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1. Introduction

The task of solid state physics is to explain the intrinsic properties of solid state materials.

Containing a macroscopic number (1023) of electrons and nuclei these materials have to

be described by many body theories. For an accurate description of such a many body

system a theory based on quantum mechanics is needed.

In solid state physics the full Hamiltonian describing the behavior of the solids is known.

Due to the overwhelming number of particles incorporated in these systems a complete

solution is impossible as it would result in a flood of details. Consequently one does not

aim at treating the Hamiltonian completely but rather at simplifying it.

One possible simplification consists in treating the electrons in the solid as independent

particles resulting in single-particle descriptions of the electrons. Although this is the

simplest way of treating the electrons it is appropriate to explain the formation of energy

bands in crystallene solids.

On the other hand there are many effects which are not explained by this approach. The

single-particle picture fails for instance to describe the properties of superconductors.

Especially the fascinating features of high-TC superconductors can only be understood

in the context of interacting particles. Another type of material which is not explained

by one-particle theories is the Mott insulator. Due to the odd number of electrons the

insulating behavior of these materials can not be understood by band theory. Especially

the transition of a metal to a Mott insulator [Mot90] is driven by strong correlations.

Thus real many body theories are needed to describe these materials.

Materials whose physical properties are determined by correlation effects are specified as

strongly correlated electron systems. These correlations induce fascinating phenomena

which are not yet fully understood.

A description of these phenomena has to incorporate the kinetics of electrons as well as

the interactions between them. The resulting many body problem is too complicated to

be solved exactly. To cope with the complexity of this problem approximations have to

be made. These lead to simplified models which are restricted to the most important

degrees of freedom of the original system.

Finding such a paradigmatic model for a given system is a demanding task itself.

An example for such a paradigmatic model is the Hubbard model, which is particularly

used in the context of high-TC cuprate superconductors [Eme87,ZR88]. The properties of

cuprates are governed to a large extent by a layered structure of two dimensional copper-

oxide planes. The two-dimensional one band Hubbard model serves as a model describing

these planes.
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The reduction of the full Hamiltonian to the Hubbard Hamiltonian (see chapter 2) is

based on restricting the electrons to one orbital and reducing the repulsive interaction

between electrons to an on-site interaction. The use of an on-site repulsion instead of

the long range Coulomb interaction is justified by screening effects. Due to the fact that

it combines a repulsive part with a kinetic part the Hubbard model explains many fea-

tures. Especially the physics of Mott insulators and antiferromagnets are explained by

this model.

Motivated by the great variety of properties, which are governed by strong correlation

effects, many new techniques for the solution of this paradigmatic model have been de-

veloped.

These techniques include quantum Monte-Carlo methods and exact diagonalization. Both

methods lack a description of the thermodynamic limit as they are restricted to small sys-

tems. Another group of methods are renormalization group approaches. In the case of

strongly correlated electron systems these methods might lead to diverging coupling con-

stants. In addition to these methods perturbative approaches were followed. Problems

with these methods are caused by the fact that they are only valid in certain parameter

ranges.

In this thesis self-similar continuous unitary transformations (sCUT) are used. This

method combines renormalization group methods with perturbative approaches,. The

sCUT method provides the possibility to derive an effective model which can then be

used as starting point for further calculations. Another advantage of the sCUT lies in the

fact, that it is valid on all energy scales.

Starting from the Hubbard model an effective t-J model is derived in a systematic fashion.

In contrast to work done before on the t-J model, the results obtained in this thesis

are reliable even for larger values of the bandwidth W . This is due to the self-similar

approach.

Beyond the spin interactions the effective t-J model derived in this thesis provides a

systematic treatment of the motion of holes or doubly occupied sites. Moreover it also

captures the interaction of holes or doubly occupied sites.

Fig. 1.1.: Doping dependence of the phase diagram for high-TC cuprate superconductors [DHS03].

AF denotes the antiferromagnetic state and SC stands for the superconducting phase.

The doping corresponds to hole doping on the right hand side and to electron doping on

the left hand side.



8 Introduction

Starting from a doped Hubbard model the sCUT method provides a tool to analyze

the influence of doping on the coupling constants of the effective model. As a result the

applicability of the approach is significantly enhanced.

In this way the foundations for the quantitative understanding of the doping depen-

dences, for instance in the high-TC cuprates, is laid. The doping dependence of high-TC

cuprates has been observed by Damascelli et al. [DHS03] (see Fig. 1.1).
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2. The fermionic Hubbard Model

The Hubbard model was introduced in 1963 independently by J. Hubbard, J. Kanamori

and M.C.Gutzwiller [Hub63, Hub64, Kan63, Gut63]. Originally the Hubbard model was

intended to describe ferromagnetism and to explain why a system with an odd number

of electrons shows insulating behavior. From band theory one would expect that such a

system with a partly filled conduction band behaves like a metal. As band theory fails

in this case, correlation terms between electrons had to be included. Therefore an on-

site repulsion of two electrons was added to the kinetic term. This led to the fermionic

Hubbard model.

The Hubbard Hamiltonian describes electrons with spin σ on lattice site i by the use of

their creation c†iσ and annihilation operators ciσ. It consists of two terms, describing the

kinetics (Ht) and the correlation effects (HU ).

H = Ht +HU (2.0.1)

Ht = t
∑
<i,j>

(ĉ†iσ ĉjσ + h.c.) (2.0.2)

HU = U
∑
i

(
n̂i,↑ −

1

2

)(
n̂i,↓ −

1

2

)
(2.0.3)

The kinetic part Ht describes the hopping of an electron with spin σ from site j to site

i and vice versa. This hopping process can only take place if site i and j are nearest

neighbors as indicated by the bracket under the sum.

The corresponding hopping element is denoted by t. The bandwidth of the model is given

by W = 2zt where z labels the coordination number of the considered lattice. For a

one-dimensional linear chain the coordination number takes the value z = 2 and thus

W = 4t whereas in the case of a two-dimensional square lattice the coordination number

is z = 4 resulting in the bandwidth W = 8t. In actual calculations energies are often

given in units of the bandwidth.

The second term HU determines the repulsion between electrons on the same site. In

HU the counting operator is given by n̂i,σ = ĉ†i,σ ĉi,σ. This indicates that putting two

electrons with opposite spin on one site costs the energy U.

In one dimension the Hubbard model can be solved exactly by the use of a Bethe ansatz

as has been done by Lieb and Wu [LW68]. For dimensions greater than two a phase di-

agram can be deduced from various mean-field calculations. A schematic phase diagram

at half-filling is shown in Fig. 2.1.
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Fig. 2.1.: Schematic phase diagram of the Hubbard model [GKKR96]. PI denotes the paramag-

netic insulator. PM stands for the paramagnetic metal and AF denotes the Antiferro-

magnet with long range order.

In the case of strong interaction and half-filling, which means one electron per site,

the system is a paramagnetic insulator as the energy costs for the creation of a doubly

occupied site are too high. In the opposite case, where the interaction tends to zero, the

Hubbard model describes free electrons.

Including the movement and the interaction of electrons on a lattice the Hubbard model

is able to explain the Mott-metal-insulator transition [IFT98]. The model is also applied

to transition metal compounds. In the last years the most important field of application

is the field of high-TC cuprate superconductors [BM86, LNW06]. The central part of

high-TC superconductors are two-dimensional copper-oxide planes which are decoupled

from each other. According to Anderson these materials can be described by a one-band

Hubbard model [And87].

The aim of this thesis is to map the Hubbard model to an effective model by eliminating

charge fluctuations.

2.1. Generalized t-J model

In the Hubbard model there are four possible configurations at one site. The site may

be singly occupied by one electron with spin up or spin down, doubly occupied by two

electrons with opposite spin or empty. The last two configurations correspond to charge

fluctuations. Both cases are referred to as double occupancies (DO) in this thesis.

Eliminating these charge fluctuations leads to an effective model, which conserves the

number of double occupancies. The effective model is a generalized t-J model which

is based on the Heisenberg model. This model describes interactions between spins on

neighboring sites. In the effective t-J model processes that change the number of double

occupancies are eliminated but it still contains the spin degrees of freedom of the electrons

and the motion and interaction of double occupancies and holes. Moreover the generalized
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t-J model contains correlations between two spins with a displacement larger than two

and real four spin interaction terms.

In the limit of a half-filled lattice and a large repulsion the effective model reduces to the

Heisenberg model.

It is important to take the properties of the initial model into account. If one starts the

mapping from a parameter range where the Hubbard model shows metallic properties

it is not reasonable to eliminate charge fluctuations as creating them does not cause

energy costs in this region. Therefore it is neccessary to make sure that the characteristic

parameters U and t are adjusted to the regime where charge fluctuations are essentially

suppressed.

The mapping to the effective t-J model is done by the method of self-similar continuous

unitary transformations which will be explained in the following chapter.
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3. Continuous Unitary Transformations

3.1. Introduction

Starting from a parameter range where the Hubbard model shows insulating behavior the

effective t-J model is derived by eliminating charge fluctuations.

This elimination is done by applying CUT-methods to the original model. In solid

state physics continuous unitary transformations are used to derive effective Hamilto-

nians which are easier to solve than the original one [Weg94,KSU03,Keh06].

The effective model is reached by a systematic change of the basis in which the Hamil-

tonian is represented. This change is performed by the use of a continuous unitary trans-

formation as will be explained below.

3.2. Derivation of the flow equation

The flow equation method was introduced in 1994 by Wegner [Weg94] for solid state

problems and independently by Glazek and Wilson [GW93, GW94], who developed this

method for problems in high-energy physics. The aim is to convert the original Hamilto-

nian to an effective Hamiltonian. At best the flow equation method leads to an effective

Hamiltonian that is diagonal or at least as close to diagonality as possible. During the

transformation the properties of the model must not be changed. That is why a method

has to be used that leaves the eigenvalues of the Hamiltonian invariant.

One way to fulfill this constraint is to use unitary transformations Û with Û−1 = Û †

[Frö52]. The effective Hamilton is given by

Heff := ÛHÛ−1 .

This transformation corresponds to a change of the basis in which the Hamiltonian is

represented.

If neccessary it is possible to combine multiple unitary transformations Û1...Ûi by apply-

ing them one after another.

This concept of applying several unitary transformations Û1...Ûi was generalized by Weg-

ner, Glazek and Wilson. They created a continuous unitary transformation based on the

use of a continuous flow parameter `.

In this way the Hamiltonian as well as the transformation Û become a function of the

flow parameter

H(`) = Û(`)HÛ(`)† . (3.2.1)
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The associated derivative with respect to ` reads

dH(`)

d`
=
dÛ(`)

d`
HÛ(`)† + Û(`)H

dÛ(`)†

d`

=
dÛ(`)

d`
Û(`)†Û(`)HÛ(`)† + Û(`)Û(`)†Û(`)H

dÛ(`)†

d`
.

Now a generator η(`) = dÛ(`)
d` Û(`)† is introduced leading to

dH(`)

d`
= η(`)H(`) +H(`)η(`)† . (3.2.2)

This formula can be simplified using the properties of the generator η. Starting from the

unitarity of Û(`) we can conclude

d

d`

(
Û(`)Û(`)†

)
︸ ︷︷ ︸

1

= 0

=

(
d

d`
Û(`)

)
Û(`)†︸ ︷︷ ︸

η(`)

+ Û(`)
d

d`
Û(`)†︸ ︷︷ ︸

η†(`)

⇒ η(`) = −η(`)† ,

which means that the generator has to be antihermitian.

With this property equation 3.2.2 can be rewritten using a commutator

dH(`)

d`
= [η(`), H(`)] . (3.2.3)

The transformation of the Hamiltonian is given by this first order differential equation, the

so-called flow equation. The transformation starts with the initial Hamiltonian H(0) = H.

This continuous unitary transformation corresponds to performing infinitely many in-

finitesimal transformations of the form eη(`)d` with the generator η(`). Therefore the trans-

formation can be stopped at an arbitrary value of the flow parameter ` but for ` equal to

infinity we call the corresponding Hamiltonian the effective HamiltonianH(` =∞) = Heff.

If the transformation is stopped at a smaller value of ` there might still be finite contri-

butions from the terms we wanted to eliminate.

The advantage of the continuous version of the unitary transformation lies in the fact,

that the transformation itself is readjusted to the flowing Hamiltonian H(`) for every

value of `.

Up to now we just shifted the problem from choosing an appropriate transformation Û

to choosing a suitable generator η. From equation 3.2.3 it is obvious that the trans-

formation stops when the commutator of the generator with the Hamiltonian vanishes

[η(`), H(`)] = 0. This implies that the generator and the Hamiltonian have a common

set of eigenstates. As a consequence of this the structure of the effective Hamiltonian

Heff is determined by the choice of the generator η. With a given generator predictions

concerning the effective model can be made even before the transformation is performed.
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3.3. Generators

As explained in the previous section the structure of the effective Hamiltonian is governed

by the choice of the generator. A famous choice for the generator is the one originally

used by Wegner [Weg94]. Trying to diagonalize the Hamiltonian Wegner partitioned the

Hamiltonian into a diagonal Hd and a non-diagonal part Hnd

H = Hd +Hnd . (3.3.1)

The generator is constructed by taking the commutator of the diagonal part, which is

kept, and the non-diagonal part, which we want to eliminate. This leads to the following

expression for the generator

ηW(`) := [Hd(`), Hnd(`)] = [Hd(`), H(`)] (3.3.2)

which defines the matrix element η(`)ij of the generator as

η(`)ij = (hi,i(`)− hj,j(`))hi,j(`) . (3.3.3)

In order to use this generator one has to define which part of the Hamiltonian is seen as the

diagonal part. As we use unitary transformations the trace tr
(
H2
)

does not dependent

on `. Based on this observation the convergence of a CUT using this generator can be

proven [Weg94, KM94]. If the transformation converges H commutes with its diagonal

part Hd.

In the non-degenerate case a transformation with this generator thus leads to a diagonal

effective Hamiltonian [Weg94, DU04]. In the case of degeneracies hi,i(`
′) = hk,k(`

′) the

right hand side of equation 3.3.3 (and consequently the generator) vanishes. In this

case one can still deduce an effective model but there is no general argument how the

component hi,k will evolve during the transformation. Thus no predictions about this

component of the effective model can be made.

3.3.1. Mielke Knetter Uhrig generator

The MKU generator was introduced in the context of a perturbative approach for the

CUT method [KU00]. Starting from a perturbed Hamiltonian with the perturbation

parameter λ, the terms are classified according to the order of λ of their prefactors. For

this approach the spectrum of the unperturbed part of the Hamiltonian has to be bounded

from below.

Mielke [Mie98] introduced a generator whose main advantage is that it benefits from

the initial structure of the Hamiltonian. He considered a Hamiltonian in band matrix

form. For a band matrix H it is known that hi,j(0) = 0 for |i − j| > ∆max ∈ N for

some maximal value ∆max. Performing a CUT calculation with the MKU generator this

structure will be conserved during the flow. During the flow only terms which do not

affect this structure can arise. This restricts the amount of new terms. In contrast to

this the Wegner generator destroys this structure in general making the calculations more
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complicated.

Knetter and Uhrig independently translated this idea for the choice of the generator into

the quasiparticle language. This led to the MKU generator. For a treatment with the

MKU generator the problem has to be translated into the quasiparticle language. What

the quasiparticles look like depends on the system under study.

As a new quantum number we introduce the number of quasiparticles that are present

in a certain state. It is useful to introduce an operator Q̂ counting the number of quasi-

particles. Now the eigenstates {|i〉} of the operator Q̂ are used as new basis vectors. The

corresponding eigenvalues are denoted by qi. Translating the Hamiltonian into this basis

yields

hij(`) = 〈i|Ĥ(`)|j〉 . (3.3.4)

The terms in the Hamiltonian can be organized in blocks according to their effect on the

number of quasiparticles. As an example we consider the block {i, j}. Terms in this block

create i quasiparticles and destroy j quasiparticles. The {0, 0}-block takes a special role

in this picture. If the system has a unique ground state, this block contains the ground

state energy in the effective model, i.e. after the transformation. In the case of the t-J

model the {0, 0} block contains the highly degenerate subspace of magnetically disordered

states. This is due to the fact that the quasiparticle vacuum, which is the phase without

double occupancies, contains the full spin degrees of freedom of the electrons.

In order to eliminate all changes in the number of quasiparticles we write the generator

as

η(`) =
[
Q̂, Ĥ(`)

]
. (3.3.5)

This choice of the generator leads to an effective model in which the number of quasipar-

ticles is conserved (see Section 3). In the basis of the |qk〉 the components of the generator

read

ηij(`) = 〈i|Q̂
∑
k

|k〉〈k|Ĥ(`)|j〉 − 〈i|Ĥ(`)
∑
k

|k〉〈k|Q̂|j〉

= (qi − qj)hij(`)

with the eigenvalues qi and qj . Following Mielke [Mie98] and Knetter/Uhrig [KU00] a

signum function is included in the MKU generator

ηMKU(`) = sgn(qi − qj)hij(`) . (3.3.6)

By the use of this generator we derive an effective model with the property

lim
`→∞

[
Q̂, Ĥeff(`)

]
= 0 .

This implies that in the effective model sectors with different numbers of quasiparticles

are decoupled from each other. Figure 3.1 provides a diagram of a Hamiltonian, that
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changes the number of quasiparticles by at most two, with the terms of the generator

coloured in red.

0,0

1,1

2,2

3,3

0,1 0,2 0,3

1,31,2

2,3

3,23,1

2,12,0

1,0

3,0

4,0 4,1 4,2 4,3 4,4

3,4

2,4

1,4

0,4

Fig. 3.1.: The MKU generator contains terms connecting subspaces with different amounts of

quasiparticles (coloured in red).

The structure of the Hamiltonian at the end of the calculation is shown in Figure 3.2.

0,0

1,1

2,2

3,3

4,4

Fig. 3.2.: After the CUT with the MKU generator the Hamiltonian becomes block diagonal

In the effective model each sector can be treated separately. In this way we have to

deal only with a few particles. For the one-particle energies it is sufficient to diagonalize

the one-particle sector. In the same way we have to deal with r instead of N � r

quasiparticles if we want to analyze properties of the r particle sector. Although there

are much more terms in the effective model than in the original one, the solution is easier

due to the decoupling of the different quasiparticle subspaces.

In the effective model the sectors with a small number of quasiparticles are described

most accurately. To decide whether the description with the MKU generator is accurate,

we have to check how much weight is included in these sectors. If the sectors with 0,1 or 2

quasiparticles are sufficient to capture most of the weight, the use of the MKU generator

is justified.
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3.3.2. Importance of the ROD

To illustrate the action of the generator, we analyze the effect of the flow equation on the

ij-component of the Hamiltonian. We use again the representation in the eigenbasis of

Q̂. Inserting the definition of the generator 3.3.6 in the flow equation one obtains

dhij(`)

d`
=
(
η(`)Ĥ(`)− Ĥ(`)η(`)

)
ij

=
∑
k

ηik(`)hkj(`)−
∑
k

hik(`)ηkj(`)

=
∑
k

sgn(qi − qk)hik(`)hkj(`)−
∑
k

sgn(qk − qj)hik(`)hkj(`)

= sgn(qi − qj)(hjj(`)− hii(`))hij(`) +
∑
k 6=i,j

(sgn(qi − qk) + (qj − qk))hik(`)hkj(`)

(3.3.1)

At this point it is useful to sort the eigenstates according to their eigenvalue qi. This

means that qi ≥ qk for i > k.

From this equation we can deduce a differential equation for the sum of the first s diagonal

elements.

d

d`

s∑
i=1

hii = 2
s∑
i=1

∑
k>i

sgn(qi − qk)|hik(`)|2 (3.3.2)

Due to the hermiticity of the Hamiltonian we substituted hikhki for |hik|2.

According to the ordering of the eigenvalues, the right hand side of this equation is always

smaller than 0. Thus the sum of the first s diagonal elements shows a monotonic decrease.

Now we assume that the eigenvalues are bounded from below by E0. This assumption

is justified for realistic systems. As the sum of the eigenvalues is bounded from below

the same has to be valid for the sum of the first s diagonal elements. Consequently the

derivative has to vanish for `→∞. For arbitrary values of s we deduce

lim
`→∞

sgn(qi − qk)|hik(`)|2 = 0 ∀i , k : i 6= k . (3.3.3)

There are two possibilities to fulfill this condition. First, it is possible that degeneracies

qi = qk occur. In this case the sign function vanishes. The eigenstates i and k have

the same number of quasiparticles. Consequently they belong to the same block of the

effective Hamiltonian. Second, in the non-degenerate case, the component hik vanishes

for ` =∞. This component connects different blocks with each other. In summary, there

are two types of terms in the Hamiltonian. On the one hand, there are terms hi′,k′ , with

i′ and k′ belonging to the same block. On the other hand, there are terms hik with i and

k belonging to different blocks, which are eliminated. Thus the effective Hamiltonian is

block diagonal with blocks belonging to a certain number of quasiparticles,see Fig. 3.2.

As the whole generator vanishes for `→∞, we obtain a Hamiltonian that commutes with

Q̂. Thus Q̂ and Ĥ have a common set of eigenstates. The number of quasiparticles of a

certain state is a conserved quantity.
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Of course it is not possible to reach the limit ` =∞ in realistic calculations. From equa-

tion 3.3.3 it is known that all terms connecting different blocks have to vanish. These

terms are called off-diagonal elements. For realistic calculations we have to know to what

extend the off-diagonal elements have been eliminated for a certain `′. If these terms are

not yet eliminated, but have very small values, they can be neglected. In this case we are

close to a block diagonal Hamiltonian. The calculation can be stopped at ` = `′ <∞.

As a measure for the remaining contribution of the off-diagonal terms the residual off-

diagonality (ROD) is introduced. To calculate the ROD we sum over the squares of the

coefficients of all terms in the generator. As explained before these terms are the off-

diagonal terms, connecting different blocks. The ROD is the square root of this sum.

Note that we already take the square root of the sum in contrast to the work of Reis-

chl [RMHU04].

In a converging transformation the coefficients of terms in the generator decrease expo-

nentially. This can be seen in a quickly decreasing ROD.

These arguments do not hold in cases where sectors with differing numbers of quasipar-

ticles overlap. In this case the ROD diverges, thus terms combining different blocks are

not negligible. A mapping to a quasiparticle conserving effective model is not possible

anymore. For arbitrary values of ` there will still be sizeable contributions from terms

changing the number of quasiparticles in the effective Hamiltonian.

3.3.2.1. Ordering of energy values

The MKU generator has another important property. It orders the eigenvalues of Ĥ

according to their quasiparticle number [KU00] [Mie98]. This can be seen in equation

3.3.1. If the limit `→∞ is considered, we can neglect the second term. This is justified

by the quadratic dependence of this term on hik, which takes very small values in this

limit

∂`hij ≈ −sgn(qi − qj)(hii − hjj)hij . (3.3.4)

If the transformation converges, the component hij has to vanish as seen before. This is

only possible if the sign function on the right hand side of equation 3.3.4 is positive. As

a result of this the energy values are ordered

qi ≤ qj ⇒ hii ≤ hjj .

This argument is not valid for blocks which are not connected et all, i.e. hij vanishes for

all values of ` [HU02]. A case like this may result from conserved quantities like the total

spin.

The ordering of the energy values may also cause problems. If the initial Hamiltonian

contains overlapping multi-particle continua the ordering of the energy values according

to the quasiparticle number is more problematic. In this case the different sectors can in

general not be separated by this method. The breakdown of the mapping can be seen in

a diverging ROD in this case.
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3.3.3. 0n generator

In the quasiparticle picture the description of the sectors with a small quasiparticle number

is most accurate. The idea for the use of the 0n generator is that most of the weight is

included in the sectors with zero or one quasiparticle. In the t-J model these sectors

are described most accurately. In the 0n-generator we include all terms that couple to

the subspace without quasiparticles. For the model under study this subspace is a true

subspace and not a single ground state.

A schematic diagram for the 0n-generator is shown in figure 3.3.
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0,1 0,2 0,3

1,31,2
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4,0 4,1 4,3

3,4

2,4

1,4

0,4

4,44,2

Fig. 3.3.: Schematic diagram for the 0n-generator

In this picture the blocks of terms included in the generator are coloured red. One

type of terms contained in the generator are terms that create r particles out of the 0

quasiparticle sector. These terms belong to the {n, 0} blocks. Besides also terms that

annihilate r quasiparticles from the r quasiparticle sector are considered. Applying these

to the r quasiparticle sector we end up in the sector without quasiparticles. These terms

are found in the {0, n} blocks of the Hamiltonian.

According to Dawson, Eisert an Osborne [DEO08] a variational ansatz can be used to

derive the generators. In this ansatz we would start from

〈0|
[
η(`), Ĥ(`)

]
|0〉

and minimize this expression under the constraint that the generator has to stay in-

finitesimal. The derivation of the generator in this work relies on the representation of

the generator in matrix form.

In the context of this thesis a description of the 0n generator in matrix form can cause

confusion as will be explained below. To avoid this confusion the generator is represented

in second quantization [FDU]. In second quantization the Hamiltonian can be written as

Ĥ(`) =

N∑
i,j=0

H i
j(`) . (3.3.1)

In this representation upper indices i denote the number of creation operators contained

in a term. Lower indices j indicate the number of annihilation operators.
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By the use of this representation the 0n generator is given by

η0n(`) =
N∑
i>0

(
H i

0(`)−H0
i (`)

)
. (3.3.2)

Therefore the terms included in the generator contain either only creation of only anni-

hilation operators. In the latter case an additional sign is applied according to the MKU

generator. These terms couple to the zero quasiparticle subspace. They can either create

i particles out of the ground state (H i
0(`)) or annihilate i quasiparticles out of the sub-

space with i quasiparticles (H0
i (`)) thus ending up in the quasiparticle vacuum.

Of course these terms can also couple to other subspaces. Let us consider the term H0
2 (`)

as an example. This term creates two quasiparticles and does not anihilate quasiparticles.

Consequently this term couples the quasiparticle vacuum to the two quasiparticles sub-

space. However this term also couples to the subspace with one or more quasiparticles.

Applied to the one quasiparticle sector this term creates two additional quasiparticles.

Thus the term couples the one quasiparticle subspace to the three quasiparticle subspace

and so on.

Due to the fact that the terms in the generator can also couple to other subspaces it is

not possible to find a unique matrix representation for the 0n generator. Therefore we

restrict ourselves to the description of this generator in second quantization.

A CUT using the 0n generator decouples the zero quasiparticle sector from the other

sectors. At the end of the calculation this sector can be treated independently from the

others (see Fig. 3.4).

0,0

1,1

2,2

1,31,2

3,23,1

2,1 2,3

3,3

4,1 4,3

3,4

2,4

1,4

4,44,2

Fig. 3.4.: Hamiltonian at the end of the CUT with the 0n generator

But this is not valid for the other sectors because they are still coupled with one other.

Therefore one has to consider all blocks if one is interested in the one-particle energies.

3.3.4. 0n1n generator

In the 0n1n generator the idea of decoupling only certain sectors from the rest is exptended

to the one-particle sector. This sector is treated in the same way as the zero particle sector.

A diagram for the terms in the Hamiltonian can be found in Fig. 3.5.
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Fig. 3.5.: Hamiltonian at the beginning of the CUT. Terms included in the generator are coloured

red.

By the use of this generator the zero particle and the one particle sectors are separated

from the rest (see Fig. 3.6).
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Fig. 3.6.: Hamiltonian at the end of the CUT with the 0n1n generator

After a CUT with this generator the motion of a quasiparticle can be analyzed without

considering sectors with two or more quasiparticles.

A CUT using this generator is appropriate if the important processes are included in the

zero or the one quasiparticle subspace.

For both generators the ROD is calculated using the terms of the generator. As we do

not eliminate the other off-diagonal terms, there is no sense in including these in the

measure for the convergence of the method. Hence the ROD depends on the choice of the

generator used.

If the ROD vanishes during the calculation with a 0n1n generator, the zero and the one

quasparticle sectors are decoupled from the other sectors, see Fig.3.6.



22 Continuous Unitary Transformations

3.4. Truncation scheme

The flow equations are differential equations for the coefficients of the running Hamilto-

nian. During the flow new terms are arising from the commutators. These have to be

included in the Hamiltonian. For ` = 0 these terms carry the coefficient 0 as they are not

part of the initial Hamiltonian H(0). In an exact treatment we would have to consider

all new terms when setting up the generator and calculating the commutator of the new

terms with η. However, there are too many terms to perform an exact calculation except

for very small systems.

Thus we have to bound the amount of terms. A truncation scheme has to be defined to

decide which of the new terms have to be discarded. This scheme is used to specify the

relevance of a term. With the truncation scheme a closed set of differential equations is

obtained, which can then be solved numerically.

One possibility is to use a perturbative truncation scheme [KU00,Ste97,KSU03]. In this

truncation scheme the terms are specified according to the order of a small expansion

parameter.

In this thesis we follow a different approach for the truncation scheme. As truncation

criterion we use the locality of a term. This approach has to be justified by the model

under study. This means that one has to be able to express the Hamiltonian by the use

of local operators.

The local scheme is accurate if the important processes in the model take place on a short

range. This is equivalent to a small correlation length as can be found in many strongly

correlated electron systems. In the case of a large correlation length, which means in

systems with long range interactions, the mapping to the effective model breaks down.

The model under study is a Hubbard model on a linear chain and on a two dimensional

square lattice. In the case of half-filling and a large interaction U the system becomes

insulating. The correlation length of the charge degrees of freedom is small indicating that

the local approach will be suitable if we start the mapping from the insulating regime.

To apply the truncation a measure for the locality of a term is needed. We use the spatial

extension of the terms. Before we define the extension, we need a unique representation

for each term. Therefore some kind of normal-ordering has to be applied to the terms.

A term is normal-ordered if the expectation value of each of its factors of local operators

with respect to the reference ensemble vanishes. The reference ensemble is given by all

the states without excitation, which means without double occupancies.

All terms with an extension greater than a predefined maximal extension are neglected

during the calculation.

Although we use the extension as truncation criterion we do not observe finite size effects.

This is due to the fact, that the model and our approximate treatment is translation in-

variant. By the use of this symmetry the calculations are extended over the whole lattice

and we are not restricted to the sites on which the terms are defined.

Another way of truncating the terms is based on the description of terms by the use of

local operators. To bound the number of terms in truncation schemes with large maximal
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extensions terms are truncated according to their rank which is given by the amount of

local operators the term consists of. Thus we restrict the calculation in the so-called

upto4 truncation scheme to terms which consist of at most four local operators .

In actual calculations one proceeds as follows. First new terms are produced by commut-

ing. Then these terms are normal-ordered and the terms that do not fit to the truncation

scheme are discarded. The remaining terms are included in the Hamiltonian. This means

that the whole transformation is performed in a renormalized fashion. That is why we

call the transformation using a truncation like this self-similar continuous unitary trans-

formation (sCUT). In contrast to results from other approaches the dependence of the

effective coefficients on system parameters is not perturbative.
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4. Application of the method to the

Hubbard model

The sCUT method is used to eliminate double occupancies, which is only possible as long

as sectors with a different number of double occupancies are separated in energy. As a

result we have to start the transformation from the insulating regime of the Hubbard

model. Therefore the interaction U has to be above a certain threshold as can be seen

in the phase diagram 2.1. If U is smaller, so that the transition to a paramagnetic metal

has taken place, a mapping to the t-J model is not possible anymore. This breakdown of

the mapping is accounted for by the vanishing of the energy costs needed to create charge

fluctuations. The vanishing of the energy costs results in a sizeable overlap of sectors with

different numbers of quasiparticles. This overlap makes the mapping impossible for a too

small repulsive interaction.

4.1. Quasiparticle description

To derive the effective t-J model we have to dispose of the charge fluctuations present

in the Hubbard model. For this reason it is advisable to restate the problem in the

quasiparticle picture. In this context the quasiparticles correspond to double occupancies

(DO). These are either sites with two electrons with opposite spins |↓↑〉 or empty sites

|0〉.
First of all a counting operator for the double occupancies D̂ is needed. In the fermionic

language this operator reads

D̂ =
∑
i

(2n̂i,↑n̂i,↓ − n̂i,↑ − n̂i,↓ + 1) (4.1.1)

with the counting operator already introduced in section 2. This operator yields one for

empty and doubly occupied sites and zero for sites with one electron. Thus it fulfills the

task to count the quasiparticles.

It is useful to classify the terms in the Hamiltonian according to their effect on the number

of DOs. In this way we obtain

ĤU =
U

2

(
D̂ − N

2

)
(4.1.2)

with N as the number of sites. The kinetic part can be split up into three terms.
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Ĥt = T̂0 + T̂+2 + T̂−2 (4.1.3)

T̂0 = t0
∑

<i,j>,σ

[
(1− n̂i,σ) ĉ†i,σ̄ ĉj,σ̄ (1− n̂j,σ) + n̂i,σ ĉ

†
i,σ̄ ĉj,σ̄n̂j,σ + h.c.

]
(4.1.4)

T̂+2 = t+2

∑
<i,j>,σ

[
n̂i,σ ĉ

†
i,σ̄ ĉj,σ̄ (1− n̂j,σ) + n̂j,σ ĉ

†
j,σ̄ ĉi,σ̄ (1− n̂i,σ)

]
(4.1.5)

T̂−2 = t−2

∑
<i,j>,σ

[
(1− n̂i,σ) ĉ†i,σ̄ ĉj,σ̄n̂j,σ + (1− n̂j,σ) ĉ†j,σ̄ ĉi,σ̄n̂i,σ

]
. (4.1.6)

In this notation T0 contains all terms which do not change the number of double occu-

pancies. One example for such a process is the hopping of one electron with spin σ from

a doubly occupied site i to site j which is occupied by one electron with spin σ̄ = −σ
(figure 4.1).

Fig. 4.1.: Hopping processes contained in T0

In analogy to this T+2 contains all terms that cause an increase of the number of double

occupancies by two. Such a process is illustrated in figure 4.2. There one electron hops

from one singly occupied site i to a site j with one electron of the opposite spin.

Fig. 4.2.: Hopping processes contained in T+2

The inverse process belongs to T−2, see Fig. 4.3.

Thus the number of double occupancies can be changed by the initial Hamiltonian by the

values 0,+2 and −2.
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Fig. 4.3.: Hopping processes contained in T−2

4.1.1. MKU generator

As introduced in Section 3.3 the MKU generator is given through the commutator of the

quasiparticle counting operator D̂ with the Hamiltonian.

η(`) =
[
D̂, Ĥ(`)

]
(4.1.7)

Using an eigenstates |i〉 of D̂ with D̂|i〉 = di|i〉 we obtain the following expression for

the i, j component of the generator.

η(`)ij = (di − dj)Hij(`) (4.1.8)

As H changes the eigenvalues of D̂ just by two, this can be re-expressed by

η(`)ij = 2sgn(di − dj)Hij(`) (4.1.9)

Compared to the original definition of the MKU generator this definition contains an

additional factor of two. As this is a global factor it just represents a renormalization of

the flow parameter ` = 2`∗.

As the MKU generator preserves the block band structure of the initial Hamiltonian

no terms are created that change the number of double occupancies by other values

than 0,+2,−2. So we can already state that the Hamiltonian will consist of three parts

H(`) = T0(`) + T+2(`) + T−2(`). Although this imposes a constraint on the new terms,

there are still many complicated terms created during the flow.

4.1.2. 0n generator and 0n1n generator

The 0n-generator consists of all terms that couple the quasiparticle vacuum to the other

sectors (see section 3.3.3). Thus a term included in the generator has to change the number

of DOs. These terms may be terms contained in T+2. Terms out of this group create two

DOs out of the vacuum coupling to the quasiparticle vacuum. T−2 consists of terms that

annihilate two DOs. These terms couple the sector with two double occupancies to the

sector without DOs. Thus these terms are also contained in the generator.

Of course these terms will also couple to other sectors. A term from T+2 also couples

the sector with two DOs to the sector with four DOs. For the 0n1n-generator also terms

coupling to the sector with one DO are considered.

In contrast to the MKU generator a term consisting of four creation operators and two
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annihilation operators would neither be included in 0n nor in the 0n1n generator. Such a

term couples the two-particle subspace to the subspace with four quasiparticles. It does

not couple to subspaces with less than two quasiparticles. Consequently this term does

not fit into the schemes for the 0n or the 0n1n generator although it changes the number

of DOs.

To keep the results comparable to the ones obtained with the MKU generator, we insert

the factor of two into the 0n and the 0n1n-generator.

The initial generator η(0), which results from the initial Hamiltonian Ĥ(0), is the same

for all three types of generators.

η(0) = [D̂, Ĥ(0)] (4.1.10)

But the generators will evolve in a different way during the flow.

In contrast to the MKU generator a CUT with the 0n or the 0n1n generator will not

conserve the block diagonality.

4.2. Reference ensemble and normal-ordering

As we have seen before, it is necessary to have a unique representation for the terms to be

able to file the contributions to the right term. Following the local approach we express

terms as products of local operators. For this some kind of normal-ordering is needed.

Normal-ordering is based on tracking fluctuations by the use of the expectation value

with respect to some reference ensemble. The reference ensemble consists of a mixture of

all states in the quasiparticle vacuum. In our case this means the mixture of all states

without double occupancies. In the Hubbard model there are locally two such states

namely the states with one electron either with spin up |↑〉 or spin down |↓〉. As a result

we do not have a single reference state but a whole ensemble given by the statistical

operator projecting onto the reference states

ρ̂0 =
∏
i

 1

#ref-states

∑
ref-statesα

|α〉ii〈α|

 (4.2.11)

=
∏
i

1

2
( | ↑〉ii〈↑ |+ | ↓〉ii〈↓ | ) (4.2.12)

The product is taken over all sites i due to the translation symmetry of the model. We

do not consider any magnetic ordering. Thus both states carry the same weight and it is

guaranteed that the effective model is not biased to any magnetic order.

With the definition of the reference ensemble we can define local normal-ordered operators
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bosonic fermionic

1 (1− n̂↓) ĉ↑
σz = n̂↑ − n̂↓ (1− n̂↑) ĉ↓

ĉ†↑ĉ↓ n̂↓ĉ↑

ĉ†↓ĉ↑ n̂↑ĉ↓

ĉ↓ĉ↑ n̂↑ĉ
†
↓

ĉ†↑ĉ
†
↓ n̂↓ĉ

†
↑

n̄δ = n̂↑ + n̂↓ − 1 + δ1 (1− n̂↓) ĉ†↑
D̂δ = 2n̂↑n̂↓ − n̄δ (1− n̂↑) ĉ†↓

Table 4.1.: Basis of local operators

as operators whose expectation value with respect to the reference ensemble vanishes

< Âi >ref = 0 (4.2.13)

= Tr
(
Âiρ̂0

)
(4.2.14)

=
∏
j

1

2

(
〈↑ |jÂi| ↑〉j + 〈↓ |jÂi| ↓〉j

)
=

1

2

(
〈↑ |iÂi| ↑〉i + 〈↓ |iÂi| ↓〉i

)
.

(4.2.15)

All normal-ordered operators have to fulfill this constraint. Therefore we create a basis

of normal-ordered operators and express terms through these basis operators.

For one lattice site there are four possible states. Therefore the operators may be expressed

as 4× 4 matrices connecting these states. This means that the new basis has to contain

16 normal-ordered operators. The 16 operators used to describe the basis are listed in

Table 4.1.

Besides the well known operators the operator n̄δ occurs in this list. In the half-filled

case (δ = 0) n̄δ reduces to the operator n̄ which counts the amount of electrons compared

to the half-filled case. Thus applied to an empty site it yields −1 and applied to a singly

occupied site it yields 0 whereas a doubly occupied site leads to +1.

Among these operators the unity operator takes a special role. This operator is not

normal-ordered in the sense explained before as the expectation value of this operator

would always yield the value one. However, this term is included in the basis of normal-

ordered operators as it does not describe charge fluctuations.

The expectation value of the spin operator σz vanishes due to the equal weight of | ↑〉
and | ↓〉.
As a unique representation of the terms is required, we have to express each term as a

linear combination of these 16 operators. As an example the operator n̂↑(1− n̂↓), which

projects onto the state with an up electron, is considered. As this operator is not included

in the list above, it has to be expressed through other operators

n̂↑(1− n̂↓) =
1

2

(
(1− δ)1+ σz − D̂δ

)
. (4.2.16)
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Due to the fact that the product of normal-ordered operators is also normal-ordered in

the sense that the corresponding expectation value vanishes, it is possible to express every

term that occurs during the flow using the operators of the normal-ordered basis.

Additionally the operators of a term are ordered according to the sites on which they are

acting.

In this way a unique representation for every term as a product of local normal-ordered

operators is created.

4.3. Truncation schemes

As explained in section 3.4 we follow the local approach. Consequently we use the locality

of a term as measure of its relevance for the calculation. The locality is measured through

the extension of a term. On the one-dimensional chain the extension of a term is given

as the distance between the rightmost and the leftmost site with non-identity operators.

On a two dimensional square lattice we use the taxi cab distance to determine the

extension of a term. An example is shown in figure 4.4.

Fig. 4.4.: Illustration of a term with extension 2

In this example the term is represented by the operator Â acting on site (0, 0) and

operator B̂ on site (1, 1). The resulting extension for this term is 2. If the extension of a

term is greater than a maximal extension, the term will be neglected.

In the two dimensional case the resulting extension of a term is given as the sum over the

extension in x− and the extension in y−direction. A term which exceeds three lattice

sites in the x−direction and two in the y−direction thus has an extension of 3 (see figure

4.5).

Fig. 4.5.: Illustration of a term with extension 3

There is an additional constraint which occurs in the so called minimal truncation

scheme. In this scheme we discard all new terms but the Heisenberg interaction. Be-
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sides we neglect contributions originating from the commutator of the generator with the

Heisenberg term.

Apart from that the truncation schemes of the one dimensional model are named accord-

ing to the maximal extension considered in the calculation. In the two dimensional case

we have the nearest neighbor (NN) truncation, the plaquette calculation, which corre-

sponds to an extension of two and the double plaquette calculation, where terms with an

extension of three are considered. During the double plaquette calculation a vast amount

of terms is created so that we introduce another truncation scheme. In the upto4 trunca-

tion scheme we consider terms that fit on the double plaquette scheme but additionally

we require that these terms consist of at most four local operators. The number of local

operators contained in a term is denoted as its rank. This reduces the amount of terms

by a factor of 10.
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4.4. Implementation

With a higher maximal extension more and more terms fulfilling the truncation criteria

are created.

As a result of the fast growing number of terms only the calculations belonging to the

small truncation schemes like the minimal or the NN-truncation can be performed by

hand. For higher truncation schemes the calculations are done by the use of a computer.

The program used in this thesis is implemented using the computer language C++.

The program is divided into two parts. The first part deals with the derivation of the dif-

ferential equations for the coefficients. In the second part of the program these equations

are solved numerically.

The program is based on the classes ’term’ and ’operator’, see Fig.4.6.

Fig. 4.6.: Schematic diagram for the 0n-generator

Operators are described by two numbers identifying the type of the operator. For each

operator there are 16 possibilities as can be seen from the list 4.1. Beyond this the class

operator contains a variable for the site on which the operator acts. The class term

contains a vector of the type operator, which indicate the local operators, of which the

term consists. Additionally the class contains the prefactor of the term. This prefactor is

stored as an exact fraction to avoid numerical errors. For practical use this class contains

two additional values. The first is the hash value of the term. Keeping this value speeds

up the search for a certain term in the list of all terms. The second one is the multiplicity,

which will be used in the context of symmetries as explained below.

The Hamiltonian itself is given as a vector of terms.
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4.4.0.1. Setting up the differential equations

A structure chart of the first part of the program is shown in figure 4.7.

Fig. 4.7.: Structure chart for the used program

First of all the Hamiltonian is initialized. Then the program performs two loops in

order to compute the comutator. One runs over all terms of the generator and one runs

over all terms in the Hamiltonian. Here we make use of the fact that the generator

consists of terms of the Hamiltonian itself. Therefore we just have to check if a certain

term contributes to the generator and calculate the right prefactor.

The central part of the program is the calculation of the commutator. In this part we

benefit from the representation of terms as products of local operators (see section 3.4).

The calculation of commutators of terms can thus be split into calculating commutators

of local operators. As there are bosonic as well as fermionic operators in the set of local

operators, we have to deal with commutators of two fermions, of two bosons and of a

fermion with a boson. Thus we have to express the commutators of terms by commutators

or anticommutators of its operators [Fis07]. In the case of two fermionic operators âk, b̂l,
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we obtain

[
Â, B̂

]
=

 n∏
i=1

âi,
m∏
j=1

b̂j

 (4.4.1)

=
n∑
k=1

m∑
l=1

(−1)(l−1)

(k−1∏
i=1

âi

)l−1∏
j=1

b̂j

{âk, b̂l}
(

m∏
r=l+1

b̂r

)(
n∏

s=k+1

âs

)
(4.4.2)

with m even. In this formula {, } stands for the anticommutator of two operators.

The case of two bosonic operators âk and b̂l as well as the case with one bosonic and one

fermionic operator are covered by

[
Â, B̂

]
=

 n∏
i=1

âi,

m∏
j=1

b̂j

 (4.4.3)

=
n∑
k=1

m∑
l=1

(k−1∏
i=1

âi

)l−1∏
j=1

b̂j

 [âk, b̂j ]

(
m∏

r=l+1

b̂r

)(
n∏

s=k+1

âs

) (4.4.4)

using the commutators of local operators.

To be able to calculate these commuators it is necessary to implement the algebra of

the local operators.

After commuting the terms a unique representation for each term is found by ordering

the operators according to the sites on which they are acting. Furthermore the terms are

expressed in a normalordered form. Then the truncation scheme is applied as new terms

violating this scheme may have been created. The terms that are kept because they fulfill

the truncation criteria have to be filed to the right differential equation in the end. If

the new terms are not yet considered in the Hamiltonian they have to be included in the

vector presenting Ĥ.

As we want to consider contributions from these new terms, we have to repeat the steps

explained before. As long as there are new terms in Ĥ another loop is started, in which

commutators of these new terms are calculated.

4.4.0.2. Application of symmetries

Due to the vast number of new arising terms it is advantageous to use symmetries to

increase the efficiency of the program. If one term emerges from another term by applying

symmetry operations, both terms have to carry the same coefficient.

The model under study inherits many symmetries from the initial Hamiltonian H(0).

These are the spin flip symmetry, the symmetry of adjoint terms and the whole point
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group of the underlying lattice. The two dimensional square lattice is symmetric regard-

ing rotations about π
2 , π and 3

2π. Beyond this it is symmetric regarding reflections about

the x-axis, the y-axis and the diagonal. In the one dimensional case this reduces to the

reflection about the axis perpendicular to the linear chain itself.

At half-filling we also used the particle-hole symmetry. By applying all symmetry opera-

tions in the two dimensional case up to 64 terms are created out of one single representative

term. This means that it is sufficient to treat one term instead of 64 thus speeding up

the program.

All terms related by symmetry operations with one other are grouped together. For each

group one of the terms is chosen to be the representative of this group. The calculation

is thus performed for all representatives and not for all terms in the Hamiltonians∑
all terms

Hi =
∑

symm group

∑
repres.

Rj . (4.4.5)

This leads to a much smaller number of terms and of differential equations.

If a term is chosen to be a representative we eventually have to change its prefactor.

As an example we consider the unity operator. Applying the symmetry group to this

operator reproduces the unity operator itself several times. This has to be considered in

the prefactor of the representatives. How many times a certain operator is reproduced by

applying symmetry operations is stored in the variable multiplicity of the class term.

A prefactor might also be changed by sign changes due to the applied symmetry operation.

Applying symmetries is also useful for the calculation of the commutators. Instead of

commutating all terms of the generator with all terms in the Hamiltonian, we can restrict

ourselves to commutating the representatives for the generator terms with the terms in

the Hamiltonian.[
η(`), Ĥ

]
=

∑
symm group

[ ∑
repres.

Ri,
∑

symm group

∑
repres.

Rj

]
(4.4.6)

This reduces the amount of terms and the size of the set of differential equations. As a

result the numerical evaluation can be performed more efficiently. Besides solving the dif-

ferential equations is more stable as less rouning errors occur if more symmetries are used.

By the use of symmetries the terms in the double plaquette calculation for the 0n1n-

generator are reduced from more than 5 million terms to 55049 representatives. At half-

filling particle hole symmetries could be used additionally thus reducing the total amount

of terms to 28086. This calculation took 1224 hours of CPU time. Storing the corre-

sponding system of coupled differential equations took 10 GB of memory.

The computational effort grows exponentially with the maximal extension used for the

calculation. Whereas the calculation mentioned above took 51 days, the NN calculations

where done within a few seconds.

Additionally the computational effort depends on the generator used. The double pla-

quette calculation with the 0n generator took 10 days which has to be compared to the

51 days which were needed for the same calculation with the 0n1n generator.
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4.4.0.3. Solving the differential equations

The integration of the differential equation was performed by a Runge-Kutta algorithm.

The integration was done for several starting values of the hopping matrix element t in par-

allel. As it is not possible to reach ` =∞ numerically, we use the residual off-diagonality

(ROD) defined in section 3.3.2 to decide when to stop the calculation. The ROD measures

to what extent the terms of the generator have been eliminated. In this sense we stop

the calculation if the ROD falls below a value of 10−8 in units of the Hubbard repulsion U .

The solution of the differential equations for the small truncation schemes like the NN

truncation took less than half an hour of CPU. Even for the double plaquette calculation

the integration took less than 40 hours of CPU for the 0n1n-generator.
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4.5. Minimal model

In a first step we analyze the minimal model (min) as explained in Sect. 3.4. The

calculation of this model starts with calculating processes on nearest neighbors. This is

equivalent to a maximal extension of e = 1. To extract the minimal model from these

processes all new terms except for the Heisenberg interaction are neglected. Beyond this

the Heisenberg interaction will not be considered in the generator. Consequently there

are no new contributions to the generators.

As explained before the initial generators for all three types of generators are the same.

Starting with the same terms and ignoring all new contributions for the generator all

three generators remain the same during the flow in this truncation scheme. According

to Eq. 4.1.7 the generator reads

η(`) =
[
D̂, Ĥ(`)

]
(4.5.1)

= 2T̂+2 − 2T̂−2. (4.5.2)

The factor of two in the generator arises from the fact, that one excitation corresponds

to two double occupancies. The differential equations can now be determined from the

flow equation 3.2.3 which is restated here

d

d`
Ĥ(`) =

[
η̂(`), Ĥ(`)

]
. (4.5.3)

For the calculation of the flow equation we split the Hamiltonian into the repulsive part

ĤU and the kinetic part Ĥt. Then the flow equation[
η(`), ĤU + Ĥt

]
(4.5.4)

yields two contributions which are calculated separately. For the repulsive part we obtain[
η(`), ĤU

]
=

[
2T̂+2(`)− 2T̂−2(`),

U(`)

2
D̂

]
(4.5.5)

= −2U(`)T̂+2(`)− 2U(`)T̂−2(`) . (4.5.6)

For the kinetic part we have to calculate[
η(`), Ĥt

]
=
[
2T̂+2(`)− 2T̂−2(`), T̂0(`) + T̂+2(`) + T̂−2(`)

]
. (4.5.7)

As the commutators [T̂+2(`), T̂0(`)] and [T̂−2(`), T̂0(`)] vanish, it remains to calculate the

commutator of T̂+2(`) and T̂−2(`)[
η(`), Ĥt(`)

]
=
[
2T̂+2(`)− 2T̂−2(`), T̂+2(`) + T̂−2(`)

]
(4.5.8)

= 4
[
T̂+2(`), T̂−2(`)

]
. (4.5.9)

This commutator yields the following expression
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[η(`), Ĥt(`)] = 4zt+2t−2D̂ (4.5.10)

+ 16t+2t−2

∑
<i,j>

~Si ~Sj (4.5.11)

+ 8t+2t−2

∑
<i,j>

(ĉ†i↑ĉ
†
i↓ĉj↓ĉj↑ + h.c.) (4.5.12)

− 4t+2t−2

∑
<i,j>

n̄in̄j (4.5.13)

− 41t+2t−2 (4.5.14)

+ ... (4.5.15)

The neglected terms indicated by the three dots are terms that have an extension larger

than one.

Here ~Si ~Sj stands for

~Si ~Sj =
1

2

(
σ+
i σ
−
j + σ−i σ

+
j

)
+

1

4
σzi σ

z
j (4.5.16)

with

σ+ = Sx + iSy (4.5.17)

σ− = Sx − iSy (4.5.18)

σz = 2Sz . (4.5.19)

In the first term (Eq. 4.5.10) z denotes the coordination number of the underlying lat-

tice. For the two dimensional square lattice we have z = 4, whereas the one dimensional

linear chain has a coordination number of z = 2.

Up to this point we performed the full nearest neighbor calculation. For the minimal

truncation the last three contributions given in Eqs. 4.5.12 to 4.5.14 are ignored. In the

minimal truncation just the Heisenberg interaction on nearest neighbors is included as a

new term in the Hamiltonian. The Heisenberg exchange on nearest neighbors

HNN = J1(`)
∑
<i,j>

~Si ~Sj (4.5.20)

is generated through Eq. 4.5.11. This term is included in the Hamiltonian with the

initial condition J1(0) = 0. We would have to consider this term in the generator but as

the Heisenberg exchange does not change the number of double occupancies it does not

contribute to the generator. In the minimal model we also ignore contributions of HNN

to the flow equation arising from [η(`), HNN].

The operators belonging to terms in T+2 and T−2 are hermitian conjugates and their

coefficients are assumed to be real. Therefore t+2(`) = t−2(`) holds.

A comparison of the terms in the second contribution with the terms in the original



38 Application of the method to the Hubbard model

Hamiltonian (see Eq. 4.1.2) leads to the differential equation for the Hubbard repulsion

U

d

d`

U(`)

2
= 4zt2+2(`) . (4.5.21)

(4.5.22)

The flow equation for the Heisenberg exchange reads

d

d`
J1(`) = 16t2+2(`) . (4.5.23)

And the remaining equations for the hopping terms are given by

d

d`
t+2 = −2U(`)t+2(`) (4.5.24)

∂`t0(`) = 0 . (4.5.25)

Taking the second derivative of Eq. 4.5.21 and inserting Eq.4.5.24 leads to

d2U(`)

d`2
= 16zt+2

dt+2

d`
(4.5.26)

= −32zt2+2U(`) (4.5.27)

= −4U(`)
dU(`)

d`
. (4.5.28)

This differential equation is solved by

U(`) =
A

2
tanh (A`+B) (4.5.29)

with the constants A and B. The constant B is given by the initial value U(0) = U0 as

B = arctanh

(
2U0

A

)
. (4.5.30)

From Eq. 4.5.21 we obtain t+2

t+2(`) =

√
1

8z

d

`
U(`)

=

√
1

8z

A2

2

(
1− tanh2(A`+B)

)
=
A

4

√
1

z

(
1− tanh2(A`+B)

)
. (4.5.31)

Combining Eq. 4.5.29 and 4.5.31 and using t0(0) = t+2(0) the constant A is given by

A =
√

4U(`)2 + 16zt2+2 =
√

4U2
0 + 16zt20 . (4.5.32)

These results are used to solve the initial value problem for J1 with J1(0) = 0. Integrating

Eq. 4.5.23

d

d`
J1(`) = 16t+2(`)2 =

2

z

dU(`)

d`
(4.5.33)
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leads to

J1(`) =
2

z
U(`)− 2

z
U0 (4.5.34)

=
A

z
tanh (A`+B)− 2

z
U0 . (4.5.35)

The constant 2
zU0 ensures that the initial condition for J1 is fulfilled.

The effective coefficients which can be determined in the limit ` = ∞ are given in the

following equations

t0,eff = t0 (4.5.36)

t+2,eff = 0 (4.5.37)

Ueff =
1

2

√
4U2

0 + 16zt20 (4.5.38)

J1,eff =
A

z
− 2

z
U0 (4.5.39)

=
1

z

√
4U2

0 + 16zt20 −
2

z
U0 . (4.5.40)

For simplicity we rename the initial values t0 = t and U0 = U in further calculations.

Thus the minimal model contains in leading order the second order perturbation theory

result for J
(2)
1 = 4t2

U .

In the case of a two dimensional square lattice we have z = 4 in these formulas. The

derived effective coefficients for the two dimensional square lattice are in agreement with

the results obtained by Reischl [RMHU04] and Lorscheid [Lor].

For other lattices one just has to insert a different value of z. The formulas stay valid.

With these values the effective t-J Hamiltonian is given as

Heff = Ueff
1

2
D̂ + T̂0 + J1,eff

∑
<i,j>

~Si ~Sj . (4.5.41)
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4.6. NN model

The NN model is an extension of the minimal model discussed before. In the NN trun-

cation all terms with a maximal extension of one are considered. This means that we

consider all processes on nearest neighbors (NN). In section 4.5 we already derived the

flow equation for the nearest neighbor truncation

[η(`), Ĥt(`)] =4zt+2(`)t−2(`)D̂ (4.6.1)

+ 16t+2(`)t−2(`)
∑
<i,j>

~Si ~Sj (4.6.2)

+ 8t+2(`)t−2(`)
∑
<i,j>

(
ĉ†i↑ĉ

†
i↓ĉj↓ĉj↑ + h.c.

)
(4.6.3)

− 4t+2(`)t−2(`)
∑
<i,j>

n̄in̄j (4.6.4)

− 4t+2(`)t−2(`)1 (4.6.5)

+... . (4.6.6)

The only point where the geometry of the lattice enters is the coordination number z.

As long as the coordination number z is known, there are no limitations on the geometry

of the lattice. Thus universal expressions for the effective coupling constants can be

derived [HDU]. These expressions are also valid for dimers and even in the limit of

infinite dimensions as will be seen below.

For a derivation of the NN model all terms in the Eqs. 4.6.1 to 4.6.4 have to be

considered. Besides the Heisenberg exchange this equation contains the term

HV (`) = V (`)
∑
<i,j>

n̄in̄j . (4.6.7)

Again the brackets under the sum indicate that site i and site j are nearest neighbors.

The operator n̄ = n̂↑ + n̂↓ − 1 counts the amount of electrons compared to the half-filled

case. Thus HV describes the interaction of two neighboring DOs.

Equation 4.6.3 contains an additional term in the third line. This term is given by

Hp(`) = Vp(`)
∑
<i,j>

(
ĉ†i↑ĉ

†
i↓ĉj↓ĉj↑ + h.c.

)
. (4.6.8)

Hp describes the hopping of two DOs. Two electrons hop from a doubly occupied site to

another empty site. Sites with two electrons as well as empty sites are labeled as DOs.

Consequently Hp does not change the number of quasiparticles. Both new terms act on

neighboring sites thus fitting to the truncation scheme. HV and Hp are included in the

Hamiltonian. But they do not change the number of quasiparticles and so they are not

part of the generator. Apart from the contributions already determined in the minimal

model there are additional contributions to the differential equations arising from the

commutator

[η(`), HNN(`) +Hp(`) +HV (`)] (4.6.9)
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In analogy to the previous calculations a z dependent differential equation for the Hubbard

repulsion U is obtained

d

d`
U = 8zt2+2(`) . (4.6.10)

A comparison of the coefficients yields the remaining differential equations

dt+2(`)

d`
=

(
−2U(`) + 2V (`)− 2Vp(`)−

3

2
J1(`)

)
t+2(`) (4.6.11)

dJ1(`)

d`
= 16t2+2(`) =

2

z

dU(`)

d`
(4.6.12)

dV (`)

d`
= −4t2+2(`) =

−1

2z

dU(`)

d`
(4.6.13)

dVp(`)

d`
= 8t2+2(`) =

1

z

d

d`
U(`) . (4.6.14)

The initial conditions for the coefficients of the new terms are J1(0) = 0, V (0) = 0 and

Vp(0) = 0. With these conditions and the Eqs. 4.6.11 to 4.6.14 the following relations

between the coefficients are obtained

J1(`) =
2

z
U(`)− 2

z
U0 (4.6.15)

V (`) = − 1

2z
U(`) +

1

2z
U0 (4.6.16)

Vp(`) =
1

z
U(`)− 1

z
U0 (4.6.17)

⇒ d

d`
t+2(`) = t+2(`)

(
−2

z
U(`)(z + 3) +

6

z
U0

)
. (4.6.18)

The second derivative of the differential equation for U(`) reads

d2U

d`2
= 16zt+2(`)

dt+2

d`
, (4.6.19)

which can be rewritten as

d2U

d`2
=
dU

d`

((
−12

z
− 4

)
U(`) +

12

z
U0

)
. (4.6.20)

For the solution of this equation we use the ansatz

U(`) =
z

6 + 4z
A tanh(A`+B) +

3
z

3
z + 4

U0 (4.6.21)

with A and B constant. Again the constant B can be derived from the initial conditions

to be B = artanh(2U0
A ). By the use of

t2+2 =
dU

d`

1

8z
(4.6.22)

= A2 1

16(3 + z)
(1− tanh2(A`+B)) (4.6.23)
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an expression for A is obtained, it is defined by

A = 2
√
U2 + 4(3 + z)t2 (4.6.24)

where we again used t and U to denote the initial values t0(0) and U0(0). From the

expression for U(`) and Eq. 4.6.15 we can derive the ` dependence for all the other

coefficients

V (`) = − 2

3 + 4z

√
U2 + 4(3 + z)t2 tanh(A`+B) +

2

3 + 4z
U0 (4.6.25)

Vp(`) =
4

3 + 4z

√
U2 + 4(3 + z)t2 tanh(A`+B) +

4

3 + 4z
U0 . (4.6.26)

J1(`) =
2

3 + z

(√
U2

0 + 4(3 + z)t20 tanh(A`+B)− U0

)
(4.6.27)

In the limit `→∞ the effective coupling constants read

Veff(`) = − 2

3 + 4z

√
U2 + 4(3 + z)t2 +

2

3 + 4z
U0

Vp,eff(`) =
4

3 + 4z

√
U2 + 4(3 + z)t2 +

4

3 + 4z
U0 .

The effective Heisenberg interaction is given as

J1,eff =
2

3 + z

(√
U2

0 + 4(3 + z)t20 − U0

)
,

where z is again the coordination number of the lattice.

For a linear chain we set z = 2. The two dimensional square lattice yields z = 4 and

a three dimensional square lattice corresponds to z = 6. A dimer can be captured by

setting z = 1. To analyze the limit of infinite dimensions it is useful to replace t and J1

by scaled values

t0 =
t̄0√
z

= z
2

3 + z
U0

√1 + 4(3 + z)
t̄0

2

zU2
0

− 1

 .

For z →∞ we obtain

J̄ = 2U0

√1 + 4
t̄0

2

U2
0

− 1

 .

The expression for the Heisenberg exchange contains the perturbation results for leading

order of t
U .
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4.6.1. Results for the NN truncation

In a first step we compare the analytical result to the numerical one for the NN calcula-

tion. As a cross check the result for the Heisenberg exchange J1 obtained by a numerical

treatment is compared to the analytical one for the two-dimensional square lattice. Ad-

ditionally we show the results for the minimal model. The curves are shown in Fig.

4.8.

0.5 1
W/U

0

0.05

0.1

J 1,
ef

f

numerical result, NN
numerical result, min
analytic result, min
analytic result, NN

Fig. 4.8.: Results for the nearest neighbor Heisenberg exchange J1 for the NN calculation

In both cases the curves show perfect agreement of the numerical and the analytical

result.

The minimal model leads to slightly larger values for the nearest neighbor Heisenberg

exchange.
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4.7. Results for the one dimensional linear chain at

half-filling

4.7.1. Higher truncation schemes

Now we consider results for higher truncation schemes. With a larger maximal extension

more and more terms are considered in the calculation. Thus we expect to reach exact

results for the coupling constants in the limit of an extension e → ∞. In this limit the

effective coupling constants are converged. If an effective coupling constant converges for

finite values of e we can conclude that all processes which influence this coupling constant

are already contained in the considered truncation scheme. Thus including terms with

higher maximal extensions does not improve the result anymore.

The schemes considered in the case of the one-dimensional linear chain are the ones

with maximal extension of three or four (see Sect.3.4). The results for various truncation

schemes are compared to one other. In this way it is possible to analyze how the coupling

constants develop when more extended terms are included. With more extended terms

included more reliable results are expected.

During the CUT the coupling constants of all appearing terms are calculated but we

restrict the discussion to a few exemplary results. The coupling constants are shown

in dependence of W/U for different truncation schemes where W denotes the bandwidth

W = 2zt. The results shown in this section correspond to calculations which were stopped

at a value of 10−10 for the ROD.

Before we show effective coupling constants we discuss the behavior of the ROD. As

the ROD decreases exponentially with the flow parameter ` it is shown in a logarithmic

plot in Fig. 4.9 for the large value of W/U = 1.1.

0 1 2 3 4 5 6 7 8 9 10 11
flow parameter l

1e-12

1e-08

0.0001

1

R
O

D

ext4, t
0
(0)=0.01

ext4, t
0
(0)=0.38

ext3, t
0
(0)=0.01

ext3, t
0
(0)=0.38

Fig. 4.9.: Behavior of the ROD for different starting values of the hopping parameter t.
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For ` = 0 the only terms contributing to the ROD are the terms T+2 and T−2 of the

original Hamiltonian. Each of these terms includes a sum running over two possible spin

directions and one sum for the nearest neighbors. Therefore the ROD starts at a value

of 4zt2 where t denotes the starting value of the hopping parameter and z denotes the

coordination number of the lattice.

In the one-dimensional case the ROD shows convergent behavior for all values of W/U

for all truncation schemes with a maximal extension ≤ 4.

As will be seen in Sect.6.4 the mapping to the effective model is valid up to W/U of

about 0.8 in the one-dimensional case. Therefore the coupling constants are shown in

dependence of W/U for values of W/U ≤ 0.8.

4.7.1.1. Spin terms

Having analyzed the ROD we now study the spin interactions. The most important spin

interaction is the Heisenberg exchange between nearest neighbors

HNN = J1

∑
<i,j>

~Si ~Sj . (4.7.1)

The coefficients of the spin terms as well as of the interaction terms are compared to the

second order result of perturbation theory J
(2)
1 = 4t2

U . J1 was determined in fourth order

perturbation theory to be

J1 =
4t2

U
− 24t4

U3
+O

(
t6

U5

)

with the hopping element t and the repulsion U [Tak77] [MGY88].

The effective value of the coupling constant J1 compared to J
(2)
1 is shown in Fig. 4.10.

In the limit W/U → 0 the results correspond to J
(2)
1 .

Compared to the other truncation schemes the minimal model leads to much higher val-

ues whereas the NN calculation yields smaller values. The results for the other truncation

schemes lie close together. This observation implies that the terms, which are important

to determine the value of J1, are already contained in the calculation with a maximal

extension of two. However even the results obtained in a NN calculation are close to the

ones obtained by calculations with higher schemes.
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Fig. 4.10.: Dependence of the coupling constant J1 for the nearest neighbor Heisenberg interaction

on the linear chain.

Heisenberg interaction terms between two spins with a greater distance occur as well.

The interaction between to spins at a distance of 2a with the lattice constant a is given

by

H3NN = J3

∑
<<i,j>>

~Si ~Sj (4.7.2)

where the sum runs over next to nearest neighbors on a linear chain. The results for this

coupling are shown in Fig. 4.11.

All curves shown in this figure show the same behavior. The spin interaction J3 is

proportional to t4

U3 in leading order, which explains its relative small values. Differences

in the results for different truncation schemes can only be seen for larger values of W/U .

J3 turns out to be much smaller than J1. For W/U = 0.4 the value of J3 is one percent

of the one for J1. Therefore the coupling between spins at a distance of 2a may be safely

neglected in a simplified model.
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Fig. 4.11.: Results for the Heisenberg term J3

4.7.1.2. Hopping terms

The first hopping term we consider belongs to T0 which was explained before

T̂0 = t0
∑

<i,j>,σ

[
(1− n̂i,σ) ĉ†i,σ̄ ĉj,σ̄ (1− n̂j,σ) + n̂i,σ ĉ

†
i,σ̄ ĉj,σ̄n̂j,σ + h.c.

]
. (4.7.3)

This term represents hopping without an effect on the number of DOs and it is already

included in the initial Hamiltonian. The results for the minimal and the NN model do

not depend on W/U (see Fig. 4.12).
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Fig. 4.12.: W/U dependence of the hopping element t0

Besides T0 the effective Hamiltonian also contains spin dependent hopping processes.

One of this processes is described by

T ′′spin = t′′spin

∑
α,β

∑
<<i,k,j>>

{[(
1− n̂i,αĉ†i,ᾱ

)
~σᾱ,β̄ ĉjβ̄ (1− n̂j,β)

]
~Sk

+
[
n̂i,αĉ

†
i,ᾱ~σᾱ,β̄ ĉj,β̄n̂j,β

]
~Sk + h.c.

 (4.7.4)

where the bracket under the sum indicates that this process takes place between sites i

and j with a distance 2a and k in the middle of i and j. ~σα,β represents the vector of the

Pauli matrices. One possible process described by T ′′spin is the hopping of an electron with

spin β̄ from a singly occupied site j to site i. During the hopping the electron changes its

spin. To conserve the total spin another spin flip has to appear on site k.

The results for the corresponding coupling constant coincide for the extension2 and

the extension3 calculations (see Fig.4.13). A calculation with maximal extension of four

yields smaller values for large W/U .
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Fig. 4.13.: Results for the spin dependent hopping element on a linear chain.

4.7.1.3. Interaction terms

An interaction term which has already been introduced is the hopping of a DO

Hpair = Vp
∑
<i,j>

(
ĉ†i,↑ĉ

†
i,↓ĉj,↓ĉj,↑ + h.c.

)
. (4.7.5)

A process described by this term is the hopping of two electrons from site j to an empty

site i. The results for the effective coupling constant Vp for truncation schemes with a

maximal extension e ≥ 2 coincide (see Fig. 4.14). Thus Vp seems to be converged in

a calculation with a maximal extension of two. Figure 4.14 shows the coefficient of the

operator

H ′′pair = V ′′pair
∑
σ

∑
<<i,j>>

[
ĉ†k,σ ĉ

†
k,σ̄ ĉi,σ̄n̂i,σ ĉj,σ(1− n̂j,σ̄) + ĉ†k,σ ĉ

†
k,σ̄ ĉi,σ̄(1− n̂i,σ)ĉj,σn̂j,σ̄ + h.c.

]
.

(4.7.6)

This operator describes processes similar to Hp on three sites. One possible action of this

term is to move an electron with spin up from a doubly occupied site i to an empty site

k. Additionally an electron with spin down hops from the singly occupied site j to site

k. Conclusively the total effect of this term is to destroy a DO on site i and create one

on site j.
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Fig. 4.14.: Results for the pair interaction terms Vp and V ′′p

Another type of interaction terms are density density interactions. The density-density

interaction between two nearest neighbouring DOs is given by

HV = V
∑
<i,j>

n̄in̄j . (4.7.7)

The corresponding coupling constant is shown in Fig. 4.15.
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Fig. 4.15.: Behavior of the density density interaction in dependence of W/U

For this constant all but the NN calculation yield similar results.
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4.7.1.4. Results for the 0n generator and the 0n1n generator

After presenting the results for the MKU generator we now compare these results to the

ones obtained by the use of the other generators.

Before discussing the effective coupling constants we will have a look at the behavior of

the off-diagonal terms as these visualize the differences between the different generators.

Note that these off-diagonal elements do not correspond to the ROD for the 0n generator.

In the ROD only those terms are included which are considered in the generator. For the

0n generator this means that only terms which consist of either only creation operators

or only annihilation operators are considered in the ROD.

Figure 4.16 depicts the off-diagonal terms for a calculation with a maximal extension of

four.
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Fig. 4.16.: Behavior of the off-diagonal terms for the 0n generator and a maximal extension of

four

The off-diagonal terms are denoted according to the quasiparticle sectors they con-

nect. Thus 0-2 denotes terms that create two quasiparticles without annihilating any

quasiparticle as well as terms which annihilate two quasiparticles without creating any

quasiparticle. Note that these terms may couple to the groundstate as well as to other

subspaces.

At the beginning the Hamiltonian consists of terms combining the zero and the two quasi-

particle sector. The contributions from these terms start at 4zt2 as explained before. As

these terms are included in the generator they are rotated away by the CUT. Thus their

coefficients decrease exponentially. During the flow there are new terms arising among

which the 1-3 terms yield the most important contributions. These terms are not included
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in the 0n generator, thus their contribution stays finite. The same argument pertains for

the 2-4, 3-5, 1-5 and the 1-3 terms.

Additionally there are terms arising denoted by 0-4. As these terms may couple to the

ground state sector they are rotated away leading to exponentially decreasing contribu-

tions.

An analogous consideration concerning the off-diagonal terms in the case of the 0n1n

generator is shown in Fig. 4.17. The terms coupling to the ground state sector show the

same behavior as in the case of the 0n generator. Additionally also terms coupling to the

one quasiparticle sector are included in the 0n1n generator. This leads to an exponential

decrease of contributions from 1-3 terms. The terms 2-4 are not part of the generator

thus their contributions stay finite.
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Fig. 4.17.: Behavior of the off-diagonal terms for the 0n1n-generator

By the use of these generators we calculated all effective coupling constants for various

truncation schemes. The following figures present a few exemplary results obtained for a

calculation with a maximal extension of four.

We skip the spin terms in this context as the coupling constants obtained with different

generators lie perfectly above each other. As the 0n generator yields similar values for

the nearest neighbor Heisenberg exchange as the MKU generator we assume that for the

dominant Heisenberg interactions all important terms are already included in the ground

state sector. Therefore we start the discussion with the hopping terms.
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The behavior of the hopping parameter t0 for the various generators is depicted in Fig.

4.18.
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Fig. 4.18.: Results for the hopping element t0

for different generators
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Fig. 4.19.: Results for the spin dependent hop-

ping term (Eq. 4.7.4)

The results for the hopping element t0 obtained with the 0n1n generator and the ones

obtained with the MKU generator lie above each other whereas the 0n generator leads to

slightly smaller values for W/U ≥ 0.3 (see Fig. 4.18).

The same behavior can be observed for the spin dependent hopping terms (see Fig. 4.19).

In a next step we discuss the results for the interaction terms in Figs. 4.20 and 4.21.

As the 0n generator only contains terms of the ground state sector, we would expect that

the deviation of the results for the interaction terms are rather large. In fact the results

for the pair interaction describing the interaction of a hole with a doubly occupied site

(see Eq. 4.6.8) do not show large deviations for the 0n generator from the result for the

MKU and the 0n1n generator.

As can bee seen in Fig. 4.21 the deviation increases with W/U . Even for larger values

of W/U the deviation compared to the perturbative result for J1 is smaller than 0.003.

For the 0n1n generator the deviations are negligible.
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Fig. 4.20.: Results for the pair interaction ob-

tained with different generators
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Fig. 4.21.: Deviation of the results from the

MKU results

Figure 4.22 shows the pair interaction (see Eq. 4.7.5) between next nearest neighbors

on a linear chain. For this coupling constant the results for the 0n generator show larger

deviations than for the nearest neighbor interaction. This is caused by the fact that these

terms are extended over a larger distance.
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Fig. 4.22.: W/U dependence of V ′′p as defined in Eq. 4.7.6 for different generators

For the density density interaction between nearest neighbors (Eq. 4.7.7) we obtain

a similar result for all three types of generators. The results for this term are depicted

in Fig. 4.23. Surprisingly the results of a CUT with the 0n generator show a better

agreement with the MKU generator for this coupling constant than the results obatined
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by the use of the 0n1n generator.
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Fig. 4.23.: Results for the density density interaction for different generators

All three generators lead to similar results for the coupling constants. Especially the

pure spin terms J1 and J3 lead to a good agreement of the results for different generators.

As a result of this it is advantageous to use the 0n generator in further calculation as

the calculations performed with this generator show a better convergence and lead to less

computational effort.
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4.8. Results for the half-filled two-dimensional square

lattice

4.8.1. Results obtained by the use of the MKU generator

For the two-dimensional case we directly show the results for the higher truncation

schemes like the plaquette calculation (see Fig. 4.24) or the upto4 calculation. In the

upto4 calculation all terms are considered which fit onto the double plaquette scheme (see

Fig. 4.25) and consist of at most four local operators.

Fig. 4.24.: Plaquette scheme Fig. 4.25.: Double plaquette scheme

As will be seen in Sect. 6.4 the mapping to the effective model is restricted to values

W/U ≤ 1. Therefore we show the coupling constant depending on W/U for W/U ≤ 1.

4.8.1.1. Results for the spin interactions

The most important spin term is the Heisenberg exchange between nearest neighbors J1.

The behavior of this coupling constant compared to the second order perturbation theory

result is shown in figure 4.26.
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Fig. 4.26.: Heisenberg exchange term J1 in dependence of W/U

This coupling constant shows the same behavior in the two-dimensional case as in the

one-dimensional case. The nearest neighbor coupling J1 is reduced for larger W/U . The

minimal truncation scheme yields higher values for J1 than the other calculations. The

plaquette calculation already includes all important terms thus the results obtained in

the plaquette calculation and the one obtained in the upto4 calculation almost coincide.

In addition to the coupling J3, which was introduced for the one-dimensional case

in Eq. 4.7.2, we introduce the Heisenberg exchange between diagonal neighbors. The

corresponding coupling constant is denoted by J2. The corresponding results are shown

in Figs. 4.27 and 4.28.
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Fig. 4.27.: Spin interaction between diagonal

neighbors

0 0.2 0.4 0.6 0.8 1
W/U

0

0.005

0.01

0.015

J 3,
ef

f/J
1(2

)

plaquette
upto4

Fig. 4.28.: Spin interaction J3 as defined in

Eq. 4.7.2

Both coupling constants yield much smaller values than J1 and can thus be neglected in

simplified models. In contrast to J1 the results for J2 and J3 for the plaquette calculation

differ significantly from the results of the upto4 calculation. The plaquette calculation

is the first truncation scheme in which these terms can occur. Thus the corresponding

coupling constants change if more extended terms are considered as it is the case in the

upto4 calculation.

Besides spin interactions between two spins the two-dimensional case also yields four

spin interactions. One of these terms is the ring exchange term [Tak77,KK02]

H2 = J2
∑

<i,j,k,l>

[(
~Si~Sj

)(
~Sk ~Sl

)
+
(
~Si~Sl

)(
~Sj ~Sk

)
−
(
~Si~Sk

)(
~Sj ~Sl

)]
. (4.8.1)

This term presents a spin interaction between four spins on a plaquette as presented in

Fig. 4.29.
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Fig. 4.29.: Results for the ring exchange J2 dependent on W/U

This coupling constant takes values of up to 43 percent of J1 for W/U = 1.5. Conse-

quently the ring exchange may not be neglected in an effective model for the spins. This

observation is in agreement with the results obtained by A. Reischl [RMHU04].

The importance of this term was assumed before [Tak77] and already observed in La2CuO4

[KK02]. The ring exchange turned out to be necessary to explain the IR data for high-TC

cuprates. Without this term it is not possible to explain the additional peaks in the

spectrum [LES99,MVM04].

Besides this term there is another four spin interaction the so-called cross interaction

H× = J×
∑

<i,j,k,l>

(
~Si~Sk

)(
~Sj ~Sl

)
. (4.8.2)

The interacting sites are aligned in the same way as for the ring exchange. In contrast

to the ring exchange the interaction shown here takes place between diagonal neighbors.

Figure 4.30 shows results for the effective coupling constant J×. Compared to the ring

exchange this interaction is much smaller.
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Fig. 4.30.: Results for the cross exchange J× dependend on W/U

The results obtained in this thesis coincide with the results obtained by A. Reischl

[RMHU04] within the scope of the computer precision.

4.8.1.2. Results for the hopping terms

This section deals with the behavior of the hopping terms. The first term to be considered

belongs to T0 which was introduced before (Eq. 4.7.3). This term presents hopping pro-

cesses without a change of the number of DOs. The corresponding parameter is compared

to its initial value t0(0). As can be seen in Fig. 4.31 the results for this constant obtained

in the plaquette calculation differ from the results for the plaquette calculation. The

hopping parameter is influenced by terms which are considered in the upto4 calculation

but not in the plaquette calculation.
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Fig. 4.31.: Results for the coupling constant t0 for the MKU generator.

Hopping terms can also be defined between diagonal neighbors T ′0.

T ′0 = t′
∑
σ

∑
<<i,j>>

[(
1− n̂i,σ

)
ĉ†i,σ̄ ĉj,σ̄(1− n̂j,σ) + n̂i,σ ĉ

†
i,σ̄ ĉj,σ̄n̂j,σ + h.c.

]
(4.8.3)

The operator T ′′0 includes the same terms but for this operator the sum runs over two

sites with a distance of 2a with the lattice constant a.
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Fig. 4.32.: Results for the hopping parameter

t′
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Fig. 4.33.: Results for the hopping parameter

t′′

Both hopping parameters are much smaller than t0. This can be understood from the

larger distance of the corresponding sites.
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Besides these terms the effective model also contains spin dependent hopping terms for

the two dimensional case. These terms read

T ′spin = t′spin
∑
αβ

∑
<i,k,j>

{[(
1− n̂i,α

)
ĉ†i,ᾱ~σᾱ,β̄ ĉj,β̄(1− n̂j,β) + n̂i,αĉ

†
i,ᾱ~σᾱβ̄ ĉj,β̄n̂j,β + h.c.

]
~Sk

}
(4.8.4)

where the sum runs over two diagonal neighbors i and j which have a common nearest

neighbor k.

For the term T ′′spin we just have to replace the sum by a sum running over ijk which are

aligned along one coordinate axis.

As the parameters behave similarly we restrict the discussion to t′spin which is shown in

Fig. 4.34.
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Fig. 4.34.: Results for the spin dependent hopping parameter t′spin as defined in Eq. 4.8.4

The spin dependent parameters have the same size as the hopping parameter between

diagonal neighbors t′eff. Thus spin dependent hopping terms can not be neglected in a t

t′ model.
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4.8.1.3. Results for the interaction terms

In agreement with the one-dimensional case we consider density density interactions ex-

pressed in the coupling constant V

HV = V
∑
<i,j>

n̄in̄j .
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Fig. 4.35.: Density density interaction term dependent on W/U

The effective value Veff is proportional to t2

U . This dependency is accounted for by

the fact that the interaction is mediated by hopping processes. For this interaction two

hopping processes are needed. Each of these processes is proportional to t which leads to

the quadratic dependence.

Another type of interactions included in the effective model are pair interactions, be-

tween two DOs. These terms may be extended over nearest neighbors like Vp which was

defined in Eq. 4.7.5 or over more terms. Besides the term H ′′p , which was considered

for the one-dimensional case, there exists another pair interaction term V ′p between three

spins on a plaquette.

H ′pair = V ′pair
∑
σ

∑
<i,j>

[
ĉ†k,σ ĉ

†
k,σ̄ ĉi,σ̄n̂i,σ ĉj,σ(1− n̄j,σ̄) + ĉ†k,σ ĉ

†
k,σ̄ ĉi,σ̄(1− n̂i,σ)ĉj,σn̄j,σ̄ + h.c.

]
.

(4.8.5)

In this case i and j represent diagonal neighbors.
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Fig. 4.37.: Coefficient of the pair interaction

between diagonal neighboring sites

The coupling V ′p is as half as big as Vp. The operator corresponding to V ′p imposes an

additional constraint on site k. Thus the coupling V ′p is smaller than the one for Vp for

which only site i and site j have to be in a certain state.

We skipped V ′′p as this coupling constant shows a similar behavior as the coupling V ′p
which is shown in Fig. 4.37. This is due to the fact that both terms originate from

hopping processes over three sites.

The last interaction terms considered here are correlated hopping terms. These terms

describe processes where an electron hopps from a singly occupied site j to an empty site

i under the condition that there is a DO on site k. A process like this which takes place

between diagonal neighbors i and j is described by

H ′V n = V ′n
∑
α,β

∑
<i,j>

{(
1− n̂i,α

)
ĉ†i,ᾱĉj,β̄

(
1− n̂j,β

)
n̄k + n̂i,αĉ

†
i,ᾱĉj,β̄n̂j,βn̄k + h.c.

}
.

(4.8.6)

The prefactor V ′′n denotes the effective coefficient for such a process taking place between

three sites which are aligned along one direction.

The effective coefficients of these terms are shown in the Fig. 4.38 and 4.39.
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Fig. 4.38.: Coefficient of the density den-
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Fig. 4.39.: Coefficient of the density density

interaction between third nearest

neighbors on a square lattice

The results obtained in this context coincide with the results of the work done by A.

Reischl [RMHU04]. The results of this work agree with our results within the computer

precision.

4.8.2. 0n generator and 0n1n generator

In this section we analyze the effects of the use of different generators on the effective

coupling constants. With the use of these generators we calculated all coupling constants

for various truncation schemes in dependence of W/U .

In contrast to the calculations done with the MKU generator we are able to perform

the double plaquette calculation with the 0n as well as with the 0n1n generator.

Figure 4.40 shows the ROD for these calculations in dependence of the flow parameter

`. For the 0n generator the ROD converges for all values of W/U . In contrast to this

the ROD for the 0n1n generator shows divergencies for larger values of W/U . Thus for

larger values of W/U the terms in the 0n1n generator can not be transformed away.

Consequently the mapping breaks down.
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Fig. 4.40.: Behavior of the ROD for various starting values and generators

We study the effects of the choice of the generators on the coupling constants starting

with the spin terms. A few exemplary results for the upto4 truncation scheme are shown.

4.8.2.1. Spin terms

The most important spin coupling is the Heisenberg interaction HNN between nearest

neighbors as defined in Eq. 4.7.7. The corresponding coupling constant is shown in Fig.

4.41. As the curves lie nearly above each other we additionally show the deviation of

the results for the 0n and the 0n1n generator from the results obtained with the MKU

generator in Fig. 4.42.
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Fig. 4.41.: Behavior of nearest neighbor Heisenberg coupling for different generators.
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Fig. 4.42.: Deviation of the results for different generators from the MKU result.

The relative deviation of the coupling constant obtained with the 0n generator from

the one obtained by the use of the MKU generator stay below 0.006% for W/U ≤ 1.5.

For the 0n1n generator the deviation is even smaller.

The 0n generator only decouples the sector without quasiparticles from the other sectors.

Thus this result supports the assumption that all proceses which are important for the

nearest neighbor Heisenberg interaction are already contained in this sector. As the 0n1n

generator additionally considers the one-particle sector the deviations for this generator
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are even smaller.

For the coupling constants J2 and J3 (Eq. 4.7.2) we observe a similar behavior. Therefore

we show the relative deviation of these constants in Fig. 4.43 and Fig. 4.44.
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Fig. 4.43.: Deviation of the results for J2 for different generators from the MKU result.
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Fig. 4.44.: Deviation of the results for J3 as defined in Eq. 4.7.2 for different generators from the

MKU result.

For very large values of W/U the deviation of the results from the 0n generator become

smaller.

Even the coupling constant J4 which describes the Heisenberg interaction between a spin
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on site (0, 0) and a spin on site (2, 1) shows a good agreement of the results for the

different generators even for larger values of W/U. This interaction takes place between

fourth nearest neighbrs on a two-dimensional square lattice.

0.2 0.4 0.6 0.8 1
W/U

0

1e-06

2e-06

3e-06

4e-06

5e-06

∆J
4,

ef
f/J

1(2
)

0n1n generator
0n generator

Fig. 4.45.: Deviation of the results for different generators from the MKU result.

As explained before the ring exchange defined in Eq. 4.8.1 is one of the most important

spin interactions. Also for this term the results for different generators show very similar

behavior, see Fig. 4.46.
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Fig. 4.46.: Ring exchange for different generators
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Fig. 4.47.: Deviation of the results for different generators from the MKU result.

The deviation for the 0n generator, which is shown in Fig. 4.47, is less than 0.8 percent.

For the 0n1n generator the deviations are negligible.

For the cross interaction, which is defined in Eq. 4.8.2, the same result is obtained (see

appendix A).

Conclusively we can state that for a determination of the important spin terms it is

sufficient to use the 0n generator instead of the MKU or the 0n1n generator in this model.

The use of the 0n generator instead of the others leads to a considerable reduction in the

amount of terms that have to be considered during the calculation.

Besides the use of this generator leads to a convergent ROD for all values of W/U even

for the double plaquette calculation as shown in Fig. 4.40.

4.8.2.2. Hopping terms

The results for the hopping element t0 are shown in Fig. 4.48. The results for the MKU

and the 0n1n generator almost coincide whereas the 0n generator leads to slightly smaller

values for t0.
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Fig. 4.48.: Results for the hopping element t0 for different generators

Figure 4.49 shows the coefficient for the hopping between sites with a distance of 2a

where a denotes the lattice constant. The results obtained with the MKU generator and

the one obtained with the 0n1n generator lie ontop of each other. The 0n generator leads

to slightly smaller values of the hopping parameter. The deviation grows with W/U .
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Fig. 4.49.: Deviation of the results for different generators from the MKU result.

Analogous behavior is found for the spin dependent hopping over diagonal neighboring

sites on a plaquette, which means two spin situated at (0, 0) and (1, 1) (see figure 4.50).
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Fig. 4.50.: Deviation of the results for different generators from the MKU result.

The spin dependent hopping over a distane of 2a shows the same results. Thus we

directly show the deviations compared to the perturbative result for J1 in Fig. 4.51.
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Fig. 4.51.: Deviation of the results for different generators from the MKU result.

The use of the 0n generator leads to smaller values for the spin dependent hopping than

the other generators. It should be highlighted again that there is no sizeable difference in

the results of the MKU generator and the 0n1n generator. And even the deviations for

the 0n generator are small.
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4.8.2.3. Interaction terms

Differences between the MKU generator and the 0n1n generator can be seen in the coef-

ficients of the interaction terms.

Although the 0n generator does not consider terms of the sectors with two DOs it led to

similar results in the one-dimensional case. Therefore we also show the results obtained

with this generator for the two-dimensional case.

The coefficient of the density density interaction

HV = V
∑
<i,j>

n̄in̄j . (4.8.7)

shows larger deviations for the 0n1n generator for larger W/U than for the 0n generator.
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Fig. 4.52.: Density-density interaction V for different generators
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Fig. 4.53.: Deviation of the results for different generators from the MKU result.

However the deviation of the 0n1n generator is smaller than 1.5 percent even for W/U =

1.6.

The coefficient of the density-density interaction between third nearest neighbors on a

square lattice V ′′n shows the expected result. The MKU and the 0n1n generator produce

a very similar behavior of the coefficient. The 0n generator leads to a slight deviation of

up to 7 percent.
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Fig. 4.54.: Results for the coupling constant V ′′n
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Fig. 4.55.: Deviation of the results for different generators from the MKU result.

The same result is obtained for the density-density interaction between next nearest

neighbors (see Eq. 4.8.6).

Another interaction term of interest is the interaction between a hole and a doubly

occupied site on diagonal neighbors given by V ′p which is defined in Eq. 4.8.5. The results

for this coupling show deviations for both generators. The deviations for the 0n generator

reach a value of about 6.8 percent. This deviation is accounted for by the fact that the

0n generator does not decouple the sector with two quasiparticles from the other sectors.

Thus results for the interaction terms for this generator have to be treated cautiously.
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Fig. 4.56.: Pair interaction between diagonal

neighbors
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Fig. 4.57.: Deviation of the results from the

MKU results
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For the pair interaction between third nearest neighbors V ′′p , which is defined in Eq.

4.7.6, we obtain the same behavior.
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Fig. 4.58.: Deviation of the results for V ′′p for different generators from the MKU result.
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4.8.2.4. Results for the double plaquette

As explained before the double plaquette calculation was feasible with the 0n and the

0n1n generator. With the MKU generator this calculation could not be performed up to

nowdue to time constraints. Therefore we showed the coupling constants for the upto4

calculation.

The results presented above show that a CUT with the 0n1n generator leads to similar

results as a CUT using the MKU generator. As a consequence of this we can use the

results for the 0n1n generator to analyze the effects of terms which are included in a

double plaquette calculation but not in the upto4 calculation.

Therefore we show some results for the double plaquette calculation with the 0n1n gen-

erator.

The only coupling constants which show a change in the results due to the higher

truncation scheme are the four spin terms. As we have seen before the results for these

coupling constants obtained with the 0n1n generator show good agreement with the

results of the MKU generator.
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Fig. 4.59.: Results for J2 obtained with the 0n1n generator

In the case of the ring exchange the double plaquette calculation leads to slightly higher

values than the upto4 calculation.
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Fig. 4.60.: Results for J× obtained with the 0n1n generator

The value for the cross interaction is renormalized to smaller values for the double

plaquette calculation.

Both coupling constants show a significant change for larger values of W/U . Thus for

both interactions terms included in the double plaquette calculation but not in the upto4

calculation lead to slight changes of the coupling constants.
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4.9. Chapter conclusion

In a first step we calculated the coefficients for a nearest neighbor calculation analytically.

This lead to a formula which can be used for all lattices and all coordination numbers.

In the second step the effective coefficients for higher truncation schemes were obtained

numerically.

In the half-filled case we observe that in the one-dimensional case as well as in the

two dimensional case the Heisenberg interaction between nearest neighbors J1 is the

most important spin interaction term. Heisenberg interactions between next to nearest

neigbors or third nearest neighbors are negligible compared to J1. In the one-dimensional

case all calculations show a convergent behavior of the ROD. Even in the extension4

calculation the ROD decays rapidly for all values of W/U . Except for the spin dependent

hopping between two spins at a distance 2a with lattice constant a the results for the

coefficients obtained in a extension3 calculation are covered by the results of the extension4

calculation.

Comparing the results for the different generators it can be observed that except for

V ′′p all coefficients are described accurately by the 0n generator. Although the 0n gener-

ator does not include interactions of DOs it seems to be sufficient to describe the most

important effects on the interaction terms. In a CUT using the 0n generator instead of

the MKU generator less terms are created. Thus the calculations take less time.

For the two-dimensional square lattice the double-plaquette calculation performed with

the 0n generator lasts less than 10 days, whereas the same calculation with the 0n1n

generator took 51 days. In the two-dimensional case the ring exchange turns out to be

one of the most important subleading spin terms. The size of the corresponding coefficient

is almost comparable to J1. As a result the ring exchange must not be neglected. In the

same way the spin dependent hopping between diagonal neighbors t′spin takes values as

high as its spin independent equivalent t′. Thus t′spin has to be included in an effective

model containing t′. For terms describing the interaction between nearest neighbor sites

the plaquette calculation already covers the important processes. The constants of the

four spin terms show a significant change in the results obtained in an upto4 calculation

from the ones of the double plaquette calculation.

For the double-plaquette calculation with the 0n1n generator we observe divergencies

in the ROD for values of W/U ≥ 1.6. A. Reischl observed a similar behavior for a

double plaquette calculation using the MKU generator. In this case the ROD shows

divergencies for values of W/U ≥ 1.2 [RMHU04]. The use of the 0n1n generator leads to

a similar behavior as for the MKU generator for all coupling constants. In contrast, the

0n generator leads in the two-dimensional case to noticeable changes in the description

of interactions between next nearest neighbors or third nearest neighbors. The values of

the coupling constants differ by about 10% for the two generators.
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5. Away from half-filling

Up to now we considered the Hubbard model in the half-filled case. This section deals

with the influence of doping on the effective t-J model.

We analyze the case of hole doping. One could also dope the system by inserting electrons,

thus creating doubly occupied sites |↑↓〉 due to particle-hole symmetry. For a Hubbard

model on a bipartite lattice like the ones studied in this thesis this yields the same results.

Let us first consider how the reference ensemble changes under hole doping. In the half-

filled case the reference ensemble consists of the two equally weighted states |↑〉 and |↓〉.
In the doped case, we have to consider besides these two states also the empty state |0〉 in

the reference ensemble. Consequently this state has to be incorporated in the reference

ensemble. The probability for the empty state is given by the doping constant δ. As

the effective model should not exhibit any magnetic order, there should be no favored

direction for the spin. From this fact we can conclude that the singly occupied states

carry the same weight, which is given through 1−δ
2 . Knowing the weights for the states in

the reference ensemble, we can write down the statistical operator for the new reference

ensemble

ρ̂δ =
∏
i

{
δ|0〉i〈0|i +

1− δ
2

[| ↑〉i〈↑ |i + | ↓〉i〈↓ |i]
}
. (5.0.1)

As in the half-filled case the product over i extends over the whole lattice.

The 16 local operators in Table 4.1 used as basis in the half-filled case, where chosen

in such a way that they are all normal-ordered (except for the unity operator). As the

normal-ordering is based on taking the expectation value of the operators with respect to

the reference ensemble, we have to check if this condition is still fulfilled. Regarding the

doped reference ensemble (Eq. 5.0.1) the condition for normal-ordered operators reads

〈Ai〉ref = δ〈0|iAi|0〉i +
1− δ

2
(〈↑ |iAi| ↑〉i + 〈↓ |iAi| ↓〉i) .

From the operators used in the half-filled case all but the operators D̂ and n̄ fulfill this

condition. As the expectation values of D̂ and n̄ yield finite values, these operators have

to be replaced by new normal-ordered operators D̂δ and n̄δ. The new operators should

still perform the same task. Thus we replace the operator n̄, which counts the number of

electrons on a site compared to the half-filled case, by

n̄δ,i = n̄i + δ1i
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This operator is constructed such that it counts the number of electrons on one site

compared to the mean value of the filling in the doped case 1 − δ. As D̂ = 2n̂i↑n̂i,↓ − n̄
holds, the counting operator D̂ is replaced by

D̂δ = D̂ −
∑
i

δ1i .

Having thus created a new set of normal-ordered basis operators, all terms have to be

expressed in this basis. This is true for the Hamiltonian itself as well as for all arising

terms during the CUT. The repulsive part of the Hamiltonian is rewritten as

ĤU =
U

2
D̂δ +

UN

4
(2δ − 1)

where N denotes the total number of sites. In contrast to ĤU the kinetic part Ĥt neither

contains n̄ nor D̂. Thus it takes the same form as in the half-filled case at ` = 0. This

implies that also the generator η which contains only terms from Ĥt stays invariant.

5.0.0.5. Results for the NN model

In analogy to the procedure in the half-filled case we first consider the NN model as an

example. We will not consider the minimal model in this case as the results for this model

are not changed by doping. All new arising contributions due to the doping are neglected

in the minimal model.

For the NN model we have to calculate the commutator
[
η(`), ĤU

]
. As D̂ and D̂δ only

differ by a multiple of the unity operator this commutator yields the same results as

before. The same holds for the commutator of the kinetic part of Ĥ with the generator[
η, Ĥt(`)

]
. From this commutator we obtain contributions containing the operators n̄ and

D̂. As a result the contributions have to be expressed by the use of the new operators D̂δ

and n̄δ. Inserting the definitions of these operators leads to the following expression

4
[
T̂+2(`), T̂−2(`)

]
= 4t2+2(`)zD̂δ (5.0.2)

+ 16t2+2(`)
∑
<i,j>

~Si~Sj (5.0.3)

8t2+2(`)
∑
<i,j>

(
ĉ†i↑ĉ

†
i↓ĉj↓ĉj↑ + h.c.

)
(5.0.4)

− 4t2+2(`)
∑
<i,j>

n̄δ,in̄δ,j (5.0.5)

+ 4t2+2(`)z
∑
i

δn̄δ,i (5.0.6)

+ ... . (5.0.7)

〈i, j〉 denotes a pair of nearest neighbor sites and the dots indicate that we ignored con-

tributions from the unity operator and from terms with extensions larger than one. Note
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that we used t+2 = t−2 in this formula.

Comparing this result to the half-filled case, there is no change in the differential equa-

tions for the coupling constants we already discussed. Thus the results obtained for these

constants in the half-filled case stay valid. But in the doped case a new contribution

occurs in the differential equations (see Eq. 5.0.6). This contribution corresponds to the

term

Ĥµ = µ
∑
i

n̄i,δ

which represents the chemical potential. As this term does not create or destroy double

occupancies it is not part of the generator. However the commutator
[
η, Ĥµ

]
has to be

calculated. As η preserves the total number of DOs it commutes with Ĥµ. Thus the

commutator vanishes and the term Ĥµ does not influence the differential equations of the

other terms. In this way we can adopt the expressions for these terms from the half-filled

case.

The differential equation for Ĥµ itself reads

d

d`
µ(`) = 4zδt2+2

with the initial condition µ(0) = 0. Using the relation between U(`) and t+2(`)

dU(`)

d`
= 8zt+2(`)2 = 2

d

d`
µ(`)

1

δ

we obtain

µ(`) =

(
U(`)

2
− U0

2

)
δ .

We now insert the known solution for U(`) (Eq. 4.6.21) to derive the expression

µ(`) =
δz

12 + 4z
Atanh(A`+B)− z

2(3 + z)
δU0 . (5.0.8)

In this formula z denotes the coordination number of the lattice. The constants A =

2
√
U2 + 4(3 + z)t2 and B = artanh(2U0

A ) can be adopted from the half-filled case.

In the limit ` = ∞ the effective model is reached, with the effective chemical potential

given by

µeff =
δz

2(3 + z)
U

√
1 + 4(3 + z)

t2

U2
− z

2(3 + z)
Uδ (5.0.9)

where we used t and U to denote the starting values t0(0) and U(0).

In leading order in t
U this yields a chemical potential which depends linearly on the doping

constant δ and on the coordination number of the lattice

µ(2) = δz
t2

U
. (5.0.10)
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5.1. Results for the linear chain away from half-filling

In this section we study the influence of hole doping on the effective coefficients in one

dimension. The coupling constants have been calculated for all truncation schemes and

various doping concentrations. A few exemplary results for the most important terms of

an extension4 calculation are shown here.

Before we discuss the behavior of the coupling constants we present results for the ROD

for various doping concentrations δ.
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Fig. 5.1.: Behavior of the ROD for different doping concentrations for the extension4 calculation

and W/U = 1.2

Even for the large value δ = 0.8 the ROD decreases rapidly. The first coupling con-

stant under study is the one for the nearest neighbor Heisenberg exchange J1 (see Fig.

5.2). The Heisenberg interaction between nearest neighbors J1 increases with the doping

concentration δ. But the difference lies in a range of about 1 percent.
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Fig. 5.2.: Coupling constant J1 in dependence on W/U for different values of the doping concen-

tration δ

The hopping element t0 seems to be more influenced by the effects of the doping (see

Fig. 5.3). The results obtained for the half-filled case and the ones obatined for δ = 0.8

differ about 7 percent.
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Fig. 5.3.: Doping dependence of the hopping element t0

The corresponding results for the spin dependent hopping over diagonal neighboring

sites t′′spin which is defined in Eq. 4.7.4 are shown in Fig. 5.4.
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Fig. 5.4.: Results for the spin dependent hopping term

For large values of W/U this parameter shows a linear dependence on the doping

concentration δ.

Conclusively we can say that there is hardly any doping dependence.
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5.2. Results for the two-dimensional square lattice in the

case of hole doping

For the two-dimensional square lattice we start the discussion with the effective chemical

potential µ. The corresponding term is given by

Ĥµ = µ
∑
i

n̄i,δ .

As explained before this coupling constant is in leading order proportional to δ. Therefore

we show this constant compared to δJ
(2)
1 in Fig. 5.5.
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Fig. 5.5.: Results for the chemical potential for different doping concentrations δ

5.2.1. Results for the MKU generator

The results presented in this section are obtained in an upto4 calculation using the MKU

generator.

5.2.1.1. Spin terms

In Fig. 5.6 the coupling constant J1 is shown dependent on W/U for different doping

concentrations. Additionally we show the change of J1 for a doping concentrations δ

compared to J1 for the undoped system. The resulting curves are shown in Fig. 5.7 for

different values of W/U.
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Fig. 5.6.: J1 for different values of δ
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Fig. 5.7.: J1 in dependence of δ

These curves indicate that the doping has a greater influence on J1 for larger values of

W/U . However the changes due to doping effects are small. For W/U = 0.8 the doping

causes a change in J1 of about 3%.

The coefficients J2 and J3 (see Eq. 4.7.2) both show a dependence on the doping concen-

tration. For δ = 0.4 J2 shows an increase of about 8%.
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Fig. 5.8.: Effective J2 for different doping con-
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Fig. 5.9.: Effective J3 for different doping con-

centrations

The coupling constant of the Heisenberg exchange between third nearest neighbors first

decreases with δ but starts to increase at a value of δ = 0.3 again, as can be seen in Fig.

5.10.
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Fig. 5.10.: Dependence of the effective J3 as defined in Eq. 4.7.2 on the doping concentration δ

The ring exchange (Eq. 4.8.1) shows nearly no dependence on the doping constant

δ. Even for the large doping concentration δ = 0.8 the change in the coefficient is less

than 1.12 percent. For smaller doping concentration the change in the coefficient is much

smaller as can be seen in Fig. 5.12.
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Fig. 5.11.: Results for the ring interaction
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Fig. 5.13.: Effective J× as defined in Eq. 4.8.2 for various doping concentrations δ

5.2.1.2. Interaction terms

The Hubbard repulsion U shows nearly no effect depending on the doping constant δ.

Even for W/U = 0.8 the change is less than 0.05% (see Fig. 5.14).
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Fig. 5.14.: Results for the Hubbard repulsion U

The influence of doping on the interaction between two electrons on the same site is

negligible.

The density-density interaction HV which is defined in Eq. 4.7.7 shows an increase in the
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coupling constant of about 1 percent under the influence of doping for W/U = 0.8.
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Fig. 5.15.: Result for the interaction term V

The coefficients of the pair interaction Vp, V
′
p and V ′′p show a similar behavior. The pair

interaction between two spins at a distance of 2a with the lattice constant a is given by

H ′′pair = V ′′pair
∑
σ

∑
<<i,j>>

[
ĉ†k,σ ĉ

†
k,σ̄ ĉi,σ̄n̂i,σ ĉj,σ(1− n̂j,σ̄) + ĉ†k,σ ĉ

†
k,σ̄ ĉi,σ̄(1− n̂i,σ)ĉj,σn̂j,σ̄ + h.c.

]
.

(5.2.1)

The change in these constants is a few percent. Representative for these three interac-

tions we show the results for the nearest neighbor pair interaction Vp in the figures 5.16

and 5.17.
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The coefficients V ′n defined in Eq. 4.8.6 and V ′′n show a rather strong dependence on

the doping constant for larger values of W/U . As the coefficients show the same behavior

we show the coefficient V ′n describing the density-density interaction between diagonal

neighboring sites in Fig. 5.18 and 5.19.
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Fig. 5.18.: V ′n for different doping concentra-

tions

0 0.2 0.4 0.6 0.8
 δ

1

1.1

1.2

1.3

1.4

1.5

1.6

V
’ n(δ

)/
V

n(0
)

W/U = 0.8
W/U = 1.6
W/U = 0.05

Fig. 5.19.: V ′n depending on δ



92 Away from half-filling

5.2.1.3. Results for the hopping terms

The value of the hopping parameter t0 is increased with increasing δ. The increase with

δ is nearly linear (see Fig. 5.20) and leads to values which are a few percent higher than

the undoped ones.
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Fig. 5.20.: Dependence of the hopping element t0 from δ

The values for the hopping parameters t′ and t′′ are according to amount smaller than

the undoped values. As both paramter show the same behavior we present only the results

for t′.
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Fig. 5.21.: Hopping element t′ for different δ
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Fig. 5.22.: Dependence of t′ on δ

Thus inserting holes in the model makes the hopping processes described by t′0 and t′′0
less important. The coupling t′′0 shows a nearly linear decrease with δ.
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Representative for the spin dependent hopping elements the results for the spin depen-

dent hopping between diagonal neighbors t′spin is displayed in Fig. 5.23.
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Fig. 5.23.: Spin dependent hopping element

t′spin
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Fig. 5.24.: Dependence of t′spin on δ

The coefficient t′′spin behaves similarly. Both coefficients show a change in the range of

a few percent for W/U = 0.8.
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5.2.2. Results for the 0n and the 0n1n generator

All calculations for the doped system have additionally been performed with the 0n and

the 0n1n generator. As the curves for different truncation schemes behave rather similarly

we show a few exemplary results for the upto4 truncation scheme.

At first we study the effect of the different generators on the chemical potential µ. Figure

5.25 shows the results for the chemical potential for different generator. Additionally we

show the deviation of the results for the 0n and the 0n1n generator from the MKU results

in Fig. 5.26.
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Fig. 5.25.: Chemical potential for differen gen-
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Fig. 5.26.: Deviation from the results obtained

by the MKU generator

These figures show that the deviations for the 0n generator are much larger than for the

0n1n generator for both doping concentrations. The deviations increase with increasing

values of W/U .

For δ = 0.1 both generators lead to higher values of the chemical potential than the MKU

generator.
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5.2.2.1. Spin terms for different generators

The first spin coupling constant we consider is the nearest neighbor Heisenberg exchange

J1.
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Fig. 5.27.: Heisenberg exchange J1 for a doping concentration of δ = 0.5.

As the curves for the various generators lie close to each other we additionally present

the deviation of the results from the results obtained by the use of the MKU generator.

The cases of doping with a concentration of δ = 0.1 and δ = 0.5 are shown in Fig. 5.28.
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Fig. 5.28.: Deviation of the results for different generators for J1.



96 Away from half-filling

This plot shows that the deviations of the 0n generator are larger than the one of the

0n1n generator. The deviation increases with the doping concentration. This observation

may be explained by the structure of the 0n generator. The 0n generator does not contain

interactions of quasiparticles. If the doping concentration is increased holes become more

important. Thus the results for the 0n generator differ more from the results of the MKU

generator with a higher doping concentration.

In the half-filled case we showed that the second important spin term is the ring ex-

change between four spins defined in Eq. 4.8.1. The corresponding coupling constant is

shown in Fig. 5.29.
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Fig. 5.29.: Deviation of the results for different generators for J2.
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5.2.2.2. Hopping terms

The deviation of the hopping parameter t0 for the different generators and various con-

centrations is shown in Fig. 5.30.
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Fig. 5.30.: Deviation of the results for different generators for t relative to the MKU generator.

Both generators lead to smaller values for δ = 0.1 and to higher values for doping

concentrations of δ ≥ 0.5. But the changes remain in the range below 1%.

As seen in the half-filled case the deviation of the 0n generator is bigger than the one

of the 0n1n generator. Additionally we observe negative values for δ = 0.1 and positive

values for δ = 0.5.

For the spin dependent hopping shown in Fig. 5.31 the curves for the 0n generator show

a better agreement with the MKU calculations for a doping concentration of δ = 0.8 than

for a doping concentration of δ = 0.5.
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Fig. 5.31.: Deviation of the results for different generators for tspin.

5.2.2.3. Interaction terms

As exemplary results for the interaction terms we show the results for the pair interaction

between diagonal neighbors V ′p given by Eq. 4.8.5 for different generators and different

doping concentrations δ.
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Fig. 5.32.: Results for the pair interaction be-

tween diagonal neighbors
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The results for the 0n generator obtained for a doping concentration δ = 0.8 show a

better agreement with the MKU result than the result for δ = 0.5. However the deviations
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for both generators are small. The results differ about less than three percent.

The density-density interaction between diagonal neighbors V ′n as defined in Eq. 4.8.6

is shown in Fig. 5.34.
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For a doping concentration of δ = 0.1 the 0n and the 0n1n generator lead to smaller

values of V ′n whereas a higher doping concentration results in larger values for the coupling

constant V ′n obtained with these generators.
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5.3. Chapter conclusion

In the case of doping a new reference ensemble has to be defined leading to new normal-

ordered operators. In accordance to the half-filled case an analytical nearest neighbor

calculation leads to a formula describing the chemical potential as function of the doping

constant δ. In this formula the structure of the lattice is considered by the coordination

number z. All other coupling constants are not altered by the influence of doping.

For the higher truncation schemes we show the effective coupling constants depending

on W/U and on δ. The results for the nearest neighbor Heisenberg exchange for various

δ between δ = 0 and δ = 0.9 differ about less than 10%. The dependence of the ring

exchange on the doping concentration δ shows a similar behavior. Even for the large

value W/U = 1.6, which is already beyond the range of the applicabilityof the mapping,

the change in the Hubbard repulsion U due to doping effects is less than 3%. In contrast

to this the pair interaction Vp shows a stronger dependence on the doping concentration

resulting in deviations of the value in case of doping of about 20% . The remaining

interaction terms show differences in the range of a few percent under the influence of

doping.

The effective coupling constants in the case of doping are also shown for different

generators. These results show that the deviation of the results for the 0n generator from

the MKU results are higher than in the undoped case. This may be accounted for by

the shift in the weights according to the doping. Due to the doping interaction terms

describing holes and doubly occupied sites become more important. Thus the deviations

are higher in this case.

It is worthwhile to notice that the results for the 0n1n generator are close to the ones

obtained by the MKU generator except for density-density interaction between diagonal

neighbors under the influence of doping. For this coupling constant a δ of 0.1 leads to

a significant difference in the results of the MKU generator from the 0n1n generator of

about 10%. In this particular case the results for the 0n generator show a better agreement

with the results obtained with the MKU generator whch may be accounted for by the

change of the sign.
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6. Charge gap

In this chapter we analyze the conditions which have to be fulfilled for the mapping to be

physically reasonable. We give an estimate for the parameter range to which the deriva-

tion of the effective model is restricted. A first clue for the breakdown of the mapping is

the behavior of the residual off-diagonality (ROD) defined in Sect. 3.3.2. Some exemplary

results for the behavior of the ROD are depicted in Sect. 4.7.

In agreement with the work done by A. Reischl [RMHU04], we observe a divergence of

the ROD in the calculations for the double plaquette truncation scheme. The calculations

done by Reischl with the MKU generator as well as our results obtained by the use of the

0n1n generator show this behavior for values of W/U above a certain threshold. As can

be seen in figure 4.40 the ROD diverges for values of W/U above W/U = 1.6 in the case

of the 0n1n generator.

As explained before (see Sect. 3.3.2) a diverging ROD indicates that the mapping to

the effective t-J model breaks down. The basis of the transformation of the Hubbard

Hamiltonian to the effective Hamiltonian is the elimination of charge fluctuations. To be

able to eliminate these fluctuations, sectors with differing numbers of double occupancies

have to be separated in energy.

The density of states for such a case is depicted in Fig. 6.1.

Fig. 6.1.: Density of states for a Hubbard insulator with repulsion strength U . The density of

states exhibits two equally weighted bands, the upper Hubbard band (UHB) and the

lower Hubbard band (LHB) [GKKR96].

Such a density of states is found for the insulating regime of a Hubbard model at half-

filling and with a large Hubbard repulsion U . The picture shows two equally weighted

bands. The lower Hubbard band (LHB) is situated at −U/2. This band corresponds to
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states without double occupancies. The other band corresponding to states with one DO

is denoted as upper Hubbard band (UHB). In the case of a large repulsion U the bands

are separated by a gap ∆g = 2∆0.

If the ratio W/U is increased the bands begin to approach each other. Eventually they

overlap (see Fig. 6.2).

Fig. 6.2.: Density of states for a Hubbard model in the metallic phase, showing the overlap of the

bands [GKKR96].

As the bands begin to overlap the model undergoes a transition from an insulator to a

metal. An overlap of the bands results in a connection of sectors with differing numbers

of double occupancies. As a consequence the gap can be used as a tool to analyze the

separation of states with excitations from the ground state sector. Thus a vanishing gap

can be seen as indicator for the transition to a metal. Consequently a vanishing gap

indicates the breakdown of the mapping.

In this thesis the gap is calculated as a function of the hopping parameter t. Let t∗ be

the value for which the gap vanishes. From t∗ a value of W/U up to which the results of

the mapping are reliable can be determined. If the gap vanishes, the sectors overlap. In

the case of a vanishing gap it is not possible to order the states with different numbers of

double occupancies according to the corresponding energies. The transformation does no

longer yield a model in which the number of double occupancies is a conserved quantity.

Results for the coupling constants obtained for this region have to be treated cautiously.

In order to determine the applicability of the mapping quantitatively we compute the

charge gap. The calculation of the gap is performed within the effective t-J model. In the

effective model under study the ground state sector does not consist of a single ground

state but of a huge subspace of magnetically disordered states. This leads to a considerable

expenditure for the calculation of the gap.

We start our considerations by analyzing the half-filled case.
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6.1. Charge gap in the half-filled case

In the half-filled case the lower Hubbard band is completely filled. Creating an excitation

causes the energy cost ∆g = 2∆0.

As a result the gap can be calculated by estimating the lowest energy of a DO in this

model. In the effective model the DO moves along the magnetically disordered spin back-

ground which is given by the reference ensemble.

Before we describe the calculation of the gap explicitly, we want to highlight that the cal-

culated gap does not correspond to a true gap between two possible states of the system.

Starting with a reference ensemble which is not the true ground state of the system the

calculated gap might differ from the true gap. To avoid confusion we call the calculated

gap the apparent charge gap ∆g in contrast to the true charge gap ∆true.

Brinkman and Rice [BR70], who calculated the propagation of a particle in various spin

backgrounds, found that in the density of states of such a system Lifshitz tails [Lif64]

may appear. Further calculations considering Lifshitz tails led to the assumption that

the weight included in these tails is small [MSV92,Mie92].

Due to the small weight of the Lifshitz tails it is hard to treat their effects appropriately.

A local calculation with a restricted extension fails to capture effects from these tails.

This argument also holds for our approach. Although our approach captures most of the

weight, we miss the weight in the Lifshitz tails. As can be seen in Fig. 6.3, this results in

a larger value for the gap.

Fig. 6.3.: Effects of Lifshitz tails on the calculated charge gap ∆g.

Even if the apparent charge gap ∆g differs from the true charge gap, the effect of the

Lifshitz tails is assumed to be very small. Therefore the behavior of the system can be

analyzed by the use of the apparent charge gap. At least the transition from an insulator

to a paramagnetic metal should be captured by the considerations presented here. As a

significant overlap of sectors with differing numbers of quasiparticles is needed to cause a

breakdown of the method, it is assumed that the small weight of the band tails does not

influence the results.

For the determination of the apparent charge gap the dispersion of a DO has to be cal-

culated. Due to the complexity of the effective t-J model a full diagonalization of the
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Hamiltonian is not feasible. Therefore we use an approximate method based on the Lanc-

zos method. The Lanczos method was developed to bring large matrices to tridiagonal

form without keeping the whole matrix in the storage. Since we have to deal with op-

erators acting on the reference ensemble instead of single states the Lanczos method is

not applicable in its original description. Thus we use the Liouville representation of the

Lanczos technique [Mor65,Ful91,VM94].

In this representation the evolution of a DO in the spin background is described by the

Liouville superoperator. This operator is given by

L =
[
Ĥeff, ·

]
. (6.1.1)

The effect of L consists of shifting the DO and changing the spin background. Due to

the Liouville formulation we use operators as vectors in the superspace [FL82]. Thus the

vectors vi are given by the operators they contain. The calculation starts with the vector

v0. v0 is given by

v0 =
1√
N

∑
~r

ei
~k~rn̂~r,↓ ĉ

†
~r,↑ (6.1.2)

where N denotes the number of lattice sites and ~r indicates the position. The action

of this operator is to place an electron with spin up on a site ~r which is occupied by

one electron with spin down. Conclusively v0 creates a single doubly occupied site. The

vector ~k represents the momentum of this DO moving across the lattice.

Starting with v0 we now construct a Krylov sequence by creating iteratively a set of

orthogonal vectors vi. Each new vector is calculated from the ones before by applying

vi+1 = Lvi − aivi − b2i vi−1 . (6.1.3)

The prefactors ai and bi are chosen in such a way that the vi are pairwise orthogonal.

Thus the ai are given by the projection of the Liouville operator onto vi.

ai =
(vi|Lvi)
(vi|vi)

(6.1.4)

The brackets in this formula denote a suitable scalar product of the Liouville formulation

[Ful91] (
Â|B̂

)
= Tr

(
Â†B̂ ρ̂0

)
. (6.1.5)

Here ρ̂0 stands for the statistical operator of the reference ensemble see Eq. 4.2.12. In

the same way the bi are determined as

b2i =
(vi|vi)

(vi−1|vi−1)
(6.1.6)

with the starting value b0 = 0.

The resulting vectors form a basis {vi} in which the Liouville operator has tridiagonal
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form. To simplify the calculations further we normalize the vi. In this normalized basis,

the Liouville operator can be written as

L =


a0 b1 0 0

b1 a1 b2 0 ...

0 b2 a2 b3

0 0 b3 a3

...

 . (6.1.7)

Having created a matrix representation of L we can now determine the energy eigenvalues

of the Liouville operator. The lowest energy value is used to calculate the apparent charge

gap

∆g = 2 min
~k
Ek . (6.1.8)

As the effective Hamiltonian conserves the number of DOs we can restrict the whole

calculation to the one DO subspace. It is clear that we can not use the results obtained

with the 0n generator in this context because it does not decouple the sector with one

DO from the ones with more DOs. For a calculation using these results we would have

to consider additionally all subspaces with more than one DO. This is impossible as it

would result in an overwhelming number of terms. Therefore we restrict ourselves to the

results for the MKU and the 0n1n generator.

However even for the simplified calculations within the one DO subspace only a few

iterations were feasible. Starting with the simple vector v0 the commutation leads to

complicate terms for the following vectors. Consequently the effort for the calculation

grows exponentially with the number of iterations.

5Due to the complexity of the vectors a large subspace is created within a few iterations.

Each iteration extends the considered subspace more and more. As we can only perform

a few iterations the apparent charge gap ∆g we obtain has to be understood as an upper

bound for the realistic charge gap.

Expecting extremal values for the dispersion on points with high symmetries, we calculate

the gap for values of the momentum of ~k = (0, 0) and ~k =
(
π
a ,

π
a

)
with the lattice constant

a or k = 0 and k = π
a in the one dimensional case.
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6.2. Charge gap in the case of doping

This section deals with the determination of the apparent charge gap in the case of hole

doping.

The effect of doping on the density of states does not only consist in a shift of the Fermi

energy. Additionally the doping causes a redistribution of the weight. This weight shift

in the density of states of Mott materials has been observed using dynamical mean field

theories [ZPB02].

A schematic density of states for this case is shown in Fig. 6.4.

Fig. 6.4.: Density of states in the case of hole doping with the doping constant δ.

From this picture the weight of the different states can be deduced. An empty state

has the possibility δ whereas the two singly occupied states have a possibility of 1−δ
2 each.

Note that the total weight in the LHB is 1
2 + δ

2 whereas it is 1
2 −

δ
2 in the UHB. This

constitutes a shift in the spectral weight. This shift has been observed in Monte Carlo

calculations for the infinite-dimensional Hubbard model [JFP95].

In the doped case the calculation of the gap can be divided into two parts. In the first

part the lowest possible energy for a DO ∆UHB is calculated. In the second part we have

to calculate additionally the maximal energy for the destruction of a DO ∆LHB. The DO

is destroyed by placing a single electron on an empty site.

The apparent charge gap is given by the difference of these two energies

∆g = ∆UHB −∆LHB . (6.2.9)

The first part of the calculation is performed in analogy to the half-filled case [RMHU04].

For the second part a new starting vector

v0,LHB =
1√
N

∑
~r

ei
~k~r ĉ†~r,↑

(
1− n̂~r,↓

)
(6.2.10)

has to be introduced.

The action of v0,LHB is to place an electron with spin up on an empty site ~r.

By the use of this method we calculate the gap for different degrees of doping. Thus we

can draw conclusions concerning the doping dependence of the charge gap.
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6.3. Implementation

For the calculation of the gap we use the same program structures as before. At the

beginning the program loads the effective t-J model with the t-dependent coefficients

obtained before. Then an outer loop is performed for each iteration. Within this loop

the vectors vi are commuted. Then we calculate the traces and determine the new vector

vi+1.

Having determined the new basis we just have to calculate the eigenvalues of L.

The most time consuming part of this program is the calculation of the commutator and

the determination of the traces. As explained before the computational effort grows expo-

nentially with the number of iterations. Already the calculations for the one-dimensional

nearest neighbor model with three iterations took 24 hours of CPU for each data point

whereas calculations with two iterations are performed within a few minutes.
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6.4. Results for the charge gap

6.4.1. One-dimensional linear chain

As explained in Sect. 6.1 we calculate the apparent charge gap for values of the momentum

of k = 0 and k = π/a with the lattice constant a. As we are looking for an upper bound

for the gap, the following figures show the minimal value obtained for energy of a moving

DO.

6.4.1.1. Results for the half-filled case

For the half-filled case Fig. 6.5 shows the results obtained for the gap in dependence of

the quotient W/U .
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Fig. 6.5.: Behavior of the apparent charge gap ∆g for a one dimensional linear chain in the case

of half-filling for the NN calculation. n denotes the number of iterations performed.

In the case of a vanishing hopping parameter t = 0 the model is governed by the

repulsion U . In this case the gap has the value ∆g = U . Thus the shown curves start at

∆g/U = 1 for W/U = 0. This observation serves as a check for the program.

Due to the vast number of terms in the effective model the first iteration in the nearest

neighbor calculation leads to a vector consisting of about 900 terms. As a result of this the

numerical calculations were restricted to small truncation schemes. All results obtained

in the context of this thesis correspond to nearest neighbor NN calculations.
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A. Reischl [RMHU04] observed that the differences obtained for different truncation

schemes are rather small. But there are sizeable differences in the results obtained for

differing numbers of iterations.

As the terms become more complex the more iterations are performed, only a few itera-

tions (up to four) were feasible in this work. Restricting the calculations to the nearest

neighbor truncation, we are not able to analyze the influence of the choice of the generator

on the results up to now.

As can be seen in figure 6.5 the gap decreases linearly from a values of U . The difference

between the results obtained after two iterations and the results obtained after three iter-

ations is rather large. As we only performed a few iterations we extrapolated the results

for the case of infinitely many iterations n → ∞. Following Zhong and Sorella [ZS95] a

linear extrapolation in 1
n with n as the number of iterations is performed. Additionally

we extrapolate the results in 1√
n

. These extrapolations are performed for the momentum

k = π/a for which we find the minimal energy in all calculations. The obtained curves

are shown in 6.5.

In the case of n = 3 iterations a closure of the gap is found at W/U ≈ 1.2. The results

for the extrapolations point towards an earlier closure. The curve for the 1
n extrapolation

shows a vanishing gap for W/U = 1 and the 1√
n

extrapolation induces a closure of the

gap at W/U ≈ 0.8. Let us highlight again that the obtained values for the gap have to be

seen as upper bound to the real charge gap. The influence of the Lifshitz tails might only

be observed in calculations with a high number of iterations, which were not feasible.

Negative values of the gap imply the breakdown of the mapping. The gap is just a

measure for the separation of the energy scales. If the gap vanishes the whole mapping

breaks down. Thus results obtained in the parameter range where the gap is zero or even

smaller than zero are not reliable anymore.

From the vanishing of the gap we can conclude that the mapping to the effective model

is valid for values of W/U < 0.8 in the half-filled case. Values obtained for the coupling

constants for W/U ≥ 0.8 have to be treated cautiously.

6.4.1.2. Results for the doped case

Due to the redistribution of the weight for the doped Hubbard model (see section 6.2), an

earlier closure of the gap is expected for the doped case. This feature can be observed in

the curves of figure 6.6. This figure shows the results of the 1
n extrapolation for different

doping concentrations δ.



110 Charge gap

0 0.2 0.4 0.6 0.8 1
W/U

-0.2

0

0.2

0.4

0.6

0.8

1

∆ g 
/U

1/n extrapolation
1/n extrapolation δ = 0.1
1/n extrapolation δ = 0.2
1/n extrapolation δ = 0.4

Fig. 6.6.: 1/n expansion for the apparent charge gap ∆g for a one dimensional linear chain in the

case of hole doping with dopant concentration δ.

There a clear decrease of the gap with the doping concentration δ is seen. For δ = 0.2

the extrapolation shows a closure of the gap for W/U about 0.8. Increasing δ to δ = 0.4

leads to a closed gap for W/U ≥ 0.55.

The curves for the 1√
n

extrapolation, which are shown in figure 6.7, point towards smaller

values of the gap.
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Fig. 6.7.: 1/
√
n expansion for the apparent charge gap ∆g for a one dimensional linear chain in

the case of hole doping
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This leads to a value for the apparent charge gap of W/U ≈ 0.4 for δ = 0.4.

With the apparent charge gap also the parameter range where mapping stays controllable

decreases with the doping concentration. This is in agreement with the results obtained

by Millis and Coppersmith [MC90,MC91] who studied the phase diagram of the Hubbard

model in dependence of the doping concentration δ.

Figure 6.8 summarizes the results obtained in the doiped case. It depicts the values of

W/U for which a closure of the gap is found in dependence on the doping concentration

δ.
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Fig. 6.8.: Results of the extrapolations for the apparent charge gap for the doped one-dimensional

linear chain
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6.4.2. Results for the two-dimensional square lattice

In analogy to the one-dimensional case we show a few results for the nearest neighbor

calculations on a two dimensional square lattice. The resulting curves for two and three

iterations are shown. Additionally we improve the estimation for the gap by the use of a

linear 1
n and a linear 1√

n
extrapolation for the results.

For the two-dimensional square lattice at half-filling A. Reischl showed, that the results

obtained with different truncation schemes are close to each other. Therefore we assume

that we can draw conclusions concerning the gap from the nearest neighbor calculation.

6.4.2.1. Results for the half-filled case

The results obtained for a two-dimensional square lattice are depicted in Fig. 6.9. As

explained before the curves show a linear decrease from ∆g/U = 1 for W/U = 0. This

linear decrease has been observed before by Gebhard [Geb97], who predicted a closure of

the gap at W/U = 1. In contrast to this linear approach a downward curvature was found

for higher truncation schemes [RMHU04]. This curvature induced an earlier closure of

the gap. Consequently the linear curves obtained for the nearest neighbor calculations

serve as an upper bound to the gap.
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Fig. 6.9.: Results for the apparent charge gap in the case of a half-filled square lattice

From Fig. 6.9 a closure of the apparent charge gap is found for W/U ≥ 1.25 for n = 3.

A 1
n extrapolation leads to a close around W/U = 1.05. The 1√

n
extrapolation pushes

this value even lower to W/U = 0.83.
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For a Hubbard model on a Bethe lattice with z → ∞ a closure of the gap is found

for W/U ≈ 0.89 [NGJ03]. A 1
U expansion of this model led to a closure of the gap at

W/U ≈ 0.9 [EGK+03].

Due to the closure of the gap results for the effective coupling constants for W/U ≥ 0.83

have to be treated cautiously. If the apparent charge gap closes a controlled mapping to an

effective t-J model preserving the number of quasiparticles is not possible anymore. This

may lead to a diverging ROD as it was observed in the double plaquette calculation for

W/U = 1.6 (see Fig. 4.40). This value lies far above the limit for W/U above which the

mapping to the effective model breaks down. This may be accounted for by the fact that

the DOs are created as pairs with strongly restricted distance in the present approach.

Thus an independent motion is not possible.

Assuming that the gap closes at about W/U ≈ 0.83, we have to admit that the coupling

constants shown before are only valid in the range W/U < 0.83. Although the gap closes

thus making the mapping impossible, we do not observe effects on the coupling constants

for W/U > 0.83. Besides there is no divergence of the ROD except for W/U = 1.6 in the

case of the 0n1n generator. These effects may be originated in band tails. Even if the

gap closes it might be the case that most of the weight is situated in regions where the

gap still exists. Thus the influence of the small weighted tails is too small to cause effects

on the coupling constants.

A. Reischl followed a slightly different approach [RMHU04]. In analogy to the approach

presented in this thesis the Lanczos technique was used to create the vectors vi. But

in contrast to our approach he split the vectors vi into the terms of which they consist

and calculated the action of the Liouville superoperator on these terms. This results in

a much larger matrix representing L. Thus a smaller value for the closure of the gap was

found by this aapproach. The 1
n extrapolation lead to a closure of the gap at W/U ≈ 0.9

whereas we found a value of W/U = 1.05 in this case.
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6.4.2.2. Results for the two-dimensional hole doped square lattice

We show some exemplary results for the two-dimensional hole doped lattice.

First of all the curves obtained after n = 3 iterations are shown for various doping

concentrations δ (see figure 6.10).
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Fig. 6.10.: Results for the gap obtained in the case of doping for a calculation with 3 iterations

While the curves for differing doping concentrations δ nearly lie above each other for

the n = 3 calculation, the results obtained by extrapolations show a strong dependence

on δ. The curves for the 1
n extrapolation show an earlier closure of the gap with higher

doping concentrations δ (see Fig.6.11).
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Fig. 6.11.: 1/n expansion for the apparent charge gap ∆g for a two-dimensional square lattice in

the case of hole doping

A doping concentration of δ = 0.1 leads to a value ofW/U = 0.99 instead ofW/U = 1.05

in the undoped case. δ = 0.3 leads to a value of W/U = 0.92.
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Fig. 6.12.: 1/n expansion for the apparent charge gap ∆g for a two-dimensional square lattice in

the case of hole doping
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For the 1√
n

extrapolation smaller values are obtained. Doping the system with δ = 0.1

leads to a closure of the gap at W/U = 0.78. This value goes down for δ = 0.3 to

W/U = 0.7.

Thus doping causes a decrease of the gap in this region. These results are supported by

the work of Millis and Coppersmith ( [MC90] [MC91]), who showed that the breakdown

of the insulator takes place for smaller W/U under the influence of doping.

This behavior is accounted for by the density of states in the doped case. According

to the probabilities of the single states (section 6.2) the probability to find two electrons

on the same site decreases with δ. If the doping concentration is too high it is unlikely to

find two interacting electrons on one site. As a result the repulsion can be neglected and

the system has to be understood as a system of itinerant electrons thus the system has

to be seen as a metal.

In analogy to the one-dimensional case Fig. 6.13 displays the values of W/U for which a

closure of the gap is found depending on the doping concentration δ.
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Fig. 6.13.: Results of the extrapolations for the apparent charge gap for the doped two-dimensional

square lattice

For doping concentrations δ < 0.3 there is nearly no dependence of the range of validity

on the doping concentration. For higher doping concentrations the range of validity of

the mapping decreases rapidly with δ.

Compared to the one-dimensional case, it seems that these effects set in earlier in one

dimension.
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6.5. Chapter conclusion

In the chapters before we presented results for the effective coupling constants obtained

in the half-filled and in the doped case. In this chapter the limitations of a mapping to a

DO conserving effective model are analyzed.

The mapping is possible in the non-metallic regime of the phase diagram 2.1 of the

Hubbard model, which corresponds to a doped insulator. As the mapping is possible as

long as the sectors which should be decoupled from each other are separated in energy the

apparent charge gap ∆g was introduced as a measure for this separation. Thus a value for

the apparent charge gap ∆g > 0 is a prerequisite of a well-controlled mapping, whereas

∆g = 0 indicates the breakdown of the mapping.

In this case a transition to a metal takes place, in which charge excitations do not cause

energy costs and thus can no longer be eliminated.

The apparent charge gap is calculated within the Liouville formulation of the Lanczos

technique. Due to the fact, that we can only perform a few iterations the apparent

charge gap has to be understood as an upper bound to the real gap. Although the results

presented in this chapter are restricted to nearest neighbor calculations we obtained good

results for the limit of an infinite number of iterations n by extrapolation. For this the

results were linearly extrapolated in 1
n and additionally in 1√

n
. Up to now we performed

too little iterations to decide which of these extrapolation schemes describes the behavior

of the gap most accurately.

All results presented in this chapter have in common that they show a linear decrease

of the gap with W/U . Compared to the two-dimensional case the gap calculated for the

one-dimensional linear chain closes earlier. In this case the 1√
n

extrapolation yields the

value W/U = 0.799 for the closure of the gap. For the two-dimensional square lattice the
1√
n

extrapolation leads to a value of at about W/U = 0.83.

As a result we state that the effective coupling constants obtained for W/U < 0.83 in

the two-dimensional case are reliable whereas the results obtained for W/U ≥ 0.83 have

to be treated cautiously. This threshold lies above the parameter range in which one is

interested in the context of cuprates [Dag94].

The breakdown of the mapping can not be seen in the behavior of the calculated coupling

constants. Besides the only diverging ROD we observed corresponds to the 0n1n generator

and a value of W/U of 1.6. Although the gap closes earlier we do not find a diverging

ROD in this parameter range. This effect may be accounted for by tails in the density of

states.

The gap is also calculated in the doped case in dependence of the dopant concentration

δ. These calculations point towards an earlier closure of the gap under the influence of

hole doping.

In further calculations one could determine the value δcrit above which the mapping is

not possible by the use of this method. This values serves as a threshold under which the

system can still be seen as a doped insulator. For values of δ above this threshold the

system has to be seen as metallic electron system for which the mapping breaks down.
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7. Summary and outlook

In this thesis the method of self-similar continuous unitary transformations is applied to

the Hubbard model in real space. Due to the local approach the extension of a term is

used as a measure for its relevance. Using the MKU generator this leads to an effective

generalized t-J model, in which the number of double occupancies is conserved.

In a nearest neighbor calculation a universal formula describing the effective coupling

constants for all types of lattices and all coordination numbers z is derived analytically.

For higher truncation schemes numerical methods have to be used.

The effective t-J model describes spin interactions between two spins as well as four

spin terms. For the two spin terms we find that the coefficients of interactions between

two diagonally neighboring spins J2 and between two third nearest neighbor spins J3 are

much smaller than the nearest neighbor Heisenberg interaction J1. This is valid for the J3

in the one-dimensional as well as for J2 and J3 in the two-dimensional case. Consequently

these terms may be neglected in simplified models. In contrast the ring exchange which

appears in the two-dimensional calculation turns out to be rather important. Thus this

term has to be included in an appropriate description of high-TC cuprates.

Besides the spin terms the generalized t-J model contains various hopping terms and the

interaction and motion of holes and doubly occupied sites. For the two-dimensional square

lattice we observe that the spin dependent hopping term between diagonal neighbors is

as important as its spin independent equivalent.

The sCUT is performed using different generators. In contrast to the MKU generator

the 0n and the 0n1n generator only decouple certain subspaces from the rest. The 0n

generator is restricted to the ground state sector. Although this generator includes a sig-

nificantly smaller amount of terms, it seems to capture the most important contributions

to the spin terms. Even for the interaction terms the results of the 0n generator show a

good agreement with the results of the other generators although this sector is not part

of the 0n generator. The results for the density-density interaction term V ′′n obtained by

the 0n generator stay below 7 percent even for larger values of W/U . Conclusively we

can state that it is sufficient to use the 0n generator when only the dominant parts of

the effective model should be considered. Using the 0n generator instead of the MKU

generator simplifies the calculation as less terms are created during the flow.

The deviations of the results obtained with the 0n1n generator from the results obtained

with the MKU generator are even smaller. The relative deviations stay below a few per-

cent. The relative deviation for the coupling constant V ′′n stays below 1.2 percent for

W/U = 1.

In the case of hole doping a new term is introduced describing the chemical potential
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µ. In leading order this coefficient is proportional to t2

U . For this coefficient a univer-

sal formula describing µ in dependence of the coordination number z and the dopant

concentration δ is found analytically for a nearest neighbor calculation. Besides this the

coefficients of higher truncation schemes are calculated in dependence on δ. Under the

influence of doping the most important coefficients show a deviation from results in the

undoped system about a few percent.

The different generators are also applied to the doped case. There we find that the de-

viations of the coupling constants derived by the use of the 0n generator are bigger than

the ones obtained by the 0n1n generator. The deviations of the 0n generator increase

with higher values of W/U and with the doping concentration δ. With a higher δ the

interaction of holes becomes more important. Thus the results of the 0n generator show

higher deviations for higher values of δ.

For the 0n1n generator even the double plaquette calculation can be performed. During

this calculation the ROD shows divergent behavior for values of W/U ≥ 1.6. As a

diverging ROD indicates the breakdown of the mapping we examine the limitaions of the

transformation in section 6. The mapping is possible as long as the apparent charge gap

is positive. An estimate for the gap is found by the use of the Liouville formulation of the

Lanczos method. In the one-dimensional case smaller values for the gap are found than

in the two-dimensional case. Thus the gap seems to close earlier in one dimension than

in two.

Due to the vast amount of terms only a few iterations were feasible. Linear extrapola-

tions in 1
n and 1√

n
with n denoting the number of iterations provide additional estimates

for the gap.

The results obtained in this context induce that the mapping is valid for values of

W/U ≤ 0.8.

We were also able to study the influence of doping on the apparent charge gap. In this

case we observe an earlier closure of the gap under the influence of doping.

By the use of this method one could calculate the value of δ above which the system is no

longer governed by the interactions between the electrons. If δ is too high the insulator

is no longer the appropriate reference. In this case the system has to be seen as a system

of itinerant electrons for which a mapping to an effective model conserving the number

of DOs is not possible. This would be seen in a gap that closes for very small values of

W/U .

Additionally further calculations including more iterations for the Lanczos method could

be performed. The results obtained in such a calculation can be used to decide which of

the extrapolation schemes used in this thesis is most appropriate.

Besides the results of the gap for higher truncation schemes and different generators could

be examined.

Furthermore the program structures developped in this work can be used to describe

other models containing interacting fermions and bosons in real space. The only condition

to be fulfilled is that the most important processes have to be local.
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8. Abstract

In this thesis the Hubbard model is studied in the half-filled case as well as in the case of

hole doping. The model is analyzed in real space on a one dimensional linear chain and on

a two dimensional square lattice. For this purpose self-similar continuous unitary trans-

formations (sCUTs) are used. Applying this method to the original model an effective

Hamiltonian is derived, whose structure is imposed by the chosen generator. During the

transformation with the generators used in this work charge fluctuations are eliminated.

The self-similar approach to the flow equation method relies on classifying terms accord-

ing to their structure. In contrast to a perturbative treatment the results obtained in this

thesis are valid also for larger values of the Hubbard repulsion U .

The truncation scheme which is meant to limit the amount of new terms is based on

the representation of the terms in real space. In order to decide whether a term should

be kept or not its spatial extension has to be determined. Therefore the terms are nor-

malordered with respect to a predefined reference ensemble. As this reference ensemble

represents magnetically disordered phases, the effective model does not favor a certain

spin direction.

Applying the sCUT method to the Hubbard model an effective generalized t-J model

can be derived. The derivation of the t-J model is not based on perturbation theory.

Consequently the t-J model is not restricted to a particular parameter range. Beyond the

usually considered spin terms and hopping terms of various expansions the generalized t-J

model provides a systematic treatment of the motion and interaction of holes or doubly

occupied sites.

The choice of the generator is decisive for the structure of the effective model. In a first

approach we use the MKU generator, which preserves the block diagonality and leads

to an effective model conserving the number of doubly occupied sites and holes. In the

second approach we use the 0n and the 0n1n generator. These choices of the generator

are accounted for by the fact, that the t-J model describes the low energy sectors best.

By the use of the 0n (0n1n) generator we obtain an effective model in which only the

sector without quasiparticles (and the sector with one quasiparticle) is decoupled from

the other sectors.

In the case of a nearest neighbor calculation a universal formula describing the coupling

constants for all types of lattices and all coordination numbers z can be derived analyt-

ically. This formula is also valid in the limit of a coordination number z = ∞. In the

doped case a similar calculation yields the dependence of the coupling constants on the

doping concentration δ.

For the other truncation schemes we obtain values for the effective coupling constants as



121

function of W/U for different doping concentrations. From these coefficients the relevance

of a term for the effective model can be estimated. Besides, the influence of the different

generators on these coefficients are studied.

The program written for the present project can be applied to systems of interacting

fermions and bosons in the half-filled and in the doped case. The only restriction im-

posed to the system is that the physics has to be governed by local processes.

In the last part of this thesis we examine the limitations of the mapping to the effective

t-J model. On this account the dispersion of a doubly occupied site moving above the

spin background is determined. As the ground state sector of the t-J model is a highly

degenerate subspace we use the Liouville formalism for this purpose. In this way an upper

bound for the charge gap is derived depending on the value of W/U . This results in an

estimate for the transition of a doped insulator to a metal. In the doped case we obtain

the dependence of the transition on the doping concentration.
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A. Additional results for the coupling

constants in 2d for different

generators

Coefficient of the density-density interaction between next nearest neighbors V ′n defined

in Eq. 4.8.6 ( figure A.1) and the deviation of the results for different generators from

the MKU results.
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Fig. A.1.: Results for V ′n for different generators
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Fig. A.2.: Deviation of the results for different generators from the MKU result.
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The cross exchange

H× = J×
∑

<i,j,k,l>

(
~Si~Sk

)(
~Sj ~Sl

)
. (A1)

for different generators is shown in Fig. A.3.
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Fig. A.3.: Deviation of the results for different generators from the MKU result.

Figure A.4 depicts the deviation of the results for the 0n and the 0n1n generator from

the result obtained by the use of the MKU generator.
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Fig. A.4.: Deviation of the results for different generators from the MKU result.
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anderen als die angegebenen Quellen und Hilfsmittel verwendet sowie Zitate kenntlich gemacht

habe.

Simone Anke Hamerla


	Introduction
	The fermionic Hubbard Model
	Generalized t-J model

	Continuous Unitary Transformations
	Introduction
	Derivation of the flow equation
	Generators
	Mielke Knetter Uhrig generator
	Importance of the ROD
	0n generator
	0n1n generator

	Truncation scheme

	Application of the method to the Hubbard model
	Quasiparticle description
	MKU generator
	0n generator and 0n1n generator

	Reference ensemble and normal-ordering
	Truncation schemes
	Implementation
	Minimal model
	NN model
	Results for the NN truncation

	Results for the one dimensional linear chain at half-filling
	Higher truncation schemes

	Results for the half-filled two-dimensional square lattice
	Results obtained by the use of the MKU generator
	0n generator and 0n1n generator

	Chapter conclusion

	Away from half-filling
	Results for the linear chain away from half-filling
	Results for the two-dimensional square lattice in the case of hole doping
	Results for the MKU generator
	Results for the 0n and the 0n1n generator

	Chapter conclusion

	Charge gap
	Charge gap in the half-filled case
	Charge gap in the case of doping
	Implementation
	Results for the charge gap
	One-dimensional linear chain
	Results for the two-dimensional square lattice

	Chapter conclusion

	Summary and outlook
	Abstract
	Additional results for the coupling constants in 2d for different generators
	Bibliography
	Danksagungen
	Erklärung

