven scenario (dashed lines). The interlayer coupling only influences the behavior
close to xcrit. In the most part of the collinear ordered phase, the influence of µ is very small because
va and vb are dominated by the frustration x = J1/J2. The ratio vc/va in Fig. 5.4b shows a square
root like behavior ∝

√
xµ, which is expected from Eq. (5.22c). The ratio vc/va always stays finite

and is only decreased due to fluctuations close to the critical point. In the velocity-driven scenario
(dashed lines), an upturn of the curves can be observed which is likely caused by deficiencies in the
numerics.

In Fig. 5.5, the quantities (S− τ) are plotted where τ are the quantum correction parameters α1, α2, αc
and β. The quantities (S− τ) correspond to the renormalization of the exchange constants J1,2,c, which
can be seen in the spin wave dispersion (5.14). The exchange perpendicular to the spin stripes (Fig.
5.5a) is only slightly influenced by the interlayer coupling. With increasing x, the renormalization
increases monotonically. In contrast, the renormalization of the next nearest neighbor exchange (Fig.
5.5b) decreases monotonically. The influence of the interlayer coupling on the next nearest neighbor
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5. 3D collinear phase

exchange is very small throughout the most part of the collinear phase and is only important when x
approaches the critical point. As expected, the renormalization of the interlayer exchange (Fig. 5.5c) is
affected mostly by the interlayer coupling. The influence of the quantum fluctuations decreases with
increasing x and the renormalization of the interlayer exchange becomes more constant. Parallel to
the spin stripes (Fig. 5.5d), the exchange is strongly renormalized which leads to the vanishing spin
wave velocity vb in the velocity-driven scenario. We stress that in both scenarios the renormalization
of all exchange constants obtains a finite value at the critical point. Only when both, the staggered
magnetization and the spin wave velocity, vanish at the same value of x, one could assume that some
exchange constants are renormalized to zero.
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Fig. 5.3.: Staggered magnetization mst as a function of x for S = 1/2. The solid lines corresponds
to the magnetization-driven scenario and are extrapolated to zero. In the velocity-driven scenario
(dashed lines), the staggered magnetization mst always stays finite and positive.
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Fig. 5.4.: Ratios of the spin wave velocities as a function of x for S = 1/2. The magnetization-driven
scenario (solid lines) can clearly be distinguished from the velocity-driven scenario where the spin
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Fig. 5.5.: Renormalization of the exchange constants as a function of x for S = 1/2. The solid lines
correspond to the magnetization-driven scenario, the dashed lines to the velocity-driven scenario.
All curves stop at finite values.
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Fig. 5.5.: (Continued) Renormalization of the exchange constants as a function of x for S = 1/2. The
solid lines correspond to the magnetization-driven scenario, the dashed lines to the velocity-driven
scenario. All curves stop at finite values.
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5.3.2. Spin S = 1

Now we present the results for S = 1 for various interlayer couplings µ. The qualitatively behavior
is identical to the one found for S = 1/2. Of course, the quantities are larger due to the larger value
of the spin. As before, the magnetization-driven (solid lines) and velocity-driven scenario (dashed
lines) are present.

The staggered magnetization in Fig. 5.6 is almost constant for the most part of the collinear phase.
However, when the frustration x approaches its critical value, the staggered magnetization is strongly
renormalized. Under the influence of an interlayer coupling, the staggered magnetization slightly in-
creases and becomes stabilized even more for a wider range of x, but it drops faster upon approaching
the critical point. Compared to the case of S = 1/2, the critical point is shifted less with increasing
µ.

By regarding the staggered magnetization in Fig. 5.6 as well as the ratio vb/va in Fig. 5.7a, the transi-
tion between the magnetization-driven and velocity-driven scenario can be estimated to occur close
to µ ≈ 0.01. This is a much smaller value compared to µ ≈ 0.13 - 0.14 for S = 1/2. A detailed
discussion follows in the next section.

The ratios vb/va and vc/va of the spin wave velocities are plotted in Fig. 5.7. No qualitatively differ-
ence compared to the case of S = 1/2 is observed. The ratio vc/va (Fig. 5.7b) resembles the square
root like behavior ∼ √xµ as expected from Eq. (5.22c).

In Fig. 5.8, the renormalization of the exchange due to the quantum correction parameters α1, α2, αc
and β is plotted. While the exchange perpendicular to the spin stripes (Fig. 5.8a) is very stable and
strictly monotonically increasing with increasing x, the exchange parallel to the stripes (Fig. 5.8b) is
strongly renormalized, which causes that the spin wave velocity vb vanishes in the velocity-driven
scenario. As expected, the next nearest neighbor exchange (Fig. 5.8d) is also strongly renormalized
with increasing frustration. In contrast to the exchange perpendicular to the spin stripes, it is strictly
monotonically decreasing. For small interlayer couplings µ, the exchange along the c-direction (Fig.
5.8c) is still strongly renormalized, but it adopts a more and more constant value for stronger inter-
layer couplings.
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Fig. 5.6.: Staggered magnetization mst as a function of x for S = 1. The solid lines belong to
the magnetization-driven scenario and are extrapolated to zero. In the velocity-driven scenario
(dashed lines), the staggered magnetization mst always stays finite and positive.
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Fig. 5.8.: Renormalization of the exchange constants as a function of x for S = 1. The solid lines
correspond to the magnetization-driven scenario, the dashed lines to the velocity-driven scenario.
All curves stop at finite values.
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Fig. 5.8.: (Continued) Renormalization of the exchange constants as a function of x for S = 1. The
solid lines correspond to the magnetization-driven scenario, the dashed lines to the velocity-driven
scenario. All curves stop at finite values.
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5.4. Critical point

5.4. Critical point

We discuss the critical point xcrit, more precisely the value of x where the spin wave theory for our
model (5.1) breaks down. During the discussion of the numerical results in the previous section, it
has already been mentioned that two scenarios depending on the coupling ratio µ = Jc/J1 exist.
While in the magnetization-driven scenario the staggered magnetization vanishes first and the spin
wave velocities stay finite and positive, the situation is vice versa in the velocity-driven scenario.
At first, we tried to study the critical point numerically with multidimensional root finding, which
failed because of the very sensitive numerics. The following results are based on a detailed study of
the magnetization curves in dependence of different sets of parameters.

The existence of the two scenarios can easily be seen when the ratio vb/va of the spin wave velocities
is plotted as a function of the staggered magnetization. The results for S = 1/2 are shown in Fig. 5.9
and the results for S = 1 are shown in Fig. 5.10. The lower plots in these figures are magnifications
of the upper plots for small values of vb/va and mst. To determine the value of µ = Jc/J1 where
the transition between both scenarios occurs, curves for additional values of µ have been added to
the lower plots. As before, curves belonging to the magnetization-driven scenario are represented by
solid lines and curves in the velocity-driven scenario are represented by dashed lines.

We now discuss the result for S = 1/2 in detail. In terms of the parameter x = J1/J2, the plots have
to be read from right to left. All curves in Fig. 5.6 decrease monotonically in the ratio vb/va, while
mst first increases and then decreases. The scenarios are simply distinguished by the endpoint of the
curves.

In the first scenario (solid lines), the ratio vb/va always stays finite and positive and the staggered
magnetization mst goes to zero. Thus, we call this scenario the magnetization-driven scenario be-
cause the breakdown of the collinear phase is connected to the vanishing magnetic long range order.
However, the influence of quantum fluctuations rapidly grows in the vicinity of the phase transition,
which leads to a strong renormalization of the exchange. This fast renormalization lies beyond the
resolution of our numerics. Broyden’s algorithm fails to determine the correct quantum correction
parameters, which results in unphysical dispersions where ω2

k < 0 for some k-values. We stress that
these k-values are not the gapless Goldstone modes. Thus, the numerics fails and the calculation is
stopped before the staggered magnetization mst drops to zero. Hence, we are only able to calculate
the staggered magnetization up to a finite positive value. The curves of the magnetization-driven
scenario in Fig. 5.9 are extrapolated to zero magnetization by fitting a polynomial of degree three to
the last data points of the curves. Once more, we underline that the finite positive value of mst is a
consequence of the deficiencies in the numerics. Physically, the staggered magnetization has to drop
to zero. In the two dimensional collinear phase (µ = 0), the staggered magnetization can adopt any
possible value due to the strong renormalization and the integral in (5.30) diverges logarithmically
for x → xcrit.

Following a suggestion of Smerald and Shannon [83], an additional coupling between the collinear
ordered planes cuts the logarithmic divergence. Thus, in three dimensions the staggered magnetiza-
tion at the critical point xcrit cannot adopt any arbitrary value anymore. Instead, the staggered mag-
netization adopts a finite value depending on the interlayer coupling µ. If the value of µ is not too
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Fig. 5.9.: Ratio vb/va as a function of the staggered magnetization for S = 1/2. The solid lines corre-
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dotted lines are extrapolations in the magnetization-driven scenario. The kinks in the dashed lines
occur when the increment of x is decreased during the numerical calculation.
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large, it will still be possible to drive the magnetization to zero. According to Smerald and Shannon,
the minimum value of the staggered magnetization at the critical point is connected to the maximum
possible interlayer coupling ratio µmax via the relation

µmax = C · exp
(
ξmst

)
. (5.31)

This relation can be derived by expanding the integrand in the staggered magnetization (5.30) be-
cause the integral is dominated by the spin waves near the magnetic ordering vector for antiferro-
magnetic J1 > 0. The expanded integrand is integrated in three dimensions up to a large momentum
cutoff. Therewith, one obtains the relation (5.31) which can be used to extrapolate the curves in the
magnetization-driven scenario to zero.

We want to determine the interlayer coupling µ so that the staggered magnetization mst vanishes at
xcrit. Therefore, mst and µ are plotted for this fixed value of xcrit and the relation (5.31) is fitted to the
last four or five data points. The value of µ, for which the staggered magnetization at xcrit vanishes,
is determined by (5.31) to µ(mst = 0) = C. By repeating this procedure for different values of x, one
obtains data points (xcrit, µ) which resemble the dependence of the critical point on the interlayer
coupling µ. The data pairs (xcrit, µ) are plotted for S = 1/2 in Fig. 5.11a. The observed dependence is
almost linear.

Returning to Fig. 5.9, we now discuss the dashed lines which correspond to the second scenario. We
call it the velocity-driven scenario because the spin wave velocity vb vanishes first and the calculation
of the staggered magnetization mst is truncated at a finite positive value. The phase transition is
driven by the vanishing spin wave velocity, which leads to the breakdown of the collinear phase. The
finite positive value of the staggered magnetization is somehow surprising because a magnetic long
range order still persists when the collinear phase ceases to exist. The possibility of a vanishing vb
can also be expected from Eq. (5.22b). In the velocity-driven scenario, the numerics is not as sensitive
as in the magnetization-driven scenario. The dashed curves in Fig. 5.9 are calculated down to small
values of vb/va. As v2

b ∝ 2J2(S− α2)− J1(S− β), imaginary values for vb are possible which cause
the numerics to abort. We stress that the velocity-driven scenario only occurs in three dimensions
because in the two dimensional system mst diverges for x → xcrit.

In the case of S = 1/2, the transition from the magnetization- to the velocity-driven scenario seems
to occur between 0.134 . µ . 0.135, which can roughly be estimated in the lower plot of Fig. 5.9.
Starting from the magnetization-driven scenario with µ = 0.134, one observes that the curves move
down the y-axis and approach the origin with increasing µ. Thus, the magnetization-driven scenario
stretches across the range of approximately 0 ≤ µ . 0.134. The exact value of µ where the transition
occurs, could be captured by the curve ending in the origin. If the interlayer coupling is further
increased, the curves enter the velocity-driven scenario where they stop on the x-axis.

In addition, we briefly discuss the plots for S = 1 which are shown in Fig. 5.10. The qualitatively be-
havior is identical to the case of S = 1/2. The difference is observed in the range of the magnetization-
driven scenario. By tracing the curves in the lower plot of Fig. 5.10, the transition between both sce-
narios can be estimated roughly at µ ≈ 0.01. Thus, the magnetization-driven scenario for S = 1
persists in the range of 0 ≤ µ . 0.01, which is much smaller compared to the case for S = 1/2. The
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dard deviation determined by the fit of the relation (5.31).
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5. 3D collinear phase

extrapolated dependence of the critical point xcrit on the interlayer coupling µ in the magnetization-
driven scenario is shown in Fig. 5.11. As in the case of S = 1/2, the dependence is almost linear.

Keeping the staggered magnetization curves 5.6 and 5.3 in mind, it is peculiar that the transition
between the scenarios is in both cases located at values of µ where the critical point crosses x ≈ 2.0.
Although we cannot provide a satisfying reason for the observed behavior, we underline that in
the classical limit of the two dimensional frustrated Heisenberg model on the square lattice a phase
transition is located at x = 2 [84].

The question arises, what happens for larger spins S > 1. Therefore, the ratio vb/va in the two di-
mensional collinear phase is again plotted as a function of mst in Fig. 5.12, this time for various values
of the spin. We observe for S ≥ 3/2 that the magnetization-driven scenario does not appear and the
velocity-driven scenario becomes the standard scenario. Hence, the breakdown of the collinear phase
is always driven by the vanishing spin wave velocity vb for S ≥ 3/2. At first, this might be surpris-
ing, but it can merely be seen as a consequence of the shrinking range of the magnetization-driven
scenario, which even reduces strongly from S = 1/2 to S = 1.
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Fig. 5.12.: Ratio vb/va as a function of mst renormalized to the spin S. The dominance of the
velocity-driven scenario is obvious. The solid lines correspond to the magnetization-driven sce-
nario, the dashed lines to the velocity-driven scenario. The dotted lines are extrapolations in the
magnetization-driven scenario.
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6. 3D collinear phase with biquadratic exchange

The general existence of a biquadratic exchange term for S ≥ 1 and its relevance for the iron pnic-
tides has been discussed in the introduction in Section 2.7. In the last chapter, it was shown that the
renormalization due to quantum mechanical fluctuations leads to an anisotropic exchange within
the a-b-plane. Perpendicular to the spin stripes, the effective exchange is strengthened up to 20%,
while parallel to the spin stripes the effective exchange is weakened. But in case of the iron pnictides,
neutron scattering studies [9, 10] revealed a much stronger anisotropy within the collinear ordered
layers.

Thus, we now study the Hamiltonian

H = J1 ∑
〈i,j〉

Si · Sj + J2 ∑
〈〈i,j〉〉

Si · Sj + Jc ∑
[i,j]

Si · Sj − Jbq ∑
〈i,j〉

(
Si · Sj

)2
, (6.1)

where an in-plane biquadratic exchange (Jbq > 0) has been introduced. The biquadratic exchange
is well known from the previously discussed Néel phase in Chapter 4. Based on these result, we
now have to decouple the exchange for ferromagnetic bonds parallel to the spin stripes. Luckily, no
further analytical calculations are required. Hence, we can directly discuss the results, which show
an increasing anisotropy for the effective in-plane exchange constants (6.22).

6.1. Model

6.1.1. Mean field approximation

The decoupling of the biquadratic exchange for antiferromagnetic bonds in terms of the Dyson-
Maleev representation has already been discussed in Chapter 4. With (4.10) and (4.11), the mean
field Hamiltonian for nearest neighbor exchange perpendicular to the spin stripes is written as

HMF
⊥ = J1a (α1) (S− α1) ∑

〈i,j〉

(
n̂i + n̂j + b†

i b†
j + bi bj

)
, (6.2)

where

J1a (α1) := J1 + Jbq
2S3 − 2S2(1 + 5α1) + S(18α2

1 + 8α1 + 1)− 12α3
1 − 9α2

1 − 2α1

S− α1
(6.3)



6. 3D collinear phase with biquadratic exchange

has been introduced for convenience. We use the same expectation values as defined in Section
5.1.1.

In addition, we introduce the decoupling for ferromagnetic bonds parallel to the spin stripes. In the
Dyson-Maleev representation (3.7), the biquadratic term reads(

Si · Sj

)2
∣∣∣∣
‖

= S4

− 2S3
(

n̂i + n̂j − F̂0

)
+ S2

[
n̂2

i + n̂2
j + 4n̂in̂j + F̂2

0 −
(

n̂i + n̂j

)
F̂0 − F̂0

(
n̂i + n̂j

)
− F̂′0

]
+ S

[
−2
(

n̂in̂2
j + n̂2

i n̂j

)
+ n̂in̂j F̂0 + F̂0n̂in̂j

+
1
2

(
−F̂0 F̂′0 − F̂′0F̂0 +

(
n̂i + n̂j

)
F̂′0 + F̂′0

(
n̂i + n̂j

))]
+ n̂2

i n̂2
j +

1
4

F̂′20 −
1
2

(
n̂i n̂j F̂′0 + F̂′0n̂i n̂j

)
,

(6.4)

where

F̂0 := b†
i bj + b†

j bi (6.5a)

F̂′0 := b†
i n̂i bj + b†

j n̂j bi . (6.5b)

Wick’s theorem is applied to all terms of order S2 and lower. Consequently, the biquadratic exchange
term decouples as(

Si · Sj

)2
∣∣∣∣MF

= −
[
2S3 − 2S2 (1 + 5β

)
+ S(18β2 + 8β)− 12β3 − 9β2 − β

]
·
(

n̂i + n̂j − F̂0

)
+ const. .

(6.6)

The single prefactors of each term are listed in Appendix B.2. Besides the parameter β, the decou-
plings of the antiferromagnetic and ferromagnetic terms are very similar. In the case of a ferromag-
net, the term +1 in S(18β2 + 8β) is lacking and the linear contribution of β in O(S0) does not have
the prefactor two in Eq. (6.6).

In case of the antiferromagnet, the data from the exact diagonalization and the series expansion pro-
vided a welcomed check of the mean field approximation. Unfortunately, there is no data available to
perform the same check for the ferromagnet. However, the lack of the term +1 in order S can roughly
be checked by regarding the energy difference between an ideal ferromagnetic ground state where
all spins are parallel and an excited state with ∆m = 1. For bilinear and biquadratic exchange, the
Dyson-Maleev formalism reproduces the exact result, which is

∆E = JS + Jbq

(
2S3 − 2S2

)
(6.7)
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for a bond with one excitation. The exact result is obtained by simply applying the spin ladder op-
erators (3.1a) to the states. The ground state of a ferromagnet is free from fluctuations. Hence, β = 0
leads to the same result within the Dyson-Maleev representation and the existence of a constant term
in O(S), precisely in S(18β2 + 8β), is excluded.

By inserting the decoupling of the bilinear and biquadratic exchange, one derives the mean field
Hamiltonian for the ferromagnetic exchange parallel to the spin stripes

HMF
‖ = J1b

(
β
) (

S− β
)

∑
〈i,j〉

(
n̂i + n̂j − b†

i bj − b†
j bi

)
, (6.8)

where

J1b
(

β
)

:= J1 + Jbq
2S3 − 2S2 (1 + 5β

)
+ S(18β2 + 8β)− 12β3 − 9β2 − β

S− β
(6.9)

has been introduced.

No further steps are required. We simply write down the diagonal Hamiltonian by replacing the
nearest neighbor exchange constant J1 by the effective couplings J1a (α1) and J1b

(
β
)
, respectively.

Thus, we obtain the diagonal Hamiltonian as

HMF = ∑
k

ωkβ†
k βk + EMF, (6.10)

where

ωk := 2
√

A2
k − B2

k (6.11)

EMF := ∑
k

(√
A2

k − B2
k − Ak

)
(6.12)

with

Ak := 2J2 (S− α2) + J1a (α1) (S− α1) + Jc (S− αc) + J1b
(

β
) (

S− β
) (

cos kb − 1
)

(6.13a)
Bk := J1a (α1) (S− α1) cos ka + Jc (S− αc) cos kc + 2J2 (S− α2) cos ka cos kb. (6.13b)

As expected, the Goldstone modes are still located at (0, 0, 0) and (1, 0, 1).

For convenience, it is once again helpful to express all quantities in units of J2. Therefore, the relative
exchange constants

x1a (α1) := x + xν
2S3 − 2S2(1 + 5α1) + S(18α2

1 + 8α1 + 1)− 12α3
1 − 9α2

1 − 2α1

S− α1
(6.14a)

x1b
(

β
)

:= x + xν
2S3 − 2S2 (1 + 5β

)
+ S(18β2 + 8β)− 12β3 − 9β2 − β

S− β
(6.14b)
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6. 3D collinear phase with biquadratic exchange

with

ν :=
Jbq

J1
(6.15)

are introduced. Consequently, Ak and Bk are mapped to

Āk := 2 (S− α2) + x1a (α1) (S− α1) + xµ (S− αc) + x1b
(

β
) (

S− β
) (

cos kb − 1
)

(6.16a)
B̄k := x1a (α1) (S− α1) cos ka + xµ (S− αc) cos kc + 2 (S− α2) cos ka cos kb. (6.16b)

6.1.2. Spin wave velocities

The spin wave velocities along the crystal axis are obtained by replacing the exchange constant J1 in
Eq. (5.22) by the effective couplings J1a(α) (6.3) or J1b(β) (6.9), respectively:

va = 2
√[

2J2 (S− α2) + J1a (α1) (S− α1) + Jc (S− αc)
] [

2J2 (S− α2) + J1a (α1) (S− α1)
]

(6.17a)

vb = 2
√[

2J2 (S− α2) + J1a (α1) (S− α1) + Jc (S− αc)
]
[2J2 (S− α2)− J1b

(
β
) (

S− β
)
] (6.17b)

vc = 2
√[

2J2 (S− α2) + J1a (α1) (S− α1) + Jc (S− αc)
]

Jc (S− αc). (6.17c)

Therewith, the ratios of the velocities with respect to va result in

vb

va
=

√
2 (S− α2)− x1b

(
β
) (

S− β
)

2 (S− α2) + x1a (α1) (S− α1)
(6.18a)

vc

va
=

√
xµ (S− αc)

2 (S− α2) + x1a (α1) (S− α1)
. (6.18b)

6.1.3. Self-consistency equations

The self-consistency equations are unchanged, but one has to be aware that the effective exchange
constants are functions of the quantum correction parameters. In contrast to (5.24), the two self-
consistency equations for α1 and β are given as

1
N

∂EMF

∂α1
= −2α1

∂

∂α1

(
J1a (α1) (S− α1)

)
(6.19a)

1
N

∂EMF

∂α1
= 2J1β

∂

∂α1

(
J1b
(

β
) (

S− β
))

, (6.19b)
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6.2. Numerics

while the equations for α2 and αc remain unchanged. The partial derivatives cancel out anyway and
the full set of self-consistency equations reads

α1 =
1
2

1

(2π)3

∫∫∫
BZ

d3k
Āk − B̄k cos ka√

Ā2
k − B̄2

k

− 1
2

(6.20a)

αc =
1
2

1

(2π)3

∫∫∫
BZ

d3k
Āk − B̄k cos kc√

Ā2
k − B̄2

k

− 1
2

(6.20b)

α2 =
1
2

1

(2π)3

∫∫∫
BZ

d3k
Āk − B̄k cos ka cos kb√

Ā2
k − B̄2

k

− 1
2

(6.20c)

β = −1
2

1

(2π)3

∫∫∫
BZ

d3k
Āk
(
cos kb − 1

)√
Ā2

k − B̄2
k

− 1
2

, (6.20d)

with Āk, B̄k defined in Eq. (6.16). We underline once more, that the self-consistency equations (6.20)
are very similar to the ones for the three dimensional collinear phase without biquadratic exchange
(5.25). Only the parameter x = J1/J2 for the in-plane nearest neighbor exchange is to be replaced by
x1a(α) (6.14a) or x1b(β) (6.14b), respectively.

6.1.4. Staggered magnetization

Carrying out the well known replacements in (5.30), we obtain the staggered magnetization

mst = S +
1
2
− 1

2
1

(2π)3

∫∫∫
BZ

d3k
Āk√

Ā2
k − B̄2

k

(6.21)

with biquadratic exchange.

6.2. Numerics

The adaption in the numerics is just as easy as the analytical derivation. One simply has to imple-
ment the effective exchange constants as functions of the quantum correction parameters and do all
the replacements correctly. Further adjustments are not required. During numerical evaluation, the
parameters µ and ν are now fixed, while x, starting at x = 0, is again de-/increased.

The program was also implemented within the Schwinger bosons formalism. In agreement with the
results from Chapter 4, the influence of the biquadratic exchange is very much stronger than in the
Dyson-Maleev representation. Based on our previous finding, we do not give any results for the
Schwinger bosons because we think that the mean field approximation is insufficient in this case.
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6. 3D collinear phase with biquadratic exchange

6.3. Results & Discussion for spin S = 1

We discuss the results for S = 1 and µ = 0.25, which is a generic choice for the interlayer coupling.
The values of ν are chosen as a result of the discussion of the spin spiral calculations in Section 2.7.2.
For comparison, we also show the results without biquadratic exchange.

Starting with the staggered magnetization in Fig. 6.1, the influence of the biquadratic exchange desta-
bilizes the collinear phase and drives the critical point towards lower values of x = J1/J2. There is
only a negligible influence on the maximum value of mst, which is also pushed further left.

Of great interest is the effect of the biquadratic exchange on the renormalization of the exchange
parameters, shown in Fig. 6.2. While the exchange perpendicular to the spin stripes (Fig. 6.2a) is
strongly renormalized and thereby strengthened by a factor > 2, the exchange parallel to the spin
stripes (Fig. 6.2b) almost stays constant, except for small frustrations and in proximity to the critical
point. Because the biquadratic exchange in the Hamiltonian (6.1) is restricted to in-plane next nearest
neighbor sites, the only effect on the renormalization of the interlayer (Fig. 6.2c) and next nearest
neighbor exchange (Fig. 6.2d) is the shift of the critical point to smaller values of x.

For our model of the three dimensional collinear phase with biquadratic exchange, the effective ex-
change constants are given by

J̃1a := J1a (α1) (S− α1) (6.22a)
J̃1b := J1b

(
β
) (

S− β
)

(6.22b)
J̃c := Jc (S− αc) (6.22c)
J̃2 := J2 (S− α2) . (6.22d)

In Fig. 6.3, the effective exchange in a- and b-direction is plotted in units of the exchange constant J2.
The exchange perpendicular to the spin stripes (Fig. 6.3a) is strengthened because of the biquadratic
term. Parallel to the spin stripes (Fig. 6.3b), the effective exchange lies only slightly above the iden-
tity x. Consequently, the influence of an in-plane biquadratic exchange stresses the anisotropy as
desired.

The ratios of the spin wave velocities (Fig. 6.4) are weakened, since the strengthening of the exchange
perpendicular to the stripes leads to a greater spin wave velocity va. In general, the qualitative be-
havior of the ratios is very similar to the one observed without biquadratic exchange (Fig. 5.4 and
5.7).

All in all, a biquadratic exchange acting on in-plane nearest neighbor sites strengthens the anisotropy
of the exchange parallel and perpendicular to the spin stripes. The growing anisotropy with increas-
ing biquadratic exchange ν = Jbq/J1 is caused by the very strong renormalization of the exchange
perpendicular to the spin stripes. The exchange parallel to the spin stripes experiences a marginal
strengthening and is only weakened in proximity to the critical point. Hence, the biquadratic ex-
change never induces an effective ferromagnetic exchange J̃1b < 0 in b-direction.

In addition, we note that at the critical point the spin wave velocities (Fig. 6.4) as well as the staggered
magnetization (Fig. 6.1) always obtain finite values. A detailed study of the numerics shows that the
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6.3. Results & Discussion for spin S = 1

all curves in Fig. 6.4a stop at the last value of x where (vb/va)2 > 0. For the next regular value of
x, the parameter (vb/va)2 is already negative which results in ω2

k < 0 and the numerical calculation
is aborted. The very steep descend of the ratio vb/va lies beyond the resolution of our numerics.
Thus, calculations with a very small increment for the coupling x did not bring much improvement
to drive the curves closer to zero. All together, we suggest the all curves are located in the velocity-
driven scenario, where the collinear phase ceases to exist because of the vanishing spin wave velocity
vb. The magnetization always obtains finite positive values. The occurrence of the velocity-driven
scenario is also stressed by the value of the interlayer coupling µ = 0.25 which corresponds to the
velocity-driven scenario, see Section 5.4 for details.

In the next chapter, our model is fitted to experimentally measured spin wave dispersions. Thus,
we display the spin wave dispersions in units of J2 in Fig. 6.5. Along the high-symmetric a- and
c-direction (Fig. 6.5a), the maximum values of the dispersion grow with increasing biquadratic ex-
change, while the line shape is unchanged. In contrast, the local minimum at k = (0, 1, 0) along
the b-direction (Fig. 6.5b) rises. The minimum would vanish for an effective ferromagnetic exchange
which can bee seen in the dispersion (6.11). For J̃1b < 0, the component Ak (6.13a) of ωk has its max-
imum at k = (0, 1, 0). An effective ferromagnetic exchange parallel to the spin stripes would imply
unfrustrated magnetism.
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Fig. 6.1.: Staggered magnetization as a function of x for S = 1 and µ = 0.25. All curves are in the
velocity-driven scenario and the magnetization always obtains finite positive values.
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(a) Renormalization of the exchange perpendicular to the spin stripes.
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(b) Renormalization of the exchange parallel to the spin stripes.

Fig. 6.2.: Renormalization due to quantum fluctuations as a function of x for S = 1 and µ = 0.25. All
curves are in the velocity-driven scenario.

90



6.3. Results & Discussion for spin S = 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2

S
-α

c

x=J1/J2

ν=0
ν=0.3
ν=0.4
ν=0.5
ν=0.6
ν=0.7

(c) Renormalization of the interlayer exchange.
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(d) Renormalization of the next nearest neighbor exchange.

Fig. 6.2.: Renormalization due to quantum fluctuations as a function of x for S = 1 and µ = 0.25. All
curves are in the velocity-driven scenario.
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(a) Perpendicular to the spin stripes.
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(b) Parallel to the spin stripes.

Fig. 6.3.: Effective in-plane exchange constants in units of J2 as a function of x for S = 1 and µ = 0.25.
All curves are in the velocity-driven scenario.
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Fig. 6.4.: Ratios of the spin wave velocities as a function of x for S = 1 and µ = 0.25. All curves are
in the velocity-driven scenario. The ratio vb/va vanishes, which lies beyond the resolution of our
numerics.
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(a) Perpendicular to the spin stripes and between the layers.
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Fig. 6.5.: Dispersion in units of J2 along high-symmetry directions in the Brillouin zone for S = 1,
x = 1 and µ = 0.25.
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7. Iron pnictides

This chapter deals with the application of our previously discussed models to iron pnictides. The iron
pnictides have been introduced in Section 2.1. In Section 2.2, the extended and frustrated Heisenberg
model has been motivated to study the magnetic excitations in these iron-based compounds. We
choose S = 1 as an appropriate value for the spin [11]. This choice is based on successful studies of
two-band models [85]. Furthermore, iron has an even number of electrons in its outer shell, which
results in an integer spin. The values S = 0 and S = 1 are also possible, but the resulting local
moment would be too weak or too strong compared to the measured local moment.

We now discuss different experimental results for the 122 compounds and fit our model with and
without biquadratic exchange to spin wave velocities measured by inelastic neutron scattering. Most
of the experimental studies concentrate on the 122 pnictides because high-quality samples are avail-
able for this family of the iron pnictide.

Alternatively, it is also possible to determine the value of x = J1/J2 by reproducing the local magnetic
moment. But this is very ambiguous, since the local moment can depend on a variety of effects, such
as itineracy and hybridization, while the spin wave velocities only depend on the Hamiltonian.

The determined frustration x reveals, whether the strong reduction of the local magnetic moment
can be explained by quantum fluctuations, as it was the case for the two dimensional collinear phase
[11].

As already mentioned, the best method for studying magnons is inelastic neutron scattering. Hence,
we also discuss the dynamical structure factor for one scenario, which is then compared to measured
neutron scattering intensities.

7.1. Results for the 3D collinear phase

At first, we discuss the three dimensional collinear phase without biquadratic exchange. This extends
the study of the two dimensional collinear phase by Uhrig et al. [11] to a higher dimension. Our model
(Chapter 5) is based on self-consistent spin wave theory, which is an improvement compared to the
work by Yao and Carlson [53, 54]. Their studies are based on linear spin wave theory. In addition, we
do not introduce an ab-initio anisotropic exchange within the collinear ordered layers. In our studies,
the anisotropy is induced by quantum fluctuations.



7. Iron pnictides

7.1.1. SrFe2As2 & BaFe2As2

Early neutron scattering studies for SrFe2As2 [8] and BaFe2As2 [37] were not able to extract the spin
wave dispersion along all crystal axis. No measurement for the spin wave velocity vb was available.
For the velocities perpendicular to the stripes and between the layers, the values

va ≈ 205 meV
vc ≈ 45 meV

were determined. Due to the lack of experimental data, Ong et al. [86] suggested

vb ≈ 10− 30 meV.

The determined range is based on an analysis of experimental data on the temperature dependence
of the staggered magnetization, which is based on a non-linear σ-model. Thus, the ratios of the spin
wave velocities

vb

va
= 0.049-0.146

vc

va
= 0.220

were obtained, where two decimal places should be accurate.

Now, we fit our model of the three dimensional collinear phase (Chapter 5) to the spin wave velocities
presented above. The fitting is done numerically via a two dimensional root finding, based on Broy-
den’s multidimensional secant method. The coupling ratios x and µ of our model are determined by
the ratios vb/va and vc/va of the spin wave velocities. In addition, a second Broyden routine which
determines the quantum correction parameters, is called within the first one. Both routines need ini-
tial guesses for all parameters, which are taken from the corresponding plots in Section 5.3.2. For
our analysis, we restrict ourselves to vb = 20 meV, which leads to vb/va = 0.098. Therewith, we
numerically determined the ratios

x = 1.974
µ = 0.114.

The first two decimal places should be accurate. In addition, we give the third decimal place.

Consequently, the iron pnictides are close to a quantum phase transition for the range of vb deter-
mined by Ong et al. and the reduction of the static local magnetic moment can be explained by quan-
tum fluctuations. The determined value of x agrees with previous results from the two dimensional
collinear phase by Uhrig et al. [11].
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7.1. Results for the 3D collinear phase

va vb vc vb/va vc/va

Zhao et al. 181 127 44 0.704 0.246
Diallo et al. 187 135 42 0.722 0.222
Ong et al. 205 10-30 45 0.049-0.146 0.220

Tab. 7.1.: Extracted spin wave velocities (in meV) from neutron scattering studies by Zhao et al. [10]
and Diallo et al. [9]. For completeness, we also display the velocities for Ba/SrFe2As2 proposed by
Ong et al. [86]. Diallo’s velocities are very accurate because they fitted only three parameters to the
measured dispersion. Zhao et al. fitted all four exchange parameters J1a, J1b, J2 and Jc and received
greater standard deviations. Thus, the standard deviation is much higher for Zhao’s velocities. For
the ratios, two decimal places should be exact. The the third decimal place is given in addition.

7.1.2. CaFe2As2

The latest neutron scattering studies in iron pnictides concentrate on the 122 pnictide CaFe2As2. We
discuss the data obtained by Zhao et al. [10] and Diallo et al. [9]. The experimentalists fit a dispersion
obtained within linear spin wave theory (see Section. 3.1.1) to the experimental data. In order to
obtain proper results, they have to assume anisotropic exchange constants J1a and J1b for the in-plane
nearest neighbor exchange. To extract the spin wave velocities, we expand the fitted dispersion for
small momenta. The velocities can easily be calculated by inserting the fitted exchange constants,
which are given in the papers. We neglect the single ion anisotropy, which leads to a small gap in
the order of 5 meV in the measured dispersions. The extracted spin wave velocities for Zhao’s and
Diallo’s data are listed in Tab. 7.1.

Both experimental results are in very good agreement. In sharp contrast to the value of vb suggested
by Ong et al., both measured values are of a much higher magnitude. Thus, this leads to an entirely
different scenario than the one by Ong et al..

The parameters x and µ of our model in three dimensional collinear phase are again determined
numerically, as described in the previous section. The determined coupling ratios of our model are
listed in Tab. 7.2. Accordingly, both results are located deep in the frustrated phase. This agrees with
previous results (Fig. 5.7 and 6.4), which indicate that a system with a high ratio vb/va cannot reside
close to a quantum phase transition. As expected, the interlayer coupling is much smaller than the
nearest neighbor coupling. It is stronger for Zhao’s data than for Diallo’s data, since they measured
a higher value for vc.

7.1.3. Discussion

The results of the two previous sections yield an inconsistent picture. When we adjust our model to
the spin wave velocities proposed by Ong et al., we reproduce the result from the two dimensional
collinear phase [11] that the iron pnictides are in the vicinity of a quantum phase transition. In con-
trast, we obtain x ≈ 0.7-0.8 for the complete sets of experimentally measured spin wave velocities
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7. Iron pnictides

x = J1/J2 µ = Jc/J1

Zhao et al. 0.760 0.245
Diallo et al. 0.716 0.211
Ong et al. 1.974 0.114

Tab. 7.2.: Obtained parameters for our model of the three dimensional collinear phase (Chapter 5). To
determine the parameters, our model was fitted to experimental ratios of the spin wave velocities
measured by Zhao et al. [10] and Diallo et al. [9]. For completeness, we also display the results for
the scenario proposed by Ong et al. [86]. The first two decimal places of the parameters should be
exact.

J1 Jc J2 J̃1a J̃1b J̃c J̃2 JLSW
1a JLSW

1b JLSW
c JLSW

2

Ong et al. 50.8 5.8 25.7 59.0 40.2 4.8 20.6 - - - -
Zhao et al. 23.2 5.7 30.5 22.6 21.6 5.3 32.5 49.9 −5.7 5.3 18.9
Diallo et al. 23.1 4.9 32.3 22.4 21.4 4.5 34.6 - - - -

Tab. 7.3.: Exchange constants and effective exchange constants (7.1) in meV for our model of the three
dimensional collinear phase. The values are determined so that the spin wave velocities in Tab.
7.1 are reproduced. In addition, the exchange constants JLSW

i obtained in linear spin wave theory
by Zhao et al. [10] are given. These exchange constants are not available for Ong’s and Diallo’s
data. Diallo fitted three parameters which are linear combinations of the four exchange constants
appearing in the Hamiltonian.

for CaFe2As2. Hence, the experimental data from Zhao et al. and Diallo et al. leads to the conclusion
that the iron pnictides reside deeply in the frustrated phase.

In order to decide which set of spin wave velocities is to be preferred for further investigations, we
now discuss the whole spin wave dispersion.

Therefore, we have to determine the value of the next nearest neighbor coupling J2 in the dispersion
(5.14). This is simply done by adapting the proposed values of the spin wave velocity vb (see Tab.
7.1). After that, the values of the couplings J1 and Jc can be calculated with the values of x = J1/J2
and µ = Jc/J1 (see Tab. 7.2). In addition, we calculate the effective exchange constants, given as

J̃1a := J1 (S− α1) (7.1a)
J̃1b := J1

(
S− β

)
(7.1b)

J̃c := Jc (S− αc) (7.1c)
J̃2 := J2 (S− α2) . (7.1d)

The results can be found in Tab. 7.3.

In Fig. 7.1, the dispersion of the three dimensional collinear phase (5.14) is plotted for the parameters
in Tab. 7.3 along a highly symmetric path through the Brillouin zone. In addition, the dispersion is
compared with inelastic neutron scattering data from Zhao et al. [10].
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7.1. Results for the 3D collinear phase

The results along ka and kc (Fig. 7.1a) agree very well for all results. No big difference in the qualitative
behavior can be seen. The maximum values for Ong et al. are a bit higher because the measurements
for Sr/BaFe2As2 yield higher spin wave velocities along the a-direction. The parameters obtained
by the fits of our model to Zhao’s and Diallo’s data reproduce the corresponding inelastic neutron
scattering data for CaFe2As2 very well.

In contrast, discrepancies along the b-direction (Fig. 7.1b) are observed. Due to the very small spin
wave velocity vb, Ong’s scenario differs enormously from the other results. A deviation similar to the
other high-symmetric directions would rather be acceptable. However, there is also the possibility
that a magnetic mode located at very low energies along kb has been missed by the experimental-
ists. The neutron scattering studies for the iron pnictides concentrate rather on higher energies. In
Fig. 7.1b, the data point with the lowest energy for CaFe2As2 is already located above the mode with
vb ≈ 20 meV.

For the parameters determined from Zhao’s and Diallo’s data, our dispersion reproduces the inelastic
neutron scattering data very well for small momenta, but it fails for high spin wave energies and
momenta. This is caused by the lack of anisotropy in our results (see Tab. 7.3). For J̃1b < 0, the kb-
dependent term in the spin wave dispersion (5.14) changes its sign which converts the minimum at
k = (0, 1, 0) into a maximum. Thus, an effective ferromagnetic exchange J̃1b < 0 parallel to the spin
stripes is necessary to describe the maximum at k = (0, 1, 0). The appropriate value for Zhao’s data
is J̃1b ≈ −5.7 meV [10].

We stress that Zhao’s paper [10] is the only source of neutron scattering data at very high energies
available to our knowledge. Due to heavy damping, Diallo et al. [9] only provide data up to 125 meV,
where our model is still in very good agreement with the experimental data. Consequently, they are
not able to identify the dispersion close to k = (0, 1, 0) and their best fit agrees with our current result.
However, they also discuss a scenario where the energy at k = (0, 1, 0) is raised, but always lower
than at k = (0, 0.5, 0). Thus, further inelastic neutron scattering studies at very high energies would
be welcomed to prove the results by Zhao et al.. The scattering intensities at high energies are very
low and modes might have been missed.

Han et al. [34] used first-principles density functional theory calculations to determine the mag-
netic interactions in the iron pnictides. They proposed a universal trend of J̃1a ≈ 2 J̃2, in particu-
lar J̃1a/2 J̃2 = 0.95 for CaFe2As2, 1.31 for SrFe2As2 and 1.51 for BaFe2As2. Our results for Ba/SrFe2As2,
where J̃1a/2 J̃2 = 0.91, still show a similar trend, while there is a huge deviation in our results for
CaFe2As2 with J̃1a/2 J̃2 = 0.32− 0.35 due to the strong next nearest neighbor exchange. Furthermore,
Han et al. also obtained a slightly ferromagnetic exchange parallel to the spin stripes for CaFe2As2,
which fits to the results by Zhao et al..
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(a) Perpendicular to the spin stripes and between the layers.
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(b) Parallel to the spin stripes.

Fig. 7.1.: Spin wave dispersion (5.14) of our model of the three dimensional collinear phase. The
dispersion (lines) is plotted for the corresponding sets of parameters given in Tab. 7.3. The red dots
are experimental data points extracted from inelastic neutron scattering for CaFe2As2 [10].
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7.2. Results with biquadratic exchange for CaFe2As2

The results with biquadratic exchange for Diallo’s and Zhao’s data are given in Tab. 7.4. A couple
of reasonable values for ν = Jbq/J1, based on the spin spiral calculations by Yaresko et al. [22], have
been chosen. Yaresko’s results are presented in Section 2.7.2 in detail. Otherwise, a third indepen-
dent information from experiment would be necessary to determine the additional parameter ν. This
would probably be the energy at k = (0, 1, 0) taken from Zhao’s data, but the influence of the bi-
quadratic exchange is not strong enough to reproduce the dispersion at this momentum. The param-
eters x = J1/J2 and µ = Jc/J1 of our model of the three dimensional collinear phase with biquadratic
exchange (Chapter 6) are determined as before. In addition, a set of parameters has been calculated
for a rather unlikely strength of the biquadratic exchange with ν = 3.0.

As a consequence of our analysis in the last section, we now concentrate on Zhao’s and Diallo’s
measured spin wave velocities for CaFe2As2 (see Tab. 7.1). The spin wave velocities proposed by
Ong et al. are not discussed any further.

The influence of the biquadratic exchange strengthens the anisotropy between the exchange parallel
and perpendicular to the spin stripes. As before, the results for both data sets are very similar. In
addition, there is no impact on the interlayer coupling and the dispersion along the a- and b-direction,
which is plotted in Fig. 7.2a and 7.2c. The agreement between the neutron scattering data and our
model is again very nice. As before, the interlayer coupling for Zhao’s data is higher.

The improvement of the dispersion along kb, plotted in Fig. 7.2b and 7.2d, is not very significant. It
still matches the scattering data only for small momenta, while the energy at k = (0, 1, 0) is lifted

ν 0.3 0.4 0.5 0.6 3.0
x 0.645 0.616 0.589 0.565 0.284
µ 0.297 0.314 0.332 0.349 0.793
J1 18.9 17.9 16.9 16.0 7.1
Jc 5.6 5.6 5.6 5.6 5.6
J2 29.4 29.0 28.7 28.4 24.9
Jbq 5.7 7.1 8.5 9.6 21.2
J̃1a 25.4 26.3 27.1 27.9 36.2
J̃1b 18.8 17.9 17.0 16.3 8.0
J̃c 5.3 5.3 5.3 5.3 5.3
J̃2 31.1 30.7 30.3 29.9 25.8

(a) Parameters of our model obtained for Zhao’s spin
wave velocities.

ν 0.3 0.4 0.5 0.6 3.0
x 0.606 0.578 0.553 0.530 0.265
µ 0.255 0.269 0.284 0.299 0.676
J1 18.9 17.9 16.9 16.0 7.1
Jc 4.8 4.8 4.8 4.8 4.8
J2 31.3 30.9 30.6 30.3 26.8
Jbq 5.7 7.1 8.5 9.6 21.3
J̃1a 25.0 25.9 26.7 27.4 35.7
J̃1b 18.8 17.9 17.1 16.4 8.1
J̃c 4.5 4.5 4.5 4.5 4.5
J̃2 33.2 32.8 32.4 32.0 27.9

(b) Parameters of our model obtained for Diallo’s spin
wave velocities.

Tab. 7.4.: Parameters of our model of the three dimensional collinear phase with fixed values of
the biquadratic exchange ν = Jbq/J1. The parameters were determined by fitting our model to
experimental spin wave velocities in CaFe2As2 measured by Zhao et al. [10] and Diallo et al. [9].
For the ratios of the couplings, two decimal places should be accurate.
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7. Iron pnictides

up to approximately 20%. Hence, we have arrived at a scenario, which is located between the one
without biquadratic exchange and Zhao’s scattering data. As mentioned before, a similar scenario
without biquadratic exchange has shortly been suggested by Diallo et al..

In addition, we calculated the parameters with a very strong and unlikely biquadratic exchange with
ν = 3.0. While the dispersion perpendicular to the spin stripes and between the layers is again
unaffected (Fig. 7.2a and 7.2c), the minimum along kb (Fig. 7.2b and 7.2d) has almost vanished. It
seems that a plateau is emerging around k = (0, 1, 0), but the dispersion is still far away from the
measured maximum at k = (0, 1, 0).

In general, the ratio x = J1/J2 decreases with increasing ν. The reason for this behavior is simple: The
biquadratic exchange leads to an increasing spin wave velocity va. To keep the ratio vb/va constant,
the coupling ratio x = J1/J2 has to be decreased. Analogously, the interlayer coupling µ = Jc/J1 has
to increase to keep the ratio vc/va constant. The calculated values of x indicate that the system resides
on the plateau of the staggered magnetization. Thus, other effects are likely to be responsible for the
small static local moment measured in experiment.

Compared to the decreasing effective next nearest neighbor exchange J̃2, the effective exchange per-
pendicular to the stripes J̃1a is increasing. Thus, the ratio J̃1a/2 J̃2 increases up to 0.47, but we cannot
confirm the trend of J̃1a/2 J̃2 ∼ 1 proposed by Han et al..

All in all, the additional biquadratic exchange is able to influence the dispersion parallel to the spin
stripes and to strengthen the anisotropy of the effective in-plane nearest neighbor exchange constants.
However, it is not possible to reproduce the whole experimental dispersion measured by Zhao et al..
Nice agreement is found for not too large energies and momenta. An extension of the biquadratic
exchange to next nearest neighbor sites could bring further improvement.
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(a) Perpendicular to the spin stripes and between the layers.
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(b) Parallel to the spin stripes.

Fig. 7.2.: Spin wave dispersion (6.11) of our model of the three dimensional collinear phase with
biquadratic exchange for various values of ν = Jbq/J1. The dispersion (lines) is plotted for the
corresponding sets of parameters given in Tab. 7.4a, which were obtained by adjusting our model
to Zhao’s spin wave velocities. The red dots are experimental data points extracted from inelastic
neutron scattering for CaFe2As2 [10].
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(c) Perpendicular to the spin stripes and between the layers.
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(d) Parallel to the spin stripes.

Fig. 7.2.: Spin wave dispersion (6.11) of our model of the three dimensional collinear phase with
biquadratic exchange for various values of ν = Jbq/J1. The dispersion (lines) is plotted for the sets
of parameters given in Tab. 7.4b, which were obtained by adjusting our model to Diallo’s spin wave
velocities. The red dots are experimental data points extracted from inelastic neutron scattering for
CaFe2As2 [10].
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7.3. Scattering intensities

The question arises whether and how the dispersion of our model of the three dimensional collinear
phase with biquadratic exchange and the dispersion fitted by Zhao et al. [10], where the exchange
parallel to the spin stripes is ferromagnetic, can be experimentally distinguished. Looking for further
information we compare the scattering intensities.

The scattering intensities are proportional to the dynamical structure factor derived in Section 3.2.2.
We still have to determine the θk-dependent prefactor in (3.29). Recalling the diagonalization condi-
tion tanh 2θk = −Ak/Bk, it can easily be verified that(

cosh θk + sinh θk
)2 = cosh2 θk + sinh2 θk + 2 cosh θk sinh θk

= cosh 2θk + sinh 2θk

=
Ak − Bk√
A2

k − B2
k

, (7.2)

where we have used our previous results from (5.15b),

cosh 2θk =
Ak√

A2
k − B2

k

sinh 2θk = − Bk√
A2

k − B2
k

.

Thereby, the inelastic part of the dynamical structure factor at T = 0 reads

Sxx
0
(
k, ω

)
= Nπ (S− n)

Ak − Bk

2
√

A2
k − B2

k

δ (ω−ωk) , (7.4)

where ωk := 2
√

A2
k − B2

k . In the limit of ωk → 0, the dynamical structure factor (7.4) vanishes because
Ak = Bk for ωk → 0.

7.3.1. Numerics

The dynamical structure factor in Eq. (7.4) can be visualized in various ways. We choose constant
energy-cuts in order to compare our results with experimentally measured scattering intensities.

The data for the constant-energy cuts is obtained with a very simple C++ program.

At first, the Dirac delta function in (7.4) is substituted by a Gaussian distribution, which is centered
at ωk with a standard deviation of σω. A Gaussian distribution is a good replacement for the energy
resolution of a detector triggered at energy ω. Reasonable values for the full width at half maximum
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(FWHM), which is related to σω via FWHM = 2σω

√
2 ln 2, can be extracted from experimental data

and lie in the order of a few meV. The inelastic part of the dynamical structure factor per spin is given
by

Sxx (k, ω± ∆ω
)

= π (S− n)
Ak − Bk

2
√

A2
k − B2

k

· 1
σω

√
2π

ω+∆ω∫
ω−∆ω

dω′ exp

−1
2

(
ω′ −ωk

σω

)2
 . (7.5)

To extract a constant-energy cut with an energy window of ω± ∆ω, the Brillouin zone is discretized
and Eq. (7.5) is evaluated and integrated over the energy window for each value of k. The numerical
integration is done using Romberg’s method [82], which is quite fast and gives very accurate results.
Alternatively, a pre-implemented error function could be used. The average occupation number n
has already been calculated as a part of the staggered magnetization. The results are not normalized,
i.e., they are displayed as shown in Eq. (7.5).

Furthermore, the effect of twinning is included. This effect occurs because no preferred direction
exists at the structural transition from a tetragonal to an orthorhombic lattice, where the lattice con-
stants a and b become unequal. Thus, the whole sample consists of equally distributed domains with
randomly swapped a- and b-axis. Consequently, the structure factor at k = (ka, kb, kc) is simply the
mean of the structure factor at k = (ka, kb, kc) and k = (kb, ka, kc).

7.3.2. Results & discussion

For all further evaluation of the dynamical structure factor, we stick to our parameters with a fixed
value of ν = 0.5 obtained by the fit to Zhao’s measured spin wave velocities (see Tab. 7.4a). The
visualization is realized with MATLAB. General results within the ka-kb plane with a fixed FWHM of
2 meV are shown in Fig. 7.3. All energy windows and values of kc are identical to the ones chosen by
Zhao et al. [10]. The reciprocal lattice vectors ki are still given in units of π/(lattice constant).

For low energies (Fig. 7.3a and 7.3b), concentric spin wave rings emerge at the magnetic ordering
vector Q = (1, 0, 3). The rings are broadened for higher energies. In addition, less intensive spots
(1, 1, kc) appear for E = 100 meV and E = 115 meV (Fig. 7.3c and 7.3d) which melt together with the
concentric spin wave rings for higher energies (Fig. 7.3e and 7.3f). For high excitation energies, the
situation is almost inverted to the one found at low energies. At the highest energy (Fig. 7.3h), only
a very broad ring remains. In general, one observes the trend of decreasing intensity for increasing
energy because S(k, ω) ∝ 1/ωk, see Eq. (7.4).

For a better comparison with constant-energy cuts extracted from neutron scattering data, we addi-
tionally extracted cuts of the dynamical structure factor with varying values of the FWHM, which
are taken from Diallo et al. [9] (see Fig. 7.4). The constant-energy cuts are shown in Fig. 7.5 and are
directly compared with the experimental results by Zhao et al.. As a reminder, our model does not
include the spin wave gap, so deviations for small energies are expected. Although we have adopted
the values of the FWHM from experiment, the excitations in our theoretical constant-energy cuts are
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(a) E = 48± 6 meV, kc = 3 (b) E = 65± 4 meV, kc = 3

(c) E = 100± 10 meV, kc = 3.5 (d) E = 115± 10 meV, kc = 4

Fig. 7.3.: Constant-energy cuts (twinned) of the dynamical structure factor per spin (7.5). FWHM is 2
meV for all cuts.
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(e) E = 137± 15 meV, kc = 4 (f) E = 135± 10 meV, kc = 4.5

(g) E = 144± 15 meV, kc = 5 (h) E = 175± 15 meV, kc = 5.2

Fig. 7.3.: (Continued) Constant-energy cuts (twinned) of the dynamical structure factor per spin (7.5).
FWHM is 2 meV for all cuts.
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7.3. Scattering intensities

Fig. 7.4.: Values for the FWHM: Spectral half width at half maximum derived from band-structure
calculated peaks and spin wave relaxation rate (Figure taken from Diallo et al. [9]).

still very well defined. This is caused by our resolution in momentum space which is almost infinite
compared to the limited momentum resolution in experiment.

Our theoretical predictions agree with the measurements in certain aspects. The concentric rings aris-
ing from the magnetic ordering vector can clearly be identified in the experimental results. However,
high scattering intensities are detected which are not part of our theoretical predictions. In particular,
this effect is very strong at k = (1.5, 3, 4) in the plot for E = 137± 15 meV (Fig. 7.5e). The scattering
intensities centered in k = (1.5, 3, 4) are as high as the intensities of the concentric ring in the middle.
In our calculations, high intensities are predicted for the concentric spin wave ring, whereas the spot
close to k = (1.5, 3, 4) shows medium intensity. The measured intensities are not symmetric around
kb = 2 because of blind spots in the detector.

The effect also occurs in the cuts for E = 100± 10 (Fig. 7.5c) and E = 135± 10 (Fig. 7.5f), but it is less
distinct. In the constant-energy cut for E = 144± 15 (Fig. 7.5g), the agreement is better, because all
other spots show a intensity similar to the concentric ring. However, the measured intensities are not
symmetric, which is surprising.

In Fig. 7.6, the fitted dispersion for ν = 0.5 is plotted in the ka-kb-plane for kc = 4. It is obvious that the
medium ranged intensities of the legs in Fig. 7.5e are caused by the local maximum at k = (1.5, 3, 4).
Because the extrema close to k = (3, 1.5, 4) has a higher energy > 150 meV, the intensity is smaller due
to the twinned domains. Thus, higher intensities would be predicted if the dispersion was symmetric
in these momenta.

In the constant-energy cut with E = 175± 15 meV (Fig. 7.5h), small intensities located in the center of
the cut are measured while they are not expected from our theoretical calculation. Since the deviation
in momentum from the gapless Goldstone mode is very small at k = (1, 0, 5.2), the excitations are
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located at low energies. For the twinned case, we observe a local minimum at k = (0, 1, 5.2) with
ωk ≈ 100 meV (see Fig. 7.7). Hence, we do not observe any intensity in our model. In case of a
ferromagnetic exchange parallel to the spin stripes, the local minimum at k = (0, 1, 5.2) should vanish
and the excitation energy should increase to higher energies, see previous sections. Consequently,
scattering intensities should be measurable.

The rectangle with the highest intensities in Fig. 7.5h is probably related to our calculated structure.
But one must be aware, that the difference between the maximal and minimal intensities is quite
small in experiment as well as in our calculations. Thus, it could be quite hard to distinguish the
magnetic modes from the background when analyzing the experimental data.

Due to the effect of twinning, it would rather be difficult to distinguish the modes at k = (0, 1, 0)
and k = (1, 0, 0) in our model, because they are of similar magnitude. Consequently, our theoreti-
cal scenario would require a deeper and more detailed analysis of experimental data to distinguish
between the existence of these two modes.
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(a) E = 48± 6 meV, kc = 3, FWHM = 4 meV

(b) E = 65± 4 meV, kc = 3, FWHM = 5 meV

Fig. 7.5.: Constant-energy cuts (twinned) with varying values of the FWHM (left) and experimental
results (right) taken from Ref. [10].
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(c) E = 100± 10 meV, kc = 3.5, FWHM = 7 meV

(d) E = 115± 10 meV, kc = 4, FWHM = 18 meV

Fig. 7.5.: (Continued) Constant-energy cuts (twinned) with varying values of the FWHM (left) and
experimental results (right) taken from Ref. [10].
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(e) E = 137± 15 meV, kc = 4, FWHM = 28 meV

(f) E = 135± 10 meV, kc = 4.5, FWHM = 28 meV

Fig. 7.5.: (Continued) Constant-energy cuts (twinned) with varying values of the FWHM (left) and
experimental results (right) taken from Ref. [10].
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(g) E = 144± 15 meV, kc = 5, FWHM = 32 meV

(h) E = 175± 15 meV, kc = 5.2, FWHM = 39 meV

Fig. 7.5.: (Continued) Constant-energy cuts (twinned) with varying values of the FWHM (left) and
experimental results (right) taken from Ref. [10].
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Fig. 7.6.: Fitted dispersion for ν = 0.5 and kc = 4.
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Fig. 7.7.: Fitted dispersion for ν = 0.5 and kc = 5.2.
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8. Conclusion & outlook

In this thesis, we studied the three dimensional collinear ordered phase with respect to the magnetic
excitations and the application for iron pnictides. The three dimensional character of the magnetism
in the iron pnictides was revealed in recent inelastic neutron scattering studies [8, 10, 15]. Hence,
we extended the studies of the two dimensional collinear phase within a frustrated J1-J2-Heisenberg
model by Uhrig et al. to three dimensions. The localized Heisenberg model for spin S = 1 is chosen
on the base of experimental and theoretical results. The model was studied within self-consistent
spin wave theory, which is an advantageous approach compared to the common linear spin wave
theory because the effect of renormalization due to quantum mechanical fluctuations is included.

In addition, we introduced a biquadratic exchange motivated by the measured anisotropy in the
collinear ordered planes and density functional calculations by Yaresko et al.. An appropriate mean
field decoupling for the Dyson-Maleev as well as for the Schwinger bosons representation was intro-
duced for the bilinear and biquadratic exchange. The method was applied to the two dimensional
Néel phase and the results were compared to results obtained by exact diagonalization and series
expansion. We found the influence of the biquadratic exchange to be heavily overestimated within
the Schwinger bosons representation. Hence, the Dyson-Maleev representation is the best choice for
our purposes.

The approximation was applied to the frustrated J1-J2-Jc Heisenberg model with and without bi-
quadratic exchange Jbq in the three dimensional collinear phase, where the interlayer coupling Jc is
also antiferromagnetic. To derive the spin wave dispersion and the ground state energy, the mean
field Hamiltonian was diagonalized using a standard Bogoliubov transformation. The set of self-
consistent equations for the introduced quantum correction parameters was solved numerically with
multidimensional root finding and integration.

As expected, the collinear phase is stabilized by the interlayer exchange. Furthermore, we studied the
behavior of the critical point where our spin wave theory breaks down. On the one hand, we identi-
fied the magnetization-driven scenario where the phase collapses because of the vanishing magnetic
long-range order. On the other hand, the spin wave velocity vb vanishes first in the velocity-driven
scenario. Surprisingly, the staggered magnetization obtains a finite value when the collinear phase
ceases to exist in this scenario. The transition between both scenarios depends on the interlayer cou-
pling µ = Jc/J1 and on the spin S. For small values of µ and S = 1/2 or S = 1, the magnetization-
driven scenario occurs. The velocity-driven scenario occurs for large µ or S ≥ 3/2. The finite stag-
gered magnetization in the velocity-driven scenario is caused by the cut-off of the logarithmic diver-
gence in the integrand of the staggered magnetization. If the interlayer coupling is sufficiently high,
the renormalization of the staggered magnetization is too weak to push is down to zero.



8. Conclusion & outlook

Under the influence of a biquadratic exchange, both the exchange parallel and perpendicular to the
spin stripes are strengthened. Compared to the exchange parallel to the spin stripes, the exchange
perpendicular to the spin stripes experiences a much stronger renormalization which leads to the
anisotropy between the effective exchange constants J̃1a and J̃1b. Hence, we provided a method for in-
troducing an anisotropy in the exchange constants without having to introduce ab-initio direction de-
pendent exchange constants. While the influence of the biquadratic exchange on the dispersion along
the high symmetric ka-kc-direction is rather small, the minimum of the dispersion at k = (0, 1, 0) is
lifted. Because the effective exchange parallel to the spin stripes is always weakly strengthened, the
minimum at k = (1, 0, 1) will likely never vanish. This would require an effective ferromagnetic
exchange J̃1b < 0. With increasing ν = Jbq/J1, the critical point is shifted towards lower ratios of
x = J1/J2, which limits the maximum possible biquadratic exchange ν.

For different experimental results for iron pnictides, we determined the parameters of our model
by fitting it to the measured ratios of the spin wave velocities. Thereby the whole dispersion was
obtained by reproducing the spin wave velocity vb parallel to the spin stripes. We found that our
model reproduces the experimental dispersion and inelastic neutron scattering data for CaFe2As2
in the direction perpendicular to the spin stripes and between the layers very well. In the direction
parallel to the spin stripes, the agreement with inelastic neutron scattering data for excitations up
to ∼ 100 meV is also very nice and accurate for the parameters obtained for CaFe2As2. For higher
energies and momenta in b-direction, discrepancies are observed. Our model shows a minimum at
k = (0, 1, 0), while a maximum is detected in the experimental results by Zhao et al.. Therefore, even
a ferromagnetic exchange parallel to the spin stripes would be necessary, which cannot be induced
by the biquadratic exchange in our model. Thus, we have arrived at a scenario which is located
between the result with no anisotropy and the measured scenario by Zhao et al.. The proper situation
is not completely clarified, since there is no other neutron scattering data at high energies available
except Zhao’s data. In contrast to the experimental results for CaFe2As2, the spin wave velocities
proposed by Ong et al. lead to a very low energy mode in the direction parallel to the spin stripes.
The agreement in ka- and kc-direction is fine because the corresponding spin wave velocities were
also taken from experiment. Further neutron scattering studies would certainly help to clarify the
situation. Especially at k = (0, 1, 0), we would like to see modes at lower energies, which might have
been missed in current studies because the experimentalists concentrated on higher energies.

In addition, we calculated the dynamical structure factor, which is proportional to neutron scattering
cross section. We compared it with the results by Zhao et al.. While there is a nice agreement in the
excitations originating from the magnetic ordering vector, our theoretical expectation cannot explain
the whole data because the anisotropy in our model is too weak compared to Zhao’s results. Espe-
cially the distinction of the energies parallel and perpendicular to the spin stripes is tough when they
are of similar magnitude. This effect is caused by the twinning of crystal domains and affects our
model with biquadratic exchange.

Previous studies suggested that iron pnictides are close to a quantum phase transition, which is
connected to a strong renormalization of the local magnetic moment due to quantum fluctuations.
For the proposed value of the spin wave velocity vb for Sr/BaFe2As2 by Ong et al., our model of the
three dimensional collinear phase reproduces this result. In contrast, recent neutron scattering studies
by Zhao at al. and Diallo et al. tell a different story. Their measured a much higher value of the spin
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wave velocity vb in CaFe2As2, which leads to the result that the iron pnictides reside deeply in the
collinear phase. Thus, the small measured local magnetic moment has to be reduced by other effects
for example such as itineracy and hybridization. At this point, it is hard to make a final conclusion
on that question. The inelastic neutron scattering studies focused on high energies. Hence, a mode at
low energies, which would speak in favor of Ong’s suggestion, might have been missed.

In conclusion, our model of the three dimensional collinear phase, studied within self-consistent
spin wave, can explain the experimental dispersion found in the 122 pnictide CaFe2As2 in a-, c- and
partly in b− direction. However, there are still open issues concerning the spin wave excitations in
the iron pnictides which cannot be resolved in this thesis. It is obvious, that further adjustments
of our model are necessary to eliminate all discrepancies between our theory and the experimental
results. In particular, the anisotropy of the the exchange within the collinear ordered planes planes
has to be more increased to reach complete agreement with Zhao’s data. It might also be possible
that a localized model is not sufficient because there are experimental facts which speak in favor
of a more itinerant approach to the magnetism. Attempts were made by combining a localized and
an itinerant approach by Lv et al. [66]. The interaction between the itinerant electrons and the local
moments is realized via a ferromagnetic Hund’s coupling. Furthermore, more experimental studies
of the magnetic excitations in the iron pnictides would be welcomed to clarify the situation.

Outlook

Future work should include the introduction of a single-ion or nearest neighbor anisotropy, in or-
der to take respect of the experimentally measured spin gap. In addition, the biquadratic exchange
should be introduced between next nearest neighbors. There is actually no reason why it should not
be important for next nearest neighbor exchange when it is relevant for nearest neighbor exchange.
Furthermore, the model could be fitted to a wider class of iron pnictides, especially 1111 pnictides,
or even iron chalcogenides. As the present work is restricted to zero temperature, the extension to
finite temperature lies close as well. In particular, the temperature dependence of the dispersion, the
staggered magnetization and the dynamical structure factor are of great interest.

Moreover, a detailed study of the critical point and the transition between the magnetization- and
velocity-driven scenario would be desirable, as our studies are based mainly on empirical facts.

To include the charge degrees of freedom, the model has to be extended to a generalized t-J model.
Thereby, the mutual influence between the spin and the charges can be studied. Especially the Landau-
type damping of the spin waves and the influence upon external doping is of great interest. Doping
increases the effect of the charge degrees of freedom and leads to a breakdown of the long-range
magnetic order in the superconducting phase. By using a combination of continuous unitary trans-
formations (CUTs), effective models can be derived to study the different aspects of the interaction.
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A. Conventions

Throughout the entire thesis, several conventions regarding transformations and notation are used.
This section summarizes them.

A.1. Notation & units

We use units where h̄ = kb = 1. Consequently, β = 1/T is the inverse temperature.

The indices i, j indicate lattice points with the position vectors ri and rj, respectively.
k, k′ and so on are reciprocal lattice vectors. All reciprocal lattice vectors are measured in units of
π/lattice constant. For brevity, vectors are not marked with arrows.

A.2. Fourier transform

As we are dealing with crystal lattices, discrete Fourier transforms between position and momentum
space are used. The Fourier transform of the bosonic creation/annihilation operators is given by

ci :=
1√
N

∑
k

eikri ck (A.1a)

c†
i :=

1√
N

∑
k

e−ikri c†
k , (A.1b)

as they have to be hermitian conjugates. N is the number of lattice points. Thus, the inverse Fourier
transforms are given by

ck :=
1√
N

∑
i

e−ikri ci (A.1c)

c†
k :=

1√
N

∑
i

eikri c†
i . (A.1d)



A. Conventions

For all other operators A, the following convention is used:

Ai :=
1
N ∑

k
eikri Ak (A.2a)

A†
i :=

1
N ∑

k
e−ikri A†

k . (A.2b)

The inverse Fourier transform then reads

Ak := ∑
i

e−ikri Ai (A.2c)

A†
k := ∑

i
eikri A†

i . (A.2d)

The expression

f (t) :=
1

2π

∞∫
−∞

dω e−iωt f (ω) (A.3a)

describes the continuous Fourier transform between time and frequency space.

f (ω) :=
∞∫
−∞

dt eiωt f (t) (A.3b)

is the corresponding inverse transformation.

A.3. Dirac delta function

The Fourier transform of the Dirac delta function in momentum space is

δ
(
k
)

=
1
N ∑

i
e−ikri . (A.4)

In order to calculate the result when the sum is restricted to one of the sublattices, we split the sum
in A.4 up

δ
(
k
)

=
1
N ∑

i∈A
e−ikri +

1
N ∑

i∈B
e−ikri (A.5a)

and we additionally investigate

δ
(
k + Q

)
=

1
N ∑

i∈A
e−i(k+Q)ri +

1
N ∑

i∈B
e−i(k+Q)ri . (A.5b)
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A.3. Dirac delta function

Q is the magnetic ordering vector which is defined via the relation

e±iQri =

+1, ri ∈ A
−1, ri ∈ B.

(A.6)

Without loss of generality, the origin r0 of the lattice has been set in the A sublattice. Consequently,
the sum over the sublattice B in A.5b obtains a phase factor of −1:

δ
(
k + Q

)
=

1
N ∑

i∈A
e−ikri − 1

N ∑
i∈B

e−ikri , (A.7)

while there is no effect for all lattice vectors in A. For r0 ∈ B, the signs would be inverted.

Adding and subtracting equations A.5a and A.7, we derive the two identities

1
N ∑

i∈A
e−ikri =

1
2

(
δ
(
k
)
+ δ

(
k + Q

))
(A.8a)

1
N ∑

i∈B
e−ikri =

1
2

(
δ
(
k
)
− δ

(
k + Q

))
, (A.8b)

for sums restricted to one sublattice.
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B. Contractions

This chapter summarizes all possible contractions in the Dyson-Maleev representation, which appear
as prefactors of the decoupled biquadratic term in order S2 and lower. We only regard the prefactors
of terms which result in bilinear terms. For convenience, only the prefactors of each term of operators
are listed.

B.1. Antiferromagnetic bonds

The non-vanishing expectation values are

n :=
〈

b†
i bi

〉
=
〈

b†
j bj

〉
(B.1a)

a :=
〈

b†
i b†

j

〉
=
〈

bi bj

〉
. (B.1b)

We assume that they are all real. For easier reference, we define the operators

Î0 := b†
i b†

j + bi bj (B.2a)

Î′0 := b†
i n̂i b†

j + bi n̂j bj . (B.2b)

The prefactors of n̂j and bi bj are identical to the prefactors of n̂i and b†
i b†

j , respectively.

B.1.1. O(S2)

B.1.1.1. Prefactor of n̂i

• n̂2
i + n̂2

j + 4n̂in̂j:

b†
i bi b†

i bi −→ 4n + 1 b†
i bi b†

j bj −→ n

• Î2
0 :

b†
i b†

j b†
i b†

j −→ 0

bi bj bi bj −→ 0

b†
i b†

j bi bj −→ n

bi bj b†
i b†

j −→ n + 1



B. Contractions

• n̂i Î0 + Î0n̂i:

b†
i bi b†

i b†
j −→ 2a

b†
i bi bi bj −→ 2a

b†
i b†

j b†
i bi −→ 2a

bi bj b†
i bi −→ 2a

• Î′0:

b†
i b†

i bi b†
j −→ 2a bi b†

j bj bj −→ 0

In total:

∑ = 10 (n + a) + 2

B.1.1.2. Prefactor of b†
i b†

j

• n̂2
i + n̂2

j + 4n̂in̂j:

b†
i bi b†

i bi −→ 0 b†
i bi b†

j bj −→ a

• Î2
0 :

b†
i b†

j b†
i b†

j −→ 4a

bi bj bi bj −→ 0

b†
i b†

j bi bj −→ a

bi bj b†
i b†

j −→ a

• n̂i Î0 + Î0n̂i:

b†
i bi b†

i b†
j −→ 2n + 1

b†
i bi bi bj −→ 0

b†
i b†

j b†
i bi −→ 2n

bi bj b†
i bi −→ 0

• n̂j Î0 + Î0n̂j:

b†
j bj b†

i b†
j −→ 2n + 1

b†
j bj bi bj −→ 0

b†
i b†

j b†
j bj −→ 2n

bi bj b†
j bj −→ 0

• Î′0:

b†
i b†

i bi b†
j −→ 2n bi b†

j bj bj −→ 0

In total:

∑ = 10 (n + a) + 2
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B.1. Antiferromagnetic bonds

B.1.2. O(S)

B.1.2.1. Prefactor of n̂i

• −2(n̂in̂2
j + n̂2

i n̂j):

b†
i bi b†

j bj b†
j bj −→ 2n2 + n b†

i bi b†
i bi b†

j bj −→ 4n2 + 4a2 + n

• − 1
2 ( Î0 Î′0 + Î0 Î′0):

b†
i b†

j b†
i b†

i bi b†
j −→ 6a2

bi bj b†
i b†

i bi b†
j −→ 4a2 + 4n2 + 6n + 2

b†
i b†

j bi b†
j bj bj −→ 2n2

bi bj bi b†
j bj bj −→ 0

b†
i b†

i bi b†
j b†

i b†
j −→ 6a2

b†
i b†

i bi b†
j bi bj −→ 4n2 + 4a2

bi b†
j bj bj b†

i b†
j −→ 2n2 + 2n

bi b†
j bj bj bi bj −→ 0

• − 1
2 [(n̂i + n̂j ) Î′0 + Î′0(n̂i + n̂j )]:

b†
i bi b†

i b†
i bi b†

j −→ 12na + 4a

b†
i bi bi b†

j bj bj −→ 4na

b†
j bj b†

i b†
i bi b†

j −→ 4na + 2a

b†
j bj bi b†

j bj bj −→ 0

b†
i b†

i bi b†
j b†

i bi −→ 12na + 2a

bi b†
j bj bj b†

i bi −→ 4na

b†
i b†

i bi b†
j b†

j bj −→ 4na

bi b†
j bj bj b†

j bj −→ 0

• −n̂in̂j Î0 − Î0n̂in̂j:

b†
i bi b†

j bj b†
i b†

j −→ 4na + 2a

b†
i b†

j b†
i bi b†

j bj −→ 4na

b†
i bi b†

j bj bi bj −→ 4na

bi bj b†
i bi b†

j bj −→ 4na + 2a

In total:

∑ = −18 (n + a)2 − 8 (n + a)− 1

B.1.2.2. Prefactor of b†
i b†

j

• −2(n̂in̂2
j + n̂2

i n̂j):

b†
i bi b†

j bj b†
j bj −→ 4na + a b†

i bi b†
i bi b†

j bj −→ 4na + a
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B. Contractions

• − 1
2 ( Î0 Î′0 + Î0 Î′0):

b†
i b†

j b†
i b†

i bi b†
j −→ 12na

b†
i b†

j bi b†
j bj bj −→ 4na

bi bj b†
i b†

i bi b†
j −→ 4na + 2a

bi bj bi b†
j bj bj −→ 0

b†
i b†

i bi b†
j b†

i b†
j −→ 12na + 4a

b†
i b†

i bi b†
j bi bj −→ 4na

bi b†
j bj bj b†

i b†
j −→ 4na + 2a

bi b†
j bj bj bi bj −→ 0

• − 1
2 [(n̂i + n̂j ) Î′0 + Î′0(n̂i + n̂j )]:

b†
i bi b†

i b†
i bi b†

j −→ 6n2 + 4n

b†
i bi bi b†

j bj bj −→ 2a2

b†
j bj b†

i b†
i bi b†

j −→ 4n2 + 4a2 + 2n

b†
j bj bi b†

j bj bj −→ 0

b†
i b†

i bi b†
j b†

i bi −→ 6n2 + 2n

b†
i b†

i bi b†
j b†

j bj −→ 4n2 + 4a2

bi b†
j bj bj b†

i bi −→ 2a2

bi b†
j bj bj b†

j bj −→ 0

• −n̂in̂j Î0 − Î0n̂in̂j:

b†
i bi b†

j bj b†
i b†

j −→ 4n2 + 4a2 + 4n + 1

b†
i b†

j b†
i bi b†

j bj −→ 4n2 + 4a2

b†
i bi b†

j bj bi bj −→ 2a2

bi bj b†
i bi b†

j bj −→ 2a2

In total:

∑ = −18 (n + a)2 − 8 (n + a)− 1

B.1.3. O(S0)

B.1.3.1. Prefactor of n̂i

• n̂2
i n̂2

j :

b†
i bi b†

i bi b†
j bj b†

j bj −→ 8n3 + 6n2 + 16na2 + 4a2 + n

• 1
4 Î′20 :

b†
i b†

i bi b†
j b†

i b†
i bi b†

j −→ 48na2 + 12a2

b†
i b†

i bi b†
j bi b†

j bj bj −→ 8n3 + 16na2

bi b†
j bj bj b†

i b†
i bi b†

j −→ 8n3 + 16na2 + 12n2 + 8a2 + 4n

bi b†
j bj bj bi b†

j bj bj −→ 0
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B.1. Antiferromagnetic bonds

• 1
2 (n̂i n̂j Î′0 + Î′0n̂i n̂j ):

b†
i bi b†

j bj b†
i b†

i bi b†
j −→ 12a3 + 24n2a + 20na + 4a

b†
i bi b†

j bj bi b†
j bj bj −→ 12n2a + 4na

b†
i b†

i bi b†
j b†

i bi b†
j bj −→ 12a3 + 24n2a + 4na

bi b†
j bj bj b†

i bi b†
j bj −→ 12n2a + 8na

In total:

∑ = 12 (a + n)3 + 9 (n + a)2 + 2 (n + a)

B.1.3.2. Prefactor of b†
i b†

j

• n̂2
i n̂2

j :

b†
i bi b†

i bi b†
j bj b†

j bj −→ 8a3 + 16n2a + 8na + a

• 1
4 Î′20 :

b†
i b†

i bi b†
j b†

i b†
i bi b†

j −→ 48n2a + 24na

b†
i b†

i bi b†
j bi b†

j bj bj −→ 16n2a + 8a3

bi b†
j bj bj b†

i b†
i bi b†

j −→ 8a3 + 16n2a + 16an + 4a

bi b†
j bj bj bi b†

j bj bj −→ 0

• 1
2 (n̂i n̂j Î′0 + Î′0n̂i n̂j ):

b†
i bi b†

j bj b†
i b†

i bi b†
j −→ 12n3 + 24na2 + 14n2 + 8a2 + 4n

b†
i bi b†

j bj bi b†
j bj bj −→ 12na2 + 2a2

b†
i b†

i bi b†
j b†

i bi b†
j bj −→ 12n3 + 24na2 + 4n2 + 4a2

bi b†
j bj bj b†

i bi b†
j bj −→ 12na2 + 4a2

In total:

∑ = 12 (a + n)3 + 9 (n + a)2 + 2 (n + a)
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B. Contractions

B.2. Ferromagnetic bonds

The non-vanishing expectation values are

n :=
〈

b†
i bi

〉
=
〈

b†
j bj

〉
(B.3a)

f :=
〈

b†
i bj

〉
=
〈

b†
j bi

〉
. (B.3b)

They are all assumed to be real. The operators

F̂0 := b†
i bj + b†

j bi (B.4a)

F̂′0 := b†
i n̂i bj + b†

j n̂j bi . (B.4b)

are introduced for convenience.

The prefactors of n̂j and b†
j bi are identical to the prefactors of n̂i and b†

i bj , respectively.

B.2.1. O(S2)

B.2.1.1. Prefactor of n̂i

• n̂2
i + n̂2

j + 4n̂in̂j:

b†
i bi b†

i bi −→ 4n + 1 b†
i bi b†

j bj −→ n

• F̂2
0 :

b†
i bj b†

i bj −→ 0

b†
j bi b†

j bi −→ 0

b†
i bj b†

j bi −→ n + 1

b†
j bi b†

i bj −→ n

• −F̂′0:

b†
i b†

i bi bj −→ 2 f b†
j b†

j bj bi −→ 0

• −F̂0(n̂i + n̂j)− (n̂i + n̂j)F̂0:

b†
i bj b†

i bi −→ 2 f

b†
i bj b†

j bj −→ 0

b†
j bi b†

i bi −→ 2 f

b†
j bi b†

j bj −→ 0

b†
i bi b†

j bi −→ 2 f

b†
i bi b†

i bj −→ 2 f

b†
j bj b†

j bi −→ 0

b†
j bj b†

i bj −→ 0
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B.2. Ferromagnetic bonds

In total:

∑ = 10
(
n− f

)
+ 2

B.2.1.2. Prefactor of b†
i bj

• n̂2
i + n̂2

j + 4n̂in̂j:

b†
i bi b†

i bi −→ 0 b†
i bi b†

j bj −→ f

• F̂2
0 :

b†
i bj b†

i bj −→ 4 f

b†
j bi b†

j bi −→ 0

b†
i bj b†

j bi −→ f

b†
j bi b†

i bj −→ f

• −F̂′0:

b†
i b†

i bi bj −→ 2n b†
j b†

j bj bi −→ 0

• −F̂0(n̂i + n̂j)− (n̂i + n̂j)F̂0:

b†
i bj b†

i bi −→ 2n

b†
i bj b†

j bj −→ 2n + 1

b†
j bi b†

i bi −→ 0

b†
j bi b†

j bj −→ 0

b†
i bi b†

j bi −→ 0

b†
i bi b†

i bj −→ 2n + 1

b†
j bj b†

j bi −→ 0

b†
j bj b†

i bj −→ 2n

In total:

∑ = −10
(
n− f

)
− 2

 10
(
n− f

)
+ 2 for −b†

i bj .

B.2.2. O(S)

B.2.2.1. Prefactor of n̂i

• −2(n̂in̂2
j + n̂2

i n̂j):

b†
i bi b†

j bj b†
j bj −→ 2n2 + n b†

i bi b†
i bi b†

j bj −→ 4n2 + 4 f 2 + n
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B. Contractions

• − 1
2 (F̂0 F̂′0 + F̂′0F̂0 ):

b†
i bj b†

i b†
i bi bj −→ 6 f 2

b†
i bj b†

j b†
j bj bi −→ 2n2 + 2n

b†
j bi b†

i b†
i bi bj −→ 2n2

b†
j bi b†

j b†
j bj bi −→ 0

b†
i b†

i bi bj b†
i bj −→ 6 f 2

b†
i b†

i bi bj b†
j bi −→ 4n2 + 4 f 2 + 4n

b†
j b†

j bj bi b†
i bj −→ 2n2

b†
j b†

j bj bi b†
j bi −→ 0

• n̂in̂j F̂0 + F̂0n̂in̂j:

b†
i bi b†

j bj b†
i bj −→ 4n f

b†
i bi b†

j bj b†
j bi −→ 4n f + 2 f

b†
i bj b†

i bi b†
j bj −→ 4n f + 2 f

b†
j bi b†

i bi b†
j bj −→ 4n f

• 1
2 [F̂′0(n̂i + n̂j ) + (n̂i + n̂j )F̂′0]:

b†
i b†

i bi bj b†
i bi −→ 12n f + 2 f

b†
j b†

j bj bi b†
i bi −→ 4n f

b†
i b†

i bi bj b†
j bj −→ 4n f + 2 f

b†
j b†

j bj bi b†
j bj −→ 0

b†
i bi b†

i b†
i bi bj −→ 12n f + 4 f

b†
i bi b†

j b†
j bj bi −→ 4n f

b†
j bj b†

i b†
i bi bj −→ 4n f

b†
j bj b†

j b†
j bj bi −→ 0

In total:

∑ = −18
(
n− f

)2 − 8
(
n− f

)

B.2.2.2. Prefactor of b†
i bj

• −2(n̂in̂2
j + n̂2

i n̂j):

b†
i bi b†

j bj b†
j bj −→ 4n f + f b†

i bi b†
i bi b†

j bj −→ 4n f + f

• − 1
2 (F̂0 F̂′0 + F̂′0F̂0 ):

b†
i bj b†

i b†
i bi bj −→ 12n f

b†
i bj b†

j b†
j bj bi −→ 4n f + 2 f

b†
j bi b†

i b†
i bi bj −→ 4n f + 2 f

b†
j bi b†

j b†
j bj bi −→ 0

b†
i b†

i bi bj b†
i bj −→ 12n f + 4 f

b†
i b†

i bi bj b†
j bi −→ 4n f

b†
j b†

j bj bi b†
i bj −→ 4n f

b†
j b†

j bj bi b†
j bi −→ 0
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B.2. Ferromagnetic bonds

• n̂in̂j F̂0 + F̂0n̂in̂j:

b†
i bi b†

j bj b†
i bj −→ 4n2 + 4 f 2 + 2n

b†
i bi b†

j bj b†
j bi −→ 2 f 2

b†
i bj b†

i bi b†
j bj −→ 4n2 + 4 f 2 + 2n

b†
j bi b†

i bi b†
j bj −→ 2 f 2

• 1
2 [F̂′0(n̂i + n̂j ) + (n̂i + n̂j )F̂′0]:

b†
i b†

i bi bj b†
i bi −→ 6n2 + 2n

b†
j b†

j bj bi b†
i bi −→ 2 f 2

b†
i b†

i bi bj b†
j bj −→ 4n2 + 4 f 2 + 2n

b†
j b†

j bj bi b†
j bj −→ 0

b†
i bi b†

i b†
i bi bj −→ 6n2 + 4n

b†
i bi b†

j b†
j bj bi −→ 2 f 2

b†
j bj b†

i b†
i bi bj −→ 4n2 + 4 f 2

b†
j bj b†

j b†
j bj bi −→ 0

In total:

∑ = 18
(
n− f

)2 + 8
(
n− f

)
 10

(
n− f

)
+ 2 for −b†

i bj .

B.2.3. O(S0)

B.2.3.1. Prefactor of n̂i

• n̂2
i n̂2

j :

b†
i bi b†

i bi b†
j bj b†

j bj −→ 8n3 + 16n f 2 + 6n2 + 4 f 2 + n

• 1
4 F̂′20 :

b†
i b†

i bi bj b†
i b†

i bi bj −→ 48n f 2 + 12 f 2

b†
i b†

i bi bj b†
j b†

j bj bi −→ 8n3 + 16n f 2 + 8n2 + 8 f 2

b†
j b†

j bj bi b†
i b†

i bi bj −→ 8n3 + 4n2 + 16n f 2

b†
j b†

j bj bi b†
j b†

j bj bi −→ 0

• − 1
2 (n̂i n̂j F̂′0 + F̂′0n̂i n̂j ):

b†
i bi b†

j bj b†
i b†

i bi bj −→ 12 f 3 + 24n2 f + 8n f

b†
i bi b†

j bj b†
j b†

j bj bi −→ 12n2 f + 8n f

b†
i b†

i bi bj b†
i bi b†

j bj −→ 12 f 3 + 24n2 f + 16n f + 2 f

b†
j b†

j bj bi b†
i bi b†

j bj −→ 12n2 f + 4n f
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B. Contractions

In total:

∑ = 12
(
n− f

)3 + 9
(
n− f

)2 +
(
n− f

)
B.2.3.2. Prefactor of b†

i bj

• n̂2
i n̂2

j :

b†
i bi b†

i bi b†
j bj b†

j bj −→ 8 f 3 + 16n2 f + 8n f + f

• 1
4 F̂′20 :

b†
i b†

i bi bj b†
i b†

i bi bj −→ 48n2 f + 24n f

b†
i b†

i bi bj b†
j b†

j bj bi −→ 8 f 3 + 16n2 f + 8n f

b†
j b†

j bj bi b†
i b†

i bi bj −→ 8 f 3 + 16n2 f + 8n f

b†
j b†

j bj bi b†
j b†

j bj bi −→ 0

• − 1
2 (n̂i n̂j F̂′0 + F̂′0n̂i n̂j ):

b†
i bi b†

j bj b†
i b†

i bi bj −→ 12n3 + 24n f 2 + 8n2 + 8 f 2

b†
i bi b†

j bj b†
j b†

j bj bi −→ 12n f 2 + 4 f 2

b†
i b†

i bi bj b†
i bi b†

j bj −→ 12n3 + 24n f 2 + 10n2 + 4 f 2 + 2n

b†
j b†

j bj bi b†
i bi b†

j bj −→ 12n f 2 + 2 f 2

In total:

∑ = −12
(
n− f

)3 − 9
(
n− f

)2 −
(
n− f

)
 12

(
n− f

)3 + 9
(
n− f

)2 +
(
n− f

)
for −b†

i bj .
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C. Density of states

This section introduces a density of states

$
(
γ
)

=
1
N ∑

k
δ
(
γ− γk

)
=

1

(2π)2

∫∫
BZ

d2k δ
(
γ− γk

)
,

(C.1)

so that the two dimensional integration over the Brillouin zone can be reduced to a one dimen-
sional integration. In this appendix, the reciprocal lattice vectors are denoted in units of 1/(lattice
constant).

In Chapter 4, it was shown that the spin wave dispersion for the two dimensional square lattice can
be interpreted as ωk = ω(γk) with γk = 1/2(cos ka + cos kb) ∈ [−1, 1]. Thus, it is possible to write
summations/integrations over the Brillouin zone in terms of a density of states

∑
k∈ BZ

F (ωk) −→ 2
1∫

0

dγ $
(
γ
)

F
(

ω
(
γ
))

(C.2a)

1

(2π)2

∫∫
BZ

d2k F (ωk) −→ 2
1∫

0

dγ $
(
γ
)

F
(

ω
(
γ
))

, (C.2b)

where the factor 2 is a consequence of the symmetry of ωk and $ in γ.

We now derive the density of states for a two dimensional square lattice. The factor γk with ka,b ∈
[−π, π] (BZ) is rewritten as

γk =
1
2
(
cos ka + cos kb

)
= cos

(
ka + kb

2

)
cos

(
ka − kb

2

)
= cos k1 cos k2 (C.3)



C. Density of states

with k1,2 ∈ [−π, π]. Therewith, the density of states reads

$
(
γ
)

=
1

π2

π∫
0

dk1

π∫
0

dk2 δ
(
γ− cos k1 cos k2

)
=

1
π2

π∫
0

dk1
1

cos k1

π∫
0

dk2 δ

(
γ

cos k1
− cos k2

)

=
1

π2

π∫
0

dk1
1

cos k1

1∫
−1

dβ
1√

1− β2
δ

(
γ

cos k1
− β

)

=
1

π2

arccos γ∫
arccos−γ

dk1
1

cos k1

√
1−

(
γ

cos k1

)2
−1

,

where we substituted β = cos k2 and swapped the integration limits in step 3. The limits of the outer
integration have to be adjusted due to the Dirac delta. Furthermore, we use the symmetry of arccos x
and substitute

α =
1√

1− γ2
sin k1 =

√
1− cos2 k1√

1− γ2

⇔ cos2 k1 = 1−
(

1− γ2
)

α2,

where α ∈ [0, 1]. We now have

$
(
γ
)

=
2

π2

1∫
0

dα
1√

1−
(
1− γ2

)
α2

√
1− γ2√

1−
(
1− γ2

)
α2 − γ2︸ ︷︷ ︸√

(1−γ2)(1−α2)

=
2

π2

1∫
0

dα
1√

1− α2

1√
1−

(
1− γ2

)
α2

. (C.4)

Introducing the complete elliptic integral of the first kind

K (x) :=
1∫

0

dα
1√

1− α2

1√
1− x2α2

, (MAPLE definition) (C.5)

the final result for the density of states of the two dimensional square lattice is

$
(
γ
)

=
2

π2 K
(√

1− γ2

)
. (C.6)
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D. Details for evaluating the integrals

In this appendix, we describe how the domain of integration in the two and three dimensional
collinear phase is decomposed. Furthermore, we present how the divergences in the integrand of
the staggered magnetization and of the self-consistency equations are treated. This procedure is also
applicable for the model with biquadratic exchange discussed in Chapter 6.
For brevity, the reciprocal lattice vectors are still denoted in units of π/(lattice constant).

D.1. 2D collinear phase: x = 0

The two dimensional collinear phase is reproduced for x = 0. The integration is reduced to ka and kb
and the self-consistency equations are given by

α1 = αc = β =
2

π2

1/2∫
0

dka

1/2∫
0

dkb
1√

1−
(
cos ka · cos kb

)2
− 1

2

=
2

π2

1/2∫
0

dka

1/2∫
0

dkb f
(
ka, kb

)
− 1

2

(D.1a)

α2 =
2

π2

1/2∫
0

dka

1/2∫
0

dkb

√
1−

(
cos ka · cos kb

)2 − 1
2

, (D.1b)

where we have used the symmetry of cos u about u = 0. The k-dependence is only manifested in
the product (cos ka · cos kb)2. Thus, the integration of the reciprocal lattice vectors is reduced to ki ∈
[0, 0.5]. The integrand in the self-consistency equation for α2 does not diverge at all and is uncritical.
The integrand f (ka, kb) of the self-consistency equations for α1, αc and β also appears in the staggered
magnetization

mst = S +
1
2
− 2

π2

1/2∫
0

dka

1/2∫
0

dkb
1√

1−
(
cos ka · cos kb

)2

= S +
1
2
− 2

π2

1/2∫
0

dka

1/2∫
0

dkb f
(
ka, kb

) (D.2)



D. Details for evaluating the integrals

and diverges at k = (0, 0). To eliminate the divergence in f (ka, kb), we expand the integrand for small
values of k:

f
(
ka, kb

)
−→ f̃

(
ka, kb

)
≈ 1√

k2
a + k2

b

. (D.3)

This expression can be integrated analytically. For a rectangle with side length k̃a and k̃b, one obtains
the result

F̃
(

k̃a, k̃b

)
=

k̃a∫
0

dka

k̃b∫
0

kb f̃
(
ka, kb

)
= k̃a arsinh

k̃b

k̃a
+ k̃b arsinh

k̃a

k̃b
.

(D.4)

Typically, we choose k̃a = k̃b = ∆k = 10−3, which results in F
(
∆k, ∆k

)
≈ 0.0017627.

In total, the domain of integration in the self-consistency equations for α1, αc and β and in mst is split
up in three parts (see Fig. D.1):

I =
1/2∫
0

dka

1/2∫
0

dkb f
(
ka, kb

)

= F
(
∆k, ∆k

)︸ ︷︷ ︸
I

+
1/2∫

∆k

dka

∆k∫
0

dkb f
(
ka, kb

)
︸ ︷︷ ︸

II

+
1/2∫
0

dka

1/2∫
∆k

dkb f
(
ka, kb

)
︸ ︷︷ ︸

III

.
(D.5)

I II

III

ka

kb

0.5

∆k 0.5

1

1

∆k

Fig. D.1.: Decomposition of the domain of integration for x = 0 of the integrals appearing in the
self-consistency equations for α1, αc, β and in the staggered magnetization mst.
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D.2. 3D collinear phase: x 6= 0

D.2. 3D collinear phase: x 6= 0

No special treatment for the self-consistency equations is required in the three dimensional collinear
phase because the numerators of the integrands always vanish at the gapless Goldstone modes lo-
cated at k = (0, 0, 0) and k = (1, 0, 1). However, a divergence is still present in the integrand of the
staggered magnetization (5.30)

mst = S +
1
2
− 1

π3

1∫
0

dka

1∫
0

dkb

1−ka∫
0

dkc
Āk√

Ā2
k − B̄2

k

= S +
1
2
− 1

π3

1∫
0

dka

1∫
0

dkb

1−ka∫
0

dkc g
(
ka, kb, kc

)
,

(D.6)

where the symmetry of cos u about u = 0 and the point symmetry about (0.5, kb, 0.5) in the ka-kc-
plane have already been taken into account. Āk and B̄k are defined in (5.20). As before, the idea is
to decompose the domain of integration and to expand the integrand of mst for small momenta in a
cube with side length ∆k. In total, the domain of integration has to be split into five parts (see Fig.
D.2). Thus, the integral in the staggered magnetization (D.6) reads

1∫
0

dka

1∫
0

dkb

1−ka∫
0

dkc g
(
ka, kb, kc

)
=

∆k∫
0

dka

∆k∫
0

dkb

∆k∫
0

dkc g̃
(
ka, kb, kc

)
︸ ︷︷ ︸

I

+
1−∆k∫
0

dka

1∫
0

dkb

1−ka∫
∆k

dkc g
(
ka, kb, kc

)
︸ ︷︷ ︸

II

+
1∫

1−∆k

dka

1∫
0

dkb

1−ka∫
0

dkc g
(
ka, kb, kc

)
︸ ︷︷ ︸

III

+
1−∆k∫
∆k

dka

1∫
0

dkb

∆k∫
0

dkc g
(
ka, kb, kc

)
︸ ︷︷ ︸

IV

+
∆k∫
0

dka

1∫
∆k

dkb

∆k∫
0

dkc g
(
ka, kb, kc

)
︸ ︷︷ ︸

V

,

(D.7)
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D. Details for evaluating the integrals

where

g̃
(
ka, kb, kc

)
≈ 2J2 (S− α2) + J1 (S− α1) + Jc (S− αc)√

v2
ak2

a + v2
bk2

b + v2
c k2

c

(D.8)

is the expansion of g(ka, kb, kc) for small momenta. The spin wave velocities are given in Eq. (5.22).

The expansion (D.8) still diverges at k = (0, 0, 0), but the divergence can be eliminated by substituting
all reciprocal lattice vectors with ki → k2

i :

I −→

√
∆k∫

0

dka

√
∆k∫

0

dkb

√
∆k∫

0

dkc
2J2 (S− α2) + J1 (S− α1) + Jc (S− αc)√

v2
ak4

a + v2
bk4

b + v2
c k4

c

6kakbkc. (D.9)

The integrand is now smooth at k = (0, 0, 0) and can be integrated numerically. The integrals II-V
are uncritical.

∆k

∆k

1− ∆k∆k

kc

kb

ka

1

1

1
II

V IV

I

III

Fig. D.2.: Decomposition of the domain of integration of the integral appearing in the staggered
magnetization mst for x 6= 0.
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