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1 Introduction

The study of physical properties of metallic systems, containing a small fraction
of magnetic impurities with internal degrees of freedom, is of general theoretical
interest and is essential to explain a lot of experimental features. The fermionic
single impurity models are standard examples for strongly correlated electron
systems. The minimum of electrical resistivity in some metals, for example in Au,
at a few Kelvin was one of the puzzles that could be solved by the consideration
of 3d transition metal impurities, such as Fe. J. Kondo showed this in 1964 [1].
Another important contribution to the field was the work of Anderson [2]. The
physics of heavy fermions that can be described by the periodic Anderson model,
is a challenge for theory and experiment for over twenty years. Although the
Anderson model is a rather simplified description of impurities in metallic systems,
it failed to yield an exact solution. A thorough review of the Kondo problem and
the Anderson model is given by A. C. Hewson in reference [3].

The interest in single impurity models has been revitalised by the systematic
mapping of lattice models onto effective single impurity models. This mapping is
done in the framework of dynamical mean-field theory (DMFT), which is exact in
the limit of infinite coordination number, corresponding to the limit of infinite di-
mensions d — oo, provided that the limit is approached in a suitable manner [4].
This mapping leads to an effective single site problem, resulting in a neglect of
spatial fluctuations, but taking the fluctuations in time into account [5-7]. As
described in [8, 9], the connection between the lattice problem and the single im-
purity problem is provided in form of a self-consistency condition for the effective
medium, in which the impurity is embedded. The local propagators for lattice
problem and impurity problem have to coincide.

A method to obtain accurate results for the spectral density of local propaga-
tors of single impurity models should be very useful in an iterative self-consistent
approach to d = oo lattice problems.

The Anderson model and the Kondo model of single impurities, can be
mapped onto linear infinite or semi-infinite fermionic chain Hamiltonians [3].
One can even go further and map these fermionic chains with a Jordan-Wigner
transformation [10] on pure spin chains.

Since exact solutions for quantum lattice models are rare one is restricted
to approximate analytical methods like perturbation theory or mean field theory,
or one tries to apply numerical methods. An approximate analytical approach
often fails to describe the essential physics, due to the necessary assumptions
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and simplifications. This is especially true in the case of low dimensions.

The exact diagonalization methods are limited to relatively small system sizes.
Even for highly symmetric problems one is usually restricted to typically 30 sites
or perhaps 36 sites. Since finite size effects can be very strong, and since we are
interested in large systems or even in the thermodynamic limit, exact diagonal-
ization is not feasible. Also Monte Carlo simulations do not yield results of the
desired accuracy.

As a different approach Wilson developed the real-space numerical renor-
malization group [11], substantially enhanced by White to the density-matrix
renormalization group (DMRG) [12]. This method has proved to be very useful
in the study of low dimensional quantum systems. The various extensions and
improvements to DMRG are reviewed in reference [13].

In this thesis we will give an introduction to single impurity quantum models
and their mapping on linear chains. A few analytic results for finite and infinite
uniform XY-chains will be derived. These results will serve as a benchmark for
the DMRG accuracy. An introduction to DMRG is given and the methods to
obtain dynamic properties are reviewed. In this framework we will discuss some
ideas for a new correction vector method. Subsequently the DMRG results for
static and dynamic properties are presented. This thesis ends with a conclusion,
an outlook and suggestions on a possible continuation of the research.



2  Quantum Impurity Models

Subsequently a description of a general quantum impurity Hamiltonian is given,
followed by a motivated reduction to the fundamental Anderson and Kondo
Hamiltonians. The mapping of these models onto semi-infinite fermionic chains
is pointed out, as well as the transformation on spin chains via the Jordan-

Wigner transformation. Some exact results for finite and infinite XY-chains will
be derived.

2.1 Anderson Model and Kondo Model

An impurity in a metallic host can be described by a very general Hamiltonian [3]
that specifies all the particles and their interactions. For N, electrons one can
write it down in the following form,
&/ p2 1 e? o
— P . (s Z - N - o
H= ( o Ulr) + vlmp(r1)> +5 Z m—— Z Ary)l; - o5

i#4) i=1

(2.1)

The first term describes the kinetic energy of the electrons and U represents the
periodic potential due to the nuclei of the host metal. Vin;, specifies the change of
the potential caused by the substitution of a host nucleus by an impurity nucleus.
The fourth term contributes the coulomb interaction between the electrons and
the last term is a relativistic correction due to spin-orbit interaction.

The Hamiltonian looks quite simple but the strong Coulomb interactions
prohibit perturbative treatment. The only possible approach is via some kind
of self-consistent field theory. In such an approach it is very difficult to obtain
accurate results and predictions, especially if we are interested in excitations as
well. Instead of examining the full Hamiltonian (2.1) one can construct simpler
model Hamiltonians, which describe the low energy excitations associated with
the impurity and ignore features that are not direct related to impurity effects.

In these models it is usually assumed, that the host metal has got very broad
conduction bands, such as those derived from s and p states. The electrons in
these bands are assumed to behave like independent particles in a periodic poten-
tial. These electrons can be treated as quasi-particles, where the quasi-particle
interactions are usually neglected due to the predominant delocalization in the
broad conduction bands. The host metal conduction electrons can therefore be
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described approximately by a one electron Hamiltonian in second quantization,

H= Z ekc};)gck,(y , (2.2)

k,o

where CLG and ¢, ,, are creation and annihilation operator, for the Bloch states

with wavevector k, energy €y and spin 0. The creation and annihilation operators
obey the standard anticommutation relations for fermions. The density of states
po(€) for these conduction electron Bloch waves is assumed to be characterized
by a set of Dirac delta functions

pole) =) dle—ex). (2.3)
k

One could attempt to remain in the picture of independent particles for the
conduction electrons and extend it by an effective potential Vimp(r). As stated in
[3] this approach is not sufficient to describe the interesting features of transition
metal or rare earth impurities, but it is quoted here as an intermediate step on
the way from (2.2) to the more advanced quantum impurity models. It is useful
to express the potential in terms of the Bloch states of the conduction electrons
in the pure host metal. Using the coefficients Vi x» = (k|Vimplk’) leads to the
simple Hamiltonian

H= Z ekCL,ch,a + Z Vk,k:c;’()ock,,g . (2.4)

k,o k k' o

An impurity can also induce a narrow peak in the conduction band known as
virtual bound state resonance. If the potential Vin, is attractive it may either
form a bound state below the conduction band or it may be to weak to exhibit
a bound state, but at least Vi, may tend to localize the conduction electrons
in the vicinity of the impurity. In this case the electrons spend a relatively long
time in the impurity region, but wave functions become Bloch states far from
the impurity. Hence there is no bound state. This effect can be understood as
resonant scattering at the impurity.

Virtual bound state resonances occur for transition metal or rare earth impu-
rities when the d or f level lies in the conduction band of the host metal. There
is an additional effective potential term in the radial Schrédinger equation due
to angular momentum, which reads 1(1+ 1)/ and tends to localize states with
higher angular momentum in a potential barrier. There will be a finite tunneling
probability so that these states will be virtual bound states.



2.1 Anderson Model and Kondo Model

Anderson [2] calculated the modification of the atomic d functions of the iso-
lated impurity ion due to the embedding in the lattice of metal ions. Introducing
the overlap or hybridization matrix element

Vie= )Y e*(DglHhpag,) , (2.5)
5

where @4 is the atomic d orbital of the impurity ion and Vg4, is the Wannier
wavefunction of the conduction electrons at the site d; and H is the full Hamil-
tonian (2.1). With the d level energy of the impurity €4 and the annihilation and
creation operators for this state cq4 ;- and c:ri,c, the Hamiltonian reads

H= Z edCL,O'Cd,O‘ + Z ekc};,ock,o + Z(vkcji,ock,c + V;CI(,O'Cd,O') : (26)
o k,o k,o

This model Hamiltonian is usually referred to as non-interacting Anderson model.
The interaction that is taken into account in the interacting Anderson model is
the coulomb repulsion between the electrons in the impurity ion d states. Its
strength is given by

U= J@E(r)d)’é(r') DQ4(r)D4(r')drdr’ . (2.7)

r —r|
If no or one electron is in the dlevel there is no coulomb repulsion at all. But if two
electrons are in the d level they repel each other and the energy U due to coulomb
potential has to be added to the Hamiltonian. The empty d level contributes
no energy, Eimp(0) = 0. One electron contributes the d level energy, Eimp(T) =
Eimp(l) = €4. Two electrons add their binding energy and the coulomb repulsion
energy, Eimp(TLl) = 2€4 + UL

This interaction can be included in the Hamiltonian of the non-interacting
Anderson impurity model in an elegant manner using the particle number operator
for the impurity ion, which is defined as ng, = c:'iccdg. The Hamiltonian for the
interacting or (UL # 0) Anderson model reads

H= Z €aNg,o + Undylnd,T + Z €kCLo.Ck)o.
o

ko (2.8)
+ Z (chfiv(,ck,(y + V;cf(,ocd‘d) .

k,o

For the case of vanishing V) we obtain a simple model that can be solved easily,
because the d states are not coupled to the conduction electrons at all. In this
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simple model we observe a local magnetic moment associated with the two fold
degenerate state with single occupation and spin % The states with no or two
electrons do not form localized magnetic moments. The parameter regime for
a local magnetic moment in this simplified model can be derived directly. A
criterion for the occupation of the impurity ion d state is, that the Fermi energy
€r is higher than the energy of the d level. But the Fermi energy must be
below the energy of a second electron to prohibit double occupation. Hence the
criterion for a local magnetic moment is €4 < €f < €4 + UL

A different approach in the description of magnetic effects is to describe the
host metal as a magnetic insulator, and then take the effects of the impurities
local magnetic moment on the conduction electrons into account. A model that
describes this interaction via a Heisenberg exchange interaction that couples the
local moment to conduction electrons with a coupling constant Vi is the s-d
model, which is often referred to as the Kondo model

Heqg = 5 ekc};gck‘d—l—
k,o

Z Jiw (STl ey + S7ekey + S*(chieir — o)) - (29)
Kk’
Kondo used this Hamiltonian to explain the minimum total resistivity [1].

Schrieffer and Wolff [14] showed that the Anderson Hamiltonian (2.8) in
the local magnetic moment regime, characterized by single occupation in the
impurity d level, is equivalent to an effective s-d Hamiltonian. The parameter
regime of the local magnetic moment for the Anderson model includes the range
€q K €r K €q+ U with |[eg + U — €f|, |er — €4 > A, where A is the width of
the virtual bound state resonance. More precise criteria for a local moment are
derived in [3], for example.

If one of the criteria |eg+U—¢€f|, [ep—€4| > Afails, that is if one of the levels
€q+U or €4 approaches the Fermi level, the Schrieffer-Wolf transformation to the
s-d model breaks down. The impurity occupation number fluctuates between two
different values. This regimes are called mixed or intermediate valence regimes.
They are of interest for the description of certain rare earth compounds, for
example SmBs. The number of f electrons at the Sm ions is not integral. The
ionic state is a dynamic mixture of Sm?** and Sm**.

There are two parameter regimes that show no local magnetic moment. One
is the empty orbital regime, which is characterized by an impurity state where the
occupation number is zero. The criterion for this regime is €4 — €f > A. In this
case the Fermi level is clear below the d level. Hence the d level is unoccupied.



2.2 Mapping onto a Linear Chain

The other regime is €4 + U — er < A. In this case the high Fermi energy
guarantees double occupancy of the dlevel. The regimes without a local magnetic
moment are probably of least interest, but they are rather easy to describe due
to negligible charge fluctuations and a non-degenerate ground state [3].

2.2 Mapping onto a Linear Chain

If we assume that the interaction in (2.9) is separable in a sense that it can be
written as Ji k' = oo/ J, the exchange interaction between the localized spin S

and the spin of a localized one electron state with a creation operator c/, , reads

cho =Y onchy 2.10)
k

with oy chosen according to >, lo|> = 1. The spin interaction part of the s-d
Hamiltonian (2.9) can be rewritten as

Hsd,spin = ZIS : C&U(SO)O',O"CI)‘Q-’ ) (211)

where s, is the spin of the localized one electron state.

Following the derivation in [3], we can construct a new basis using the Lanczos
algorithm to tridiagonalize the conduction electron part of the s-d Hamiltonian
denoted as H_. Starting from the localized single electron state [0) we can obtain
the basis from the sequence |0), H.|0), HZ|0), H3|0) ... by Schmidt orthogonal-
ization and normalization.

If we denote the n-th state of the basis by n), the Lanczos recursion relations
are

m+1)= ;— (Hom) — m)(n/H,m) — n — 1)(n — 1[H_n)) , (2.12)

n

resulting in a basis that tridiagonalizes H_. Multiplying (2.12) on the left by (m|
we see, that (m|/H_ n) vanishes, except for the cases

(n—1Hn) = v,
(n[H n) €n
Mm+1HmM) = v,., (2.13)
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Figure 1: Semi-infinite chain with impurity as boundary site.

where the label €., is implicitly defined by this equation. We can write down the
action of the Hamiltonian on a state [n) as

H.n) =y, n+ 1)+ e n) +v5_in—1) . (2.14)

The Hamiltonian can therefore be rewritten with creation and annihilation
operators for the new basis states

Hc = Z enCL,UCn,U + Z (’YTLCIL,O'CTL—I—],O' + ’Y‘T‘LCL—I—],O'CTI,O') . (2'15)

n,o n,o

Tridiagonalizing the primarily diagonal operator H_ seems to be no big achieve-
ment, but if we combine the conduction electron part H_ in the new basis with
the impurity spin interaction part, we yield the entire s-d model in form of a
semi-infinite tight-binding linear chain. The impurity is localized at the end of
the chain as shown schematically in Fig. 1. The basis states of the conduction
electrons have been chosen in such a manner that the impurity couples directly
to a local orbital, that in turn couples directly to the Bloch states of conduction
electrons.

The same technique can be applied to the Anderson model (2.8). Again the
combination of states which is directly coupled to the impurity is mapped onto
the first site of the chain,

1
o= v > Vil (2.16)
k

Using a Lanczos recursion (2.12) in the same manner as in the s-d case we obtain
a semi-infinite chain Hamiltonian that is equivalent to the Anderson Hamiltonian
(2.8). For a more detailed discussion see [3], for example. The linear chain
version of the Anderson model reads

H = Z €dNg,o + Und,lnd,T + Z(VCII,O'CO,G + V*ngacd‘o)
o o

(2.17)
+ Z 'Yn(CIL,oCnH,o- + CL:F],O'CTL,O') + Z €nCL)0.Cn‘0. )

n,o n,o
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Figure 2: Infinite spin chain as equivalent version of the periodic single im-
purity Anderson model. Each half chain corresponds to a fixed spin direction.

where €, and 'y, are calculated via the tridiagonalization procedure. Hence they
are functions of €y and V.

The linear chain versions of the single impurity models are rather useful when
it comes to the point of computational calculations. Each of the fermionic
sites in these impurity chains has got four degrees of freedom. It simplifies
the structure of the involved computer algorithms even more, if we project the
fermionic degrees of freedom onto spin degrees of freedom. This is done by the
so called Jordan-Wigner transformation [10]. The basic idea is to identify spinless
fermion operators with spin % operators in the following manner

¢ = LTI STOS () g (n)
—in ¥ ST ()ST()

cl = St(n)e (2.18)
The inverse transformation reads
SSm) = eI C“C“cn
+ t —iﬂZ?; chen
ST(m) = cle . (2.19)

By substituting cf.c, and c,c! with the expressions in (2.18) and using the fact
that the spin operators for different sites commute it is straight forward to obtain
the following relations

cle, = StM)S (n) = %—I—Sz(n)
c.cl =S (MmStn) = %—Sz(n). (2.20)

Applying these transformations, the linear chain version of the single impurity
Anderson model (2.17) can be mapped onto an infinite spin 3 chain as in Fig. 2.
The two impurity states are mapped onto two sites and each of them is connected
to a semi-infinite chain. The infinite chain spin Hamiltonian is constructed re-
flection symmetric with respect to the impurity sites. Each semi-infinite chain
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represents one spin direction. For example one could map all the up spins onto
the left half chain and all the down spins onto the right half chain. The repulsive
Coulomb interaction is realized via an USZS?, ; type interaction between the im-
purity sites in the middle. The conduction electron sites are connected via terms
of STS™ type.

2.3 Homogeneous Spin % XY Model

The Anderson impurity model can be mapped on a spin 3 chain. We are going
to examine, how accurate local dynamical correlation functions can be calculated
with the means of the density-matrix renormalization approach. In order to make
finite size effects and errors due to the method distinguishable, the very simple
and directly solvable homogeneous spin % XY-model on a semi-infinite chain will
be examined, instead of the single impurity Anderson model. The Hamiltonian
reads

Hy =) t(ST()S (n+1)+S (M)t (n+1)) . (2.21)
n=1
This Hamiltonian can be transformed into a chain of spinless fermions using the
Jordan-Wigner relation (2.18)

0
Xy = Z t (aLanH + ana:'hq) . (2.22)
n=1
The constant hopping term t will be chosen to be % from now on.

One can can calculate the exact ground state energy by examining a finite
chain of L sites in the fermionic picture. We use open boundary conditions to
consider, that the left site will become a boundary site when we approach (2.22),
i. e. the thermodynamic limit. The Hamiltonian of the finite chain can be written
as

1L
HL, = 5 Y (ala,+a,al,). (2.23)
n=1
The creation operator of a Bloch state with wavevector k for the Hamiltonian
above reads

.
ol = Z al sinnk , (2.24)

n=1

5
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with K(L+ 1) = m-mand m = 1,...,L. The restrictions to k result from
the fact, that there is no particle creation at the sites with indices 0 and L + 1.
This transformation in k-space is equivalent to a discrete Fourier transformation,
taking spatial symmetry and boundary conditions into account.

To obtain the dispersion relation one can calculate the commutator of the
Hamiltonian H%, and the creator of a Bloch state c}: Since the Hamiltonian
conserves the particle number, the commutator HXYCk — ckH)L<Y creates a quasi-
particle with wavevector k multiplied by the change in energy caused by this
quasi-particle. In our case, keeping the commutation relations for the a,, in

mind, we gain

L L L
[HXY)CH = HXYCL_CTHXY

= 2\/_2( n+1+an 1>sinnk

a2 sink — (1L ;1 sin Lk

2\/_ 2\/—

= _ Zail(sm( — 1 k+sin(n+1)k)

= —cosk-cl . (2.25)

The transformation from third to fourth line is performed via the trigonometric

rule sin x + siny = 2sin ¥ cos 5.

The dispersion relation and the restrictions for k given above, yield the energy
eigenvalues of the finite XY-chain

EL

”] withme {1,2,...,L} . (2.26)

m
= —CO0s
L

For m < L the energy eigenvalues are negative, for m > % positive. To obtain
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100 200

Figure 3: Ground state energy per site for a homogeneous XY-chain with L

sites.

the ground state energy we sum up all the negative energy eigenvalues

3 cos T
L+1
m=1
1 L/2 )
2 e 4 e—z";?)
52 (
m=1
1 i eTiT(3) 1 e TiTlE) ]
Y e+t i + € i
2 et+1 — 1 e T+1 — 1]

(2.27)

2
1 : eLT1(LTl) —efrj_g(LT])
2 ezé% — efzé%

s T

1 B Sin 3
sin =2~
21+2

Hence the total ground state energy for an homogeneous XY-chain with L sites
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Figure 4: Semi-infinite XY-chain with hopping constant t. Dashed line en-
closes sites contributing to go, dotted line those contributing to g;.

1 1
== 1- . 2.
Eo 2( sinL> (2.28)

2142

reads

The total ground state energy per site Ef for a XY-chain with L sites is
plotted in Fig. 3. The curve converges rapidly. The energy per site limit for
an infinite chain can be directly derived from (2.28). As n goes to infinity the
argument of the sine goes to zero. To calculate the limit, we substitute the sine
by its leading term in the series expansion, its argument. This results in the per
site energy of a homogeneous XY-chain in the thermodynamic limit

L
exy = lim E = lim ( L ] ) = _7lt . (2.29)

Lhee L Looo \ 2L 20505

The exact results (2.28) and (2.29) are a good benchmark for the numerical
DMRG algorithms, which will be described below.

Hence we are interested in local dynamic properties, we will derive the full
local propagator for the boundary spin of a semi-infinite homogenous XY-chain,
as given by (2.21) respectively (2.22). A convenient way to obtain the desired
result is a perturbative approach in diagrammatic notation. The chain we are
going to examine is schematically depicted in Fig. 4.

We want to calculate the Green's function gy, i.e. the full propagator for the
site at the very edge of the chain indexed 0.

If we consider a perturbative approach choosing t as parameter and start with
t = 0, the propagator is trivial

(2.30)
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The propagator g(()o) will be symbolized by two crosses, indexed zero and

connected by a thin line.

»x—
0 0

The full propagator go for t # 0 is represented by a similar symbol, but the
connecting line is drawn thickly.

The full propagator for the boundary site of the chain beginning with site
one and being semi-infinite will be represented by two crosses indexed with the
number one and connected by a thick line. The chain sites that contribute to g
and g7 are shown in Fig. 4. The hopping terms will be symbolized by squares.
Each of the squares contributes a factor t to the propagator.

The expansion of the full propagator go in terms of the coupling t between
the first two sites in diagrammatic language is shown in Fig. 5.

In lowest order the full propagator gy is equal to the propagator g(()o). In first
order a hopping to site one and back is taken into account

g0 =9y +Zg =00 +9o 90 -t 01, (2.31)
with the self energy X, which contributes g((,o) -t- g -t to the propagator.

In second order, as we can see in the diagram Fig. 5 as well, the propagator
reads

o =gy +2gy) + 2% . (2.32)
The series expansion of go in t leads to an infinite geometric series. The limit is
given by
(0)
9o
— ) 2.33
Jdo 1—7 (2.33)
Substituting g((,o) by % and inserting L yields
1
= . 2.34
do w — tzg] ( )

This equation can be used as a recursion relation to calculate g, resulting in a
continued fraction. For a homogeneous chain g is equal to gy, resulting in a
self-similarity relation

1

—_—— 2.35
el (235)

Jo =
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+ —fF—F%
T NN
0 0 1 10 0
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2 )3

Figure 5: Diagrammatic expansion of the local propagator.

and hence a quadratic equation with the solutions
(w) = w 1 (w
Jdo = 2t

2
oty ) 1. (£>0). (2.36)

For the hopping parameter t = ] the solution reads

go(w) =2w £ 2vVw? —1. (2.37)

For |w| > 1 the solution is real. To ensure the that the Green's function
decays sufficiently fast for large values of |w| , i.e. like 1/w, one has to choose
the right sign in front of the square root

go(w) = 2w+2vVw?—1; forw < —1
go(w) = 2w—2vw?2—1;forw>1, (2.38)

In the interval of interest, i.e. |w| < 1, the Green's function becomes complex.
The retarded solution reads

gr(w) =2w — 211 —w?; for lw| < 1. (2.39)

The real and imaginary parts of the local Green's function are plotted in Fig. 6.
The density of states p(w) is given by

plw) = —%Ing(w) = 7%\/1 —w?, (2.40)

Hence the density of states takes the shape of a rescaled half circle.
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real part
— imaginary par

Figure 6: Real and imaginary part of the local Green’s function of the semi-
infinite XY-chain with hopping term t = %
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3 Density-Matrix Renormalization Group

The size of the Hilbert space representing a quantum system on a chain grows
exponentially with the length of the chain. Therefore it is usually impossible to
determine the ground state or other properties of large systems exactly. Hence
one is often interested in approximate solutions for very long chains as an estimate
for the exact solutions for infinite or semi-infinite chains.

There is a group of methods to gain approximate solutions that is based on
a renormalization idea. The basis of these methods is to calculate the desired
properties in a reduced Hilbert space.

One method, which is to some extent the precursor of DMRG, is the (real-
space) numerical renormalization group technique. This method is based on
the idea of dividing the system, for example a spin system, into small blocks,
which can be treated separately. When connecting the blocks to describe the
entire system, only the few lowest lying eigenstates of each block are taken into
account. With this procedure one gains an approximate basis for the entire
system, which should be suitable to describe the ground state. Wilson succeeded
in solving the single impurity Kondo problem with this method [11]. Subsequently
there was a considerable interest in applying this real-space blocking technique
to a variety of quantum lattice models, but it turned out to be rather unreliable,
even for calculating the ground state energy of a Heisenberg spin chain or the
Hubbard model, as discussed in [12, 15].

3.1 Foundation of DMRG

In 1992 Steven R. White introduced the density-matrix version of the numerical
renormalization group technique (DMRG). A detailed review of the principles
of DMRG is given in [15], and the different extensions and developments are
reviewed in [13].

The flaw of the real-space approach is, that it ignores the embedding of the
block in the entire system, when it comes to the point of reducing the basis. The
choice of the optimal basis depends only on properties of the isolated subsystem,
i.e. on its energy eigenvalues. DMRG considers the embedding of the blocks
into the entire system.

Which mathematical criterion is suitable to select a reduced Hilbert basis in
a way, that the approximate ground state |®’) is still a good representation of
the exact ground state |®@)? This requirement is equivalent to the minimization
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of the following term
S = @) — |02 . (3.1)

The system is divided in two contiguous subsystems with exact and complete
sets of basis states [i), respectively [j) withi=1,2 ....1,j=1,2,...,Jand I < J.
If we consider for example a chain, then cutting the chain into two contiguous
sub-chains would be a possible and obvious choice of subsystems. Now we are
able to expand the exact state of the entire system in these subsystem states

©) =D Oyfi)fi) (3.2)

It is useful to express (3.1) in terms of a trace [16]
S=tr{(®— ) (D —D")}. (3.3)

The solution of this minimization problem can be obtained via the singular
value decomposition (SVD) [17] of the rectangular matrix @, i.e.

® =UDV!, (3.4)

with the unitary I x I matrix U and the unitary J x J matrix V. The diagonal
[ x J matrix D = diag(o7, ..., 01) contains the singular values. The states of the
first subsystem form the columns of U, those of the second subsystem form the
columns of V. Due to the unitarity of U and V we can easily express @' using
the same transformation

® = UD'V! with D’ = U@’V . (3.5)

The truncation error (3.3) reads now

S = tr{(®— 0 (D - D)} (3.6)
= t{V(D-D)'u'u(p — b vt} (3.7)
tr{(D— D')/(D —D")} (3.8)

= Z oy — o35l . (3.9)
Y

The last term shows, that D’ has to be chosen in diagonal form, in order to
minimize S. In other words, as we are looking for an optimal ®’, the optimal ®’
has got a singular value decomposition with U,V and D’.
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To avoid the complicated singular value decomposition, one can have a look
at the density-matrix of the system

b = D)(®] . (3.10)
Summation over the second subsystem yields the so called reduced density-matrix

(pr)i =) @yDis5, (3.11)

)

or in matrix formulation
py = OO, (3.12)
Utilizing the singular value decomposition and the fact that V is unitary we get

pr = ubvivbu'
un’ut . (3.13)

The matrix U diagonalizes the reduced density-matrix. The eigenvalues of p;
correspond to the squared elements of the diagonal matrix D and are therefore
positive. The columns of U form the eigenvectors of the density-matrix.

From (3.13) we see, that we need not to perform a singular value decompo-
sition, but we can obtain U and D by diagonalizing the reduced density-matrix.

Without any loss of generality we can assume that the eigenvalues are sorted
in descending order. A basis truncation should be equivalent to the substitution
of D by D' = diag(o1, ..., 0m,0,0,0). Only the first m states, i.e. columns of
U, are kept. The truncation error (3.6) for this case reads

I

S= ) of. (3.14)

i=m+1

The squared diagonal elements, corresponding to the discarded columns of U,
are a norm of the error that is caused by the basis truncation. This error is
minimized indeed, if we keep the eigenstates of the density-matrix belonging to
the high eigenvalues and discard those with small eigenvalues.

It can be readily understood, that the choice of these eigenstates of p; is the
optimal one indeed. The reduced density-matrix plays the role of a statistical
operator, i.e. the eigenvalues of p; indicate the statistical weight of the corre-
sponding eigenstate in the representation of |®), if we choose the eigenstates
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of the reduced density-matrix as basis states. Since the reduced density-matrix
arises from calculating the trace over the [j) states, it contains information about
the embedding of the considered subsystem in the entire system. This aspect
explains why DMRG is able to overcome the flaws of real-space renormalization
group mentioned above.

The DMRG method allows for a systematic truncation of the basis of a sub-
system block. By keeping the most probable states it optimizes the approximate
representation of a wave function of the entire system. This wave function is
named target state below and it is not necessarily the ground state.

The reduced density-matrix can be directly calculated for any state. This
includes mixed states. In this case the density-matrix is a superposition of the
matrices for the different states |y ). If the probability for the system to be in
|x) is px, the reduced density-matrix reads

(P = Z ka Dy 5Dy 115 - (3.15)
P j

The algorithmic realizations of this method, which utilize the density-matrix
renormalization idea to determine properties of the entire quantum chain system,
are described in the next sections.

3.2 Infinite-Size DMRG Algorithm

The simplest version of DMRG is the infinite-size algorithm. As the name sug-
gests this method is intended to describe a quantum chains behavior in the
thermodynamic limit L — oo. The label "infinite-size" is slightly misleading
because numerically no systems of infinite length are treated. The method is
based on investigating systems of growing size, identifying convergent properties
and taking their limits as an approximation for the values at infinite system size.
With growing system size growing truncation errors cause rather significant er-
rors, especially in the approximate correlation functions. Higher accuracy can be
gained by applying the finite-size algorithm described below.

The infinite-size DMRG algorithm is shown in Tab. 3.2. This algorithm in-
creases the system size in each iteration and the basis is kept at the same size
by truncation.

We start from a system block consisting of a quantum chain with a few
sites that can be treated exactly. We have to construct and keep track of the
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Table 1: The infinite-size¢ DMRG algorithm.

1. Start with a small initial block A and operators needed
to describe interactions of A with the environment.

2. Build new block Ae consisting of A and a single site.

3. Construct a superblock B = AeeA’ consisting of A,
the reflection A’ of A, and two single sites.
Construct the operators for quantities of interest.

4. Diagonalize the superblock B to find the target state.
Measure expectation values of operators if desired.

5. Form the reduced density-matrix p for the block Ae.

6. Diagonalize p.
Keep m eigenstates with largest eigenvalues.
Discard the rest.

7. Replace A by the block Ae in the new truncated basis.
Transform all operators to the new basis.

8. Restart from step 2.

operators that are necessary to link the block to another one, as well as those
that we need to calculate the Hamiltonian of the entire system. We usually store
the Hamiltonian of the block and the operators of the sites at the edges of the
block. Furthermore we have to keep track of the operators for the calculation of
the expectation values, that we are interested in.

The system block is enlarged by one site and embedded in a large system.
The large system consists of the system block (Ae), whose basis we are going
to truncate, and an environment block, which in our case is the reflection of
the system block (eA’). This choice of the environment block is the obvious one
for reflection symmetric chains with open boundary conditions. For asymmetric
systems, for example, one would use a small block of a few sites that can be
treated exactly and is a good continuation for the chain. The entire system
consisting of system block and environment block is sometimes called superblock.
In the considerations of section 3.1, |®) always was assumed to be known. The
target state (e.g. the ground state) for large systems is usually unknown, and it
is the numerically most expensive task in the algorithm to find the ground state
(and low lying excited states if desired) of the superblock. If we keep m basis
states to describe the system block A, the Hilbert space of the superblock has
got the dimension s?xm?, where s is the number of states per site, i.e. s=2 in
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the case of S=1/2 spin systems.

The next step, after determining the target state, is to calculate the reduced
density-matrix and diagonalize it. The m lowest eigenvalues are selected and the
corresponding eigenvectors form a rectangular transformation matrix T. All the
operators describing the enlarged system block Ae can be transformed like

HA,new - T]_leTT y (316)

mapping from a basis of dimension sxm to a basis of dimension m. The new
block represents, compared to the one we started with, a system enlarged by one
site but with a basis of the same dimension. This block is used to start the next
iteration.

3.3 Finite-Size DMRG Algorithm

In the infinite-size DMRG method accuracy for a certain chain length L can only
be improved by choosing a larger basis, i.e. a larger m. The finite-size method
is a modification that allows for significant improvements in accuracy for a given
system size of L without increasing m.

If we stop the infinite-size algorithm at system size L, the operators describing
the two sites in the middle are treated exactly, whereas those at the very edge
have been transformed rather often. This feature leads to a favouring of states,
that depend more on sites in the middle than on sites at the edges.

In each step of the infinite-size algorithm the basis is optimized to represent
the target state in a superblock of N sites, but the next step this basis is used
to describe a superblock with N+2 sites. Hence the basis is never optimized to
represent a system of exactly the right size.

This weaknesses of the infinite-size algorithm are overcome by the finite-size
method. The finite-size method starts with the infinite-size method up to the
desired length L. This time, all operators needed to describe the blocks A are
stored in memory for the different block lengths. From know on the environment
block is chosen in a way that the superblock length is always equal to L. The
left part of the superblock is considered as system block and enlarged until the
right part, the environment block, is so small, that it can be treated exactly.
The operators associated with the system blocks are stored for all occurring
block sizes. These stored blocks are used as environment blocks now. The
right part of the superblock is considered as system block and enlarged until the
environment block on the left is exact. One can sweep through the system this
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build-up phase

first sweep

second sweep

Figure 7: Scheme of the finite size DMRG algorithm for a reflection symmetric
system. Build-up phase followed by two sweeps. The basis and operators of
the blocks in dashed boxes are calculated at each step.

way several times, always keeping the total length constant and using according
environment blocks, that have been stored during the last sweep.

The build-up phase and the sweeps for a symmetric system and for a system
without reflection symmetry are shown in the schemes Fig. 7 and Fig. 8. The
system blocks are enclosed in boxes in dashed line-style. They consist of a block
obtained in the previous step and an additional site. During the sweeps the
environment blocks are retrieved from the last, i.e. best, approximation of a
block of the desired size. As one can see in Fig. 7 and Fig. 8 the utilization
of the reflection symmetry results in a shorter and faster build-up phase. The
gain of the symmetry is even more distinct during the sweeps. With reflection
symmetry one can continuously sweep from one edge to the middle and back to
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build-up phase

first sweep z W%/%

Figure 8: Scheme of the finite size DMRG algorithm for an asymmetric
system. Build up phase followed by one sweep.

the same edge, but nevertheless we obtain left and right blocks of all the needed
sizes by simple reflection. A sweep for the symmetric problem takes half as long
as for a system without reflection symmetry. The storage requirement for all the
blocks of different sizes and the corresponding operators of interest is half as
large for the symmetric case as for the asymmetric case.

It can be taken as a principle advice to exploit as many symmetries as possible
to reduce the computational expense of DMRG. This is especially true for the re-
flection symmetry, because its consideration doesn't result in a more complicated
algorithm but in a gain of time and storage.
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3.4 Expectation Values

A great feature of DMRG is to provide the possibility to calculate not only eigen-
values, i.e. energies, but also eigenvectors and thus correlation functions. When
calculating correlation functions, you have to consider, whether the operators
supplying the expectation values of interest, are lying in the same block of the
system or in different ones. This is due to the fact, that the truncated DMRG
basis forms no complete set of basis vectors. This leads to additional truncation
errors if operators are located in the same system part and one is interested in the
expectation value for the product of these. In this case not the single operators,
but their product has to be stored and transformed, to avoid the calculation of
the matrix product in the incomplete truncated basis. For a detailed discussion
see [12,15].

In the following only local operators will be considered. They are calculated
as usual

(O[A{|D) . (3.17)

The expectation values should be calculated, when the finite size sweep is in
the middle of the system, i. e. the two constituting blocks are of equal size. In this
case the averaged truncation errors are smallest. We didn’t do so in every case,
because calculating rather fast decaying local correlations on a single site of the
system requires higher accuracy in the vicinity of this site. Hence we measure
the correlation functions when the block, that contains the site of interest, is
smaller, i.e. it is represented with a higher accuracy.
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4 Dynamics with DMRG

The DMRG allows calculations of static ground state properties and low-lying
energies. There also have been different extension of the basic ideas to allow
for the calculation of dynamical properties as well [13]. One method is the
Lanczos vector method [18]. In this method DMRG is used optimize the basis
of a system to represent Lanczos vectors, which are finally used to calculate
the correlation function. The correction vector methods optimize the basis to
represent a frequency specific correction vector. A method that obtains the
correction vector by matrix inversion will be called inversion method below [19]. A
new correction vector scheme that utilizes an energy selective projection operator
is described, although it is not yet very sophisticated.

4.1 Dynamical Correlation Functions

The time dependent correlation function at T =0 is given by

Calt—t') = (ol AT(R)A(L) o) | (4.1)

where [1po) denotes the ground state and A(t) is the Heisenberg representation
of A, i.e.

A(t) = etHAe HU (4.2)
The Fourier transform reads

Calw) =D [{bnlARbo)*8(w — (En — Eo)), (4.3)

where the sum runs over all eigenstates of the Hamiltonian H with the energy
E.. Eo is the ground state energy. As we are interested in local properties only,
i.e. our operators A are not dependent of a wavevector, we don't have to bother
about the calculation of operators for a specific wavevector. Kiihner and White
describe in reference [19] how such operators can be obtained for open boundary
conditions.

Expressed in terms of a Green's function the correlation function can be
obtained as

1
Cal(w) :—;[n]i)xglmGA(w—l—in—l—Eo) . (4.4)
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The Green's function is defined as

Ga(z) = (bolAT(z —H) " Albo), (4.5)

with z = w + in.

4.2 Lanczos Method

The Lanczos method for DMRG was introduced by K. Hallberg [18]. It is rel-
atively fast and easy to implement but not as accurate as correction vector
methods [20].

The Green's function (4.5) can be rewritten in form of a continued fraction

ATA
Galz) = — %0 "’ffi) , (4.6)
Z—Qp— 7"%

where the coefficients a,, and b,, are given by the well known Lanczos recursion
relation

[frs1) = HIfn) — anlfn) —baalfaa), (4.7)
where
by = % and b ;1 =0, (4.8)

In the Krylov space, i.e. in the basis of the normalized |f,), the Hamiltonian
takes the following tridiagonal form

QAo bo 0
bo ay b]

H= by a; b (4.9)
0

The Green's function of a finite system has got a finite number of poles.
Hence only a finite number of coefficients a, and b,, appear. DMRG is a good
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framework for the calculation of these coefficients. Although the number of
coefficients is finite, it is not feasible to calculate all of them. Luckily, the few
first ones provide a good approximation to the shape of the Green's function [20].
The ground state, the Hamiltonian H and the operator A are well described in the
schemes of the standard DMRG algorithms. To calculate the coefficients with
the desired accuracy, it is necessary, that the relevant excited states \p,,) are
described in good precision, too. This can be achieved by constructing a mixed
target state with the dominant weight on the ground state [\py) and the rest of
the weight distributed over the first few Lanczos vectors |f,) with n =0,1,...
This leads to an inclusion of the relevant excited states, which are connected to
the ground state via the operator A, in the reduced Hilbert space.

The number of states kept in the basis m is limited, of course. Hence one
has to compromise regarding the decision on how many Lanczos vectors should
be included in the target state. If one keeps m basis states and targets on n
vectors, the accuracy of each one can be compared to a simple target state with
only m/m vectors in the reduced basis. The more vectors are included the less
accurate is their representation in the reduced basis.

As stated in [20], the improvement in accuracy by including more than just
a few Lanczos vectors into the target state is marginal. One can also address
the question on how to assign the weight among the Lanczos states [19, 20]. In
the following a small number of Lanczos vectors will be used as target states.
These can be represented with the desired accuracy simultaneously, by choosing
an equal distribution of weights among the Lanczos vectors.

When calculating the desired spectra, not only those Lanczos vectors are
used, that have been used as target states, but the recursion is continued since
orthogonality breaks down.

4.3 Correction Vector Methods

The Lanczos vector method allows the calculation of dynamic correlation func-
tions on the entire frequency range. But this gives reason to a weakness of
this approach. Usually only the low-energy properties of the correlation func-
tions can be extracted with the desired accuracy. Instead of using the Lanczos
vector method, which uses the tridiagonalization of the Hamiltonian to select
the important states to be kept, the spectrum can be calculated for a specified
frequency. This is done by optimizing the basis to represent a correction vector,
that depends on the frequency and on the operator, for which we want to obtain
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a correlation function.

4.3.1 Inversion Method

In the correction vector method proposed by Kiihner and White [19] a complex
correction vector |x(z)) is defined as

1
x(z)) = Z_—HA|11)0> ) (4.10)
with z = w + in. Hence the Green's function can be expressed as
Gal(z) = (WolATx(2)) . (4.11)

The correction vector is complex, but one can split it into real and imaginary
part to avoid the use of complex numbers

x(z)) = X' (z)) +ix'(z)) . (4.12)
Both parts are used as target states. One can find the imaginary part by solving
(H—w)?>+n?)ix) = —nAhbo) , (4.13)

using an iterative linear system solver like the conjugate gradient (CG) method
[21]. This turned out to be difficult for small 1 and for w in the vicinity of an
eigenvalue of H. It is obvious that the matrix 4.13 becomes singular in this case,
the more so as both terms on the left hand side are squared. The problem is
getting bad-conditioned.

Knowing the imaginary part, we get the real part directly from:

9 (2) = 1 (M- wli(z) (4.19)

It turned out to be more efficient, to use the Lanczos procedure in the op-
timized basis to calculate the spectra, and not to use (4.11) directly [20]. The
DMRG basis is optimized to the ground state, the first Lanczos vector Aly),
and the two parts of the correction vector. Two correction vectors can be used
to enclose a frequency interval. When the basis converged after a few finite-size
sweeps, the Lanczos vector method is applied in the optimized basis resulting in
a continued fraction representation of the Green's function.

This way the Green's function is calculated for all w but it's accurate only in
the vicinity of the w it was optimized for.

We didn’t use this trick in our calculations, because we are only interested
in testing the performance and accuracy of the method. Instead we used the
relation (4.11) to calculate the Green's function.
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4.3.2 Projection Method

The new correction approach described below, couldn’t produce satisfactory re-
sults in the framework of the research for this thesis. The method is nevertheless
described in some thoroughness, because it might be promising to implement
some modifications, stated below as well.

The basic idea of the correction vector method is based on optimizing the
basis to represent a correlation function, concentrating on a specific energy in-
terval. The method described above includes a matrix inversion to gain the
imaginary part of the correlation vector (4.13). This problem turned out to beiill
conditioned in some cases. It would be desirable to avoid this matrix inversion.

The idea of concentrating on an energy interval can be realized alternatively
by using an operator that has finite density of states in the desired energy range
and zero density of states anywhere else. If we want to determine a correla-
tion function for the operator A, we can determine an operator that is limited
on a frequency interval [eq, €] by using a projector. If we denote the energy
eigenstates with |e;) we can construct a projection operator

P=> le)(eil (4.15)

i€k

with E = {i|(e;|H|e;) € [e1, €2]}. We project on a subspace of the eigenvectors
with eigenvalues in the desired interval.

The operator A is transformed into its energy-sensitive counterpart by a
simple multiplication with the projector,

A'=PA. (4.16)

On the energy interval [e1, €;] the correlation function of A’ should look like
those of A, but it should vanish anywhere else. A schematic plot can be seen in
Fig. 9, where the dotted line symbolizes the density of states for the operator A
and the solid line those of A’. Using A’[\y), and perhaps a few Lanczos vectors,
as target states, should result in a concentration on the energy interval [eq, €3].

The problem of matrix inversion in the correction vector method is shifted to
the problem of constructing a projection operator on an energy interval in a fast
and accurate manner.

To obtain a projector, one has to gain eigenvectors of H with eigenvalues in
the desired energy range. One can try to obtain those by a Lanczos procedure.
As described in the section on the Lanczos method, we start with the vector
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p(w)

Figure 9: Obtaining a slice of the entire density of states using a projection
operator.

Anbo) and span a Krylov space by recursively applying H and orthonormalizing
the new vector with respect to the others (4.8). This results in a tridiagonal
form of H in the basis of the Lanczos vectors, as seen above. In principle this
transformation is exact, if we span a Krylov space of the same dimension as
the basis of our system. This is not feasible, of course. Aborting the Lanczos
recursion leads to an approximate tridiagonal H, given in a reduced new basis.

The tridiagonal form of H can be readily diagonalized yielding pairs of ap-
proximate eigenvalues and corresponding eigenvectors.

This simple method of obtaining eigenvalues and eigenvectors performed not
very well, because the approximate eigenvalues are spread over the full eigenvalue
range of H, resulting in a very poor resolution in the interval of interest. Even an
iterated Lanczos procedure couldn’t confine more of the approximate eigenvalues
in the interval. An example will be discussed in the following section.

A better density and resolution of eigenvalue-eigenvector pairs in a specified
interval might be obtained by numerical method, that is intended to find eigen-
vectors and eigenvalues in the interior of the spectrum of a matrix. Some of
these methods will be stated in the outlook at the end of this thesis.

Provided a good projection operator is given, we can derive the coefficients of
a continued fraction expansion of the Green's function by the Lanczos method.
A'lpo) and the first few Lanczos vectors are used as target states.

The first few coefficients obtained by applying the Lanczos process on A’
reflect the weight of the density of states in the desired interval and the shape
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of the curve. As we slice an interval out of the whole density of states function,
the terminator of the continued fraction expansion should be chosen accordingly.

To get a good picture of the density of states in an interval, the few coef-
ficients resulting from the Lanczos procedure should be continued in a suitable
manner. One should use the coefficients for a box function, i. e. a function that is
finite and constant in the interval and vanishes anywhere else. Such a continued
fraction expansion can be deduced utilizing the Legendre polynomials. Properly
normalized they sum up to a box as described above in the interval [—1,1]. The
following two formulas are taken from [22]. The Legendre polynomials have a
three term recursion relation which reads

MM+ 1f g =2n+ 1)xf, —nf, 1. (4.17)

The normalization condition reads

[ 2

This recursion relation corresponds to a continued fraction expansion of the type

1
Obox (W) = el (4.19)
w —QqQy —

i
w—aj——

The coefficients a,, and b,, resulting in a box function that is nonzero in the
interval [e1, €;], follow from the recursion above and from a transformation on
the interval,

€1+¢€

2
— 1
b, = €2 — €1 n+ - (4.20)
2 (2n+2)2 -1
To obtain real and imaginary part, one can terminate the continued fraction at a
very high order with a shifted and rescaled version of (2.39), where the interval
[—1,1] is mapped on the interval of interest [e7, €;]. The rescaling is done in

a manner, that conserves the total weight, i.e. the integral over the interval.

a, =

The Green's function, with linear real part and half circle shaped imaginary part,
transfered on the interval [e1, €] reads

2 2w—e;— 20— eq— 2
Iler,ea1 (W) = ( ) 2 (u) —Zi\/<w> 1
€ — € €2— €7 €r—e;
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Continued fraction expansions are usually evaluated in reverse order. We start
with the high order terminator, resulting in a rescaled half circle for the imaginary
part. Then we use the coefficients (4.20). If we would use this coefficients
up to first order, we would obtain a sharp rectangular box. But we discard
the coefficients with the lowest indices and insert the coefficients gained from
applying the Lanczos process on A’l\po). This should result in a smooth curve
inside the interval and a good representation of the square root singularities on
the edges of the interval.

4.4 Remarks on the Implementation

The programming language of our choice was C++. The concept of object
orientation is quite useful to encapsulate items like matrices, block matrices and
blocks of quantum spins. The dynamic use of memory is quite useful to handle
the book keeping of stored operators and wave-functions.

The underlying class in our implementation is one for storing matrices and
performing simple operations on them. This, as far as possible, is done by calling
the fast numeric library routines from LaPack and BLAS. This class has been
deduced from a class created by Schonfeld [16].

Furthermore a class for storing and handling block matrices has been imple-
mented. The operators and states in DMRG algorithms are matrices with block
structure, where only a small fraction of blocks is densely filled and all the others
are zero.

There is a class that stores single site operators and another one that stores
blocks, i. e. parts of a spin chain, and all the operators related to them. This class
also provides functions to perform basis transformations, append single sites, and
SO on.

It is a good idea to exploit as many symmetries as possible. The conservation
of the total spin leads, a proper sorting of the states assumed, to a blocked
structure of operators and wave functions. To store and treat only the nonzero
blocks saves a great amount of memory and execution time.

One of the central tasks in the DMRG algorithms is to find the ground state of
the superblock Hamiltonian. This is done by by a Davidson-Liu algorithm [23, 24].
In the infinite-size algorithm a stochastic initial guess (stochastic in the subspace
with the relevant total spin, of course) is used. During the sweeps in the finite-
size algorithm one can reduce the number of Davidson iterations by a factor
between 5 and 10 by calculating an initial guess. This is done by transforming
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the ground state obtained in the last DMRG step. The transformation of wave
vectors via the basis transformation matrices is described in the proceedings [25].

As an iterative eigenproblem solver is used, only products of the superblock
Hamiltonian with a wave vector have to be calculated. It is mandatory to cal-
culate these products implicitly, i.e. by using the block operators, and not to
store the superblock Hamiltonian. Storing the superblock Hamiltonian would
cost so much memory and time that the programs could not be used on normal
workstations or the number of basis states is heavily restricted. A Hamiltonian
of a superblock, consisting of two blocks and two separate spins, has got a basis
of dimension 4 x m?%, where m is the dimension of the basis of a block. For
m = 128 this results in a dimension of 65,536, for m = 512 the dimension of
the Hamiltonian is 1,048,576. Storing one full Hamiltonian for m = 512, would
mean storing about 1.1 - 10'2 double precision numbers, i.e. 8.8 TeraByte.

The implicit product building results in simple and small matrix block mul-
tiplications that can be easily handed to numerical library routines. A good
description on how to calculate the superblock Hamiltonian products is given
in [25].

The correction vector method includes a linear system solver for problems
like Ax = b, with real-symmetric matrix A and vectors x and b. The stan-
dard methods conjugate gradient (CG) [21] and generalized minimal residuum
(GMRES) [26] have been implemented and tested. GMRES is more robust and
works even for asymmetric matrices. But for our problem CG converges faster.
It turned out, that in the very ill conditioned cases none of the above methods
converged satisfactorily.

There are a lot of DMRG specific functions that handle tasks like calculating
the density matrix, diagonalizing it, and many more. The logic dissection of all
this tasks is not clear without ambiguity, and details of their implementation are
omitted here.
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In the first part of this chapter some DMRG measurements of static properties
like the ground state energy for the homogeneous Heisenberg chain and the
homogeneous XY-chain are shown. In the framework of these measurements the
influence of parameters like chain length and basis size m will be examined.

In the second subsection we discuss DMRG results for the measurement of
local dynamic properties. The benchmark will be again a uniform XY-chain,
where we examine the local dynamics of the surface spin. Results for the Lanczos
method [18] and a correction vector method [19] will be shown.

We will discuss the difficulties with the new correction vector approach which
is outlined in section 4.3.2 and make some suggestions that might be suitable to
overcome the flaws.

5.1 Static DMRG Results

The Hamiltonian for a uniform isotropic Heisenberg chain reads

1
Hueis = ) SiSip1 =) (Sf ity (7S + Sisj;l)) : (5.1)

n

The exact solution for the ground state energy per site has been derived by
Bethe [27]

1
Eves =7 —In2=—0.4431471 - . (5:2)

As stated before in (2.29) the ground state energy per site for an infinite
XY-chain is

In Fig. 10 DMRG results for the deviation of the ground state energy per site
of a homogeneous XY-chain from the value in the thermodynamic limit (5.3) are
shown as a function of 1/L, where L denotes the number of sites in the chain.
The calculations have been done with different numbers of basis states m. The
linear behavior of the energy as a function of 1/L reflects the conformal invariance
of the underlying model. In this plot almost all data points for the different m
coincide. Linear extrapolation of the data points in the inset of Fig. 10 yields a
very good approximation to the exact limit for basis sizes with 32 sites or more.
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Figure 10: Absolute deviation of ground state energy per site for XY-chains
with L sites from the thermodynamic limit calculated for different DMRG basis
sizes.

When calculating on very small Hilbert spaces the energy is overestimated due
to the poor representation of the system, resulting in an inaccurate ground state
vector and hence an inaccurate eigenvalue.

The calculations of the deviation of energy from the limit of an infinite chain
for the homogeneous isotropic Heisenberg model (5.1) show exactly the same
features, as one can see in Fig. 11.

The plots Fig. 10 and Fig. 11 show that the DMRG algorithm works and the
ground state energy values converge towards the thermodynamic limits, provided
that the DMRG basis is not to small. But from this plots it is difficult to estimate
the dependence of accuracy on the size of the truncated basis and on the size of
the treated system.

The exact results (2.28) for the ground state energy of a finite homogeneous
XY-chain with L sites, that have been derived in section 2.3, are a better bench-
mark to test the accuracy of the algorithm. The deviation from zero in Fig. 10
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Figure 11: Absolute deviation of ground state energy per site for Heisen-
berg chains with L sites from the thermodynamic limit calculated for different
DMRG basis sizes.

and Fig. 11 is predominantly due to finite size effects. By comparing DMRG
results with exact results for finite chains we can isolate the truncation errors.

The development of the relative truncation errors with growing system size is
shown for different numbers of basis states m in Fig. 12. This plot reveals some
interesting features of DMRG.

For a specific basis size m the error in ground state energy increases rapidly
with growing system size for relatively small systems, but the curve flattens for
larger systems. This shows that during the first truncations of infinite-size DMRG
the relative loss in accuracy is higher than for longer chains. This is due to the
fact, that the change in ground state energy per site as a function of growing
system size decreases rapidly, as can be seen in Fig. 3. The flattening of the
relative error curves seems to show some kind of saturation. The picture that
one could have in mind to understand this feature is, that adding a single site
to a uniform semi-infinite chain, doesn’t change the properties. Hence adding a
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Figure 12: Relative error is the ground state energy of the XY-chain with L
sites calculated with DMRG for different basis sizes.

single site to a very long chain that is represented to a certain accuracy should
lead to an almost equally good representation of the enhanced chain, even after
a basis truncation.

An obvious result of the measurements shown in Fig. 12 is the dependence
of the accuracy on the number of states in the truncated basis m. As one would
expect the accuracy in ground state energy for a fixed chain length L increases
with growing basis size m. Doubling the basis yields an increase in accuracy of
one to two orders of magnitude.

Our implementation of the DMRG algorithm allows for calculating systems
with 1024 states in the truncated basis on a normal workstation. One could
optimize the implementation by adding the single sites on each block implicitly,
when calculating the products of the superblock Hamiltonian with a wavevector.
This should allow calculations with the doubled number of basis states but with
the same storage requirements as in the actual implementation.

It should be considered that doubling the basis leads to a rather significant
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increase in runtime. Especially when we are only interested in a good represen-
tation of the ground state, i.e. the ground state is the only target state, the
accuracy that can be reached with a basis size m of 512 states or 1024 states
is very high. Increasing it much further would lead into a region, where numeri-
cal round up errors due to limited machine precision become significant. When
targeting on a number of states, the accuracy in the representation is splitted
among those states. In this case a higher number of states in the basis might
be reasonable. But as stated above, runtime and storage requirements limit the
arbitrary choice of the basis size m.

In this section DMRG measurements of static properties of spin chains have
been presented and they have been compared with the exact results in section
2.3. The DMRG results proved to be in good agreement with the exact results.

5.2 Dynamic DMRG Results
5.2.1 Exact Benchmark Results

Fortunately the XY-chain is simple enough to obtain some exact analytical results
for finite and infinite systems. In section 2.3 we have calculated the density of
states for infinite XY-chains. For a finite chain the correlation function for the
operator S{ is not a continuous function but a set of Dirac delta functions.

Transforming the XY-chain on a chain of spinless fermions via a Jordan-Wigner
transformation, as shown in section 2.3, yields an explicit expression for c! (2.24)
and the energy eigenvalues (2.26). As we only consider particle creation, that
is we have no particle-hole symmetry, we take only the positive eigenvalues into
account.

One can explicitly construct a diagonal Hamiltonian matrix containing the
positive energy eigenvalues and the operator cLo is given, with ko = 75. The
Lanczos procedure described in section 4.2 yields a numerical but exact contin-
ued fraction expansion for the Green's function (4.6). The calculation of this
continued fraction expansion for the exact Green's functions for finite XY-chains
has been done with the computer algebra program Maple.

Since the exact Green's function has got poles on the real axis it is difficult
to handle it numerically. We don't evaluate it exactly on the real axis but slightly
above. This corresponds to the use of z = w+1in as the argument of the Green's
function, where 1 is a small but finite constant.

The effect of the small 1 can be understood as a convolution of the Green's

function with a Gaussian function of half-width . In Fig. 13 the imaginary
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Figure 13: Exact spectral function of a homogenous XY-chain with 40 sites
for different broadening factors n.

part of the exact numerical Green's function, rescaled by a factor —%, is plotted
for different values of 1. This rescaled imaginary part of the Green's function
corresponds to the spectral density of states. Although the term "density" only
makes sense in the continuum limit, we will use it for finite chains, because our
method is intended to yield approximations for the thermodynamic limit, i. e. for
infinite or semi-infinite chains.

For n = 0.01 we get a curve with sharp peaks, corresponding to broadened
Dirac delta functions. The peaks are located between zero and one. Their
position correspond to the energy eigenvalues of the single particle excitation
eigenstates. The tail of the curve for frequencies w > 1 is caused by the broad-
ening.

Due to the neglect of hole excitations, yielding a neglect of the peaks that
correspond to w < 0, we would expect to see 20 peaks in this half of the
spectrum of a 40 site chain. We can't see all of them in Fig. 13. This is due to
the broadening, that smears out the low weighted peaks close to w = 1.
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In the curve for 1 = 0.05 the sharp peaks disappear. As a rudiment the curve
wiggles. The larger broadening factor results in a more distinct tail for w > 1.
The curve for 1 = 0.1 is completely smooth and shows no oscillations.

The weight, that is the area below the curves, should be equal for all values
of n. This doesn’t seem to be true at first sight, because between for 0 < w < 1
the curve for 1 = 0.1 lies below the curve for n = 0.05. This is compensated by
the larger tails for w < 0 and w > 1 for the curve corresponding to 1 = 0.1.
The tails below zero aren’t shown in Fig. 13.

The exact numerical results for the density of states in Fig. 13 will serve as
benchmarks for the accuracy of the DMRG results.

5.2.2 Lanczos Method Results

The Lanczos method, as described in section 4.2, yields the coefficients of the
continued fraction expansion of the Green's function. One can directly compare
these coefficients with those obtained for the exact Green's function. This is
done in Tab. 2 for the Lanczos method results obtained for an XY-chain with 40
sites using 128 basis states and using 4 Lanczos vectors as target states.

The last column of Tab. 2 contains results for an infinite chain. They have
been obtained by expanding the positive half of the exact density of states for
an infinite chain (2.40) in a series and subsequently transforming the series into
a continued fraction. These transformations have been performed with Maple.
Because of the limited order of the involved series expansion, only the first few
rather trustable values are shown.

One can see that the exact values for an infinite and a finite chain differ
significantly. It is reasonable to compare the DMRG data with the exact data for
finite systems. For the first four a,, and for the first three to four b,, coefficients
there is rather good coincidence between the DMRG Lanczos method values
and the exact values for a finite chain. From a4 on the coefficients from the
DMRG results differ significantly from the exact data. As we used four Lanczos
vectors as target states this is not very surprising. Only the first four vectors in
the Lanczos process are accurately represented by the basis, yielding the same
coefficients as in the exact case.

If one just examines the continued fraction expansion coefhicients it is hard
to judge how much information is lost due to the DMRG truncation. To produce
curves that are comparable to the curves in Fig. 13 we evaluated the continued
fractions defined by the coefficients from the Lanczos method DMRG results.
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Table 2: Coefficients in continued fraction expansion of the Green's function.
Values calculated with DMRG Lancos method for a 40 site XY-chain, numerical
results for an exactly treated 40 site chain and an infinite chain. The latter

both were obtained via Maple.

coefficient | 40 sites Lanczos | 40 sites exact infinite chain
a, 0.424725738265 | 0.424725035993 0.424413181578
b% 0.069606556827 | 0.069608643801 0.0698734513025
a, 0.488739886307 | 0.488720315499 0.486690764913
b3 0.0634846105569 | 0.063494585957 0.0643638064851
a, 0.500587005893 | 0.500509903823 0.495293124973
b3 0.0614363144237 | 0.061474718068 0.0633196956714
as 0.507857538937 | 0.507533240397 0.497591805251
b% 0.0595993477044 | 0.059767760911 0.0629635192219
ay 0.517439881421 | 0.514796068471 0.498532204741
b3 0.0779777022036 | 0.057873952346 0.0627986190925
as 5.68251125659 0.523274771933 0.498999473066
b% 73.0826526131 0.055673011692983 | 0.0590199656762
Qg 14.8409723162 0.5333325289555 :
b2 2.70118341671 0.053121971602
a, 16.8010960412 0.54519742344
b2 25.3760793042 | 0.050201947372

Again the continued fractions have been evaluated for z = w + in , introducing
the small broadening factor . The Lanczos method DMRG results for the
spectral density for different values of 1 are shown in Fig. 14. One can see at
once, that the DMRG results show the expected rapid decay for w > 1 and the
area below the curves is comparable for the different 1 and of the same order of
magnitude as in the exact case in Fig. 13.

Although only a few Lanczos vectors have been used as target states, we used
more than just the few coefficients that correspond to the Lanczos vectors that
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Figure 14: Lanczos DMRG results for the spectral function of a homogenous
XY-chain with 40 sites for different broadening factors n.

have been target states. We used the number of coefficients that corresponds to
the number of peaks that we expect to see, i.e. in our case half the number of
sites in the chain. The coefficients of higher order differ significantly from those
of the exact expansion, but they seem to contain some information about the
system. Using only the coefficients corresponding to the vectors that have been
target states, would result in four peaks in the approximate spectral function.
Using more coefficients leads to additional peaks, as can be seen in Fig. 14.
For bigger values of the broadening factor 1 the additional peaks yield smoother
curves that are closer to the exact ones.

For a comparison of the Lanczos method DMRG results with the exact spec-
tral functions for the 40 site XY-chain see Fig. 15. In the curves for n = 0.01
one can resolve the number and the positions of the peaks. Only the first peak
in the DMRG curve coincides with a peek of the exact spectrum. Nevertheless
the distribution of the weight seems to be correctly represented, as one can see
in the curves for larger 1.
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The exact curves and the DMRG curves coincide as w approaches zero or one.
In between the Lanczos curves oscillate around the exact curves. For 1 = 0.1
the deviations become small and the DMRG data give a good picture of the
distribution of spectral weight.

The limitations in accuracy are predominantly due principle flaws of the
method. The data we obtain for a basis of 256 states while using 8 Lanczos
vectors as target states are shown in Fig. 16. The amplitudes of the oscillations
around the exact curves for n = 0.1 and 1 = 0.05 are slightly smaller than in
Fig. 15. The first three peaks in the DMRG data in Fig. 16 for 1 = 0.01 almost
coincide with those for the exact spectral function. The total number of peaks in
the Lanczos curve has not changed significantly. The data in Fig. 15 and Fig. 16
show very similar deviations between Lanczos method DMRG data and the exact
data.

One can conclude, that this is due to the small number of correctly repre-
sented peaks. The small number of peaks is enough to show the rough overall
distribution of spectral weight, but even for large broadening the spectral weight
functions oscillate around the exact broadened curves.

One might think of this dilute distribution of peaks in the approximate spectral
function as an effect due to the relative small system size, yielding relatively few
peaks in the exact spectral function. The exact spectral functions for an XY-
chain with 100 sites and the spectral functions, obtained by the Lanczos method
with 128 basis states and using 4 Lanczos vectors as target states, are shown in
Fig. 17.

The exact curve for 1 = 0.01 shows a large number of peaks. Without any
broadening the curve would contain exactly 50 Dirac delta functions. The large
number of peaks yields a smooth curve for the larger broadening factors 1 = 0.05
and n = 0.01.

The spectral function obtained via the Lanczos method shows just a few
dominant peaks for n = 0.01. The curves for 1 = 0.05 and 1 = 0.1 oscillate
around the exact curves. The oscillations have similar magnitude and shape as
for the 40 site chain in Fig. 15. Hence the resolution of Lanczos method doesn't
seem to improve for longer chains.

One can conclude that the Lanczos method has proved to be suitable for the
calculation of the spectral functions. The exact position and number of peaks
cannot be determined, but the rough distribution of spectral weight is correctly
represented. The representation is accurate for larger broadening factors 1 if w
is close to zero. The decay as w approaches one is correctly described, too. In
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site XY-chain with 256 basis states and 8 Lanczos vectors used as target states
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between the spectral weight is distributed among only a few number of peaks.
This yields a good representation of the rough shape of the exact curve but the
approximate curve shows coarse, oscillating deviations from the exact data. For
small broadening factors 1 and short chains with distinguishable peaks in the
exact curve, only the lowest lying peaks can be represented approximately.

5.2.3 Correction Vector Inversion Method Results

The correction vector method due to Kiihner and White has been described in
section 4.3.1.

For the homogenous XY-chains and for a broadening parameter n = 0.01 the
matrix inversion (4.13) needed as many as 300 up to 4000 steps of the iterative
conjugate gradient method. This corresponds to 600 up to 8000 Hamiltonian
matrix vector products.

The time needed to find the ground state of the Hamiltonian turned out to
be almost negligible compared to the enormous consumption of runtime due to
the matrix inversions.

Apart from these runtime problems the basis and hence the correction vector
failed to converge for small values of . The values for the spectral function
jump from finite size sweep to finite size sweep. For low energies w convergence
could be achieved even for small values of 1.

Some of the data obtained via the correction vector method are shown in
Fig. 18. The plots show correction vector method DMRG data for an XY-chain
with 40 sites using 128 basis states and different broadening factors n. We
targeted on one correction vector and assigned 40% of the weight to the ground
state 30% to the vector S{ o) and 30% on the imaginary part of the correction
vector. The broadened exact curves have been plotted for comparison.

The DMRG data points have been calculated by multiplication of the ground
state wavevector and the imaginary part of the correction vector (4.11). Five
DMRG sweeps have been performed for each value of w and the values for the
latter three have been plotted. Hence one can figure out where the basis failed
to converge.

In the plot for n = 0.1 all data points coincide, i. e. the basis converged for all
values of w. For values of w below about 0.2 and above about 0.8 the DMRG
data match the exact curve. In between small deviations apear. Interpolating
the data would lead to a curve that is similar the curves obtained by the Lanczos
method.
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The plot for n = 0.05 confirms the high accuracy for low energies. For
w > 0.2 the data points show deviations from the exact curves. The deviations
are oscillating but the magnitude is smaller than for the Lanczos data in Fig. 15.
For w values between about 0.4 and 0.9 the basis fails to converge. This remains
true if we perform 10 or 20 sweeps instead of just five sweeps. The high energy
data, i.e. in our case w approaches the value one, are coincident with the exact
values.

The high accuracy in the correctly represented low energy region is confirmed
by the data for n = 0.01. The first four peeks of the exact spectrum are
represented very well by the correction vector data. For higher energies the basis
fails to converge. Solely the decay to zero for w values in the vicinity of one is
represented correctly.

The lacking convergence in the basis and the bad conditioning of the matrix
inversion problem (4.13) show up in the same range of the parameter omega.
The problem appears for longer chains as well as for a larger basis. It proved not
to be a problem of the weight assigned to the correction vector as target state.
Targeting on real and imaginary part of the correction vector or using only the
imaginary part, didn't change the overall problem.

We tried various modifications of the CG method [21] for matrix inversion.
For example we experimented with the explicit restart of the method to add some
numerical stability by "reminding" the algorithm of the right hand side of 4.13.
We also implemented the GMRES method [26]. We also implemented a deflated
version of CG [28], where deflation means the implicit removal of a small number
of eigenvectors, i.e. eigenvectors to the left hand side of (4.13), with eigenval-
ues that are very close to the origin. This method is numerically equivalent to
preconditioning methods. Up to now we avoided to use explicit preconditioning
methods, because construction, storage and application of a preconditioning ma-
trix is complicated by the fact, that the inversion matrix is very large and not
explicitly given. Neither the convergence rate for the matrix inversion nor the
convergence of the basis could be improved.

The correction vector inversion method proved to be highly accurate in the
determination of spectral functions for energies in the vicinity of the ground state
energy. A reason for this might be, that the ground state and hence properties
as low energies are well described, due to the choice of the ground state as
predominant target state.

For larger energies the method only yielded stable results for large broadening
factors ) in the order of 0.1. As the data in this energy range are not as accurate
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as in the low energy range, it is probably preferable to use the Lanczos method
with a larger basis instead of the correction vector inversion method. This should
result in shorter runtimes of the programs, due to the avoidance of the matrix
inversions.

The measurements above have been made by using one correction vector as
target state and obtaining the data from multiplying ground state and correction
vector (4.11). In references [20] and [19] it is suggested to use two correction
vectors and to use the Lanczos method on the converged system to obtain the
data for the interval. One could try if for the critical range of w the Lanczos
procedure yields reasonable data, despite the fact that the basis is correction
vector is not converged.

Further research can be suggested in the field of improving the condition of
the linear problem (4.13), perhaps by means of explicit preconditioning.

5.2.4 Correction Vector Projection Method Results

The problems with the correction vector inversion method described in the fore-
going section led to the idea of the new correction vector projection method,
described in section 4.3.2.

No data have been obtained because we didn't yet manage to construct a
projection operator. The aim is to project on a specific energy interval. This
problem is equivalent to finding a set of approximate eigenvectors with eigenval-
ues in the desired range.

We experimented with spanning a Krylov space using the Lanczos procedure
and diagonalizing the resulting tridiagonal matrix. This yields a set of approx-
imate eigenvalues with corresponding eigenvectors. Similar to the observations
in the section 5.2.2 when discussing the dilute distribution of peaks in the spec-
tra measured via the Lanczos method, only a small fraction of the obtained
approximate eigenvalues are located in the desired range.

Starting with the vector So+|1|)0), the Lanczos procedure, basically consisting
of the iterated application of the Hamiltonian followed by orthogonalization and
normalization, should yield a set of vectors that is confined in the subspace which
is connected to the ground state by a single spin excitation respectively a single
particle creation in the fermionic picture. This would result in a confinement of
the energy eigenvalues to the interval 0 < w < 1. The iterated basis truncations
and transformations yield a mixing of the states, resulting in the removal of the
restriction on the subspace. The approximate eigenvalues distribute over the full
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eigenvalue range of the Hamiltonian.

The attempt to construct a projection operator for the energy interval
0 < w < 1 failed due to the fact that even for 200 Lanczos vectors only two or
sometimes three approximate eigenvalues fell in the interval.

Using the projected operator of the approximate eigenvectors as target states
didn’t result in a higher number of eigenvalues inside the interval. Iterating the
Lanczos procedure several times, i.e. starting a new Lanczos procedure with the
projected operator, didn't yield a more dense distribution of eigenvalues inside
the interval of interest.

One can conclude that the Lanczos procedure is unable to produce a dense
distribution of approximate eigenvalues and corresponding eigenvectors in specific
frequency interval. This result is in agreement with the the dilute distribution of
peaks in the spectra obtained by the application of the the Lanczos method in
section 5.2.2.

To continue the research in this field one could use a method that is capable
of the direct calculation of interior eigenvalues and corresponding eigenvectors.

The eigenproblem solver due to Davidson and Liu [23], which we use to find
the ground state of the Hamiltonian, is only capable of the determination of a
set of extreme eigenvectors.

In reference [29] a modification of the Davidson algorithm is proposed that
may be useful for the computations of nonextremal eigenvalues.

Another method, proposed in reference [30], to calculate interior eigenvalues
of physical systems is based on the minimum residual method.
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6 Conclusion

In this thesis the local dynamics of the homogeneous XY-chain have been exam-
ined numerically. The XY-chain served as benchmarking system for the accuracy
of the DMRG methods. The spectral functions could be measured and the com-
parison with exact numerical data revealed the abilities and the flaws of different
numerical approaches.

This thesis is a preparatory work for the accurate determination of local prop-
agators for single impurity models. The exact determination of these properties
is important to make the methods applicable in a local impurity self consistent
approach to strongly correlated fermion systems. The mapping of lattice mod-
els of strongly correlated fermions onto effective single impurity models in the
framework of dynamical mean field theory (DMFT) is exact in the limit of infinite
coordination number [4]. The full information on fluctuations in time is kept [5-
7] and one gains a self consistent approach [8,9] to determine the dynamics of
fermion lattice models.

In chapter 2 the Anderson model and the Kondo model of single impurities
are described. The mapping of the models onto a linear chain is outlined fol-
lowed by a description of the mapping onto a spin chain via the Jordan-Wigner
transformation [10]. The homogeneous XY-chain is introduced and the mapping
on a chain of spinless fermions is used to derive static and dynamic properties of
finite and infinite XY-chains.

In chapter 3 the density-matrix renormalization group due to White [12,
15] is introduced. The foundations of the density-matrix renormalization are
outlined and the algorithmic realizations in form of the infinite-size algorithm
and the finite-size algorithm are presented. Finally it is explained how to obtain
expectation values, which is a simple task for local single particle operators.

The application of DMRG to gain information on dynamic properties is re-
viewed in chapter 4. Dynamical correlation functions and their connection to
Green's functions are introduced. A description of the Lanczos method sug-
gested by Hallberg [18], that optimizes the DMRG basis for the ground state and
a set of Lanczos vectors, is given. Subsequently the correction vector method
due to Kiihner [19, 20] is outlined. To avoid ambiguities this method is denoted
as correction vector inversion method, due to the involved matrix inversion. A
description of a correction vector projection approach is given. This method has
not yet been implemented successfully. It is based on the construction of a pro-
jection operator which is selective in energy. The chapter ends with remarks on
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the implementation of the algorithms.

The results are shown in chapter 5. The measurements of the static properties
with DMRG methods are included. The correct value of the ground state energy
of the Heisenberg chain and of the XY-chain could be reproduced as the limit in
the infinite-size DMRG algorithm. The exact values for the ground state energy
of finite XY-chains are used to determine the relative error in the ground state
energy of the DMRG data for different sizes of the DMRG basis. The gain in
accuracy by the increase of basis size is discussed. The measurements of the
static properties proved that the implementation of the DMRG algorithm works
and gave an impression of the accuracy and its dependence on parameters like
basis size and chain length.

Exact numerical data for the local dynamical correlation functions for finite
XY-chain are presented and discussed. A description of how the data have been
obtained is given. These data served as benchmarks for the following DMRG
results.

The results obtained by the Lanczos method are shown. The spectral func-
tions for different broadenings are displayed and compared with the exact data.
The influence of larger basis size and the use of more Lanczos vectors as target
states on the measurements are discussed. The Lanczos method succeeded in
reflecting the correct overall distribution of spectral weight but is only accurate
for low energies and it succeeds in correctly representing the rapid decay for high
energies. For medium energies the Lanczos data oscillate around the exact curve.
This is due to the low number of peaks in the obtained correlation function. This
flaw in the representation is a fundamental problem of the Lanczos method, be-
cause it couldn’t be substantially improved by examining larger systems or by
using larger basis sizes and taking more Lanczos vectors as basis states.

The measurements with the correction vector inversion method yielded an ex-
cellent reproduction of the exact spectral functions for low energies. For higher
energies the involved inversion problem becomes increasingly ill-conditioned. Fur-
thermore the correction vectors in the higher energy range fail to converge during
the DMRG sweeps. The rapid decay for w > 1 is represented correctly. We pro-
pose to try to gain a better condition for the inversion matrix by some kind of
preconditioned method.

As the correction vector method due to Kiihner failed to produce reliable
data in the whole interval of interest, a different correction vector approach
is proposed. This approach has not yet been developed to operativeness, and
can be understood as a suggestion for further research. As the method strongly
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depends on the construction of a projection operator, which is selective in energy,
we proposed some methods to obtain approximate eigenvalues and corresponding
eigenvectors in a given range [29, 30].

This thesis is intended as starting point for the research that should lead
to an iterative local impurity self consistent algorithm for strongly correlated
fermion lattices in the limit of infinite coordination number. A DMRG algorithm
is intended to yield the local propagators at the impurity site, which are subject
to the self consistency condition.
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