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Abstract

Being able to fully control a quantum system offers an enormous amount of possibilities
in finding new effects in physics. Although lots of progress has been made over the past
decades, this topic still holds great potential. To make a contribution to this interesting
field of research we propose a simple model consisting, in its core, of a dimerized spin 1/2

chain coupled to a phonon system. We model an excitation with a laser aiming at driving
the spin system into a quasi steady state in order to investigate non-equilibrium dynamics.
Employing the bond operator representation to describe the spin system and the Lindblad
formalism to induce a damping to the phonon system we approximate the Hamiltonian to a
bilinear level subsequently investigating the system’s properties depending on the coupling
strengths, and excitation and damping parameters.

We encounter non-physical effects of divergence of the spin system, which we identify as an
effect of a resonance disaster, limiting the applicability of our model. For those regimes, where
our assumptions are valid, we find non-trivial quasi steady states and further investigate
properties of Green’s functions in order to understand mechanisms behind the interactions
between the spin and phonon section of the system.

Kurzfassung

Die volle Kontrolle über ein Quantensystem zu haben bietet einen enormen Satz an Mög-
lichkeiten, neue Effekte in der Physik zu finden. Wenngleich schon viele Fortschritte in den
letzten Jahrzehnten gemacht wurden, bietet dieses Thema immer noch großes Potential. Um
einen Beitrag zu diesem interessanten Forschungsgebiet zu leisten, entwickeln wir ein Modell,
das im Kern aus einer dimerisierten Spin-1/2-Kette besteht, die an ein Phononsystem koppelt.
Wir modellieren eine Anregung mit einem Laser mit dem Ziel, das Spinsystem in einen
Quasigleichgewichtszustand zu treiben, um Nichtgleichgewichtsdynamiken untersuchen zu
können. Wir verwenden die Bond-Operator-Darstellung für das Spinsystem und den Lindblad-
Formalismus, um das Phononsystem zu dämpfen, und nähern den Hamilton-Operator auf
eine bilineare Form, um in der Folge die Eigenschaften des Systems in Abhängigkeit von
den Kopplungsstärken, der Anregungs-, sowie der Dämpfungsparameter zu untersuchen.

In unseren Untersuchungen finden wir nichtphysikalische Effekte in Form von Divergenzen
des Spinsystems, die wir als die Folge einer Resonanzkatasdrophe ausmachen können, was
die Anwendbarkeit unseres Modelles einschränkt. In denjenigen Bereichen, in denen unsere
Annahmen Gültigkeit erlangen, beobachten wir nicht-triviale Quasigleichgewichtszustände
und untersuchen weiterhin die Eigenschaften Green’scher Funktionen, um die Mechanismen
hinter den Wechselwirkungen zwischen dem Spin- und dem Phononanteil des Systems zu
verstehen.
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1 Introduction

Without the achievements of solid state physics our everyday life would differ entirely from
what it is today. The investigation and classification of semiconductors led to the processing
of bipolar junction of field-effect transistors, which form the basis of modern computers.
There would be no touch-screens if it was not for the investigation of liquid crystals, and,
most certainly, we would not have smartphones to connect us anywhere anytime.

In other fields, of which the applications do not affect our everyday life as strongly, progress
has been made as well. The explanation of the effect of superconductivity serves as a prime
example. Topological insulators could further revolutionise human technology and advances
in soft matter physics could help us understand biological material better.

Non-equilibrium dynamics are a particularly active field in modern solid state physics. Here,
we present a short overview on its current status outlining some concepts and open questions.
The rest of this thesis is structured as follows: In chapter 2 we discuss methods we need to
set up our model in chapter 3. We present our findings in chapter 4 reflecting on them in
chapter 5.

1.1 Motivation

With new technologies on the rise, we encounter effects that cannot be described by linear
response theory [22]. Thus, we focus on non-equilibrium systems in hopes of gaining new
insights especially on non-linear effects. Several problems have already been studied, e.g.
non-adiabatic responses in BCS superconductors [23], quantum phase transitions [18] or
spin waves [16]. For non-equilibrium states hardly occur in nature, particular focus is put
on driven systems [25], e.g. on angle resolved photoelectron spectroscopy [34, 40]. Alongside
the vast amount of experiments, there comes an equally large number of theoretical concepts
trying to describe those effects or help solving associated problems. From a very problem
specific approach via the representation as a Bose gas [28] to more general methods like
continuous unitary transformations [7] and associated flow equations [20] theoretical physics
offers a great set of tools when it comes to describing non-equilibrium processes. A very
important concept is the introduction of new quasi particles called hardcore bosons [9].
Originally proposed by Sachdev and Bhatt [36] it now serves as a basis to many problems
involving spin systems.
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1 Introduction

1.2 Goal

The mere observation and explanation of new effects alone may enhance our understanding
of the physics behind them but of greater benefit would be their application in practice.
Therefore, we are not only interested in describing new effects but also in manipulating
the corresponding systems at will into states we can control and use for our purposes. In
addition to some general work [19] rather special problems have been approached. The
group of Mentink et al. managed to control the coupling strength in Mott insulators [27]
whereas Lange at al. succeeded in inducting heat currents in their probes via pumping [24].
We will present a quite similar model of which the key purpose is to gain control over the
state we pump the system into. Having driven the system into a quasi steady state we can
further manipulate it which would present us with great potential to create an adjustable
quantum system of which the number of applications is immense. Ideas reach from data
carriers to gates to entire quantum computers. Hence, a detailed study of these aspects is of
crucial interest, not only to physicists.

1.3 Possible Materials

A great amount of faith in finding appropriate candidates for an implementation of such
systems is put into spin 1/2 systems. Over the years of research several solids with different
properties have been investigated. Thus, we shall only give a short overview and provide
some examples. A comparably simple ansatz is given by CuGeO3 [45] which can be described
by a spin chain, i.e. the model is only (quasi) one-dimensional. This inorganic spin-Peierls
compound can as a first approximation be described as a frustrated Heisenberg antiferro-
magnet coupled to the lattice [8]. A more complex structure is given by (VO)2P2O7(VOPO)
[44] which consists of alternating chains. Such quantum magnets like BiCu2PO6 (BCPO)
[32] with its orthorhombic crystal structure are described using two-dimensional models with
BCPO being an example of a frustrated spin ladder. A similar compound is SrCu2(BO3)2
alias SCBO [46]. It can be best described by the two-dimensional Shastry-Sutherland model.
The strong-leg spin ladder system (C7H10N)CuBr4 also called DIMPY [38] features not only
one but two ladder systems making it even more complex.

In this thesis, we will discuss a spin chain inspired by CuGeO3.
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2 Methods

We present basic concepts to approach problems of the project. As most of those methods
are textbook knowledge, we will provide some references the corresponding sections are
primarily based on. Unless explicitly noted we take

𝑐 = ~ = 1, (2.1)

𝑐 being the speed of light and ~ the reduced Planck constant.

2.1 Operators in Quantum Mechanics

The defining characteristic of a quantum system is its restriction to only absorb or emit
energy in certain amounts called quanta. In order to describe such a system operators are
introduced of which the most important properties are their commutation relations. These
commutators provide a specific algebra that is essential when it comes to investigating their
physical behaviour.

There are two basic classes of operators and, thus, (quasi) particles, bosons and fermions. If
the relations

{𝒇𝑀, 𝒇𝑀′} = 0 (2.2a)

{𝒇†
𝑀, 𝒇†

𝑀′} = 0 (2.2b)

{𝒇𝑀, 𝒇†
𝑀′} = 𝛿𝑀,𝑀′, (2.2c)

where {⋅, ⋅} denotes the anticommutator, hold for two operators 𝒇 and 𝒇† they are called
fermionic operators. The indices 𝑀 and 𝑀 ′ may represent any finite set of numbers, 𝒇†

denotes the hermitian conjugate of 𝒇. If two operators 𝒃 and 𝒃†, however, satisfy

[𝒃𝑀, 𝒃𝑀′] = 0 (2.3a)

[𝒃†
𝑀, 𝒃†

𝑀′] = 0 (2.3b)

[𝒃𝑀, 𝒃†
𝑀′] = 𝛿𝑀,𝑀′ (2.3c)

they are referred to as bosonic operators with [⋅, ⋅] being the commutator.

Spins are of particular interest in modern quantum physics. A spin operator

⃗𝑺 = (𝑺𝑥, 𝑺𝑦, 𝑺𝑧)⊺ (2.4)

3



2 Methods

is characterized by the commutation relation

[𝑺𝑖, 𝑺𝑗] = i𝜀𝑖𝑗𝑘𝑺𝑘 (2.5)

where 𝜀𝑖𝑗𝑘 is the Levi-Civita symbol and 𝑖, 𝑗 and 𝑘 may take values of 𝑥, 𝑦 and 𝑧. For spins
𝑺 = 1/2 the components are given by

𝑺𝑖 = 1
2

𝜎𝑖 (2.6)

with the Pauli matrices

𝜎𝑥 = (0 1
1 0) (2.7a)

𝜎𝑦 = (0 −i
i 0 ) (2.7b)

𝜎𝑧 = (1 0
0 −1) . (2.7c)

As is evident from equation (2.5) spin operators are neither of bosonic nor of fermionic type.
There are, however, several methods to transform them into operators that are at least close
to being bosonic or fermionic. We will discuss a useful represetation in the next chapter.

2.2 Bond Operator Representation

When describing dimers formed by two spins interacting with one another the bond operator
representation introduced by Sachdev and Bhatt [36] comes in handy. Its wide application
[39, 20, 21, 43, 6, 10] speaks for its usefulness when approaching strongly correlated systems.
There are two slightly different ways to construct this representation. In what follows we
shall outline the key ideas to both approaches.

2.2.1 Sachdev’s Representation

We investigate a dimer consisting of two spins 𝑺 = 1/2 as sketched in figure 2.1. The spin on

𝐽

⃗𝑺1
𝑖

⃗𝑺2
𝑖

Figure 2.1: Schematic picture of a dimer; the spins ⃗𝑺1
𝑖 and ⃗𝑺2

𝑖 are depicted by red dots,
whereas the black bar illustrates the coupling 𝐽

its left side we call ⃗𝑺1
𝑖 , and the one on the right ⃗𝑺2

𝑖 respectively. The index 𝑖 denotes the
number of the dimer considered derived from the site where the dimer is located.

4



2.2 Bond Operator Representation

A two spin system is described by a four dimensional Hilbert space which is thus the
dimension of the Hamiltonian. Its four eigenstates which are given by a singlet and three
triplet states serve as the basis to the bond operator representation. We envisage four
operators ̃𝒔†

𝑖 , ̃𝒕†
𝑥,𝑖, ̃𝒕†

𝑦,𝑖 and ̃𝒕†
𝑧,𝑖 to create the singlet and triplet states |𝑠⟩𝑖, |𝑥⟩𝑖, |𝑦⟩𝑖 and |𝑧⟩𝑖

from a fictitious vacuum |0⟩ as follows

̃𝒔†
𝑖 |0⟩ = |𝑠⟩𝑖 = 1√

2
(|↑↓⟩𝑖 − |↓↑⟩𝑖) (2.8a)

̃𝒕†
𝑥,𝑖 |0⟩ = |𝑥⟩𝑖 = − 1√

2
(|↑↑⟩𝑖 − |↓↓⟩𝑖) (2.8b)

̃𝒕†
𝑦,𝑖 |0⟩ = |𝑦⟩𝑖 = i√

2
(|↑↑⟩𝑖 + |↓↓⟩𝑖) (2.8c)

̃𝒕†
𝑧,𝑖 |0⟩ = |𝑧⟩𝑖 = 1√

2
(|↑↓⟩𝑖 + |↓↑⟩𝑖) . (2.8d)

Hence, the spin operators ⃗𝑺1
𝑖 and ⃗𝑺2

𝑖 are given by

𝑺1
𝛼,𝑖 = 1

2
( ̃𝒔†

𝑖
̃𝒕𝛼,𝑖 + ̃𝒕†

𝛼,𝑖 ̃𝒔𝑖 − i ∑
𝛽𝛾

𝜀𝛼𝛽𝛾 ̃𝒕†
𝛽,𝑖

̃𝒕𝛾,𝑖) (2.9a)

𝑺2
𝛼,𝑖 = −1

2
( ̃𝒔†

𝑖
̃𝒕𝛼,𝑖 + ̃𝒕†

𝛼,𝑖 ̃𝒔𝑖 + i ∑
𝛽𝛾

𝜀𝛼𝛽𝛾 ̃𝒕†
𝛽,𝑖

̃𝒕𝛾,𝑖) . (2.9b)

The Greek indices 𝛼, 𝛽 and 𝛾 may take the values of the flavours 𝑥, 𝑦 and 𝑧. In order to
only create singlet or triplet states the hardcore constraint

̃𝒔†
𝑖 ̃𝒔𝑖 + ∑

𝛼

̃𝒕†
𝛼,𝑖

̃𝒕𝛼,𝑖 = 1 (2.10)

has to hold. It is straight forward to deduce

̃𝒔𝑖 ̃𝒔𝑖 = ̃𝒕𝛼,𝑖 ̃𝒕𝛽,𝑖 = ̃𝒔†
𝑖 ̃𝒔†

𝑖 = ̃𝒕†
𝛼,𝑖

̃𝒕†
𝛽,𝑖 = 0 (2.11a)

̃𝒔†
𝑖 ̃𝒔𝑖, ̃𝒕†

𝛼,𝑖
̃𝒕𝛼,𝑖 ∈ {0, 1} , (2.11b)

meaning there can only be one out of the four quasi particles at the same time at each dimer.
The newly introduced bond operators ̃𝒔†

𝑖 , ̃𝒕†
𝑥,𝑖, ̃𝒕†

𝑦,𝑖 and ̃𝒕†
𝑧,𝑖 are of bosonic nature. Hence, the

commutation relations read

[ ̃𝒔𝑖, ̃𝒔†
𝑗] = 𝛿𝑖,𝑗 (2.12a)

[ ̃𝒕𝛼,𝑖, ̃𝒕†
𝛽,𝑗] = 𝛿𝛼,𝛽𝛿𝑖,𝑗 (2.12b)

[ ̃𝒔𝑖, ̃𝒔𝑗] = [ ̃𝒕𝛼,𝑖, ̃𝒕𝛽,𝑗] = [ ̃𝒔𝑖, ̃𝒕𝛼,𝑗] = [ ̃𝒔†
𝑖 , ̃𝒕𝛼,𝑗] = 0 (2.12c)

[ ̃𝒔†
𝑖 , ̃𝒔†

𝑗] = [ ̃𝒕†
𝛼,𝑖, ̃𝒕†

𝛽,𝑗] = [ ̃𝒔𝑖, ̃𝒕†
𝛼,𝑗] = [ ̃𝒔†

𝑖 , ̃𝒕†
𝛼,𝑗] = 0. (2.12d)

Note that additionally the hardcore constraint (2.10) has to hold for any dimer 𝑖.

5



2 Methods

2.2.2 Triplon Operator Representation

In order to further substantiate the approach introduced in the previous section, we define
the singlet state as the vacuum

|0⟩ ≔ |𝑠⟩𝑖 = 1√
2

(|↑↓⟩𝑖 − |↓↑⟩𝑖) . (2.13)

For the singlet state of a dimer is the one of the lowest energy this choice is convenient. Often
times, this equals setting ̃𝒔𝑖 = 1 in equations of the previous section. Now, we introduce
new operators

𝒔†
𝑖 = |𝑠⟩𝑖 ⟨𝑠|𝑖 (2.14a)

𝒕†
𝑥,𝑖 = |𝑥⟩𝑖 ⟨𝑠|𝑖 (2.14b)

𝒕†
𝑦,𝑖 = |𝑦⟩𝑖 ⟨𝑠|𝑖 (2.14c)

𝒕†
𝑧,𝑖 = |𝑧⟩𝑖 ⟨𝑠|𝑖 . (2.14d)

Replacing the old bond operators in equation (2.9) with these new ones yields

𝑺1
𝛼,𝑖 = 1

2
(𝒕𝛼,𝑖 + 𝒕†

𝛼,𝑖 − i ∑
𝛽𝛾

𝜀𝛼𝛽𝛾𝒕†
𝛽,𝑖𝒕𝛾,𝑖) (2.15a)

𝑺2
𝛼,𝑖 = −1

2
(𝒕𝛼,𝑖 + 𝒕†

𝛼,𝑖 + i ∑
𝛽𝛾

𝜀𝛼𝛽𝛾𝒕†
𝛽,𝑖𝒕𝛾,𝑖) . (2.15b)

Using the representation (2.14)

𝒕𝛼,𝑖𝒕𝛽,𝑖 = 𝒕†
𝛼,𝑖𝒕

†
𝛽,𝑖 = 0 (2.16)

obviously holds. The hardcore constraint (2.10) now reads

|𝑠⟩𝑖 ⟨𝑠|𝑖 + ∑
𝛼

𝒕†
𝛼,𝑖𝒕𝛼,𝑖 = 1 ⇔ |𝑠⟩𝑖 ⟨𝑠|𝑖 = 1 − ∑

𝛼
𝒕†

𝛼,𝑖𝒕𝛼,𝑖. (2.17)

It is needed to calculate the only remaining non-trivial commutator

[𝒕𝛼,𝑖, 𝒕†
𝛽,𝑖] = 𝒕𝛼,𝑖𝒕

†
𝛽,𝑖 − 𝒕†

𝛽,𝑖𝒕𝛼,𝑖 = |𝑠⟩𝑖 ⟨𝛼|𝑖 |𝛽⟩𝑖 ⟨𝑠|𝑖 − |𝛽⟩𝑖 ⟨𝑠|𝑖 |𝑠⟩𝑖 ⟨𝛼|𝑖

= 𝛿𝛼,𝛽 |𝑠⟩𝑖 ⟨𝑠|𝑖 − |𝛽⟩𝑖 ⟨𝛼|𝑖
(2.17)

= 𝛿𝛼,𝛽 (1 − ∑
𝛾

𝒕†
𝛾,𝑖𝒕𝛾,𝑖) − 𝒕†

𝛽,𝑖𝒕𝛼,𝑖. (2.18)

Because two dimers on different lattice sites are independent of one another, the final
commutation relation is given by

[𝒕𝛼,𝑖, 𝒕†
𝛽,𝑗] = 𝛿𝑖,𝑗 (𝛿𝛼,𝛽 (1 − ∑

𝛾
𝒕†

𝛾,𝑖𝒕𝛾,𝑖) − 𝒕†
𝛽,𝑖𝒕𝛼,𝑖) (2.19)

which is not bosonic but what is called hardcore bosonic. Thus, we obtain
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• for 𝑖 ≠ 𝑗
[𝒕𝛼,𝑖, 𝒕†

𝛽,𝑗] = 0. (2.20a)

• for 𝑖 = 𝑗 and 𝛼 ≠ 𝛽
𝒕𝛼,𝑖𝒕

†
𝛽,𝑖 = 0. (2.20b)

• for 𝑖 = 𝑗 and 𝛼 = 𝛽
𝒕𝛼,𝑖𝒕

†
𝛼,𝑖 = 1 − ∑

𝛾
𝒕†

𝛾,𝑖𝒕𝛾,𝑖. (2.20c)

2.3 The Heisenberg Equation of Motion

The mathematics of quantum mechanics can be expressed in several ways. We shall, at first,
present the Schrödinger picture where the time evolution of a state vector |𝜓(𝑡)⟩ is governed
by the Schrödinger equation

i d
d𝑡

|𝜓(𝑡)⟩ = 𝑯(𝑡) |𝜓(𝑡)⟩ . (2.21)

The Hamiltonian 𝑯 may in the most general case be time dependent. A solution to (2.21)
is obtained by introducing the time evolution operator 𝑈(𝑡, 𝑡0) which transforms the state
vector from its initial state |𝜓(𝑡0)⟩ at time 𝑡0 into its current state |𝜓(𝑡)⟩ at time 𝑡, i.e.

|𝜓(𝑡)⟩ = 𝑈(𝑡, 𝑡0) |𝜓(𝑡0)⟩ . (2.22)

For a time independent Hamiltonian the time evolution operator reads

𝑈(𝑡, 𝑡0) = e−i𝑯⋅(𝑡−𝑡0). (2.23)

The Heisenberg picture is characterised by transferring the time dependence of state vectors
in the Schrödinger picture solely to the operators via

𝑶H(𝑡) = 𝑈†(𝑡, 𝑡0) 𝑶S(𝑡) 𝑈(𝑡, 𝑡0) (2.24)

considering an arbitrary operator 𝑶, denoting it as 𝑶H or 𝑶S if it is in the Heisenberg or
the Schrödinger picture respectively. In order to calculate the time evolution, we make use
of the Heisenberg equation of motion

d𝑶H(𝑡)
d𝑡

= i [𝑯H, 𝑶H(𝑡)] + (∂𝑡𝑶S(𝑡))H , (2.25)

which we obtained from differentiating equation (2.24). Instead of focusing on the Heisenberg
picture, it is also possible to investigate the expectation values yielding

d ⟨𝑶H⟩(𝑡)
d𝑡

= i ⟨[𝑯H, 𝑶H]⟩ + ⟨(∂𝑡𝑶S(𝑡))H⟩ , (2.26)

which, when taking the independence of the picture into account, reduces to

d ⟨𝑶⟩(𝑡)
d𝑡

= i ⟨[𝑯, 𝑶(𝑡)]⟩ + ⟨∂𝑡𝑶(𝑡)⟩ . (2.27)
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For a time independent operator 𝑶 in the Schrödinger picture, i.e.

∂𝑶S(𝑡)
∂𝑡

= 0, (2.28)

we obtain
d ⟨𝑶⟩(𝑡)

d𝑡
= i ⟨[𝑯, 𝑶(𝑡)]⟩ . (2.29)

This derivation can be found in more detail in reference [41].

2.4 The Lindblad Formalism

Usage of the Heisenberg equation of motion enables us to deduce the complete time evolution
of the whole system under investigation. For larger systems this procedure becomes more
and more tedious or virtually impossible. Often, only a few quantities of a large system are
of interest. Therefore, the exact behaviour of the remaining part can be neglected. The
Lindblad formalism [26] provides a straight forward method to isolate a desired part from
the rest of the system under consideration. This chapter largely follows the work of [3] where
several examples are discussed as well.

Whereas previously only closed systems, of which the dynamics can be represented by a
unitary time evolution, were examined, we now turn to open systems where this is, in general,
not possible. Let 𝑆 + 𝐵 be a total quantum system which we take to be closed. It consists of
an open system 𝑆 in which we are interested and an environmental system 𝐵. Conveniently,
the system 𝑆 is also referred to by the term “reduced system”. The environmental system
𝐵 is called “bath” if it is in thermal equilibrium and has an infinite number of degrees of
freedom. We neglect correlations between the environmental system 𝐵 and the reduced
system 𝑆 meaning there is no memory to the environment which characterises a Markov
process. By ℋ we shall denote the total system’s Hilbert space and by ℋS and ℋB those
of the reduced and environmental system, yielding

ℋ = ℋS ⊗ ℋB. (2.30)

Thus, the total Hamiltonian reads

𝑯 = 𝑯S ⊗ 𝑰B + 𝑰S ⊗ 𝑯B + 𝑯I (2.31)

with 𝑯S being the system’s Hamiltonian, 𝑯B the Hamiltonian of the environment, 𝑯I the
Hamiltonian describing the interaction between the open system 𝑆 and the environment 𝐵
and 𝑰 the corresponding identities. Figure 2.2 sketches the investigated system. Having
defined the system of interest 𝑆 an observable of interest reads 𝑶 ⊗ 𝑰B for an operator 𝑶
acting on the reduced system’s Hilbert space ℋS. Furthermore we are enabled to define the
system’s density matrix 𝜌S by tracing the total system’s density matrix 𝜌 over the Hilbert
space ℋB describing the environmental system 𝐵

𝜌S = TrB(𝜌) . (2.32)
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(𝑆 + 𝐵, ℋS ⊗ ℋB, 𝜌)

(𝐵, ℋB, 𝜌B)
Environment

(𝑆, ℋS, 𝜌S)

System

Figure 2.2: Schematic picture of an open quantum system, c.f. [3]

Its time evolution is given by

𝜌S(𝑡) = TrB(𝑼(𝑡, 𝑡0) 𝜌(𝑡0) 𝑼†(𝑡, 𝑡0)) (2.33)

with 𝑼(𝑡, 𝑡0) being the total system’s time evolution operator. Analogously to the system 𝑆
its density matrix 𝜌S goes by the name “reduced density matrix”.

Assuming the dynamics of the total system to be described by a Markov process leads to
the derivation of the Markovian quantum master equation. By making use of the semigroup
property we introduce the dynamical map

𝑉(𝑡) = exp(ℒ𝑡) , (2.34)

with the generator ℒ to be further explained in equation (2.38), satisfying

𝜌S(𝑡) = 𝑉(𝑡) 𝜌S(0) ≡ TrB(𝑼(𝑡, 0) (𝜌S(0) ⊗ 𝜌B) 𝑼†(𝑡, 0)) (2.35)

where we have assumed that the total density matrix 𝜌 may initially be described by a
product of system and environmental density matrix

𝜌(0) = 𝜌S(0) ⊗ 𝜌B (2.36)

with 𝜌B as the density matrix of the environmental system. From equation (2.34) we obtain

d
d𝑡

𝜌S(𝑡) = ℒ𝜌S(𝑡) , (2.37)
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the Markovian quantum master equation also called Lindblad equation. The quantity ℒ is
the generator of the quantum dynamical semigroup which can be constructed as

ℒ𝜌S = −i [𝑯, 𝜌S] + ∑
𝑘

𝛾𝑘 (𝑶𝑘𝜌S𝑶†
𝑘 − 1

2
𝑶†

𝑘𝑶𝑘𝜌S − 1
2

𝜌S𝑶†
𝑘𝑶𝑘) . (2.38)

Here, 𝑯 describes the total system’s Hamiltonian, the 𝑶𝑘 are different operators in the
reduced system’s Liouville space and the 𝛾𝑘 will take the role of damping parameters. The
index 𝑘 counts from 1 to (dim(ℋS))2 − 1 if the Hilbert space ℋS is of finite dimension. We
have also implied short correlation times in the environment. Introducing the dissipator

𝒟(𝜌S) ≡ ∑
𝑘

𝛾𝑘 (𝑶𝑘𝜌S𝑶†
𝑘 − 1

2
𝑶†

𝑘𝑶𝑘𝜌S − 1
2

𝜌S𝑶†
𝑘𝑶𝑘) (2.39)

the Lindblad equation (2.37) takes the form

d
d𝑡

𝜌S(𝑡) = −i [𝑯, 𝜌S(𝑡)] + 𝒟(𝜌S(𝑡)) (2.40)

which resembles the Liouville equation

d
d𝑡

𝜌(𝑡) = −i [𝑯, 𝜌(𝑡)] (2.41)

used to describe a closed system with Hamiltonian 𝑯 and density operator 𝜌. Taking the
Hermitian conjugate of equation (2.34) provides us with the adjoint propagator 𝑉 †(𝑡, 𝑡0) for
which

∂
∂𝑡

𝑉 †(𝑡, 𝑡0) = 𝑉 †(𝑡, 𝑡0) ℒ† = ℒ†𝑉 †(𝑡, 𝑡0) (2.42)

holds. Its key application is the transformation of observables from the Schrödinger picture
into the Heisenberg picture via

𝑶H(𝑡) = 𝑉 †(𝑡, 0) 𝑶S. (2.43)

Note that this does not contradict equation (2.24) as we are focussing on an open system
here. Differentiating (2.43) yields

d
d𝑡

𝑶H(𝑡) = 𝑉 †(𝑡, 0) (ℒ†𝑶S) = ℒ†𝑉 †(𝑡, 0) 𝑶S = ℒ†𝑶H (2.44)

with equation (2.42). Here, we have used explicitly that the generator ℒ† and the propagator
𝑉 †(𝑡, 𝑡0) commute which in general only applies if ℒ is time independent, i.e.

ℒ(𝑡) = ℒ. (2.45)

A generalisation is possible, however not needed in this work and, hence, not presented.
With the definition of the generator ℒ in equation (2.38) we obtain from (2.44)

d
d𝑡

𝑶H(𝑡) = i [𝑯, 𝑶H(𝑡)]

+ ∑
𝑘

𝛾𝑘 (𝑶†
𝑘𝑶H(𝑡) 𝑶𝑘 − 1

2
𝑶H(𝑡) 𝑶†

𝑘𝑶𝑘 − 1
2

𝑶†
𝑘𝑶𝑘𝑶H(𝑡))

(2.46)
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which is called the adjoint quantum master equation.

An important special case of an open system in an environment is given by the damped
harmonic oscillator. The reduced system 𝑆 is described by the ordinary harmonic oscillator,
while the damping is obtained from the Lindblad formalism as introduced above. We take
the Hamiltonian 𝑯 to be

𝑯 ∝ �̃�𝒂†𝒂 (2.47)
with 𝒂† and 𝒂 being bosonic creation and annihilation operators and �̃�, the frequency. The
quantum master equation then reads [12, 2, 1, 37]

d
d𝑡

𝜌S(𝑡) = − i [𝑯, 𝜌S(𝑡)]

+ ̃𝛾 (𝑁Q + 1) (𝒂𝜌S(𝑡) 𝒂† − 1
2

𝒂†𝒂𝜌S(𝑡) − 1
2

𝜌S(𝑡) 𝒂†𝒂)

+ ̃𝛾𝑁Q (𝒂†𝜌S(𝑡) 𝒂 − 1
2

𝒂𝒂†𝜌S(𝑡) − 1
2

𝜌S(𝑡) 𝒂𝒂†) ,

(2.48)

i.e. the operators classifying the dissipation are

𝑶𝑘 = 𝒂 (2.49a)

𝑶†
𝑘 = 𝒂†. (2.49b)

A complete derivation can be found in [35]. There is only one parameter ̃𝛾 left of which the
size describes the oscillator’s damping. The quantity

𝑁Q = (exp( �̃�
𝑘B𝑇

) − 1)
−1

(2.50)

representing the Bose–Einstein statistics is used to classify the thermal reservoir providing
the mean number of energy quanta in the mode corresponding to the frequency �̃�. As
usual, 𝑘B is the Boltzmann constant and 𝑇, the temperature. When comparing equation
(2.37) with equation (2.46) the form of the adjoint quantum master equation for the damped
harmonic oscillator becomes evident

d
d𝑡

𝑶H(𝑡) = i [𝑯, 𝑶H(𝑡)]

+ ̃𝛾 (𝑁Q + 1) (𝒂†𝑶H(𝑡) 𝒂 − 1
2

𝒂†𝒂𝑶H(𝑡) − 1
2

𝑶H(𝑡) 𝒂†𝒂)

+ ̃𝛾𝑁Q (𝒂𝑶H(𝑡) 𝒂† − 1
2

𝒂𝒂†𝑶H(𝑡) − 1
2

𝑶H(𝑡) 𝒂𝒂†)

(2.51)

which, taking the expectation value, yields
d
d𝑡

⟨𝑶H⟩(𝑡) = i ⟨[𝑯, 𝑶H(𝑡)]⟩

+ ̃𝛾 (𝑁Q + 1) ⟨𝒂†𝑶H(𝑡) 𝒂 − 1
2

𝒂†𝒂𝑶H(𝑡) − 1
2

𝑶H(𝑡) 𝒂†𝒂⟩

+ ̃𝛾𝑁Q ⟨𝒂𝑶H(𝑡) 𝒂† − 1
2

𝒂𝒂†𝑶H(𝑡) − 1
2

𝑶H(𝑡) 𝒂𝒂†⟩ .

(2.52)

The two master equations (2.48) and (2.51) are referred to as the (adjoint) quantum optical
master equation as the interaction of matter with electromagnetic radiation is modelled this
way.
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2.5 Fermi’s Golden Rule

One of the most important results in first order perturbation theory is Fermi’s golden rule.
In this chapter we shall sketch its derivation based on references [4, 5, 41, 42, 13] and discuss
key results.

We investigate a Hamiltonian
𝑯(𝑡) = 𝑯0 + ̃𝑽 (𝑡) (2.53)

where 𝑯0 describes the unperturbed system of which we know the eigenenergies 𝐸𝑛 and
eigenvectors |𝜙𝑛⟩ satisfying

𝑯0 |𝜙𝑛⟩ = 𝐸𝑛 |𝜙𝑛⟩ . (2.54)

The perturbation 𝑽(𝑡) is given by

̃𝑽 (𝑡) = 𝜆𝛩(𝑡) 𝑽(𝑡) (2.55)

with 𝛩 as the Heaviside function and a real parameter

0 < 𝜆 ≪ 1, (2.56)

i.e. there is only a slight perturbation which vanishes for negative times 𝑡. The Schrödinger
equation for positive times then reads

i d
d𝑡

|𝜓(𝑡)⟩ = (𝑯0 + 𝜆𝑽(𝑡)) |𝜓(𝑡)⟩ . (2.57)

Initially the system shall be in a stationary state |𝜙𝑖⟩ with eigenenergy 𝐸𝑖, thus

|𝜓(𝑡 = 0)⟩ = |𝜙𝑖⟩ . (2.58)

We are interested in the probability 𝑃𝑖,𝑓 describing the system reaching the final state ∣𝜙𝑓⟩
while starting in its initial state |𝜙𝑖⟩ which is calculated via

𝑃𝑖,𝑓 = ∣⟨𝜙𝑓∣ 𝜓(𝑡) ⟩∣2 . (2.59)

We first decompose the state vector |𝜓(𝑡)⟩ into a sum of the eigenvectors |𝜙𝑛⟩. Having
equation (2.56) in mind and realising that the eigenvectors |𝜙𝑛⟩ form a basis, a useful ansatz
proves to be

|𝜓(𝑡)⟩ = ∑
𝑛

𝑎𝑛(𝑡) e−i𝐸𝑛𝑡 |𝜙𝑛⟩ (2.60)

with complex coefficients 𝑎𝑛(𝑡) which, when substituted into the Schrödinger equation (2.57),
yields

i d
d𝑡

𝑎𝑛(𝑡) = 𝜆 ∑
𝑘

ei𝜔𝑛,𝑘𝑡𝑽𝑛,𝑘(𝑡) 𝑎𝑘(𝑡) . (2.61)

We have introduced the Bohr frequency

𝜔𝑛,𝑘 = 𝐸𝑛 − 𝐸𝑘 (2.62)
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and the matrix elements of the perturbation operator

𝑽𝑛,𝑘(𝑡) = ⟨𝜙𝑛| 𝑽(𝑡) |𝜙𝑘⟩ . (2.63)

In general equation (2.61) cannot be solved analytically. Taking again the relation (2.56)
into account, we approximate the coefficients 𝑎𝑛(𝑡) by a power series

𝑎𝑛(𝑡) = ∑
𝑗≥0

𝜆𝑗𝑎(𝑗)
𝑛 (𝑡) (2.64)

in hopes of convergence. Substituting into equation (2.61) yields

i d
d𝑡

𝑎(0)
𝑛 (𝑡) = 0 (2.65a)

i d
d𝑡

𝑎(𝑗>0)
𝑛 (𝑡) = ∑

𝑘
ei𝜔𝑛,𝑘𝑡𝑽𝑛,𝑘(𝑡) 𝑎(𝑗−1)

𝑘 . (2.65b)

Using the initial condition (2.58) we derive

𝑎𝑛(𝑡 = 0) = 𝛿𝑛,𝑖 (2.66)

which means for equation (2.64)

𝑎(0)
𝑛 (𝑡 = 0) = 𝛿𝑛,𝑖 (2.67a)

𝑎(𝑗>0)
𝑛 (𝑡 = 0) = 0. (2.67b)

The first two coefficients are thus obtained from the recursive equation (2.65) as

𝑎(0)
𝑛 (𝑡) = 𝛿𝑛,𝑖 (2.68a)

𝑎(1)
𝑛 (𝑡) = −i ∫

𝑡

0
ei𝜔𝑛,𝑖𝑡′𝑽𝑛,𝑖(𝑡′) d𝑡′. (2.68b)

Approximating the 𝑎𝑛(𝑡) only to the first order the transition probability is given by

𝑃𝑖,𝑓(𝑡) = 𝜆2 ∣𝑎(1)
𝑓 (𝑡)∣

2
= ∣∫

𝑡

0
ei𝜔𝑓,𝑖𝑡′𝑽𝑓,𝑖(𝑡′) d𝑡′∣

2
(2.69)

where we have absorbed the parameter lambda into the perturbation 𝑽(𝑡). If it is constant,
i.e.

𝑽(𝑡) = 𝑉 , (2.70)

equation (2.69) takes the much easier form

𝑃𝑖,𝑓(𝑡) = (
sin(𝜔𝑖,𝑓𝑡/2)

𝜔𝑖,𝑓/2
)

2

∣𝑉𝑖,𝑓∣2 (2.71)

which for large times 𝑡 converges to

𝑃𝑖,𝑓(𝑡) = 𝑡2π𝛿(𝐸𝑓 − 𝐸𝑖) ∣𝑉𝑖,𝑓∣2 . (2.72)
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Its time derivative
̃𝛤𝑖,𝑓 = 2π𝛿(𝐸𝑓 − 𝐸𝑖) ∣𝑉𝑖,𝑓∣2 (2.73)

describes the transition probability per unit of time. To obtain the complete transition
probability per unit of time 𝛤𝑖,𝑓 for a continuous system we have to calculate (2.73) for any
energy 𝐸. Therefore, we make use of the density of states 𝜌(𝐸𝑖) which yields

𝛤𝑖,𝑓(𝑡) = ∫
𝐸∈𝛿𝐸𝑓

̃𝛤𝑖,𝑓𝜌(𝐸) d𝐸 = 2π𝜌(𝐸𝑖) ∣𝑉𝑖,𝑓∣2 (2.74)

where 𝛿𝐸𝑓 describes a small interval around the energy 𝐸𝑓. Equation 2.74 goes by the name
of Fermi’s golden rule.

We note that the delta distribution in equation (2.73) provides the energy conservation. To
a first order approximation we obtain the probability for a system to reach a final state ∣𝜙𝑓⟩
starting in the initial state |𝜙𝑖⟩. More importantly, if either the corresponding density of
states 𝜌(𝐸𝑖) vanishes or the perturbation does not allow the particular transition, we do not
expect any measurements in a corresponding experiment.

However, Fermi’s golden rule (2.74) is based on assumption (2.70) which calls for a time
independent perturbation. Clearly equation (2.70) cannot hold in general. For instance,
it does not apply to any equilibrium. As the parameter 𝜆 according to equation (2.56) is
supposed to be very small Fermi’s golden rule may still serve as a proper approximation.

2.6 Green’s Functions

Green’s functions are a powerful tool when it comes to describing properties of a quantum
system. We will only focus on concepts necessary for this project thus presenting only a
fraction of the complete theory. Further information can be found in reference [30].

Let 𝒈1 and 𝒈2 be bosonic operators. The conventional retarded Green’s function is defined
via

𝐺ret
𝒈2,𝒈1

(𝑡in, 𝑡out) = −i ⟨[𝒈2(𝑡out) , 𝒈1(𝑡in)]⟩ 𝛩(𝑡out − 𝑡in) , (2.75)

i.e. it provides a description of how the observables 𝒈2 at time 𝑡out is affected by a perturbation
of the observable 𝒈1 at time 𝑡in. Of equal importance is the spectral density 𝑆𝒈2,𝒈1

which is
defined by

𝐺ret
𝒈2,𝒈1

(𝑡in, 𝜔out) = lim
𝛿↘0

(∫
+∞

−∞

𝑆𝒈2,𝒈1
(𝑡in, 𝜔out + i𝛿)

𝜔out + i𝛿 − 𝑥
d𝑥) (2.76)

and for which
𝑆𝒈2,𝒈1

(𝑡in, 𝜔out) = − 1
π

Im(𝐺ret
𝒈2,𝒈1

(𝑡in, 𝜔out)) (2.77)

holds. Here, we have also introduced the Fourier transform of the Green’s function (2.75)
via

𝐺ret
𝒈2,𝒈1

(𝑡in, 𝜔out) = lim
𝛿↘0

1√
2π

∫
∞

−∞
𝐺ret

𝒈2,𝒈1
(𝑡in, 𝑡out) ei(𝜔out+i𝛿)𝑡outd𝑡out. (2.78)
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2.6 Green’s Functions

To simplify the notation, the limit in the above equation is often omitted. Differentiating
equation (2.75) we obtain the equation of motion for Green’s functions

d
d𝑡out

𝐺ret
𝒈2,𝒈1

(𝑡in, 𝑡out) = i𝐺ret
[𝑯,𝒈2],𝒈1

(𝑡in, 𝑡out) − i ⟨[𝒈2(𝑡in) , 𝒈1(𝑡in)]⟩ 𝛿(𝑡out − 𝑡in) , (2.79)

where we have made use of the Heisenberg equation of motion (2.29). The time evolution
for times

𝑡out > 𝑡in (2.80)

is then given by
d

d𝑡out
𝐺ret

𝒈2,𝒈1
(𝑡in, 𝑡out) = i𝐺ret

[𝑯,𝒈2],𝒈1
(𝑡in, 𝑡out) . (2.81)

Note that, because the expectation value in the definition of the Green’s function in equation
(2.75) is linear,

𝐺ret
𝛼𝒈2+𝛽𝒈3,𝒈1

(𝑡in, 𝑡out) = 𝛼𝐺ret
𝒈2,𝒈1

(𝑡in, 𝑡out) + 𝛽𝐺ret
𝒈3,𝒈1

(𝑡in, 𝑡out) (2.82)

holds for operators 𝒈1, 𝒈2 and 𝒈3 and complex constants 𝛼 and 𝛽. When investigating a
system in equilibrium, 𝐺ret

𝒈2,𝒈1
(𝑡in, 𝑡out) should only depend on the time difference, such as

𝐺ret
𝒈2,𝒈1

(𝑡in, 𝑡out) = 𝐺ret
𝒈2,𝒈1

(0, 𝑡out − 𝑡in) ≕ 𝐺ret
𝒈2,𝒈1

(𝑡out − 𝑡in) . (2.83)

However for non-equilibrium systems this relation does not generally apply leading to the
definition of further Green’s functions.

Conveniently, the retarded Green’s function for triplons reads

𝐺ret
𝛼𝛼,𝑘(𝑡in, 𝑡out) = 𝐺ret

𝒕𝛼,𝑘,𝒕†
𝛼,𝑘

(𝑡in, 𝑡out)

= −i ⟨[𝒕𝛼,𝑘(𝑡out) , 𝒕†
𝛼,𝑘(𝑡in)]⟩ 𝛩(𝑡out − 𝑡in) . (2.84)

Note that we are investigating triplons in momentum space here. We present the corre-
sponding Fourier transform in section 3.2. The Fourier transform of the absolute retarded
Green’s function 𝐺ret

𝛼𝛼,𝑘(𝑡in, 𝑡out) (2.84) is then computed via

𝐺ret
𝛼𝛼,𝑘(𝑡in, 𝜔out) = 1√

2π
∫

∞

−∞
𝐺ret

𝛼𝛼,𝑘(𝑡in, 𝑡out) ei𝜔out𝑡outd𝑡out. (2.85)

We introduce the average time
̄𝑡 =

𝑡in + 𝑡out
2

(2.86)

and the time difference
𝑡diff = 𝑡out − 𝑡in (2.87)

which allows us to define the relative Green’s function

𝐺rel
𝛼𝛼,𝑘(𝑡in, 𝑡diff) = 𝐺ret

𝛼𝛼,𝑘(𝑡in, 𝑡in + 𝑡diff) (2.88)
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and the time average Green’s function

�̃�𝛼𝛼,𝑘( ̄𝑡, 𝑡diff) = 𝐺ret
𝛼𝛼,𝑘( ̄𝑡 −

𝑡diff
2

, ̄𝑡 +
𝑡diff
2

) . (2.89)

The respective Fourier transforms are given by

𝐺rel
𝛼𝛼,𝑘(𝜔diff) = 1√

2π
∫

∞

−∞
𝐺rel

𝛼𝛼,𝑘(𝑡diff) ei𝜔diff𝑡diffd𝑡diff (2.90)

�̃�𝛼𝛼,𝑘( ̄𝑡, 𝜔diff) = 1√
2π

∫
∞

−∞
̃𝐺𝛼𝛼,𝑘( ̄𝑡, 𝑡diff) ei𝜔diff𝑡diffd𝑡diff. (2.91)

Both of the above defined Green’s functions serve different purposes. The relative Green’s
function (2.88) omits the constant part of the retarded Green’s function (2.84) making its
Fourier transform easier to calculate and interpret. While this is a rather technical aspect,
the meaning of the time average Green’s function (2.89) goes somewhat deeper. Here we
investigate whether the time difference is the sole parameter the Green’s functions depend
on as is the case in equilibrium systems. If so, there should be no difference in both Green’s
functions or their respective Fourier spectra, (2.90) and (2.91), whatsoever. Finally, we
define the average Green’s function

𝐺𝛼𝛼,𝑘(𝑡max, 𝑡) = 1
𝑡max − 𝑡

∫
𝑡max−𝑡

0
𝐺ret

𝛼𝛼,𝑘(𝑡′, 𝑡′ + 𝑡) d𝑡′ (2.92)

and its Fourier transform

𝐺𝛼𝛼,𝑘(𝑡max, 𝜔) = 1√
2π

∫
∞

−∞
𝐺𝛼𝛼,𝑘(𝑡max, 𝑡) ei𝜔𝑡d𝑡 (2.93)

which provide a long range description of the response to a perturbation. We will list all the
Green’s functions of interest in section 4.3 where they will be discussed.

2.7 The Lindemann Criterion

In 1910 Frederick Lindemann presented a method to calculate the maximum displacement
𝑥max of atoms in solids at which the probe starts to melt [14]. He found

𝑥max ≳ 0.2 … 0.3 ⋅ 𝑙 (2.94)

where 𝑙 describes the lattice constant. Equation (2.94) is reasonable hence a displacement
of the order of a solid’s lattice constant means that its previously translational invariant
microscopic structure collapses. This particular property, however, characterizes liquids
which in turn confirm Lindemann’s statement.

Lindemann’s criterion provides a simple mechanism to estimate the corresponding (quasi)
particle density. We, to a first order approximation, investigate again the harmonic oscilla-
tor

𝑯 = ~�̃� (𝒂†𝒂 + 1
2

) (2.95)
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similar to equation (2.47) with 𝒂† and 𝒂 as bosonic creation and annihilation operators
respectively. They are given by

𝒂† = √𝑚�̃�
2~

(𝒙 − i 𝒑
𝑚�̃�

) (2.96a)

𝒂 = √𝑚�̃�
2~

(𝒙 + i 𝒑
𝑚�̃�

) . (2.96b)

Here, 𝒙 is the position operator, 𝒑 the momentum operator, 𝑚 the atomic mass and �̃� the
frequency. We observe the most trivial case of maximum displacement and zero momentum,
i.e.

𝒙 = 𝑥max (2.97a)
𝒑 = 0 (2.97b)

which yields
⟨𝒂†𝒂⟩ = 𝑚�̃�

2~
𝑥2

max. (2.98)

Approximating the frequency �̃� with the Debye frequency

𝜔D =
𝛩D𝑘B
~

= �̃� (2.99)

where 𝛩D is the Debye temperature and 𝑘B the Boltzmann constant we obtain

⟨𝒂†𝒂⟩ =
𝑚𝛩D𝑘B

2~2 𝑥2
max. (2.100)

For common values of Debye temperature 𝛩D, mass 𝑚 and lattice constant 𝑙

𝛩D ≈ 100 K – 1000 K (2.101a)
𝑚 ≈ 1 u – 100 u (2.101b)

𝑙 ≈ 100 pm (2.101c)

and using (2.94) we receive
⟨𝒂†𝒂⟩ ⪅ 10 (2.102)

i.e. there is an upper limit to the (quasi) particle density.

2.8 The Damped Driven Harmonic Oscillator

The equation of motion describing the position 𝑥 of an ordinary classical harmonic oscillator
reads

̈𝑥(𝑡) + 𝜔2
0𝑥(𝑡) = 0 (2.103)

where 𝜔0 is the oscillation frequency. This system can be easily enhanced with a damping,
yielding

̈𝑥(𝑡) + 𝛾 ̇𝑥(𝑡) + 𝜔2
0𝑥(𝑡) = 0 (2.104)
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and, furthermore, a driving so we obtain [29]

̈𝑥(𝑡) + 𝛾 ̇𝑥(𝑡) + 𝜔2
0𝑥(𝑡) = 1

𝑚𝑥0
𝐸(𝑡) . (2.105)

Here 𝛾 is the damping parameter of the system under consideration and 𝑚 the atomic. The
displacement 𝑥0 is as a first approximation determined by the maximum displacement of
the undamped harmonic oscillator, hence

𝑥0 = √ ~
2𝑚𝜔0

(2.106)

c.f. section 3.5. The only purpose of these parameters is to provide the proper dimension as
𝐸(𝑡) describes the energy obtained from driving with an external electric field �̃�(𝑡). Equation
(2.105) is the most general form of the equation of motion for a driven harmonic oscillator
with linear damping.

A periodic driving like
𝐸(𝑡) = 𝑎 cos(𝛺𝑡) (2.107)

makes for an important special case we will investigate further. The parameters 𝑎 and 𝛺
describe the amplitude and the frequency of the driving. Equation (2.105) now reads

̈𝑥(𝑡) + 𝛾 ̇𝑥(𝑡) + 𝜔2
0𝑥(𝑡) − 1

𝑚𝑥0
𝑎 cos(𝛺𝑡) = 0. (2.108)

Introducing the complex quantity

𝑧(𝑡) = 𝑥(𝑡) + i𝑦(𝑡) (2.109)

we solve

̈𝑧(𝑡) + 𝛾 ̇𝑧(𝑡) + 𝜔2
0𝑧(𝑡) = 𝑎

𝑚𝑥0
ei𝛺𝑡 = 𝑎

𝑚𝑥0
cos(𝛺𝑡) + i 𝑎

𝑚𝑥0
sin(𝛺𝑡) (2.110)

instead of equation (2.108) knowing only the real part of 𝑧(𝑡) will be of interest. We make
use of the ansatz

𝑧(𝑡) = 𝑧maxei𝛺𝑡 (2.111)

which yields when substituted into equation (2.110)

𝑧max = − 𝑎
𝑚𝑥0

1
(𝛺2 − 𝜔2

0) − i𝛾𝛺
. (2.112)

We define the phase 𝜑, such as
𝑧max = |𝑧max| ei𝜑 (2.113)

so that we obtain from equation (2.111)

𝑧(𝑡) = |𝑧max| ei𝜑ei𝛺𝑡. (2.114)

From equation (2.109) we then derive

𝑥(𝑡) = |𝑧max| cos(𝛺𝑡 + 𝜑) . (2.115)
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Clearly, the maximum position is given by

𝑥max = |𝑧max| = 𝑎
𝑚𝑥0

1

√(𝛺2 − 𝜔2
0)2 + 𝛾2𝛺2

. (2.116)

If the driving frequency 𝛺 equals the oscillator’s frequency 𝜔0, i.e.

𝛺 = 𝜔0 (2.117)

equation (2.116) reads
𝑥max = 𝑎

𝑚𝑥0𝛾𝜔0
. (2.118)

In terms of quantization we learn by substituting this result in equation (2.98) from the
previous section, where �̃� = 𝜔0, also using equation (2.106)

⟨𝒂†𝒂⟩ = (𝑎
𝛾

)
2 1
~2 ∝ (𝑎

𝛾
)

2
, (2.119)

i.e. the number or density of quasi particles in the quantum system is primarily determined
by the square of the ratio of driving amplitude and damping parameter.
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3 Model

As mentioned in the introduction we wish to create a system that can be driven into arbitrary
quasi stationary states. Therefore, the corresponding model cannot be trivial but at the
same time should also not be too complicated to simulate. We, thus, imagined the system as
follows: A dimerized spin 1⁄2 chain will serve as the principal model to derive new effects from.
It is coupled to a phonon system of which the primary use is to be a mediator. The phonon
system, on the one hand, is coupled to a laser which provides the necessary excitation to
be transferred to the spin system. On the other hand, there exists a coupling to a bath in
order to avoid overheating. A sketch of this system can be found in figure 3.1.

𝐽 𝐽 ′

1 dimer

Spin System
(dimerized spin chain)

Phonon System

𝑔

Electric Field
(Laser) Bath

�̃�(𝑡) 𝛾, Lindblad

Figure 3.1: Schematic picture of the model under investigation

The rest of this chapter is structured as follows. First we shall set up a proper Hamiltonian
describing the model in more detail. Next, as the sole model will be too complicated to solve,
we explain the approximations made to obtain results. We will define observables and derive
the corresponding equations of motion. Finally, we will discuss the parameters describing
the model trying to deduce reasonable reasonable orders of magnitude for each one.
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3.1 Hamiltonian

3.1 Hamiltonian

The total Hamiltonian 𝑯 is composed of four different parts each describing a different
subsystem or an interaction. The spin and phonon system are characterised by 𝑯S and 𝑯P
respectively. The Hamiltonian 𝑯SP provides the coupling of those subsystems, while 𝑯L
contains the coupling of phonon system and laser field. Hence, the total Hamiltonian is

𝑯 = 𝑯S + 𝑯P + 𝑯SP + 𝑯L. (3.1)

The phonon system’s coupling to a bath is not explicitly mentioned but will be introduced
via the Lindblad formalism.

The Hamiltonian for the dimerized spin chain reads

𝑯S = ∑
𝑖

𝐽 ⃗𝑺1
𝑖 ⋅ ⃗𝑺2

𝑖 + 𝐽 ′ ⃗𝑺2
𝑖 ⋅ ⃗𝑺1

𝑖+1 (3.2)

with 𝐽 being the coupling strength of the two spins ⃗𝑺1
𝑖 and ⃗𝑺2

𝑖 forming the 𝑖th dimer and 𝐽 ′

the inter dimer coupling strength. As we describe an antiferromagnetic system

0 < 𝐽 ′ < 𝐽 (3.3)

and the index 𝑖 takes values of
𝑖 ∈ {1, … , 𝑁} (3.4)

where 𝑁 is the number of dimers. We also take periodic boundary conditions to simplify the
model.

The phonon system is described by an ordinary harmonic oscillator, hence

𝑯P = ∑
𝑘∈BZ

𝜔B(𝑘) 𝒃†
𝑘𝒃𝑘 (3.5)

where “BZ” means the Brillouin zone, i.e. the interval from −π to π. We have introduced
the bosonic creation and annihilation operators 𝒃 and 𝒃† for different modes

𝑘𝑖 = −π + 2π 𝑖
𝑁

. (3.6)

Most often the index 𝑖 will be omitted. The quantity 𝜔B is the dispersion relation of this
bosonic phonon system.

As for the spin-phonon coupling the phonon displacement (𝒃𝑖 + 𝒃†
𝑖 ) is to couple directly to

the spins with coupling constant 𝑔, yielding

𝑯SP = ∑
𝑖

𝑔 (𝒃𝑖 + 𝒃†
𝑖 ) ( ⃗𝑺1

𝑖 ⋅ ⃗𝑺2
𝑖 − ⟨ ⃗𝑺1

𝑖 ⋅ ⃗𝑺2
𝑖 ⟩

eq
) . (3.7)

The equilibrium value ⟨ ⃗𝑺1
𝑖 ⋅ ⃗𝑺2

𝑖 ⟩
eq

needs to be subtracted to have the ground state of spin
and phonon system be the vacuum. Note that here the phonon operators are not given in
momentum space but rather in real space.
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Excitation is achieved by coupling an electric field 𝐸(𝑡) to the phonon displacement
(𝒃𝑖 + 𝒃†

𝑖 )
𝑯L = ∑

𝑖
𝐸(𝑡) (𝒃𝑖 + 𝒃†

𝑖 ) , (3.8)

where the laser field 𝐸(𝑡) is never turned off and will also not be quantized. As the atoms
carrying the phonons posses an electric dipole moment which couples to an electric field the
physical foundation to this ansatz is provided.

3.2 Approximations

To obtain a system of ordinary differential equations the Hamiltonian needs to be further
simplified. First, however, we will use the bond operator representation to describe the spin
system. In particular, the triplon representation introduced in chapter 2.2.2 is applied. Via
Fourier transforming

𝒕𝛼,𝑖 = 1√
𝑁

∑
𝑘

𝒕𝑘,𝛼ei𝑘𝑟𝑖 (3.9a)

𝒕†
𝛼,𝑖 = 1√

𝑁
∑

𝑘
𝒕†

𝑘,𝛼e−i𝑘𝑟𝑖 (3.9b)

𝒃𝑖 = 1√
𝑁

∑
𝑘

𝒃𝑘ei𝑘𝑟𝑖 (3.9c)

𝒃†
𝑖 = 1√

𝑁
∑

𝑘
𝒃†

𝑘e−i𝑘𝑟𝑖 (3.9d)

the system will be completely transferred into momentum space.

As a first approximation we neglect any triplon operators of a level higher than bilinear,
thus

𝑯S = 𝐽 (∑
𝑘,𝛼

𝒕†
𝑘,𝛼𝒕𝑘,𝛼 − 𝜆

4
cos(𝑘) (𝒕†

𝑘,𝛼 + 𝒕−𝑘,𝛼) (𝒕†
−𝑘,𝛼 + 𝒕𝑘,𝛼)) , (3.10)

where we have introduced the rescaled inter dimer coupling strength

𝜆 = 𝐽 ′

𝐽
. (3.11)

The second approximation drastically simplifies our model. We only take the 𝑘 = 0 phonon
mode into account

𝒃𝑘 = 0 ∀𝑘 ≠ 0 (3.12a)

𝒃†
𝑘 = 0 ∀𝑘 ≠ 0 (3.12b)

which yields in (3.9c) and (3.9d)

𝒃𝑖 = 1√
𝑁

𝒃0 (3.13a)

𝒃†
𝑖 = 1√

𝑁
𝒃†

0. (3.13b)
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The wavelengths of lasers are of some hundred nanometers whereas the atoms generating the
phonons are of some ångström which makes for a difference of several orders of magnitude,
i.e. the interaction is of long range order. Hence, it is reasonable to assume that the phonon
frequency is dominated by its first order given by the applied frequency. Now, the phonon
system Hamiltonian reads

𝑯P = 𝜔0𝒃†
0𝒃0, (3.14)

i.e.
𝜔0 = 𝜔B(0) , (3.15)

and the coupling to the laser field is

𝑯L = 𝐸(𝑡)
√

𝑁 (𝒃0 + 𝒃†
0) . (3.16)

We take the electric field 𝐸(𝑡) to be a cosine

𝐸(𝑡) = 𝑎 cos(𝛺𝑡) (3.17)

with 𝑎 describing the amplitude and 𝛺 the laser frequency.

In a first order approximation we use mean field theory for the remaining spin-phonon
coupling to obtain a bilinear Hamiltonian, yielding

𝑯SP = 𝑔 ⟨ 1√
𝑁

(𝒃0 + 𝒃†
0)⟩ (∑

𝑘,𝛼
𝒕†

𝑘,𝛼𝒕𝑘,𝛼 − ∑
𝑘,𝛼

⟨𝒕†
𝑘,𝛼𝒕𝑘,𝛼⟩

eq
)

+ 𝑔 1√
𝑁

(𝒃0 + 𝒃†
0) ⟨(∑

𝑘,𝛼
𝒕†

𝑘,𝛼𝒕𝑘,𝛼 − ∑
𝑘,𝛼

⟨𝒕†
𝑘,𝛼𝒕𝑘,𝛼⟩

eq
)⟩ .

(3.18)

In summary we denote the full Hamiltonian 𝑯 we hereinafter use as the basis for our
calculations

𝑯 = 𝑯S + 𝑯P + 𝑯SP + 𝑯L (3.19a)

𝑯S = (𝐽 ∑
𝑘,𝛼

𝒕†
𝑘,𝛼𝒕𝑘,𝛼 − 𝜆

4
cos(𝑘) (𝒕†

𝑘,𝛼𝒕†
−𝑘,𝛼 + 𝒕𝑘,𝛼𝒕−𝑘,𝛼 + 2𝒕†

𝑘,𝛼𝒕𝑘,𝛼 + 1)) (3.19b)

𝑯P = 𝜔0𝒃†
0𝒃0 (3.19c)

𝑯L = 𝑎 cos(𝛺𝑡)
√

𝑁 (𝒃0 + 𝒃†
0) (3.19d)

𝑯SP = 𝑔 ⟨ 1√
𝑁

(𝒃0 + 𝒃†
0)⟩ (∑

𝑘,𝛼
𝒕†

𝑘,𝛼𝒕𝑘,𝛼 − ∑
𝑘,𝛼

⟨𝒕†
𝑘,𝛼𝒕𝑘,𝛼⟩

eq
)

+ 𝑔 1√
𝑁

(𝒃0 + 𝒃†
0) ⟨(∑

𝑘,𝛼
𝒕†

𝑘,𝛼𝒕𝑘,𝛼 − ∑
𝑘,𝛼

⟨𝒕†
𝑘,𝛼𝒕𝑘,𝛼⟩

eq
)⟩ . (3.19e)

So far, the approximations made were to simplify the Hamiltonian 𝑯. There is, however,
another assumption that comes into play when the equations of motion are to be derived
in section 3.4 involving the triplon operator representation used to describe the dimerized
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spin chain. As we worked out in chapter 2.2.2, triplon operators are of hardcore bosonic
nature rather than of bosonic nature, c.f. equation (2.19). However, we shall treat them as
ordinary bosonic operators, thus using the commutation relations

[𝒕𝛼,𝑖, 𝒕†
𝛽,𝑗] = 𝛿𝛼𝛽𝛿𝑖𝑗 (3.20a)

[𝒕𝛼,𝑖, 𝒕𝛽,𝑗] = 0 (3.20b)

[𝒕†
𝛼,𝑖, 𝒕†

𝛽,𝑗] = 0. (3.20c)

Because the triplon operators are by construction of hardcore bosonic type which was not
touched when the Hamiltonian 𝑯 was set up, the likelihood of two triplons of the exact
same type showing up at the exact same lattice site is negligibly small justifying equation
(3.20).

Furthermore, we shall restrict ourselves to investigating only the case of zero temperature

𝑇 = 0 (3.21)

and leave the more general problem for further research to come.

More sophisticated calculations for the derivation presented here can be found in appendix
A.

3.3 Observables

We begin by defining the following observables and expectation values for the phonon system

𝐴(𝑡) = ⟨ 1√
𝑁

(𝒃0 + 𝒃†
0)⟩(𝑡) (3.22a)

𝐵(𝑡) = ⟨ i√
𝑁

(𝒃†
0 − 𝒃0)⟩(𝑡) (3.22b)

𝐶(𝑡) = ⟨ 1
𝑁

𝒃†
0𝒃0⟩(𝑡) , (3.22c)

where 𝐴(𝑡) is the normalized phonon displacement, 𝐵(𝑡) the normalized phonon momentum
and 𝐶(𝑡) the normalized phonon density.

For the triplon system we introduce

𝑈𝑘(𝑡) = ∑
𝛼

⟨𝒕†
𝑘,𝛼𝒕𝑘,𝛼⟩(𝑡) (3.23a)

𝑉𝑘(𝑡) = ∑
𝛼

⟨𝒕†
𝑘,𝛼𝒕†

−𝑘,𝛼 + 𝒕𝑘,𝛼𝒕−𝑘,𝛼⟩(𝑡) (3.23b)

𝑊𝑘(𝑡) = i ∑
𝛼

⟨𝒕†
𝑘,𝛼𝒕†

−𝑘,𝛼 − 𝒕𝑘,𝛼𝒕−𝑘,𝛼⟩(𝑡) . (3.23c)

Here, 𝑈𝑘(𝑡) describes the triplon density for a certain momentum 𝑘, whereas 𝑉𝑘(𝑡) and
𝑊𝑘(𝑡) do not have a descriptive meaning but will occur as expectation values of off diagonal
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3.4 Equations of Motion

bilinear triplon operators when setting up the equations of motion. It will also prove useful
to define the normalized triplon density

𝒰(𝑡) = 1
𝑁

∑
𝑘

𝑈𝑘(𝑡) (3.24)

for which, due to the fact that triplons are hardcore bosons,

0 ≤ 𝒰(𝑡) ≤ 1 (3.25)

must hold for any time 𝑡.

An investigation of the average behaviour of those observables is achieved by

𝑋𝑡0
(𝑡) = 1

𝑡 − 𝑡0
∫

𝑡

𝑡0

𝑋(𝑡′) d𝑡′, 𝑡 > 𝑡0, (3.26)

where 𝑋(𝑡) may take the role of any of the expectation values introduced above. We will
refer to 𝑋𝑡0

(𝑡) as the time average of the observable 𝑋(𝑡) taken from 𝑡0 on.

3.4 Equations of Motion

To take the damping of the phonon system into account, the equations of motion to its
observables need to be calculated using the Lindblad formalism introduced in section 2.4.
In particular, we shall make use of equation (2.52) using the total Hamiltonian (3.1) in
its approximated form derived in section 3.2. Evidently, the corresponding creation and
annihilation operators are 𝒃†

0 and 𝒃0 as introduced in equation (3.13). We obtain

d
d𝑡

𝐴(𝑡) = 𝜔0𝐵(𝑡) − 1
2

𝛾𝐴(𝑡) (3.27a)

d
d𝑡

𝐵(𝑡) = −𝜔0𝐴(𝑡) − 1
2

𝛾𝐵(𝑡) − 2 (𝐸(𝑡) + 𝑔 (𝒰(𝑡) − 1
𝑁

∑
𝑘

⟨𝑈𝑘⟩eq)) (3.27b)

d
d𝑡

𝐶(𝑡) = − (𝐸(𝑡) + 𝑔 (𝒰(𝑡) − 1
𝑁

∑
𝑘

⟨𝑈𝑘⟩eq)) 𝐵(𝑡) − 𝛾𝐶(𝑡) . (3.27c)

The time evolution of the triplon system’s observables is obtained from the Heisenberg
equation of motion (2.29) as introduced in section 2.3

d
d𝑡

𝑈𝑘(𝑡) = 1
2

𝐽 ′ cos(𝑘) 𝑊𝑘(𝑡) (3.27d)

d
d𝑡

𝑉𝑘(𝑡) = 2 (𝐽 − 1
2

𝐽 ′ cos(𝑘) + 𝑔𝐴(𝑡)) 𝑊𝑘(𝑡) (3.27e)

d
d𝑡

𝑊𝑘(𝑡) = −2 (𝐽 − 1
2

𝐽 ′ cos(𝑘) + 𝑔𝐴(𝑡)) 𝑉𝑘(𝑡) + 2𝐽 ′ cos(𝑘) (𝑈𝑘(𝑡) + 1
2

) . (3.27f)

The corresponding calculations are given in appendix B in detail. Note that there are no
correlations between different modes 𝑘 and that the system is totally symmetric in 𝑘 for it
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only occurs as the argument of a cosine. Thus, the dimension of the ordinary differential
equation system (3.27) can be reduced from 3𝑁 + 3 to 3𝑁/2 + 3 given 𝑁 is even.

Initially the whole system should be in its ground state, i.e. in equilibrium, at zero
temperature. Hence, the initial condition for the phonon system reads

𝐴(0) = 0 (3.28a)
𝐵(0) = 0 (3.28b)
𝐶(0) = 0 (3.28c)

To achieve this effect for the triplon system, its Hamiltonian (3.10) needs to be diagonalized.
We employ a Bogoliubov transform introducing new triplon operators via

𝒕𝑘,𝛼 = ̂𝒕𝑘,𝛼 cosh(𝜃) + ̂𝒕†
−𝑘,𝛼 sinh(𝜃) (3.29a)

𝒕†
𝑘,𝛼 = ̂𝒕†

𝑘,𝛼 cosh(𝜃) + ̂𝒕−𝑘,𝛼 sinh(𝜃) . (3.29b)

It is straight forward but tedious to deduce

𝑯S ∝ ∑
𝑘,𝛼

̂𝒕†
𝑘,𝛼

̂𝒕𝑘,𝛼𝜔T(𝑘) (3.30)

with the triplon dispersion relation

𝜔T(𝑘) = 𝐽√1 − 𝜆 cos(𝑘), (3.31)

c.f. appendix C. Rewriting the ground state condition of the diagonalized system with
operators ̂𝒕†

𝑘,𝛼 and ̂𝒕𝑘,𝛼 in terms of 𝒕†
𝑘,𝛼 and 𝒕𝑘,𝛼 eventually yields

𝑈𝑘(0) =
(𝜔T(𝑘) − 𝐽)2

4𝐽𝜔T(𝑘)
(3.32a)

𝑉𝑘(0) =
(𝐽2 − 𝜔2

T(𝑘))
2𝐽𝜔T(𝑘)

(3.32b)

𝑊𝑘(0) = 0. (3.32c)

An important special case is obtained for 𝑘 = π/2. The triplon system will vanish completely
as

𝜔T(π/2) = 1 (3.33a)

so that according to equation (3.32)

𝑈𝜋/2(0) = 𝑉𝜋/2(0) = 𝑊𝜋/2(0) = 0 (3.33b)

which then yields
𝑈𝜋/2(𝑡) = 𝑉𝜋/2(𝑡) = 𝑊𝜋/2(𝑡) = 0. (3.33c)
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3.5 Parameters of the Model

The system of ordinary differential equations (3.27) set up in the previous section has the
following degrees of freedom

𝑁 – system size, number of dimers (3.34a)
𝐽 – coupling between two spins of a dimer (3.34b)

𝐽 ′ – coupling between two dimers (3.34c)
𝑔 – coupling between spin and phonon system (3.34d)

𝜔0 – phonon frequency (3.34e)

𝛺 – frequency of the energy 𝐸 (𝑡) due to the laser field �̃� (𝑡) (3.34f)

𝑎 – amplitude of the energy 𝐸 (𝑡) due to the laser field �̃� (𝑡) (3.34g)
𝛾 – Lindblad damping parameter. (3.34h)

Before limiting certain parameters we shall at first simplify the system some more. The
system size 𝑁 should not play any role in the time evolution of the observables introduced in
equations (3.22) and (3.23), i.e. it should not effect the physics for it is a purely numerical
parameter. Its only purpose is to be large enough so that finite size effects can be ruled out.
Empirically we found

𝑁 = 400 (3.35a)

to be sufficient. Furthermore, we wish to measure any other quantities in units of 𝐽, the
coupling strength of a dimer, which means

𝐽 = 1 (3.35b)

numerically. We choose
𝐽 ′ = 0.5 ⇒ 𝜆 = 0.5 (3.35c)

at which the spin chain can still be regarded as dimerized, however, quantum effects become
very important as there are mobile (quasi) particles in the system. To ensure that the laser
has an effect on the phonon system we set

𝜔0 = 𝛺, (3.35d)

i.e. we set the laser in resonance with the phonon system. If both quantities were to far off
from one another there would be no proper excitation, meaning the system would stay in its
initial equilibrium state. Note that, as explained in section 2.8, because of the damping the
system does not diverge when pumped in resonance.

Thus, the four remaining quantities to be manipulated are the coupling strength between
spin and phonon system 𝑔, the damping parameter 𝛾 and the laser parameters, being the
amplitude 𝑎 and the frequency 𝛺 = 𝜔0. The phonon damping parameter 𝛾 is the least
intuitive quantity of this model. It should be stronger than the coupling between the phonon
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and the spin system to make sure the probe does not overheat. If, however, it is too large,
the excitation will not show any effect. Reasonable values include1

𝛾 ≈ 0.1𝐽. (3.36a)

To ensure that the spin system is predominantly described by the dimerization the coupling
to the phonon system should be of a lower order of magnitude, hence

𝑔 ≈ 0.01𝐽. (3.36b)

For the dispersion relations are of the order of 𝐽, the frequency 𝛺 = 𝜔0 takes values of
orders close to 𝐽, i.e.

𝛺 = 𝜔0 ≈ 𝐽. (3.36c)
As there are, however, lasers operating on very different wavelengths, deviations are not
non-physical. Estimating the value of the amplitude yields possible values around

𝑎 ≈ 0.01𝐽. (3.36d)

The maximum energy corresponding to the excitation with the laser field, i.e. the amplitude,
is given by

𝑎 =�̃�0𝑒𝑥0 (3.37)
where 𝑒 is the elementary charge, 𝑥0 the maximum displacement and

�̃�0 = √ 𝐼
𝑐𝜀0

(3.38)

the amplitude of the electric field strength �̃� (𝑡). The parameters 𝑐 and 𝜀0 are the speed of
light and the vacuum permittivity respectively. By 𝐼 we denote the intensity of the electric
field �̃�(𝑡). We take the ground state of an harmonic oscillator as a first approximation to
calculate the maximum displacement as

𝑥2
0 = ~

𝑚𝜔
(3.39)

with the mass 𝑚 of the atoms of the system under consideration and the frequency 𝜔 which
can be expressed by the wavelength 𝜆L as

𝜔 = 2π 𝑐
𝜆L

. (3.40)

Substituting into equation (3.37) and dividing by the coupling strength 𝐽 yields

𝑎
𝐽

= 𝑒
𝐽

√ ~𝐼𝜆L

2π𝑚𝑐2𝜀0
. (3.41)

For common values of intensity 𝐼2, wavelength 𝜆L, atomic mass 𝑚 and spin-phonon coupling
constant 𝐽

𝐼 ≈ 109 W m−1 (3.42a)
1private communication with Christian Rüegg, Paul Scherrer Institut
2private communication with Ilya Akimov, Technische Universität Dortmund
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𝜆L ≈ 100 nm – 105 nm (3.42b)
𝑚 ≈ 1 u – 0 u (3.42c)
𝐽 ≈ 1 meV (3.42d)

we obtain equation (3.36d).
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4 Results

We begin with some general remarks before presenting the results to our simulations. The
system of ordinary differential equations (3.27) was implemented in C++. We computed
solutions by making use of the GNU Scientific Library [11] where, unless noted otherwise,
the Runge Kutta 4 algorithm with

𝜀rel = 0 (4.1a)
𝜀abs = 10−6 (4.1b)

ℎstart = 10−6 (4.1c)
𝑁data = 40 000 (4.1d)

was applied. The numerical parameters 𝜀rel and 𝜀abs are the relative and absolute maximum
error for the algorithm to respect, ℎstart gives the initial step size and 𝑁data provides the
absolute number of data points generated. Fourier transforms as well as fit functions,
however, were calculated with Python utilizing the Fast Fourier Transform implementation
of Numpy [31] or the optimization routine of Scipy [17] respectively. Plots were created with
Python’s Matplotib [15].

As already mentioned in chapter 3.5, the following quantities were set to the fixed values

𝑁 = 400 (4.2a)
𝐽 = 1 (4.2b)

𝐽 ′ = 0.5 (4.2c)

and the system was driven in resonance, i.e.

𝛺 = 𝜔0. (4.2d)

In the following we shall only note those quantities down when there is a difference from
equation (4.2).

Finally, we need to introduce the maximum time of simulation, 𝑡max, which in general is
completely arbitrary. Unless noted otherwise we take

𝑡max = 1000𝐽−1 (4.3)

to be sufficient.
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4.1 Primary Investigation of the Decoupled System

Before turning to the way more sophisticated problem of solving and interpreting equation
(3.27) in general we first examine basic properties of the phonon system. Therefore, we
decouple spin and phonon system, i.e. we set

𝑔 = 0. (4.4)

As is evident from equation (3.27) the system now consists of 𝑁 + 1 independent subsystems.
One the one hand, there is the phonon system composed of the phonon displacement 𝐴(𝑡),
the phonon momentum 𝐵(𝑡) and the the phonon density 𝐶(𝑡) described by equations (3.27a)
to (3.27c). On the other hand, there are 𝑁 triplon systems, one for each momentum 𝑘,
that are not dependent on one another as already pointed out in section 3.4. They are
characterised by equations (3.27d) to (3.27f). Figure 4.1 represents such a case. The phonon
system makes for a prime example of the damped driven harmonic oscillator as discussed in
section 2.8. With the driving beginning at time 𝑡 = 0 the phonon density 𝐶(𝑡) establishes
an oscillation around a specific value, i.e. after the transient oscillation the system reaches
a quasi steady state which is the expected situation regarding equation (2.119), c.f. figure
4.1(a). close-ups of the initial and final times of the observed time period in figures 4.1(b)
and 4.1(c) confirm the oscillatory behaviour. The phonon displacement and momentum, 𝐴(𝑡)
and 𝐵(𝑡), are printed in the following lines alongside a respective close-up for final times,
c.f. 4.1(d) and 4.1(e) or 4.1(f) and 4.1(g) respectively. Both quantities oscillate around zero
having gained a constant maximum amplitude after the transient event in the beginning. A
comparison of them in figure 4.1(h) illustrates their phase shift of π/2 which corresponds with
both the classical and the quantum description of the damped driven harmonic oscillator.
For there is no direct excitation alongside the coupling to the phonon system, the spin
system should not show any response. Hence, the normalised triplon density 𝒰(𝑡) should
keep its initial value at all times. Figure 4.1(i) matches our expectation thus proving the
accuracy of the simulation.
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Figure 4.1: Example of a decoupled system; values: 𝑔 = 0, 𝜔0 = 1.3𝐽, 𝑎 = 0.4𝐽, 𝛾 = 0.1𝐽
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4.2 Investigation on the Occurrence of Quasi Steady States

As pointed out in the introduction, the ultimate goal of this project is to drive the system
into a quasi steady state of which we are, to a certain degree, free to choose its parameters.
Figure 4.2 depicts results of a simulation that exactly meet those requirements. We have
introduced a finite spin-phonon coupling

𝑔 = 0.03𝐽. (4.5)

Here, both the phonon and the triplon density oscillate around a certain value that differs
significantly from their initial state. The dynamics of the phonon density 𝐶(𝑡) can again
be described by the damped driven harmonic oscillator. Having the results from section
4.1 and, thus, figure 4.1 in mind, we note that there is little difference to the behaviour of
the phonon density 𝐶(𝑡) as compared to the decoupled system, c.f. figures 4.2(a) to 4.2(c).
The same also applies to the phonon displacement and momentum, 𝐴(𝑡) and 𝐵(𝑡), which is
why they are only printed macroscopically in figures 4.2(g) and 4.2(h). These properties
come to no surprise when considering the system of ordinary differential equations (3.27).
Introducing the spin-phonon coupling 𝑔 will only serve as an adjustment of the driving in
(3.27b) and (3.27c). As the quantity 𝑔, however, is of a much lower order of magnitude
than the coupling strength 𝐽 between two spins of a dimer and the difference of the triplon
density to its initial value must always be less than 1 due to relation (3.25), the overall
effect on the phonon system should be quite small. To the spin system in equation (3.27d)
to (3.27f) the spin-phonon coupling 𝑔 is the only connection to the excitation which calls
for a strong impact. The plot of the triplon density 𝒰(𝑡) in figure 4.2(d) and its close-ups
in figures 4.2(e) and 4.2(f) clearly depict the establishment of a quasi steady state for the
triplon system as well.

We further investigate the system in terms of its accordance with equation (2.119). Therefore,
we compare the phonon densities 𝐶(𝑡) of the decoupled system and the system with coupling
(4.5). We take the time average as proposed in equation (3.26) over the final time period of
10𝐽−1, i.e. 𝐶990𝐽−1(1000𝐽−1), plotting it against the amplitude per damping squared (𝑎/𝛾)2.
Note that in the derivation of equation (2.119) we have made use of a specific maximum
displacement 𝑥max rather than a time averaged value. For both quantities are proportional
to one another as an oscillatory process is described, our method is still valid. Figure 4.3
shows the results we obtain. A linear correlation is evident. Applying a linear fit

𝑓(𝑥) = �̃�𝑥 + �̃� (4.6)

the fit parameters read

�̃� = 0.999 215 52 (4.7a)
�̃� = 10−9 (4.7b)

for the decoupled system and

�̃� = 0.999 38 (4.8a)
�̃� = 10−5 (4.8b)

33



4 Results

0 100 200 300 400 500 600 700 800 900 1000

t/J−1

0
4
8

12
16

C
(t

)
(a)

0 20 40 60 80 100

t/J−1

0
4
8

12
16

C
(t

)

(b)

900 920 940 960 980 1000

t/J−1

15.5

16.0

16.5

C
(t

)

(c)

0 100 200 300 400 500 600 700 800 900 1000

t/J−1

0.00
0.06
0.12
0.18

U(
t)

(d)

0 20 40 60 80 100

t/J−1

0.00

0.06

0.12

0.18

U(
t)

(e)

900 920 940 960 980 1000

t/J−1

0.00

0.06

0.12

0.18

U(
t)

(f)

0 200 400 600 800 1000

t/J−1

−8
−4

0
4
8

A
(t

)

(g)

0 200 400 600 800 1000

t/J−1

−8
−4

0
4
8

B
(t

)

(h)

Figure 4.2: Example of a desired time evolution; values: 𝑔 = 0.03𝐽, 𝜔0 = 1.3𝐽, 𝑎 = 0.4𝐽,
𝛾 = 0.1𝐽
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Figure 4.3: Time averaged phonon density 𝐶990𝐽−1(𝑡 = 1000𝐽−1) vs. amplitude per
damping squared (𝑎/𝛾)2; values: 𝜔0 = 1.3𝐽, 𝛾 = 0.1𝐽

for the coupled system. We determined the accuracy of these fit parameters by performing
two fits for each parameter set using only every second datum for the second fit, i.e. we
only present the parameters up to digits that were identical in both calculations. Both
systems yield a number close to 1 as the proportionality factor �̃� and a number close to
0 as the offset �̃�, with slightly better agreement for the decoupled system as the numbers
show. Because the decoupled system should be easier to solve numerically, differences in
the results can also be regarded as numerical artefacts. However, the results clearly show
that equation (2.119) holds either way for the deviations from the theoretical values are
negligibly small. We have also proven that applying the coupling 𝑔 between phonon and
spin system does have little to no effect on the time evolution of the phonon system.

4.2.1 Phenomena of Divergences

Instead of further analysing the time evolution of the triplon density in figure 4.1 we need
to mention some other obstacles. Increasing the spin-phonon coupling to

𝑔 = 0.04𝐽, (4.9)
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i.e. increasing the value by a fraction of 1/3 compared to the previous instalment, we find
the unexpected effects of divergences depicted in figure 4.4.

In the beginning the spin system, as well as the phonon system show little difference to the
previous setting in figure 4.2. However, at a certain time we find a collapse in the phonon
density 𝐶(𝑡) followed by a completely non-linear time evolution. This effect is accompanied
by a collapse of the phonon displacement and momentum, 𝐴(𝑡) and 𝐵(𝑡), which is then
succeeded by what appears to be a transition. Those effects were preceded by a rapid
increase of the phonon density 𝒰(𝑡), c.f. figures 4.4(a) to 4.4(d). This increase completely
violates relation (3.25) which has to hold at all times for our model to be valid. Figure 4.4(e)
illustrates this violation by also plotting the actual upper limit of 1. Another close-up of the
oscillation can be taken from figure 4.4(f). As a result, we need to come to the conclusion
that the approximations we made in section 3.2 when setting up the Hamiltonian 𝑯 are not
applicable to every set of parameters.

We can rule out numerical effects for we obtained those results using different solvers with
different parameters. Although the time evolution after the first collapse might not have
been equal for each solver used, the violation of relation (3.25) was still most evident and
called for a further investigation.

The next section will be devoted to working out where our model describes the system under
consideration well and where it needs to be modified.

4.2.2 Triplon Dispersion Relation and Higher Harmonics

As we pointed out in section 3.5, driving the system in resonance does not lead to a divergence
because of the damping. However, we were only focussing on the phonon system. We also
need to take the triplon system into account by regarding the triplon dispersion relation in
equation (3.31). Inspecting the spin system’s Hamiltonian 𝑯S in equation (3.10) we find
that there are only combinations of triplon operators that either leave the triplon number
constant or change it by two. We, therefore, introduce the one and two triplon band where
the one triplon band is given by the triplon dispersion relation (3.31)

𝜔1(𝑘) = 𝜔T(𝑘) = 𝐽√1 − 𝜆 cos(𝑘) (4.10)

and the two triplon band by the sum of the triplon dispersion relation (3.31) for two momenta
𝑘 and 𝑘 + 𝑝, i.e.

𝜔2(𝑘, 𝑝) = 𝜔T(𝑘) + 𝜔T(𝑘 + 𝑝) . (4.11)

The maximum and minimum values of those bands will serve as their limits

𝜔1,min = min
𝑘

{𝜔1(𝑘)} = 𝐽
√

1 − 𝜆 (4.12a)

𝜔1,max = max
𝑘

{𝜔1(𝑘)} = 𝐽√1 + 𝜆 (4.12b)

𝜔2,min = min
𝑝

{min
𝑘

{𝜔2(𝑘, 𝑝)}} = 2𝐽
√

1 − 𝜆 = 𝜔min (4.12c)

𝜔2,max = max
𝑝

{max
𝑘

{𝜔2(𝑘, 𝑝)}} = 2𝐽√1 + 𝜆 = 𝜔max. (4.12d)
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Figure 4.4: Example of diverging phenomena; values: 𝑔 = 0.04𝐽, 𝜔0 = 1.3𝐽, 𝑎 = 0.4𝐽,
𝛾 = 0.1𝐽
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Details on the calculation can be found in appendix C. Here, we have introduced the limits
𝜔min and 𝜔max independently from the triplon band which lead to the definition of three
regimes

𝜔0 = 𝛺 < 𝜔min – adiabatic / beneath band regime (4.13a)
𝜔min < 𝜔0 = 𝛺 < 𝜔max – in band regime (4.13b)

𝜔0 = 𝛺 > 𝜔max – anti-adiabatic / above band regime. (4.13c)

Based on the results we have already obtained, i.e. the behaviour of the phonon system is
largely independent of the spin-phonon coupling 𝑔 and there are certain regions where the
model is not applicable, we shall find a systematic approach to investigate the nature of
those particular regions. Comparing the parameter sets used in section 4.2 and 4.2.1 there
appears to be a critical value to the spin-phonon coupling 𝑔crit at which the normalized
triplon density 𝒰(𝑡) starts to take non-physical values. Thus, we calculate the time evolution
of the system for several values of spin-phonon coupling 𝑔 depending on phonon and laser
frequency 𝜔0 = 𝛺 and the quantity (𝑎/𝛾)2 which is proportional to the phonon density 𝐶(𝑡)
trying to find the critical value 𝑔crit.

Figure 4.5 shows the corresponding results. We did neither compute results for 𝜔0 = 𝛺 = 0
nor (𝑎/𝛾)2 = 0 as both cases describe non-dynamical systems which makes for an arbitrarily
large value of the critical value 𝑔crit. Calculations were done in steps of

𝑔step = 0.01𝐽 (4.14a)
𝜔0,step = 0.01𝐽 (4.14b)

(𝑎/𝛾)2
step = 1 (4.14c)

while the damping parameter was set to

𝛾 = 0.1𝐽. (4.14d)

As the maximum value of spin-phonon coupling we chose

𝑔max = 0.1𝐽 (4.14e)

in order to meet the criterion (3.36b) ensuring that the coupling strength between spin
system and phonon system 𝑔 is of a lower order of magnitude than the dimer coupling
strength 𝐽. The time evolutions were computed until times of

𝑡max = 10000𝐽−1 (4.14f)

to avoid misjudging systems where a non-physical behaviour occurs later in time. The band
limits 𝜔min and 𝜔max are also depicted in figure 4.5. Farther above the band there is no
restriction to the spin-phonon coupling strength 𝑔. We note that another effect, when it
comes to the establishment of the stable region above the band, is visible which we will not
discuss in more detail. Instead, we label the regime significantly above the band as stable.
By contrast, if we pump the system with an in band frequency 𝛺, there will be an immediate
divergence. We, thus, have to avoid laser frequencies 𝛺 = 𝜔0 that are in resonance with the
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triplon band frequencies 𝜔T(𝑘). A closer investigation of systems with above band frequencies
showed that for reasonable parameters according to section 3.5 the triplon density will only
oscillate around its initial value which complies with our intention. An example is presented
in appendix D. Therefore, we need to focus on frequencies beneath the band where we have
obtained a rather complex structure. Having introduced the resonance criterion the laser
frequency 𝛺 = 𝜔0 must also not take values of multiples of band frequencies for the system
to stay stable. Figure 4.6 provides a close-up of the adiabatic regime where multiples of the
band limits 𝜔min and 𝜔max are sketched in as well. Those limits isolate diverging from non-
or less diverging regimes as the rapid increase or decrease along them shows. The more
bands of multiples of the limits overlap and the lesser the multiple, i.e. the more likely
their occurrence, the sooner the system diverges. This property becomes most apparent for
frequencies

0.7 ⪅ 𝛺 = 𝜔0 ⪅ 0.8 (4.15)

where the bands of multiples two and three overlap. We appear to find two thin stable
regions, one in between the one triplon band at

𝜔0 = 𝛺 = 1𝐽 (4.16)

in both figures, 4.5 and 4.6, and another one in between the two triplon band in figure 4.5
at

𝜔0 = 𝛺 = 2𝐽. (4.17)

Here, however, Fermi’s golden rule comes into play. As already pointed out in section 3.4
the value of 𝜔T = 1 goes with the momentum 𝑘 = π/2 where quantities of the triplet system
are either constant or zero. Hence, the density of states 𝜌(𝑡) vanishes which results in an
absence of transitions and, thus, a stable system. For this property is solely restricted to
multiples of those frequencies 𝜔T corresponding to 𝑘 = π/2, the system will show a divergent
behaviour once the momentum 𝑘 is only slightly different. Had we calculated both plots with
a higher resolution, the above discussed stable regions would have gotten even thinner.

4.2.3 Summary

We gained several insights on the properties of our model, especially is applicability. By
construction we can separate the phonon and the spin system when it comes to investigating
their respective behaviour. The phonon system can always be described by a damped
driven harmonic oscillator where there are little to no signs of a perturbation. These results
came to no surprise, in particular for the decoupled system, as they provide exactly the
results obtained from an analytical calculation. The spin system, however, confronts us with
problems. First, we learn that the model is restricted in terms of its physical sense. For
certain parameter sets there are divergences going beyond the validity of the bond operator
representation we made excessive use of. We managed to derive this effect as a result of a
resonance disaster for there is no damping to the spin system but only an excitation via a
coupling to the phonon system. Building on these findings, we introduced three regimes to
the system concerning the phonon and laser frequency in relation to the triplon frequency.
For those frequencies larger than the maximum resonant triplon frequency the model works
but does not produce any of the desired quasi steady states in the triplon density. By
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contrast, if the frequencies are in band with the maximum and minimum resonant triplon
frequencies, resonance effects occur leading to completely non-physical results. Thus, the
most interesting regime is obtained for frequencies beneath the above discussed band. Here,
effects of divergences occur once the frequencies are a multiple of the band frequencies.
Otherwise, there is a possibility of driving he spin system into a quasi steady state. Any
other curious effects could not be explained. In general, the limited application of the model
calls for an enhancement of the spin system although we proved that in principle there is a
regime where quasi steady states exist.
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4.3 Investigation of Green’s Functions

We are interested in the interaction between particles of the spin system. Thus, we need to
introduce several Green’s functions to gain further insights from. In this chapter we begin
by deriving the equations of motion for the retarded Green’s functions corresponding to
equation (2.75). The actual analysis will then make use of the slightly modified Green’s
functions we proposed in chapter 2.6 and their respective Fourier transforms. For the sake
of clarity we name them once more. We will investigate the relative Green’s function

𝐺rel
𝛼𝛼,𝑘(𝑡in, 𝑡diff) = 𝐺ret

𝛼𝛼,𝑘(𝑡in, 𝑡in + 𝑡diff) (4.18a)

𝐺rel
𝛼𝛼,𝑘(𝑡in, 𝜔diff) = 1√

2π
∫

∞

−∞
𝐺rel

𝛼𝛼,𝑘(𝑡in, 𝑡diff) ei𝜔diff𝑡diffd𝑡diff, (4.18b)

the time average Green’s function

�̃�𝛼𝛼,𝑘( ̄𝑡, 𝑡diff) = 𝐺ret
𝛼𝛼,𝑘( ̄𝑡 −

𝑡diff
2

, ̄𝑡 +
𝑡diff
2

) (4.19a)

�̃�𝛼𝛼,𝑘( ̄𝑡, 𝜔diff) = 1√
2π

∫
∞

−∞
�̃�𝛼𝛼,𝑘( ̄𝑡, 𝑡diff) ei𝜔diff𝑡diffd𝑡diff (4.19b)

and the average Green’s function

𝐺𝛼𝛼,𝑘(𝑡max, 𝑡) = 1
𝑡max − 𝑡

∫
𝑡max−𝑡

0
𝐺ret

𝛼𝛼,𝑘(𝑡′, 𝑡′ + 𝑡) d𝑡′ (4.20a)

𝐺𝛼𝛼,𝑘(𝑡max, 𝜔) = 1√
2π

∫
∞

−∞
𝐺𝛼𝛼,𝑘(𝑡max, 𝑡) ei𝜔𝑡d𝑡. (4.20b)

Naturally, only those systems will be analysed where there are no diverging effects. In this
chapter we present results for an adiabatic regime. The results for an anti-adiabatic regime
hardly differ from the ones we give here and can be found in appendix E.

4.3.1 Technical Details

Obviously, we cannot simulate for infinite times necessitating the introduction of the
maximum simulation time 𝑡max, i.e.

𝑡 ∈ [0, 𝑡max] . (4.21)

Together with the number of generated data points 𝑁data we obtain the time resolution

𝑡res =
𝑡max
𝑁data

. (4.22)

In order investigate a broad frequency spectrum a long time evolution is needed so we choose
again

𝑡max = 10000𝐽−1 (4.23)
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which yields with equation (4.1d)
𝑡res = 0.25𝐽−1. (4.24)

Clearly,
𝑡in ∈ [0, 𝑡max] (4.25)

holds for the time 𝑡in at which the perturbation of the system begins. As we are only
interested in the actual time evolution of the Green’s functions, the time 𝑡out, when the
effect of the perturbation is observed, needs to satisfy

𝑡out ∈ [𝑡in, 𝑡max] . (4.26)

The time difference 𝑡diff introduced in equation (2.87) for the relative Green’s function
𝐺rel

𝛼𝛼,𝑘(𝑡in, 𝑡diff) then needs to be taken from the interval

𝑡diff ∈ [0, 𝑡max − 𝑡in] . (4.27)

For the relative Green’s function 𝐺rel
𝛼𝛼,𝑘(𝑡in, 𝑡diff) is by definition only a shift in time of

the retarded Green’s function 𝐺ret
𝛼𝛼,𝑘(𝑡in, 𝑡out) the time resolution 𝑡res stays the same. This

also applies to the time resolution of the average Green’s function 𝐺𝛼𝛼,𝑘(𝑡max, 𝑡) because
averaging is a linear operation. As for the time average Green’s function �̃�𝛼𝛼,𝑘( ̄𝑡, 𝑡diff) the
time resolution is increased by a factor of two. For each time step 𝑡 any Green’s function is
evaluated by

𝑡 = 𝑚 ⋅ 𝑡res (4.28)

where 𝑚 is a natural number. According to the definition of the time average Green’s
function �̃�𝛼𝛼,𝑘( ̄𝑡, 𝑡diff) in equation (4.19a) the arguments are divided by two which has to
be taken into account when the computation is performed numerically. Thus, the time
resolution needs to be adjusted by a factor of two as mentioned above. For this reason the
Fourier spectrum of the time average Green’s function �̃�𝛼𝛼,𝑘( ̄𝑡, 𝜔diff) only covers half of the
Fourier spectrum of the other Green’s functions 𝐺rel

𝛼𝛼,𝑘(𝑡in, 𝜔diff) and 𝐺𝛼𝛼,𝑘(𝑡max, 𝜔). As the
average time ̄𝑡 is constant, the time difference 𝑡diff is taken from the interval

𝑡diff ∈ [0, min(2 ̄𝑡, 2𝑡max − 2 ̄𝑡)] . (4.29)

In order to resolve delta peaks in the Fourier transforms properly the Fourier transforms are
not strictly calculated according to equations (4.18b), (4.19b) and (4.20b) but rather via

𝐺(𝑡, 𝜔) = 1√
2π

∫
∞

−∞
𝐺(𝑡, 𝑡′) ei𝜔𝑡′ ⋅ e−𝛬𝑡′d𝑡′. (4.30)

We have not denoted any indices here to stress that this equation applies to any Fourier
transform. The damping parameter 𝛬 was chosen to be

𝛬 = 10−6𝐽. (4.31)

Thus, delta peaks in the original Fourier transform will take the form of a Lorentzian

𝑓(𝜒) = 𝜉 1
π

𝜁
𝜁2 + (𝜒 − 𝜒0)2 (4.32)
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where 𝜒0 is the mean value and 𝜁 the scale parameter which multiplied by two provides
the full width at half maximum. The quantity 𝜉 is a dilation parameter that for the actual
Lorentzian is set to 1. Because numerically we do not calculate the actual Fourier transform
but rather the fast Fourier transform, we need to make one last adjustment to the bare data
which goes by the name of zero padding. The signal will be enhanced by a string of zeros of
equal length in order to avoid overlaps in the calculated Fourier spectrum [33].

As already mentioned, the Fourier transforms were calculated using Python’s Numpy. All our
obtained Fourier spectra as well as toy models entirely created with Python share a rather
strong offset of up to 10−5. We wish to emphasize that we do not neglect any properties of
our model here but are confronted with an obstacle specific to Python supposedly due to its
accuracy. Therefore, we only take fit parameters as exact up to the fifth digit and present
them up to the sixth digit where deviations start to occur in most cases. We confirmed this
conclusion for selected parameter sets by calculating fits using only every second datum
generated.

4.3.2 Definition and Equations of Motion

We define the following Green’s functions in accordance with equations (2.75) and (2.84)

𝐺𝑘(𝑡in, 𝑡out) = 𝐺ret
t𝑘,𝛼,t†

𝑘,𝛼

(𝑡in, 𝑡out) = −i ⟨[t𝑘,𝛼(𝑡out) , t†
𝑘,𝛼(𝑡in)]⟩ 𝛩(𝑡out − 𝑡in) (4.33a)

𝐹𝑘(𝑡in, 𝑡out) = 𝐺ret
t†

−𝑘,𝛼,t†
𝑘,𝛼

(𝑡in, 𝑡out) = −i ⟨[t†
−𝑘,𝛼(𝑡out) , t†

𝑘,𝛼(𝑡in)]⟩ 𝛩(𝑡out − 𝑡in) (4.33b)

Note that we have dropped the triplon flavour index 𝛼 which the time evolution of the
system does not depend on. The Green’s function 𝐺𝑘(𝑡in, 𝑡out) describes a process where
a triplon of momentum 𝑘 and arbitrary flavour is inserted into the system at time 𝑡in and
removed at time 𝑡out whereas for 𝐹𝑘(𝑡in, 𝑡out) again a triplon of momentum 𝑘 is inserted at
time 𝑡in. However, instead of removing that same triplon at time 𝑡out, another triplon of the
opposite momentum −𝑘 is inserted to ensure the total momentum conservation. Introducing
the quantities

𝜀𝑘(𝑡) = 𝐽 − 𝐽 ′

2
cos(𝑘) + 𝑔𝐴(𝑡) (4.34a)

𝛽𝑘 = −𝐽 ′

4
cos(𝑘) (4.34b)

we obtain the following equations of motion from (2.81) and (2.82)

d
d𝑡out

(𝐺𝑘(𝑡in, 𝑡out)
𝐹𝑘(𝑡in, 𝑡out)

) = (−𝜀𝑘(𝑡out) −2𝛽𝑘
2𝛽𝑘 𝜀𝑘(𝑡out)

) (𝐺𝑘(𝑡in, 𝑡out)
𝐹𝑘(𝑡in, 𝑡out)

) (4.35a)

with the initial condition

𝐺𝑘(𝑡in, 𝑡in) = −i (4.35b)
𝐹𝑘(𝑡in, 𝑡in) = 0 (4.35c)
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derived from equation (4.33). Rewriting both Green’s functions in terms of real and imaginary
part yields

d
d𝑡out

⎛⎜⎜⎜⎜⎜⎜
⎝

Re(𝐺𝑘(𝑡in, 𝑡out))
Im(𝐺𝑘(𝑡in, 𝑡out))
Re(𝐹𝑘(𝑡in, 𝑡out))
Im(𝐹𝑘(𝑡in, 𝑡out))

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

0 𝜀𝑘(𝑡out) 0 2𝛽𝑘
−𝜀𝑘(𝑡out) 0 −2𝛽𝑘 0

0 −2𝛽𝑘 0 −𝜀𝑘(𝑡out)
2𝛽𝑘 0 𝜀𝑘(𝑡out) 0

⎞⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜
⎝

Re(𝐺𝑘(𝑡in, 𝑡out))
Im(𝐺𝑘(𝑡in, 𝑡out))
Re(𝐹𝑘(𝑡in, 𝑡out))
Im(𝐹𝑘(𝑡in, 𝑡out))

⎞⎟⎟⎟⎟⎟⎟
⎠

(4.36a)

with

Re(𝐺𝑘(𝑡in, 𝑡in)) = 0 (4.36b)
Im(𝐺𝑘(𝑡in, 𝑡in)) = −1 (4.36c)
Re(𝐹𝑘(𝑡in, 𝑡in)) = 0 (4.36d)
Im(𝐹𝑘(𝑡in, 𝑡in)) = 0 (4.36e)

as the initial condition. Instead of implementing (4.36a) directly we compute the time
evolution of the triplon creation and annihilation operators, 𝒕†

𝑘,𝛼(𝑡) and 𝒕𝑘,𝛼(𝑡) using the
ansatz

𝒕†
𝑘,𝛼(𝑡) = 𝜎𝑘,𝛼(𝑡) 𝒕†

𝑘,𝛼 + 𝜆𝑘,𝛼(𝑡) 𝒕−𝑘,𝛼 (4.37a)

𝒕𝑘,𝛼(𝑡) = 𝜎∗
𝑘,𝛼(𝑡) 𝒕𝑘,𝛼 + 𝜆∗

𝑘,𝛼(𝑡) 𝒕†
−𝑘,𝛼 (4.37b)

where 𝑧∗ indicates the complex conjugate of a complex number 𝑧. We decompose 𝜎𝑘,𝛼(𝑡)
and 𝜆𝑘,𝛼(𝑡) into real and imaginary parts via

𝜎𝑘,𝛼(𝑡) = 𝜎1
𝑘,𝛼(𝑡) + i𝜎2

𝑘,𝛼(𝑡) (4.38a)

𝜆𝑘,𝛼(𝑡) = 𝜆1
𝑘,𝛼(𝑡) + i𝜆2

𝑘,𝛼(𝑡) (4.38b)

with real 𝜎1
𝑘,𝛼(𝑡), 𝜎2

𝑘,𝛼(𝑡), 𝜆1
𝑘,𝛼(𝑡) and 𝜆2

𝑘,𝛼(𝑡). The system of differential equations of motion
then reads

d
d𝑡

𝜎1
𝑘,𝛼(𝑡) = −𝜀𝑘(𝑡) 𝜎2

𝑘,𝛼(𝑡) + 2𝛽𝑘𝜆2
𝑘,𝛼(𝑡) (4.39a)

d
d𝑡

𝜎2
𝑘,𝛼(𝑡) = 𝜀𝑘(𝑡) 𝜎1

𝑘,𝛼(𝑡) − 2𝛽𝑘𝜆1
𝑘,𝛼(𝑡) (4.39b)

d
d𝑡

𝜆1
𝑘,𝛼(𝑡) = 𝜀𝑘(𝑡) 𝜆2

𝑘,𝛼(𝑡) − 2𝛽𝑘𝜎2
𝑘,𝛼(𝑡) (4.39c)

d
d𝑡

𝜆2
𝑘,𝛼(𝑡) = −𝜀𝑘(𝑡) 𝜆1

𝑘,𝛼(𝑡) + 2𝛽𝑘𝜎1
𝑘,𝛼(𝑡) . (4.39d)
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The initial condition is obtained from equation (4.37) as

𝜎1
𝑘,𝛼(0) = 1 (4.39e)

𝜎2
𝑘,𝛼(0) = 0 (4.39f)

𝜆1
𝑘,𝛼(0) = 0 (4.39g)

𝜆2
𝑘,𝛼(0) = 0. (4.39h)

Substituting this representation back into equation (4.33), we are enabled to express the
Green’s functions in terms of the newly introduced quantities 𝜎1

𝑘,𝛼(𝑡), 𝜎2
𝑘,𝛼(𝑡), 𝜆1

𝑘,𝛼(𝑡) and
𝜆2

𝑘,𝛼(𝑡) via

Re(𝐺𝑘(𝑡in, 𝑡out)) = 𝜎1
𝑘,𝛼(𝑡out) 𝜎2

𝑘,𝛼(𝑡in) + 𝜆1
𝑘,𝛼(𝑡in) 𝜆2

𝑘,𝛼(𝑡out)

−𝜎1
𝑘,𝛼(𝑡in) 𝜎2

𝑘,𝛼(𝑡out) − 𝜆1
𝑘,𝛼(𝑡out) 𝜆2

𝑘,𝛼(𝑡in) (4.40a)

Im(𝐺𝑘(𝑡in, 𝑡out)) = 𝜆1
𝑘,𝛼(𝑡in) 𝜆1

𝑘,𝛼(𝑡out) + 𝜆2
𝑘,𝛼(𝑡in) 𝜆2

𝑘,𝛼(𝑡out)

−𝜎1
𝑘,𝛼(𝑡in) 𝜎1

𝑘,𝛼(𝑡out) − 𝜎2
𝑘,𝛼(𝑡in) 𝜎2

𝑘,𝛼(𝑡out) (4.40b)

Re(𝐹𝑘(𝑡in, 𝑡out)) = 𝜎1
𝑘,𝛼(𝑡in) 𝜆2

𝑘,𝛼(𝑡out) + 𝜎2
𝑘,𝛼(𝑡in) 𝜆1

𝑘,𝛼(𝑡out)

−𝜎1
𝑘,𝛼(𝑡out) 𝜆2

𝑘,𝛼(𝑡in) − 𝜎2
𝑘,𝛼(𝑡out) 𝜆1

𝑘,𝛼(𝑡in) (4.40c)

Im(𝐹𝑘(𝑡in, 𝑡out)) = 𝜎2
𝑘,𝛼(𝑡in) 𝜆2

𝑘,𝛼(𝑡out) + 𝜎1
𝑘,𝛼(𝑡out) 𝜆1

𝑘,𝛼(𝑡in)

−𝜎1
𝑘,𝛼(𝑡in) 𝜆1

𝑘,𝛼(𝑡out) − 𝜎2
𝑘,𝛼(𝑡out) 𝜆2

𝑘,𝛼(𝑡in) . (4.40d)

Looking at equation (4.35a), we immediately see that the time evolution of 𝐺𝑘(𝑡in, 𝑡out) and
𝐹𝑘(𝑡in, 𝑡out) decouple if 𝛽𝑘 vanishes, i.e. as is evident from equation (4.34b) 𝑘 = π/2 makes for
a special case that is to be investigated separately. We shall restrict ourselves to discussing
only properties of 𝐺𝑘(𝑡in, 𝑡out).

4.3.3 Special Case 𝑘 = π/2

We directly obtain from equation (4.36a) that the equations of motion for real and imaginary
part of both Green’s functions, 𝐺𝑘(𝑡in, 𝑡out) and 𝐹𝑘(𝑡in, 𝑡out) resemble the ordinary harmonic
oscillator but with a time dependent quantity 𝜀𝑘(𝑡) (4.34a). The equations of motion read

d
d𝑡out

(
Re(𝐺𝑘(𝑡in, 𝑡out))
Im(𝐺𝑘(𝑡in, 𝑡out))

) = ( 0 𝜀𝑘(𝑡out)
−𝜀𝑘(𝑡out) 0 ) (

Re(𝐺𝑘(𝑡in, 𝑡out))
Im(𝐺𝑘(𝑡in, 𝑡out))

) (4.41a)

d
d𝑡out

(
Re(𝐹𝑘(𝑡in, 𝑡out))
Im(𝐹𝑘(𝑡in, 𝑡out))

) = ( 0 −𝜀𝑘(𝑡out)
𝜀𝑘(𝑡out) 0 ) (

Re(𝐹𝑘(𝑡in, 𝑡out))
Im(𝐹𝑘(𝑡in, 𝑡out))

) . (4.41b)

Bearing in mind that the coupling between spin and phonon system 𝑔 is of a lower order of
magnitude than the dimer coupling 𝐽, c.f. (3.36b), its product with the phonon displacement
𝐴(𝑡), which is solely responsible for the time dependence of the quantity 𝜀𝑘, can be regarded
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as a small perturbation. Thus, to a zeroth order approximation the frequency of both
harmonic oscillators is given by

𝜀0
π/2 = 𝐽 = 1. (4.42)

Figure 4.7 depicts the Fourier spectrum of the relative, time average and average Green’s
function 𝐺rel

π/2(0, 𝜔diff), �̃�π/2(5000𝐽−1, 𝜔diff) and 𝐺π/2(10000𝐽−1, 𝜔). We chose

𝑡in = 0𝐽−1 (4.43a)
̄𝑡 = 5000𝐽−1 (4.43b)

to receive the longest string of data possible for relative and time average Green’s function.
As there is no sense in neglecting any data when computing the average Green’s function
𝐺π/2(10000𝐽−1, 𝜔) we set its first argument to the maximum simulation time 𝑡max. In
figure 4.7(a) we find the Fourier spectra of the absolute values of the respected Green’s
function. Here the peak at the oscillation frequency 𝐽 = 1, which we expected from equation
(4.42), is featured most prominently. Figure 4.7(b) provides the same plot but with a
logarithmic ordinate in order to illustrate side peaks properly. For the relative Green’s
function 𝐺rel

π/2(0, 𝜔diff) we find those peaks at frequencies

𝜔diff = 𝜀π/2 + 𝑛𝜔0 (4.44)

where the parameter 𝑛 is an integer number. They also occur for the average Green’s
function 𝐺π/2(10000𝐽−1, 𝜔) but only to first order, i.e. 𝑛 = ±1. Any other side peaks
vanished due to the averaging. Those side peaks proof triplon phonon interaction which
is evident from the fact that the phonon frequency 𝜔0 determines their position. Higher
than first order side peaks are due to higher harmonics which also explains why they are not
persistent over averaging. The time average Green’s function shows a different behaviour as
the side peaks occur at frequencies

𝜔diff = 𝜀0
π/2 + 𝑛

𝜔0
2

(4.45)

which is due to the factor of two in the definition of the average time ̄𝑡 in equation (2.86).
All the observed Green’s functions share the property of a highly suppressed interaction
between phonon and spin system which is convincing given the small size of the spin-phonon
coupling 𝑔. As for figure 4.7(c) there is an extreme close-up of the main peak at 𝜀0

π/2 for
the negative imaginary part of the Green’s functions. For each of them a fit according to
equation (4.32) is applied to the generated data points. The fit parameters for the relative
Green’s function 𝐺rel

π/2(0, 𝜔diff) read

𝜉 = 0.000 156 (4.46a)
𝜒0 = 0.999 557𝐽 (4.46b)

𝜁 = 0.000 601𝐽 (4.46c)

which is close by the fit parameters of the time average Green’s function�̃�π/2(5000𝐽−1, 𝜔diff),

𝜉 = 0.000 157 (4.47a)
𝜒0 = 0.999 556𝐽 (4.47b)

𝜁 = 0.000 601𝐽, (4.47c)
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Figure 4.7: Fourier spectrum for momentum 𝑘 = π/2 of the relative, time average
and average Green’s function, 𝐺rel

π/2(0, 𝜔diff), �̃�π/2(5000𝐽−1, 𝜔diff) and 𝐺π/2(10000𝐽−1, 𝜔);
values: 𝑔 = 0.03𝐽, 𝜔0 = 1.3𝐽, 𝑎 = 0.4𝐽, 𝛾 = 0.1𝐽
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and those of the average Green’s 𝐺π/2(10000𝐽−1, 𝜔) function,

𝜉 = 0.000 154 (4.48a)
𝜒0 = 0.999 556𝐽 (4.48b)

𝜁 = 0.000 600𝐽. (4.48c)

All these parameters clearly show that the Green’s function are not exactly centered around
𝜀0

π/2 but around a slightly smaller value which illustrates that equation (4.42) is only an
approximation. The great agreement of these parameters supports the validity of the
imaginary part of a Green’s function as a measurement for the spectral density.

In figure 4.8 the real and imaginary part of the Fourier spectrum of all three Green’s
functions are depicted in their entirety. Of major importance are the imaginary parts as
they are proportional to the spectral density. The real parts are simply depicted to ensure
that they are not the origin of phenomena other than those also occurring in the imaginary
parts. In conformity with the results obtained from figure 4.7, the side peaks are way more
distinct in the relative Green’s function 𝐺rel

π/2(0, 𝜔diff) than in the time average or the average
Green’s function, �̃�π/2(5000𝐽−1, 𝜔diff) or 𝐺π/2(10000𝐽−1, 𝜔). The shape of those side peaks
is particularly interesting. While the deflections in both directions in case of the relative
Green’s function 𝐺rel

π/2(0, 𝜔diff), which are characteristic to a poorly resolved pole, the average
Green’s function 𝐺π/2(10000𝐽−1, 𝜔) shows significantly smaller ordinary peaks which is
most comprehensible. By contrast, the time average Green’s function �̃�π/2(5000𝐽−1, 𝜔diff)
shows two side peaks as well, however pointing in opposite directions.

In order to properly interpret results gained from the relative and time average Green’s
function, 𝐺rel

π/2(0, 𝜔diff) and �̃�π/2(5000𝐽−1, 𝜔diff), we need to understand their dependence
on the initial time 𝑡in or the average time ̄𝑡 respectively. Therefore, figure 4.9 shows the
Fourier spectra plotted with a logarithmic scale as well as a close-up of the dominant peak
for the negative imaginary part for the relative and the time average Green’s function,
𝐺rel

π/2(𝑡in, 𝜔diff) and �̃�π/2( ̄𝑡, 𝜔diff), for three different times 𝑡in or ̄𝑡. The first two lines contain
plots of the relative Green’s function 𝐺rel

π/2(𝑡in, 𝜔diff) where, alongside the previously utilized
initial time

𝑡in = 0𝐽−1 (4.49a)

in figures 4.7 and 4.8, functions for

𝑡in = 3000𝐽−1 (4.49b)
𝑡in = 5000𝐽−1 (4.49c)

are plotted as well. The Fourier spectrum in figure 4.9(a) clearly indicates that the offset
increases with larger initial time 𝑡in which is reasonable given that the length of the signal
to be processed in the Fourier transform has decreased as can be derived from equation
(4.27). The peak’s position is invariant under variation of the initial time 𝑡in according
to our expectation. However, its shape changes slightly. Especially the side peaks are
affected with the first peak on the right even changing its direction as the initial time 𝑡in
is increased to 5000𝐽−1. For the explicit implementation of the fast Fourier transform in
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Figure 4.8: Real and imaginary part of the Fourier spectra for momentum 𝑘 = π/2 of
the relative, time average and average Green’s function, 𝐺rel

π/2(0, 𝜔diff), �̃�π/2(5000𝐽−1, 𝜔diff)
and 𝐺π/2(10000𝐽−1, 𝜔); values: 𝑔 = 0.03𝐽, 𝜔0 = 1.3𝐽, 𝑎 = 0.4𝐽, 𝛾 = 0.1𝐽
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Figure 4.9: Investigation of the dependence of relative Green’s function 𝐺rel
π/2(𝑡in, 𝜔diff) on

the initial time 𝑡in and of the time average Green’s function �̃�π/2( ̄𝑡, 𝜔diff) on the average
time ̄𝑡 for momentum 𝑘 = π/2; values: 𝑔 = 0.03𝐽, 𝜔0 = 1.3𝐽, 𝑎 = 0.4𝐽, 𝛾 = 0.1𝐽
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Python is unknown to us, we cannot rule out numerical effects here. Figure 4.9(b) provides
fits according to equation(4.32) to the generated data points for all three cases. The fit
parameters for the Green’s function 𝐺rel

π/2(0, 𝜔diff) can be obtained from equation (4.46). For
the second Green’s function under investigation 𝐺rel

π/2(3000𝐽−1, 𝜔diff) they read

𝜉 = 0.000 223 (4.50a)
𝜒0 = 0.999 464𝐽 (4.50b)

𝜁 = 0.000 858𝐽, (4.50c)

and for the third one 𝐺rel
π/2(5000𝐽−1, 𝜔diff) we receive

𝜉 = 0.000 309 (4.51a)
𝜒0 = 0.999 463𝐽 (4.51b)

𝜁 = 0.001 202𝐽. (4.51c)

Comparing those values we note a slight shift of the peak position 𝜒0 to smaller frequencies
for large initial times 𝑡in. However those changes take place in the fourth or sixth decimal
place. Most evident from the plot and supported by the parameters is an increase in the
half width 𝜁 as the initial time 𝑡in increases. This observation becomes reasonable when we
think of the quantity 𝜁 as an inverse life time. For a shorter time of perturbation due to an
increased initial time 𝑡in the life time naturally decreases thus leading to an increase of its
inverse. These two effects also occur when the average time ̄𝑡 of the time average Green’s
function �̃�π/2( ̄𝑡, 𝜔diff) is decreased but more intensely as can be seen in figures 4.9(c) and
4.9(d). Additionally to

̄𝑡 = 5000𝐽−1 (4.52a)
we choose

̄𝑡 = 3000𝐽−1 (4.52b)
̄𝑡 = 1000𝐽−1. (4.52c)

Figure 4.9(c) provides again a comparison of the Fourier spectra. Besides the previously
discussed increase of the offset we learn that the number of higher harmonics of spin-phonon
interaction in the Fourier spectrum depends on the average time ̄𝑡 chosen. However, there is
no proportional dependence as it increases for �̃�π/2(3000𝐽−1, 𝜔diff) but then decreases for
�̃�π/2(1000𝐽−1, 𝜔diff). Figure 4.9(d) shows Lorentzian fits (4.32) applied to data generated
for the negative imaginary parts of the time average Green’s functions �̃�π/2( ̄𝑡, 𝜔diff). For
�̃�π/2(3000𝐽−1, 𝜔diff) the fit parameters are given by

𝜉 = 0.000 254 (4.53a)
𝜒0 = 0.999 346𝐽 (4.53b)

𝜁 = 0.001 001𝐽, (4.53c)

and for �̃�π/2(1000𝐽−1, 𝜔diff) by

𝜉 = 0.000 779 (4.54a)
𝜒0 = 0.998 298𝐽 (4.54b)

𝜁 = 0.003 009𝐽. (4.54c)
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Comparing these results to equation (4.47), the numbers are consistent with the corresponding
plot. Here, the increase of the half width 𝜁 becomes most obvious. For the data strings of the
time average Green’s functions �̃�π/2( ̄𝑡, 𝜔diff) are only half as long as for the relative Green’s
functions 𝐺rel

π/2(𝑡in, 𝜔diff) as worked out in chapter 4.3.1 this effect comes to no surprise.

4.3.4 Case 𝑘 ≠ π/2

Having analysed the special case, we now turn to the more general condition where the
system of ordinary differential equations (4.35a) does not decouple. We choose

𝑘 = π
4

. (4.55)

Because
𝛽𝑘 < 𝜀𝑘 (4.56)

holds for any momentum 𝑘 as can be derived from equation (4.34), we may still take the
zeroth order approximation of the quantity 𝜀π/4 as a first estimation on where to expect the
dominant peak in the Fourier spectrum. Equation (4.35a) then describes a linear system of
differential equations with constant coefficients of which the solution can be determined as

d
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(4.57)

in a straight forward manner for we are dealing with a textbook case. Thus, the expression

√(𝜀0
π/4)

2
− 4𝛽2

π/4 ≈ 0.818𝐽 (4.58)

with
𝜀0

π/4 = 𝐽 − 𝐽 ′

2
3
2

(4.59)

and
𝛽π/4 = − 𝐽 ′

2
5
2

(4.60)

describes the frequency of the oscillation of both Green’s functions, 𝐺𝑘(𝑡in, 𝑡out) and
𝐹𝑘(𝑡in, 𝑡out).

The Fourier spectrum depicted in figure 4.10(a) confirms our assumption. Note that
throughout this section we chose the same initial times 𝑡in and average times ̄𝑡 as in the
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Figure 4.10: Fourier spectrum for momentum 𝑘 = π/4 of the relative, time average
and average Green’s function, 𝐺rel

π/4(0, 𝜔diff), �̃�π/4(5000𝐽−1, 𝜔diff) and 𝐺π/4(10000𝐽−1, 𝜔);
values: 𝑔 = 0.03𝐽, 𝜔0 = 1.3𝐽, 𝑎 = 0.4𝐽, 𝛾 = 0.1𝐽
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previous one, c.f. equations (4.43), (4.49) or (4.52) respectively. We also obtain side peaks
at frequencies

𝜔diff = 𝜀π/4 + 𝑛𝜔0 (4.61)

as for the decoupled case. The parameter 𝑛 is again taken to be an integer number. Inspecting
the Fourier spectrum via a logarithmic display shown in figure 4.7(b) we learn that there
are also peaks occurring at frequencies

𝜔diff = −𝜀π/4 + 𝑛𝜔0 (4.62)

for an integer 𝑛 number in contrast to our previous findings. Those peaks, however, are
highly suppressed compared to the common ones. Because of the negative sign of 𝜀π/4 we
take them as an indicator of antitriplon interaction which explains their suppression. In
compliance with the results obtained for the decoupled case the frequencies are given by

𝜔diff = ±𝜀π/4 + 𝑛
𝜔0
2

(4.63)

for the time average Green’s function �̃�π/4(5000𝐽−1, 𝜔diff). Any other properties are also
found for the decoupled case and, hence, discussed in the previous section. Figure 4.10(c)
shows the Lorentzian fits according to (4.32) applied to the relative time average and average
Green’s function, 𝐺rel

π/4(0, 𝜔diff), �̃�π/4(5000𝐽−1, 𝜔diff) and 𝐺π/4(10000𝐽−1, 𝜔). Trough the fit
parameters

𝜉 = 0.000 158 (4.64a)
𝜒0 = 0.801 202𝐽 (4.64b)

𝜁 = 0.000 600𝐽 (4.64c)

for the reative Green’s function 𝐺rel
π/4(0, 𝜔diff),

𝜉 = 0.000 160 (4.65a)
𝜒0 = 0.801 158𝐽 (4.65b)

𝜁 = 0.000 600𝐽 (4.65c)

for the time average Green’s function �̃�π/4(5000𝐽−1, 𝜔diff) and

𝜉 = 0.000 157 (4.66a)
𝜒0 = 0.801 158𝐽 (4.66b)

𝜁 = 0.000 600𝐽 (4.66c)

for the average Green’s function 𝐺π/4(10000𝐽−1, 𝜔) we see that the actual peak position is
at a lower frequency than our estimation (4.58) predicted which clearly indicates that for a
coupled case, such as this one, more effects play a larger role in its dynamics than for the
decoupled case.

Figure 4.11 is, as in the previous chapter, to reassure that the absolute values of the Green’s
functions did not hide other effects that could only be observed in the real or imaginary
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Figure 4.11: Real and imaginary part of the Fourier spectra for momentum 𝑘 = π/4 of
the relative, time average and average Green’s function, 𝐺rel

π/4(0, 𝜔diff), �̃�π/4(5000𝐽−1, 𝜔diff)
and 𝐺π/4(10000𝐽−1, 𝜔); values: 𝑔 = 0.03𝐽, 𝜔0 = 1.3𝐽, 𝑎 = 0.4𝐽, 𝛾 = 0.1𝐽
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part. For we do not encounter any deviations from the anticipated position of the major
peak, we take our hitherto existing results as confirmed. Aside from the one major peak
the side peaks are strongly suppressed just like in the previous chapter which guides our
attention to the final analysis.

In figure 4.12 we investigate the dependence of the relative Green’s function 𝐺rel
π/4(𝑡in, 𝜔diff)

on the initial time 𝑡in and of the time average Green’s function �̃�π/4( ̄𝑡, 𝜔diff) on the average
time ̄𝑡. In figure 4.12(a) the Fourier spectrum on a logarithmic scale for the relative Green’s
function 𝐺rel

π/4(𝑡in, 𝜔diff) is shown for different initial times 𝑡in. As it increases the offset does
as well. There is no visible change in the peak positions but again the shapes vary for each
function. Lorentzian fits (4.32) applied to data generated for the negative imaginary part
are depicted in figure 4.12(b). The fit parameters for 𝐺rel

π/4(0, 𝜔diff) can be found in equation
(4.64) while those for 𝐺rel

π/4(3000𝐽−1, 𝜔diff) and 𝐺rel
π/4(5000𝐽−1, 𝜔diff) are determined by

𝜉 = 0.000 225 (4.67a)
𝜒0 = 0.801 071𝐽 (4.67b)

𝜁 = 0.000 858𝐽 (4.67c)

and

𝜉 = 0.000 315 (4.68a)
𝜒0 = 0.801 064𝐽 (4.68b)

𝜁 = 0.001 202𝐽 (4.68c)

respectively. For an increasing initial time 𝑡in we obtain the expectable result of an increasing
half width 𝜁. In figures 4.12(c) and 4.12(d) the time average Green’s function �̃�π/4( ̄𝑡, 𝜔diff)
is studied once more. Just like in the previous section the effects are more intense especially
concerning the increase of the offset in the logarithmic Fourier spectrum given in figure
4.12(c). Fits according to equation (4.32) for data of the negative imaginary part yield the
parameters in equation (4.65a) for �̃�π/4(5000𝐽−1, 𝜔diff),

𝜉 = 0.000 257 (4.69a)
𝜒0 = 0.800 948𝐽 (4.69b)

𝜁 = 0.001 002𝐽 (4.69c)

for �̃�π/4(3000𝐽−1, 𝜔diff) and

𝜉 = 0.000 792 (4.70a)
𝜒0 = 0.799 902𝐽 (4.70b)

𝜁 = 0.003 008𝐽 (4.70c)

for �̃�π/4(1000𝐽−1, 𝜔diff). As before a slight shift to smaller frequencies 𝜒0 and an increasing
half width 𝜁 are the key results of our findings.
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Figure 4.12: Investigation of the dependence of relative Green’s function 𝐺rel
π/4(𝑡in, 𝜔diff)

on the initial time 𝑡in and of the time average Green’s function �̃�π/4( ̄𝑡, 𝜔diff) on the average
time ̄𝑡 for momentum 𝑘 = π/4; values: 𝑔 = 0.03𝐽, 𝜔0 = 1.3𝐽, 𝑎 = 0.4𝐽, 𝛾 = 0.1𝐽
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4.3.5 Summary

We managed to derive the equations of motion for two kinds of Green’s functions describing
the insertion of a triplon into and its subsequent removal from the system or the insertion
of a triplon and a subsequent insertion of another triplon of opposite momentum into the
system. Analysing only the former we proposed two different cases by sole inspection of
the equations of motion. For the decoupled case we found proof of interaction between
triplons and phonons while for the general case also antitriplons as well as interaction were
observed, however on a much lower order of magnitude. Those results were obtained for all
three different Green’s functions under consideration, the relative, the time average and the
average Green’s function. While the relative and average Green’s functions only differed in
the absence of higher harmonics of phonon modes in the latter, the time average Green’s
function showed its side peaks at intervals only half as large as those for the two other
Green’s function. We traced this effect back to a factor in the definition of the average time.
A further investigation of the dependence of the relative Green’s function on the initial time
and of the time average Green’s function on the average time showed that both an increase
in the initial or a decrease of the average time lead to a larger offset in the Fourier spectrum
as well as a shift to smaller frequencies and a broadening of the negative imaginary part
proportional to the spectral density. The applied fits, however, proved that the shape is at
all times given by a Lorentzian.
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5.1 Summary

For this thesis we developed a simple model offering the possibility to investigate quasi
steady states. We took existing solids like CuGeO3 as a basis, thus proposing a dimerized
spin 1/2 chain as the principle element with an underlying phonon system as its foundation
and mediator of excitation. A laser served as origin of the driving. Resonance effects
were supposed to be avoided by damping the phonon system using the Lindblad formalism.
Applying the bond operator representation for dimers thus introducing the hardcore bosons
triplons and singlets, we obtained in approximation a bilinear Hamiltonian from which we
derived the equations of motion for the phonon displacement, the phonon momentum, the
phonon density as well as the triplon density. Exciting the system in resonance with the
phonon frequency was to drive the spin system into a quasi steady state, i.e. the triplon
density was to oscillate around a value differing significantly from its initial value while
obeying to the hardcore constraint stating there can only be one triplon at a time at each
lattice site.

However, early on in the process we encountered effects of divergent behaviour that were
unexpected and counterintuitive clearly violating the hardcore constraint with the triplon
density taking values of several orders of magnitude larger than the theoretically maximum
value of one. We identified this phenomenon as an effect of a resonance disaster not caused by
the phonon system, where the damping worked well, as the description by a damped driven
harmonic oscillator characterised the time evolution perfectly fine, but rather by the triplon
system itself. Whenever the laser frequency was a multiple of the triplon band frequencies
we found effects of divergence at a much earlier stage compared to other frequencies. We
measured this stability of our system by the introduction of a critical value of the spin-phonon
coupling which when being exceeded resulted in divergences. The quotient of laser amplitude
and spin damping parameter squared and the laser and phonon frequency served as other
parameters in our characterisation.

For the laser and phonon frequency we identified three regions depending on their relation
to the triplon band, the in band, the beneath band or adiabatic and the above band or
anti-adiabatic regime. In agreement with our assumption we found diverging systems for all
in band frequencies and their multiples in the adiabatic regime whereas the anti-adiabatic
regime proved to be comparably stable. Yet only in the adiabatic regime the triplon densities
took average values reasonably larger than their initial value which was the desired state.
For obvious reasons we needed to restrict the applicability of our systems to non-divergent
regions.
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In these regimes, however, the model provides convenient results. Not only, as we already
mentioned, do we obtain the desired quasi steady states but also can we identify interactions
between spin and phonon system. Therefore, we observed three different Green’s functions,
the relative, the time average and the average Green’s function. Just like for the expectation
values of the spin and phonon system we set up a system of ordinary differential equations
for the Green’s functions distinguishing between two types, one where a triplon is inserted
at a certain time and removed later in the process and a second one describing the insertion
of two triplons of opposite momentum after one another.

Investigating only the former we find a dominant peak in the Fourier spectra of the relative,
the time average and the average Green’s function at the corresponding triplon frequency.
For the relative and average Green’s function we identify side peaks at the triplon frequency
plus or minus the phonon frequency which illustrates the interaction between both systems.
As these effects are suppressed by several orders of magnitude the weakness of the coupling
is further illustrated. Whereas higher harmonics indicated by peaks at the triplon frequency
plus or minus a multiple of the phonon frequency vanish for the average Green’s function,
they occur for the relative Green’s function but again being suppressed by at least one other
order of magnitude. The time average Green’s function shows the exact same behaviour
but with side peaks occurring at the triplon frequency plus or minus multiples of half the
phonon frequency which is due to a factor of two in the definition of the average time.

For the special case of momentum 𝑘 = π/2, where the equations of motion of the two types of
Green’s functions decouple, this is the whole spectrum we obtain. If, however, the momentum
is 𝑘 ≠ π/2, we find peaks at the negative triplon frequency plus or minus multiples of the
phonon frequency for the relative and average or half the phonon frequency for the time
average Green’s function. Again these effects are suppressed by several orders of magnitude
compared to the dominant peak. We take them as proof of the interaction of antitriplons
with the phonon system. This discovery of antitriplons is indeed astonishing for they do not
occur in the original Hamiltonian. A further investigation as part of further research on
their behaviour could lead to new insights of properties of dimerized spin chains.

5.2 Discussion

The occurrence of diverging effects is of course unpleasant. We need to stress that we
cannot omit any parts of our model as it already consists of only basic components. Still,
the corresponding set of equations of motion is highly non-trivial and cannot be solved
analytically. Therefore, any enhancements will most certainly further complicate the system
making sources of problems harder to find. Even the model at its present state provides
several obstacles that could not be explained entirely or found to be generic. Having always
the resonance effects of the spin system as a possible source of those effects in mind, their
validity as proof of new physics is hard to judge just like the applicability of our model.
Of particular difficulty is the absence of a rule to when diverging effects occur. Certain
systems showed these effects at very early times while others were found to be persistent
over a long period of time but not infinitely. Therefore, we cannot guarantee that systems
we identified as stable might not diverge later in time. The identification of those frequencies
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where divergences occurred as multiples of triplon band frequencies worked well for in and
beneath band cases. As there exist, however, critical values to the spin-phonon coupling
above the band, fully understanding the model requires further investigation here.

Despite the model clearly failing for certain parameter sets it nevertheless shows that, in
principle, the main goal is achievable. We indeed did succeed in driving the spin system
into a non-trivial quasi steady state which differed significantly from its initial value. We
found beneath band cases as an appropriate regime to obtain meaningful results. From a
purely mathematical point of view it was even possible to create such quasi steady states
in the above band regime but only for non-physical parameter sets. Applying reasonable
parameters here led to a quasi steady state of which the average value was so little above
the initial value that there was a significant overlap in the oscillations. In contrast to the
adiabatic regime, here a decrease in damping could help improve the model.

Thus, a direct dependence of the damping on the frequency might be fruitful. This proposal
leads to the introduction of temperature to the model for we have only considered the case
of zero temperature so far. In summary, we are dealing with a model with indisputable
impairments but still holding rich perspectives in the investigation of non-equilibrium
dynamics. Further research may for example also be conducted on systems, where the laser’s
frequency differs slightly from the phonon frequency, as well as on the investigation of the
second type of Green’s function where two triplons of opposite momentum are inserted into
the system.

5.3 Outlook

The most promising ansatz to improving the model involves the addition of a damping to
the spin system in hopes of avoiding resonance phenomena that we identified as the source of
the divergences. However, here we face some challenges as well for in theory the damping to
each momentum could be chosen differently, i.e. the suppression of certain modes is possible.
The simplest approach, of course, is to apply a constant momentum-independent damping.
A complete analysis will be left for further investigations to come.
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A Derivation of the Hamiltonian

We provide some additional calculations to derive the full Hamiltonian in its final form
(3.19). We focus on the spin system as calculations for the phonon system are drastically
simplified by the approximations we outlined in section 3.2 or analogous to some of the ones
we present here.

First, we use Sachdev’s bond operator representation (2.9) to calculate
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𝑖 ⋅ ⃗𝑺2
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𝛽,𝑖𝒕𝛾,𝑖𝒕
†
𝛼,𝑖𝒔𝑖

− 1
4

∑
𝛼,𝛽,𝛾,𝛽′,𝛾′

𝜀𝛼𝛽𝛾𝜀𝛼𝛽′𝛾′𝒕†
𝛽,𝑖𝒕𝛾,𝑖𝒕

†
𝛽′,𝑖𝒕𝛾′,𝑖 (A.1c)

= 1
4

∑
𝛼

(−𝒔†
𝑖 𝒔†

𝑖 𝒕𝛼,𝑖𝒕𝛼,𝑖 − 2𝒔†
𝑖 𝒔𝑖𝒕

†
𝛼,𝑖𝒕𝛼,𝑖 − 𝒕†

𝛼,𝑖𝒕
†
𝛼,𝑖𝒔𝑖𝒔𝑖 − 𝒔†

𝑖 𝒔𝑖 − 𝒕†
𝛼,𝑖𝒕𝛼,𝑖)

+ 1
4

i ∑
𝛼,𝛽,𝛾

𝜀𝛼𝛽𝛾𝒔†
𝑖 (𝒕†

𝛽,𝑖𝒕𝛾,𝑖𝒕𝛼,𝑖 − 𝒕𝛼,𝑖𝒕
†
𝛽,𝑖𝒕𝛾,𝑖)

+ 1
4

i ∑
𝛼,𝛽,𝛾

𝜀𝛼𝛽𝛾𝒔𝑖 (𝒕†
𝛽,𝑖𝒕𝛾,𝑖𝒕

†
𝛼,𝑖 − 𝒕†

𝛼,𝑖𝒕
†
𝛽,𝑖𝒕𝛾,𝑖)

− 1
4

∑
𝛽,𝛾,𝛽′,𝛾′

(𝛿𝛽,𝛽′𝛿𝛾,𝛾′ − 𝛿𝛽,𝛾′𝛿𝛾,𝛽′) 𝒕†
𝛽,𝑖𝒕𝛾,𝑖𝒕

†
𝛽′,𝑖𝒕𝛾′,𝑖 (A.1d)

= 1
4

∑
𝛼

(−𝒔†
𝑖 𝒔𝑖 − 𝒕†

𝛼,𝑖𝒕𝛼,𝑖)

+ 1
4

i ∑
𝛼,𝛽,𝛾

𝜀𝛼𝛽𝛾𝒔†
𝑖 (𝒕†

𝛽,𝑖𝒕𝛾,𝑖𝒕𝛼,𝑖 − 𝒕†
𝛽,𝑖𝒕𝛾,𝑖𝒕𝛼,𝑖 − 𝛿𝛼,𝛽𝒕𝛾,𝑖)

+ 1
4

i ∑
𝛼,𝛽,𝛾

𝜀𝛼𝛽𝛾𝒔𝑖 (𝒕†
𝛽,𝑖𝒕𝛾,𝑖𝒕

†
𝛼,𝑖 − 𝒕†

𝛽,𝑖𝒕𝛾,𝑖𝒕
†
𝛼,𝑖 − 𝛿𝛼,𝛾𝒕†

𝛽,𝑖)
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− 1
4

∑
𝛽,𝛾

𝒕†
𝛽,𝑖𝒕𝛾,𝑖𝒕

†
𝛽,𝑖𝒕𝛾,𝑖 + 1

4
∑
𝛽,𝛾

𝒕†
𝛽,𝑖𝒕𝛾,𝑖𝒕

†
𝛾,𝑖𝒕𝛽,𝑖 (A.1e)

= − 3
4

𝒔†
𝑖 𝒔𝑖 − 1

4
∑

𝛼
𝒕†

𝛼,𝑖𝒕𝛼,𝑖

− 1
4

∑
𝛽,𝛾

𝒕†
𝛽,𝑖𝒕

†
𝛽,𝑖𝒕𝛾,𝑖𝒕𝛾,𝑖 − 1

4
∑
𝛽,𝛾

𝒕†
𝛽,𝑖𝒕𝛾,𝑖𝛿𝛽,𝛾 + 1

4
∑
𝛽,𝛾

𝒕†
𝛽,𝑖𝒕

†
𝛾,𝑖𝒕𝛾,𝑖𝒕𝛽,𝑖 + 1

4
∑
𝛽,𝛾

𝒕†
𝛽,𝑖𝒕𝛽,𝑖

(A.1f)

= − 3
4

𝒔†
𝑖 𝒔𝑖 − 1

4
∑

𝛼
𝒕†

𝛼,𝑖𝒕𝛼,𝑖

− 1
4

∑
𝛼

𝒕†
𝛼,𝑖𝒕𝛼,𝑖 + 1

4
∑
𝛽,𝛾

𝒕†
𝛽,𝑖𝒕𝛽,𝑖𝒕

†
𝛾,𝑖𝒕𝛾,𝑖 − 1

4
∑
𝛽,𝛾

𝒕†
𝛽,𝑖𝒕𝛾,𝑖𝛿𝛽,𝛾 + 3

4
∑

𝛼
𝒕†

𝛼,𝑖𝒕𝛼,𝑖 (A.1g)

= − 3
4

𝒔†
𝑖 𝒔𝑖 − 1

4
∑

𝛼
𝒕†

𝛼,𝑖𝒕𝛼,𝑖

− 1
4

∑
𝛼

𝒕†
𝛼,𝑖𝒕𝛼,𝑖 + 1

4
(∑

𝛼
𝒕†

𝛼,𝑖𝒕𝛼,𝑖)
2

− 1
4

∑
𝛼

𝒕†
𝛼,𝑖𝒕𝛼,𝑖 + 3

4
∑

𝛼
𝒕†

𝛼,𝑖𝒕𝛼,𝑖 (A.1h)

= − 3
4

𝒔†
𝑖 𝒔𝑖 + 1

4
∑

𝛼
𝒕†

𝛼,𝑖𝒕𝛼,𝑖 (A.1i)

= − 3
4

(1 − ∑
𝛼

𝒕†
𝛼,𝑖𝒕𝛼,𝑖) + 1

4
∑

𝛼
𝒕†

𝛼,𝑖𝒕𝛼,𝑖 (A.1j)

= − 3
4

+ ∑
𝛼

𝒕†
𝛼,𝑖𝒕𝛼,𝑖. (A.1k)

Note that this result is exact.

Next, we calculate

⃗𝑺2
𝑖 ⋅ ⃗𝑺1

𝑖+1 = ∑
𝛼

𝑺2
𝛼,𝑖𝑺

1
𝛼,𝑖+1 (A.2a)

= 1
4

∑
𝛼

(−𝒕𝛼,𝑖 − 𝒕†
𝛼,𝑖 − i ∑

𝛽′,𝛾′

𝜀𝛼𝛽′𝛾′𝒕†
𝛽′,𝑖𝒕𝛾′,𝑖)

⋅ (𝒕𝛼,𝑖+1 + 𝒕†
𝛼,𝑖+1 − i ∑

𝛽,𝛾
𝜀𝛼𝛽𝛾𝒕†

𝛽,𝑖+1𝒕𝛾,𝑖+1) (A.2b)

= 1
4

∑
𝛼

(−𝒕𝛼,𝑖𝒕𝛼,𝑖+1 − 𝒕𝛼,𝑖𝒕
†
𝛼,𝑖+1 − 𝒕†

𝛼,𝑖𝒕𝛼,𝑖+1 − 𝒕†
𝛼,𝑖𝒔𝑖𝒕

†
𝛼,𝑖+1𝒔𝑖+1)

− 1
4

i ∑
𝛼,𝛽,𝛾

𝜀𝛼𝛽𝛾𝒕†
𝛽,𝑖𝒕𝛾,𝑖𝒕𝛼,𝑖+1 − 1

4
i ∑

𝛼,𝛽,𝛾
𝜀𝛼𝛽𝛾𝒕†

𝛽,𝑖𝒕𝛾,𝑖𝒕
†
𝛼,𝑖+1

+ 1
4

i ∑
𝛼,𝛽,𝛾

𝜀𝛼𝛽𝛾𝒕𝛼,𝑖𝒕
†
𝛽,𝑖+1𝒕𝛾,𝑖+1 + 1

4
i ∑

𝛼,𝛽,𝛾
𝜀𝛼𝛽𝛾𝒕†

𝛼,𝑖𝒕
†
𝛽,𝑖+1𝒕𝛾,𝑖+1

− 1
4

∑
𝛼,𝛽,𝛾,𝛽′,𝛾′

𝜀𝛼𝛽𝛾𝜀𝛼𝛽′𝛾′𝒕†
𝛽′,𝑖𝒕𝛾′,𝑖𝒕

†
𝛽,𝑖+1𝒕𝛾,𝑖+1 (A.2c)

= 1
4

∑
𝛼

(−𝒕𝛼,𝑖𝒕𝛼,𝑖+1 − 𝒕𝛼,𝑖𝒕
†
𝛼,𝑖+1 − 𝒕†

𝛼,𝑖𝒕𝛼,𝑖+1 − 𝒕†
𝛼,𝑖𝒕

†
𝛼,𝑖+1)
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− 1
4

i ∑
𝛼,𝛽,𝛾

𝜀𝛼𝛽𝛾𝒕†
𝛽,𝑖𝒕𝛾,𝑖𝒕𝛼,𝑖+1 − 1

4
i ∑

𝛼,𝛽,𝛾
𝜀𝛼𝛽𝛾𝒕†

𝛽,𝑖𝒕𝛾,𝑖𝒕
†
𝛼,𝑖+1

+ 1
4

i ∑
𝛼,𝛽,𝛾

𝜀𝛼𝛽𝛾𝒕𝛼,𝑖𝒕
†
𝛽,𝑖+1𝒕𝛾,𝑖+1 + 1

4
i ∑

𝛼,𝛽,𝛾
𝜀𝛼𝛽𝛾𝒕†

𝛼,𝑖𝒕
†
𝛽,𝑖+1𝒕𝛾,𝑖+1

− 1
4

∑
𝛽,𝛾,𝛽′,𝛾′

(𝛿𝛽,𝛽′𝛿𝛾,𝛾′ − 𝛿𝛽,𝛾′𝛿𝛾,𝛽′) 𝒕†
𝛽′,𝑖𝒕𝛾′,𝑖𝒕

†
𝛽,𝑖+1𝒕𝛾,𝑖+1 (A.2d)

= 1
4

∑
𝛼

(−𝒕𝛼,𝑖𝒕𝛼,𝑖+1 − 𝒕𝛼,𝑖𝒕
†
𝛼,𝑖+1 − 𝒕†

𝛼,𝑖𝒕𝛼,𝑖+1 − 𝒕†
𝛼,𝑖𝒕

†
𝛼,𝑖+1)

− 1
4

i ∑
𝛼,𝛽,𝛾

𝜀𝛼𝛽𝛾𝒕†
𝛽,𝑖𝒕𝛾,𝑖𝒕𝛼,𝑖+1 − 1

4
i ∑

𝛼,𝛽,𝛾
𝜀𝛼𝛽𝛾𝒕†

𝛽,𝑖𝒕𝛾,𝑖𝒕
†
𝛼,𝑖+1

+ 1
4

i ∑
𝛼,𝛽,𝛾

𝜀𝛼𝛽𝛾𝒕𝛼,𝑖𝒕
†
𝛽,𝑖+1𝒕𝛾,𝑖+1 + 1

4
i ∑

𝛼,𝛽,𝛾
𝜀𝛼𝛽𝛾𝒕†

𝛼,𝑖𝒕
†
𝛽,𝑖+1𝒕𝛾,𝑖+1

− 1
4

∑
𝛽,𝛾

𝒕†
𝛽,𝑖𝒕𝛾,𝑖𝒕

†
𝛽,𝑖+1𝒕𝛾,𝑖+1 + 1

4
∑
𝛽,𝛾

𝒕†
𝛾,𝑖𝒕𝛽,𝑖𝒕

†
𝛽,𝑖+1𝒕𝛾,𝑖+1 (A.2e)

where we have made use of the triplon operator representation (2.15) for it is easier to
include the local hard core constraint (2.10) as part of the commutation relation (2.17) with
different sites being discussed. Taking only bilinear terms into account, we obtain

⃗𝑺2
𝑖 ⋅ ⃗𝑺1

𝑖+1 = 1
4

∑
𝛼

(−𝒕𝛼,𝑖𝒕𝛼,𝑖+1 − 𝒕𝛼,𝑖𝒕
†
𝛼,𝑖+1 − 𝒕†

𝛼,𝑖𝒕𝛼,𝑖+1 − 𝒕†
𝛼,𝑖𝒕

†
𝛼,𝑖+1) (A.3)

Fourier transforming both expressions into momentum space via equation (3.9) using

𝛿𝑘,𝑙 = 1
𝑁

∑
𝑖

ei(𝑘−𝑙)𝑟𝑖 (A.4)

yields
∑

𝑖

⃗𝑺1
𝑖 ⋅ ⃗𝑺2

𝑖 = −3
4

𝑁 + ∑
𝑘,𝛼

𝒕†
𝑘,𝛼𝒕𝑘,𝛼, (A.5)

as well as

∑
𝑖

⃗𝑺2
𝑖 ⋅ ⃗𝑺1

𝑖+1 = − 1
4

∑
𝑖,𝛼

(𝒕𝛼,𝑖𝒕𝛼,𝑖+1 + 𝒕𝛼,𝑖𝒕
†
𝛼,𝑖+1 + 𝒕†

𝛼,𝑖𝒕𝛼,𝑖+1 + 𝒕†
𝛼,1𝒕†

𝛼,𝑖+1) (A.6a)

= − 1
4

1
𝑁

∑
𝑖,𝑘,𝑘′,𝛼

(𝒕𝑘,𝛼𝒕𝑘′,𝛼ei(𝑘+𝑘′)ei𝑘′ + 𝒕𝑘,𝛼𝒕†
𝑘′,𝛼ei(𝑘−𝑘′)e−i𝑘′

+ 𝒕†
𝑘,𝛼𝒕𝑘′,𝛼ei(𝑘′−𝑘)ei𝑘′ + 𝒕†

𝑘,𝛼𝒕†
𝑘′,𝛼ei(−𝑘−𝑘′)e−i𝑘′) (A.6b)

= − 1
4

∑
𝑘,𝛼

(𝒕𝑘,𝛼𝒕−𝑘,𝛼e−i𝑘 + 𝒕𝑘,𝛼𝒕†
𝑘,𝛼e−i𝑘 + 𝒕†

𝑘,𝛼𝒕𝑘,𝛼ei𝑘 + 𝒕†
𝑘,𝛼𝒕†

−𝑘,𝛼ei𝑘) (A.6c)

= − 1
4

∑
𝑘,𝛼

(𝒕𝑘,𝛼𝒕−𝑘,𝛼e−i𝑘 + 2𝒕†
𝑘,𝛼𝒕𝑘,𝛼ei𝑘 + 𝒕†

𝑘,𝛼𝒕†
−𝑘,𝛼ei𝑘 + e−i𝑘) (A.6d)

= − 1
8

∑
𝑘,𝛼

(𝒕𝑘,𝛼𝒕−𝑘,𝛼 (ei𝑘 + e−i𝑘) + 2𝒕†
𝑘,𝛼𝒕𝑘,𝛼 (ei𝑘 + e−i𝑘)
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+ 𝒕†
𝑘,𝛼𝒕†

−𝑘,𝛼 (ei𝑘 + e−i𝑘)) − 1
8

∑
𝑘,𝛼

(ei𝑘 + e−i𝑘) (A.6e)

= − 1
4

∑
𝑘,𝛼

cos(𝑘) (𝒕𝑘,𝛼𝒕−𝑘,𝛼 + 2𝒕†
𝑘,𝛼𝒕𝑘,𝛼 + 𝒕†

𝑘,𝛼𝒕†
−𝑘,𝛼) − 3

4
∑

𝑘
cos(𝑘) . (A.6f)

We have eventually replaced 𝑘 by −𝑘 and multiplied by 1.

Thus, we obtain

𝑯S =𝐽 ∑
𝑘,𝛼

𝒕†
𝛼,𝑘𝒕𝛼,𝑘 − 1

4
𝐽 ′ ∑

𝑘,𝛼
cos(𝑘) (𝒕𝛼,𝑘𝒕𝛼,−𝑘 + 2𝒕†

𝛼,𝑘𝒕𝛼,𝑘 + 𝒕†
𝛼,𝑘𝒕†

𝛼,−𝑘)

− 3
4

𝐽𝑁 − 3
4

𝐽 ′ ∑
𝑘

cos(𝑘)
(A.7)

of which the constant part is of no interest concerning the dynamics.
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B Derivation of the Equations of Motion

Based on the Hamiltonian 𝑯 in equation (3.19) we calculate the equations of motion for
the observables defined in (3.22) and (3.23). We make use of the relations

[𝑿, 𝑿′] = − [𝑿′, 𝑿] (B.1)
[𝑧𝑿, 𝑿′] = 𝑧 [𝑿, 𝑿′] (B.2)

[𝑿𝑿′, 𝑿″] = 𝑿 [𝑿′, 𝑿″] + [𝑿, 𝑿″] 𝑿′ (B.3)

where 𝑿, 𝑿′ and 𝑿″ are operators and 𝑧 is a complex number.

We begin with the spin sector, i.e. 𝑈𝑘(𝑡), 𝑉𝑘(𝑡) and 𝑊𝑘(𝑡). Here, the Heisenberg equation of
motion (2.29) is used. For 𝑈𝑘(𝑡) and 𝑉𝑘(𝑡) we need the commutator

[∑
𝑘,𝛼

𝒕𝑘,𝛼𝒕−𝑘,𝛼, 𝒕†
𝑘′,𝛼′𝒕𝑘′,𝛼′] = ∑

𝑘,𝛼
[𝒕𝑘,𝛼𝒕−𝑘,𝛼, 𝒕†

𝑘′,𝛼′] 𝒕𝑘′,𝛼′ (B.4a)

= ∑
𝑘,𝛼

𝒕𝑘,𝛼𝒕𝑘′,𝛼′𝛿−𝑘,𝑘′𝛿𝛼,𝛼′ + ∑
𝑘,𝛼

𝒕−𝑘,𝛼𝒕𝑘′,𝛼′𝛿𝑘,𝑘′𝛿𝛼,𝛼′ = 2𝒕𝑘′,𝛼′𝒕−𝑘′,𝛼′ (B.4b)

as well as

[∑
𝑘,𝛼

𝒕†
𝑘,𝛼𝒕†

−𝑘,𝛼, 𝒕†
𝑘′,𝛼′𝒕𝑘′,𝛼′] = ∑

𝑘,𝛼
𝒕†

𝑘′,𝛼′ [𝒕†
𝑘,𝛼𝒕†

−𝑘,𝛼, 𝒕𝑘′,𝛼′] (B.5a)

= − ∑
𝑘,𝛼

𝒕†
𝑘′,𝛼′𝒕

†
𝑘,𝛼𝛿−𝑘,𝑘′𝛿𝛼,𝛼′ − ∑

𝑘,𝛼
𝒕†

𝑘′,𝛼′𝒕
†
−𝑘,𝛼𝛿𝑘,𝑘′𝛿𝛼,𝛼′ = −2𝒕†

𝑘′,𝛼′𝒕
†
−𝑘′,𝛼′. (B.5b)

Thus, the Heisenberg equation of motion for 𝑈𝑘(𝑡) reads

d
d𝑡

𝑈𝑘(𝑡) = i ⟨[𝑯, ∑
𝛼

𝒕†
𝑘,𝛼𝒕𝑘,𝛼]⟩ (B.6a)

= i ⟨[−𝐽 ∑
𝑘′,𝛼′

𝜆
4

cos(𝑘′) (𝒕†
𝑘′,𝛼′𝒕

†
−𝑘′,𝛼′ + 𝒕𝑘′,𝛼′𝒕−𝑘′,𝛼′) , ∑

𝛼
𝒕†

𝑘,𝛼𝒕𝑘,𝛼]⟩ (B.6b)

= − i ∑
𝛼

⟨[ ∑
𝑘′,𝛼′

𝐽 ′

4
cos(𝑘′) 𝒕†

𝑘′,𝛼′𝒕
†
−𝑘′,𝛼′, 𝒕†

𝑘,𝛼𝒕𝑘,𝛼]⟩

− i ∑
𝛼

⟨[ ∑
𝑘′,𝛼′

𝐽 ′

4
cos(𝑘′) 𝒕𝑘′,𝛼′𝒕−𝑘′,𝛼′, 𝒕†

𝑘,𝛼𝒕𝑘,𝛼]⟩ (B.6c)

= − i1
2

𝐽 ′ ∑
𝛼

cos(𝑘) ⟨𝒕𝑘,𝛼𝒕−𝑘,𝛼 − 𝒕†
𝑘,𝛼𝒕†

−𝑘,𝛼⟩ (B.6d)

= 1
2

𝐽 ′ cos(𝑘) 𝑊𝑘(𝑡) . (B.6e)
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Likewise, for 𝑉𝑘(𝑡) we obtain

d
d𝑡

𝑉𝑘(𝑡) = i ⟨[𝑯, ∑
𝛼

(𝒕†
𝑘,𝛼𝒕†

−𝑘,𝛼 + 𝒕𝑘,𝛼𝒕−𝑘,𝛼)]⟩ (B.7a)

= i ∑
𝛼

⟨[ ∑
𝑘′,𝛼′

𝒕†
𝑘′,𝛼′𝒕𝑘′,𝛼′ (𝐽 − 𝐽 ′

2
cos(𝑘′)) , 𝒕†

𝑘,𝛼𝒕†
−𝑘,𝛼]⟩

+ i ∑
𝛼

⟨[ ∑
𝑘′,𝛼′

𝒕†
𝑘′,𝛼′𝒕𝑘′,𝛼′ (𝐽 − 𝐽 ′

2
cos(𝑘′)) , 𝒕𝑘,𝛼𝒕−𝑘,𝛼]⟩

+ i𝑔 ⟨ 1√
𝑁

(𝒃0 + 𝒃†
0)⟩ ∑

𝛼
⟨[ ∑

𝑘′,𝛼′

𝒕†
𝑘′,𝛼′𝒕𝑘′,𝛼′, 𝒕†

𝑘,𝛼𝒕†
−𝑘,𝛼]⟩

+ i𝑔 ⟨ 1√
𝑁

(𝒃0 + 𝒃†
0)⟩ ∑

𝛼
⟨[ ∑

𝑘′,𝛼′

𝒕†
𝑘′,𝛼′𝒕𝑘′,𝛼′, 𝒕𝑘,𝛼𝒕−𝑘,𝛼]⟩ (B.7b)

= i (𝐽 − 1
2

𝐽 ′ cos(𝑘) + 𝑔𝐴(𝑡)) 2 ⟨∑
𝛼

𝒕†
𝑘,𝛼𝒕†

−𝑘,𝛼 − ∑
𝛼

𝒕𝑘,𝛼𝒕−𝑘,𝛼⟩ (B.7c)

= 2 (𝐽 − 1
2

𝐽 ′ cos(𝑘) + 𝑔𝐴(𝑡)) 𝑊𝑘(𝑡) . (B.7d)

The quantity 𝑊𝑘(𝑡) requires some more thought. We need

[∑
𝑘,𝛼

𝒕𝑘,𝛼𝒕−𝑘,𝛼, 𝒕†
𝑘′,𝛼′𝒕

†
−𝑘′,𝛼′] = ∑

𝑘,𝛼
[𝒕𝑘,𝛼𝒕−𝑘,𝛼, 𝒕†

𝑘′,𝛼′𝒕
†
−𝑘′,𝛼′] (B.8a)

= ∑
𝑘,𝛼

𝒕𝑘,𝛼 [𝒕−𝑘,𝛼, 𝒕†
𝑘′,𝛼′𝒕

†
−𝑘′,𝛼′] + ∑

𝑘,𝛼
[𝒕𝑘,𝛼, 𝒕†

𝑘′,𝛼′𝒕
†
−𝑘′,𝛼′] 𝒕−𝑘,𝛼 (B.8b)

= ∑
𝑘,𝛼

𝒕𝑘,𝛼𝒕†
𝑘′,𝛼′ [𝒕−𝑘,𝛼, 𝒕†

−𝑘′,𝛼′] + ∑
𝑘,𝛼

𝒕𝑘,𝛼 [𝒕−𝑘,𝛼, 𝒕†
𝑘′,𝛼′] 𝒕†

−𝑘′,𝛼′

+ ∑
𝑘,𝛼

𝒕†
𝑘′,𝛼′ [𝒕𝑘,𝛼, 𝒕†

−𝑘′,𝛼′] 𝒕−𝑘,𝛼 + ∑
𝑘,𝛼

[𝒕𝑘,𝛼, 𝒕†
𝑘′,𝛼′] 𝒕†

−𝑘′,𝛼′𝒕−𝑘,𝛼 (B.8c)

= ∑
𝑘,𝛼

𝒕𝑘,𝛼𝒕†
𝑘′,𝛼′𝛿𝑘,𝑘′𝛿𝛼,𝛼′ + ∑

𝑘,𝛼
𝒕𝑘,𝛼𝒕†

−𝑘′,𝛼′𝛿−𝑘,𝑘′𝛿𝛼,𝛼′

+ ∑
𝑘,𝛼

𝒕†
𝑘′,𝛼′𝒕−𝑘,𝛼𝛿𝑘,−𝑘′𝛿𝛼,𝛼′ + ∑

𝑘,𝛼
𝒕†

−𝑘′,𝛼′𝒕−𝑘,𝛼𝛿𝑘,𝑘′𝛿𝛼,𝛼′ (B.8d)

= 𝒕𝑘′,𝛼′𝒕†
𝑘′,𝛼′ + 𝒕−𝑘′,𝛼′𝒕†

−𝑘′,𝛼′ + 𝒕†
𝑘′,𝛼′𝒕𝑘′,𝛼′ + 𝒕†

−𝑘′,𝛼′𝒕−𝑘′,𝛼′ (B.8e)

= 2 + 2𝒕†
𝑘′,𝛼′𝒕𝑘′,𝛼′ + 2𝒕†

−𝑘′,𝛼′𝒕−𝑘′,𝛼′ (B.8f)

and

[∑
𝑘,𝛼

𝒕†
𝑘,𝛼𝒕†

−𝑘,𝛼, 𝒕𝑘′,𝛼′𝒕−𝑘′,𝛼′] = [∑
𝑘,𝛼

𝒕𝑘,𝛼𝒕−𝑘,𝛼, 𝒕†
𝑘′,𝛼′𝒕

†
−𝑘′,𝛼′]

†

(B.9a)

= 2 + 2𝒕†
𝑘′,𝛼′𝒕𝑘′,𝛼′ + 2𝒕†

−𝑘′,𝛼′𝒕−𝑘′,𝛼′ (B.9b)

yielding

d
d𝑡

𝑊𝑘 = i ⟨[𝑯, i ∑
𝛼

(𝒕†
𝑘,𝛼𝒕†

−𝑘,𝛼 − 𝒕𝑘,𝛼𝒕−𝑘,𝛼)]⟩ (B.10a)
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= − ∑
𝛼

⟨[𝑯, 𝒕†
𝑘,𝛼𝒕†

−𝑘,𝛼]⟩ + ∑
𝛼

⟨[𝑯, 𝒕𝑘,𝛼𝒕−𝑘,𝛼]⟩ (B.10b)

= − ∑
𝛼

⟨[ ∑
𝑘′,𝛼′

𝒕†
𝑘′,𝛼′𝒕𝑘′,𝛼′ (𝐽 − 𝐽 ′

2
cos(𝑘′)) , 𝒕†

𝑘,𝛼𝒕†
−𝑘,𝛼]⟩

+ ∑
𝛼

⟨[ ∑
𝑘′,𝛼′

𝒕†
𝑘′,𝛼′𝒕𝑘′,𝛼′ (𝐽 − 𝐽 ′

2
cos(𝑘′)) , 𝒕𝑘,𝛼𝒕−𝑘,𝛼]⟩

− 𝑔 ⟨ 1√
𝑁

(𝒃0 + 𝒃†
0)⟩ ∑

𝛼
⟨[ ∑

𝑘′,𝛼′

𝒕†
𝑘′,𝛼′𝒕𝑘′,𝛼′, 𝒕†

𝑘,𝛼𝒕†
−𝑘,𝛼]⟩

+ 𝑔 ⟨ 1√
𝑁

(𝒃0 + 𝒃†
0)⟩ ∑

𝛼
⟨[ ∑

𝑘′,𝛼′

𝒕†
𝑘′,𝛼′𝒕𝑘′,𝛼′, 𝒕𝑘,𝛼𝒕−𝑘,𝛼]⟩

− ∑
𝛼

⟨[ ∑
𝑘′,𝛼′

𝒕𝑘′,𝛼′𝒕𝑘′,𝛼′
𝐽 ′

4
cos(𝑘′) , 𝒕†

𝑘,𝛼𝒕†
−𝑘,𝛼]⟩

+ ∑
𝛼

⟨[ ∑
𝑘′,𝛼′

𝒕†
𝑘′,𝛼′𝒕

†
−𝑘′,𝛼′

𝐽 ′

4
cos(𝑘′) , 𝒕𝑘,𝛼𝒕𝑘,𝛼]⟩ (B.10c)

= − 2 ⟨(∑
𝛼

𝒕†
𝑘,𝛼𝒕†

−𝑘,𝛼 + ∑
𝛼

𝒕𝑘,𝛼𝒕−𝑘,𝛼) (𝐽 − 1
2

𝐽 ′ cos(𝑘) + 𝑔𝐴(𝑡))⟩

+ 1
4

𝐽 ′ cos(𝑘) ⟨4 ∑
𝛼

𝒕†
𝑘,𝛼′𝒕𝑘,𝛼 + 4 ∑

𝛼
𝒕†

−𝑘,𝛼𝒕−𝑘,𝛼 + 4⟩ (B.10d)

= − 2 (𝐽 − 1
2

𝐽 ′ cos(𝑘) + 𝑔𝐴(𝑡)) 𝑉𝑘(𝑡) + 2𝐽 ′ cos(𝑘) (𝑈𝑘(𝑡) + 1
2

) . (B.10e)

Here, we have interchanged 𝑘 ↔ −𝑘 and, thus, postulated that the system of ordinary
differential equations is invariant under a change of sign in the momentum 𝑘.

As for the phonon sector characterised by 𝐴(𝑡), 𝐵(𝑡) and 𝐶(𝑡) the Lindblad formalism
introduced in section 2.4 needs to be employed to take the damping into account. In
particular, we make use of equation (2.52). We begin with 𝐴(𝑡) by calculating

⟨[𝑯, 1√
𝑁

(𝒃0 + 𝒃†
0)]⟩ = ⟨[𝜔0𝒃†

0𝒃0, 1√
𝑁

(𝒃0 + 𝒃†
0)]⟩ (B.11a)

=
𝜔0√
𝑁

⟨[𝒃†
0𝒃0, 𝒃0] + [𝒃†

0𝒃0, 𝒃†
0]⟩ =

𝜔0√
𝑁

⟨−𝒃0 + 𝒃†
0⟩ = −i𝜔0𝐵(𝑡) (B.11b)

We obtain
d
d𝑡

𝐴(𝑡)

= 𝜔0𝐵(𝑡)

+
𝛾

√
𝑁

(𝑁Q + 1) ⟨𝒃†
0 (𝒃0 + 𝒃†

0) 𝒃0 − 1
2

𝒃†
0𝒃0 (𝒃0 + 𝒃†

0) − 1
2

(𝒃0 + 𝒃†
0) 𝒃†

0𝒃0⟩

+ 𝛾
𝑁Q
√

𝑁
⟨𝒃0 (𝒃0 + 𝒃†

0) 𝒃†
0 − 1

2
𝒃0𝒃†

0 (𝒃0 + 𝒃†
0) − 1

2
(𝒃0 + 𝒃†

0) 𝒃0𝒃†
0⟩ (B.12a)

= 𝜔0𝐵(𝑡)
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+
𝛾 (𝑁Q + 1)

√
𝑁

⟨𝒃†
0𝒃0𝒃0 + 𝒃†

0𝒃†
0𝒃0 − 1

2
𝒃†

0𝒃0𝒃0 − 1
2

𝒃†
0𝒃0𝒃†

0 − 1
2

𝒃0𝒃†
0𝒃0 − 1

2
𝒃†

0𝒃†
0𝒃0⟩

+ 𝛾
𝑁Q
√

𝑁
⟨𝒃0𝒃0𝒃†

0 + 𝒃0𝒃†
0𝒃†

0 − 1
2

𝒃0𝒃†
0𝒃0 − 1

2
𝒃0𝒃†

0𝒃†
0 − 1

2
𝒃0𝒃0𝒃†

0 − 1
2

𝒃†
0𝒃0𝒃†

0⟩ (B.12b)

= 𝜔0𝐵(𝑡)

+
𝛾

√
𝑁

(𝑁Q + 1) 1
2

⟨𝒃†
0𝒃0𝒃0 + 𝒃†

0𝒃†
0𝒃0 − 𝒃†

0𝒃0𝒃†
0 − 𝒃0𝒃†

0𝒃0⟩

+ 𝛾
𝑁Q
√

𝑁
1
2

⟨𝒃0𝒃0𝒃†
0 + 𝒃0𝒃†

0𝒃†
0 − 𝒃0𝒃†

0𝒃0 − 𝒃†
0𝒃0𝒃†

0⟩ (B.12c)

= 𝜔0𝐵(𝑡)

+
𝛾

√
𝑁

(𝑁Q + 1) 1
2

⟨𝒃†
0𝒃0𝒃0 + 𝒃†

0𝒃†
0𝒃0 − 𝒃†

0𝒃†
0𝒃0 − 𝒃†

0 − 𝒃†
0𝒃0𝒃0 − 𝒃0⟩

+ 𝛾
𝑁Q
√

𝑁
1
2

⟨𝒃0𝒃0𝒃†
0 + 𝒃0𝒃†

0𝒃†
0 − 𝒃0𝒃0𝒃†

0 + 𝒃0 − 𝒃0𝒃†
0𝒃†

0 + 𝒃†
0⟩ (B.12d)

= 𝜔0𝐵(𝑡) −
𝛾

√
𝑁

(𝑁Q + 1) 1
2

⟨𝒃†
0 + 𝒃0⟩ + 𝛾

𝑁Q
√

𝑁
1
2

⟨𝒃†
0 + 𝒃0⟩ (B.12e)

= 𝜔0𝐵(𝑡) −
𝛾

√
𝑁

1
2

⟨𝒃†
0 + 𝒃0⟩ (B.12f)

= 𝜔0𝐵(𝑡) −
𝛾
2

𝐴(𝑡) . (B.12g)

To deduce the equation of motion for 𝐵(𝑡) we need

⟨[𝑯, i√
𝑁

(𝒃†
0 − 𝒃0)]⟩

= ⟨[𝜔0𝒃†
0𝒃0, i√

𝑁
(𝒃†

0 − 𝒃0)]⟩ + ⟨[
√

𝑁𝐸(𝑡) (𝒃0 + 𝒃†
0) , i√

𝑁
(𝒃†

0 − 𝒃0)]⟩

+ ⟨[𝑔 1√
𝑁

(𝒃0 + 𝒃†
0) ⟨(∑

𝑘,𝛼
𝒕†

𝑘𝛼𝒕𝑘𝛼 − ∑
𝑘,𝛼

⟨𝒕†
𝑘𝛼𝒕𝑘𝛼⟩

eq
)⟩ , i√

𝑁
(𝒃†

0 − 𝒃0)]⟩ (B.13a)

=
i𝜔0√

𝑁
⟨[𝒃†

0𝒃0, (𝒃†
0 − 𝒃0)]⟩ +

i
√

𝑁𝐸(𝑡)
√

𝑁
⟨[(𝒃0 + 𝒃†

0) , (𝒃†
0 − 𝒃0)]⟩

+ i𝑔 1
𝑁

⟨(∑
𝑘,𝛼

𝒕†
𝑘𝛼𝒕𝑘𝛼 − ∑

𝑘,𝛼
⟨𝒕†

𝑘𝛼𝒕𝑘𝛼⟩
eq

)⟩ ⟨[(𝒃0 + 𝒃†
0) , (𝒃†

0 − 𝒃0)]⟩ (B.13b)

=
i𝜔0√

𝑁
⟨[𝒃†

0𝒃0, 𝒃†
0] − [𝒃†

0𝒃0, 𝒃0]⟩ + i𝐸(𝑡) ⟨[𝒃0, 𝒃†
0] − [𝒃†

0, 𝒃0]⟩

+ i𝑔 1
𝑁

(∑
𝑘,𝛼

⟨𝒕†
𝑘𝛼𝒕𝑘𝛼⟩ − ∑

𝑘,𝛼
⟨𝒕†

𝑘𝛼𝒕𝑘𝛼⟩
eq

) ⟨[𝒃0, 𝒃†
0] − [𝒃†

0, 𝒃0]⟩ (B.13c)

=
i𝜔0√

𝑁
⟨𝒃†

0 [𝒃0, 𝒃†
0] − [𝒃†

0, 𝒃0] 𝒃0⟩ + i𝐸(𝑡) ⟨1 − (−1)⟩
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+ i𝑔 1
𝑁

(∑
𝑘

𝑈𝑘(𝑡) − ∑
𝑘

⟨𝑈𝑘⟩eq) ⟨1 − (−1)⟩ (B.13d)

=
i𝜔0√

𝑁
⟨𝒃†

0 + 𝒃0⟩ + i𝐸(𝑡) ⟨2⟩ + i𝑔 (𝒰(𝑡) − 1
𝑁

∑
𝑘

⟨𝑈𝑘⟩eq) ⟨2⟩ (B.13e)

= i𝜔0 ⟨ 1√
𝑁

(𝒃†
0 + 𝒃0)⟩ + i2𝐸(𝑡) + i2𝑔 (𝒰(𝑡) − 1

𝑁
∑

𝑘
⟨𝑈𝑘⟩eq) (B.13f)

= i𝜔0𝐴(𝑡) + i2𝐸(𝑡) + i2𝑔 (𝒰(𝑡) − 1
𝑁

∑
𝑘

⟨𝑈𝑘⟩eq) (B.13g)

= i (𝜔0𝐴(𝑡) + 2𝐸(𝑡) + 2𝑔 (𝒰(𝑡) − 1
𝑁

∑
𝑘

⟨𝑈𝑘⟩eq)) . (B.13h)

Thus,
d
d𝑡

𝐵(𝑡)

= − 𝜔0𝐴(𝑡) − 2 (𝐸(𝑡) + 𝑔 (𝒰(𝑡) − 1
𝑁

∑
𝑘

⟨𝑈𝑘⟩eq))

+
𝛾i

√
𝑁

(𝑁Q + 1) ⟨𝒃†
0 (𝒃†

0 − 𝒃0) 𝒃0 − 1
2

𝒃†
0𝒃0 (𝒃†

0 − 𝒃0) − 1
2

(𝒃†
0 − 𝒃0) 𝒃†

0𝒃0⟩

+ 𝛾
𝑁Qi
√

𝑁
⟨𝒃0 (𝒃†

0 − 𝒃0) 𝒃†
0 − 1

2
𝒃0𝒃†

0 (𝒃†
0 − 𝒃0) − 1

2
(𝒃†

0 − 𝒃0) 𝒃0𝒃†
0⟩ (B.14a)

= − 𝜔0𝐴(𝑡) − 2 (𝐸(𝑡) + 𝑔 (𝒰(𝑡) − 1
𝑁

∑
𝑘

⟨𝑈𝑘⟩eq))

+
𝛾i (𝑁Q + 1)

√
𝑁

⟨𝒃†
0𝒃†

0𝒃0 − 1
2

𝒃†
0𝒃0𝒃†

0 − 1
2

𝒃†
0𝒃†

0𝒃0 − 𝒃†
0𝒃0𝒃0 + 1

2
𝒃†

0𝒃0𝒃0 + 1
2

𝒃0𝒃†
0𝒃0⟩

+ 𝛾
𝑁Qi
√

𝑁
⟨𝒃0𝒃†

0𝒃†
0 − 1

2
𝒃0𝒃†

0𝒃†
0 − 1

2
𝒃†

0𝒃0𝒃†
0 − 𝒃0𝒃0𝒃†

0 + 1
2

𝒃0𝒃†
0𝒃0 + 1

2
𝒃0𝒃0𝒃†

0⟩ (B.14b)

= − 𝜔0𝐴(𝑡) − 2 (𝐸(𝑡) + 𝑔 (𝒰(𝑡) − 1
𝑁

∑
𝑘

⟨𝑈𝑘⟩eq))

+
𝛾i

√
𝑁

(𝑁Q + 1) 1
2

⟨𝒃†
0𝒃†

0𝒃0 − 𝒃†
0𝒃0𝒃†

0 − 𝒃†
0𝒃0𝒃0 + 𝒃0𝒃†

0𝒃0⟩

+ 𝛾
𝑁Qi
√

𝑁
1
2

⟨𝒃0𝒃†
0𝒃†

0 − 𝒃†
0𝒃0𝒃†

0 − 𝒃0𝒃0𝒃†
0 + 𝒃0𝒃†

0𝒃0⟩ (B.14c)

= − 𝜔0𝐴(𝑡) − 2 (𝐸(𝑡) + 𝑔 (𝒰(𝑡) − 1
𝑁

∑
𝑘

⟨𝑈𝑘⟩eq))

+
𝛾i

√
𝑁

(𝑁Q + 1) 1
2

⟨𝒃†
0𝒃†

0𝒃0 − 𝒃†
0𝒃†

0𝒃0 − 𝒃†
0 − 𝒃0𝒃†

0𝒃0 + 𝒃0 + 𝒃0𝒃†
0𝒃0⟩

+ 𝛾
𝑁Qi
√

𝑁
1
2

⟨𝒃0𝒃†
0𝒃†

0 − 𝒃0𝒃†
0𝒃†

0 + 𝒃†
0 − 𝒃0𝒃†

0𝒃0 − 𝒃0 + 𝒃0𝒃†
0𝒃0⟩ (B.14d)
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= − 𝜔0𝐴(𝑡) − 2 (𝐸(𝑡) + 𝑔 (𝒰(𝑡) − 1
𝑁

∑
𝑘

⟨𝑈𝑘⟩eq))

−
𝛾i

√
𝑁

(𝑁Q + 1) 1
2

⟨𝒃†
0 − 𝒃0⟩ + 𝛾

𝑁Qi
√

𝑁
1
2

⟨𝒃†
0 − 𝒃0⟩ (B.14e)

= − 𝜔0𝐴(𝑡) − 2 (𝐸(𝑡) + 𝑔 (𝒰(𝑡) − 1
𝑁

∑
𝑘

⟨𝑈𝑘⟩eq)) −
𝛾i

√
𝑁

1
2

⟨𝒃†
0 − 𝒃0⟩ (B.14f)

= − 𝜔0𝐴(𝑡) − 2 (𝐸(𝑡) + 𝑔 (𝒰(𝑡) − 1
𝑁

∑
𝑘

⟨𝑈𝑘⟩eq)) −
𝛾
2

𝐵(𝑡) . (B.14g)

Finally, for 𝐶(𝑡) we calculate

⟨[𝑯, 1
𝑁

𝒃†
0𝒃0]⟩

= ⟨[𝐸(𝑡)
√

𝑁 (𝒃0 + 𝒃†
0) , 1

𝑁
𝒃†

0𝒃0]⟩

+ ⟨[𝑔 1√
𝑁

(𝒃0 + 𝒃†
0) ⟨(∑

𝑘,𝛼
𝒕†

𝑘,𝛼𝒕𝑘,𝛼 − ∑
𝑘,𝛼

⟨𝒕†
𝑘,𝛼𝒕𝑘,𝛼⟩

eq
)⟩ , 1

𝑁
𝒃†

0𝒃0]⟩ (B.15a)

= 𝐸(𝑡)
√

𝑁
𝑁

⟨[(𝒃0 + 𝒃†
0) , 𝒃†

0𝒃0]⟩

+ 𝑔 1√
𝑁𝑁

⟨(∑
𝑘,𝛼

𝒕†
𝑘,𝛼𝒕𝑘,𝛼 − ∑

𝑘,𝛼
⟨𝒕†

𝑘,𝛼𝒕𝑘,𝛼⟩
eq

)⟩ ⟨[(𝒃0 + 𝒃†
0) , 𝒃†

0𝒃0]⟩ (B.15b)

= 𝐸(𝑡)
√

𝑁
𝑁

⟨[𝒃0, 𝒃†
0𝒃0] + [𝒃†

0, 𝒃†
0𝒃0]⟩

+ 𝑔 1√
𝑁𝑁

(∑
𝑘,𝛼

⟨𝒕†
𝑘,𝛼𝒕𝑘,𝛼⟩ − ∑

𝑘,𝛼
⟨𝒕†

𝑘,𝛼𝒕𝑘,𝛼⟩
eq

) ⟨[𝒃0, 𝒃†
0𝒃0] + [𝒃†

0, 𝒃†
0𝒃0]⟩

= 𝐸(𝑡)
√

𝑁
𝑁

⟨[𝒃0, 𝒃†
0] 𝒃0 + 𝒃†

0 [𝒃†
0, 𝒃0]⟩

+ 𝑔 1√
𝑁𝑁

(∑
𝑘

𝑈𝑘(𝑡) − ∑
𝑘

⟨𝑈𝑘⟩eq) ⟨[𝒃0, 𝒃†
0] 𝒃0 + 𝒃†

0 [𝒃†
0, 𝒃0]⟩ (B.15c)

= 𝐸(𝑡) 1√
𝑁

⟨𝒃0 − 𝒃†
0⟩ + 𝑔 1√

𝑁
(𝒰(𝑡) − 1

𝑁
∑

𝑘
⟨𝑈𝑘⟩eq) ⟨𝒃0 − 𝒃†

0⟩ (B.15d)

= i (𝐸(𝑡) + 𝑔 (𝒰(𝑡) − 1
𝑁

∑
𝑘

⟨𝑈𝑘⟩eq)) ⟨ i√
𝑁

(𝒃†
0 − 𝒃0)⟩ (B.15e)

= i (𝐸(𝑡) + 𝑔 (𝒰(𝑡) − 1
𝑁

∑
𝑘

⟨𝑈𝑘⟩eq)) 𝐵(𝑡) (B.15f)

which yields

d
d𝑡

𝐶(𝑡)
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= − (𝐸(𝑡) + 𝑔 (𝒰(𝑡) − 1
𝑁

∑
𝑘

⟨𝑈𝑘⟩eq)) 𝐵(𝑡)

+
𝛾
𝑁

(𝑁Q + 1) ⟨𝒃†
0𝒃†

0𝒃0𝒃0 − 1
2

𝒃†
0𝒃0𝒃†

0𝒃0 − 1
2

𝒃†
0𝒃0𝒃†

0𝒃0⟩

+ 𝛾
𝑁Q

𝑁
⟨𝒃0𝒃†

0𝒃0𝒃†
0 − 1

2
𝒃0𝒃†

0𝒃†
0𝒃0 − 1

2
𝒃†

0𝒃0𝒃0𝒃†
0⟩ (B.16a)

= − (𝐸(𝑡) + 𝑔 (𝒰(𝑡) − 1
𝑁

∑
𝑘

⟨𝑈𝑘⟩eq)) 𝐵(𝑡)

+
𝛾
𝑁

(𝑁Q + 1) ⟨𝒃†
0𝒃0𝒃†

0𝒃0 − 𝒃†
0𝒃0 − 𝒃†

0𝒃0𝒃†
0𝒃0⟩

+ 𝛾
𝑁Q

𝑁
⟨𝒃0𝒃†

0𝒃0𝒃†
0 − 1

2
𝒃0𝒃†

0𝒃0𝒃†
0 + 1

2
𝒃0𝒃†

0 − 1
2

𝒃0𝒃†
0𝒃0𝒃†

0 + 1
2

𝒃0𝒃†
0⟩ (B.16b)

= − (𝐸(𝑡) + 𝑔 (𝒰(𝑡) − 1
𝑁

∑
𝑘

⟨𝑈𝑘⟩eq)) 𝐵(𝑡) −
𝛾
𝑁

(𝑁Q + 1) ⟨𝒃†
0𝒃0⟩

+ 𝛾
𝑁Q

𝑁
⟨𝒃†

0𝒃0 + 1⟩ (B.16c)

= − (𝐸(𝑡) + 𝑔 (𝒰(𝑡) − 1
𝑁

∑
𝑘

⟨𝑈𝑘⟩eq)) 𝐵(𝑡) − 𝛾 ⟨ 1
𝑁

𝒃†
0𝒃0⟩ + 𝛾

𝑁Q

𝑁
(B.16d)

= − (𝐸(𝑡) + 𝑔 (𝒰(𝑡) − 1
𝑁

∑
𝑘

⟨𝑈𝑘⟩eq)) 𝐵(𝑡) − 𝛾𝐶(𝑡) + 𝛾
𝑁Q

𝑁
(B.16e)

= − (𝐸(𝑡) + 𝑔 (𝒰(𝑡) − 1
𝑁

∑
𝑘

⟨𝑈𝑘⟩eq)) 𝐵(𝑡) − 𝛾 (𝐶(𝑡) −
𝑁Q

𝑁
) . (B.16f)

Taking the restriction to zero temperature in equation (3.21) into account yields, c.f. equation
(2.50),

𝑁Q = 0 (B.17)

and, thus, the equation of motion reads

d
d𝑡

𝐶(𝑡) = − (𝐸(𝑡) + 𝑔 (𝒰(𝑡) − 1
𝑁

∑
𝑘

⟨𝑈𝑘⟩eq)) 𝐵(𝑡) − 𝛾𝐶(𝑡) . (B.18)

We have presented the general calculation to show that the effect of the restriction to zero
temperature 𝑇 only plays a role in this equation.
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C Triplon Dispersion Relation

We present the calculation to obtain the triplon dispersion relation 𝜔T.

We investigate the spin system Hamiltonian 𝑯S (3.10). Omitting the triplon flavour index
𝛼 in the Bogoliubov transform (3.29) we obtain

𝒕†
𝑘𝒕𝑘 = ( ̂𝒕†

𝑘 cosh(𝜃) + ̂𝒕−𝑘 sinh(𝜃)) ⋅ ( ̂𝒕𝑘 cosh(𝜃) + ̂𝒕†
−𝑘 sinh(𝜃))

= ̂𝒕†
𝑘

̂𝒕𝑘 cosh2(𝜃) + ̂𝒕†
𝑘

̂𝒕†
−𝑘 cosh(𝜃) sinh(𝜃) + ̂𝒕−𝑘 ̂𝒕𝑘 cosh(𝜃) sinh(𝜃)

+ ̂𝒕−𝑘 ̂𝒕†
−𝑘 sinh2(𝜃) (C.1a)

𝒕†
𝑘𝒕†

−𝑘 = ( ̂𝒕†
𝑘 cosh(𝜃) + ̂𝒕−𝑘 sinh(𝜃)) ⋅ ( ̂𝒕†

−𝑘 cosh(𝜃) + ̂𝒕𝑘 sinh(𝜃))

= ̂𝒕†
𝑘

̂𝒕†
−𝑘 cosh2(𝜃) + ̂𝒕†

𝑘
̂𝒕𝑘 cosh(𝜃) sinh(𝜃) + ̂𝒕−𝑘 ̂𝒕†

−𝑘 cosh(𝜃) sinh(𝜃)
+ ̂𝒕−𝑘 ̂𝒕𝑘 sinh2(𝜃) (C.1b)

𝒕𝑘𝒕−𝑘 = ( ̂𝒕𝑘 cosh(𝜃) + ̂𝒕†
−𝑘 sinh(𝜃)) ⋅ ( ̂𝒕−𝑘 cosh(𝜃) + ̂𝒕†

𝑘 sinh(𝜃))

= ̂𝒕𝑘 ̂𝒕−𝑘 cosh2(𝜃) + ̂𝒕𝑘 ̂𝒕†
𝑘 cosh(𝜃) sinh(𝜃) + ̂𝒕†

−𝑘
̂𝒕−𝑘 cosh(𝜃) sinh(𝜃)

+ ̂𝒕†
−𝑘

̂𝒕†
𝑘 sinh2(𝜃) . (C.1c)

Substitution in the Hamiltonian 𝑯S (3.10) then yields

𝑯S = ∑
𝑘

(𝐽 − 1
2

𝐽 ′ cos(𝑘)) ( ̂𝒕†
𝑘

̂𝒕𝑘 cosh2(𝜃) + ̂𝒕†
𝑘

̂𝒕†
−𝑘 cosh(𝜃) sinh(𝜃)

+ ̂𝒕−𝑘 ̂𝒕𝑘 cosh(𝜃) sinh(𝜃) + ̂𝒕−𝑘 ̂𝒕†
−𝑘 sinh2(𝜃))

−1
4

𝐽 ′ cos(𝑘) ( ̂𝒕†
𝑘

̂𝒕†
−𝑘 cosh2(𝜃) + ̂𝒕†

𝑘
̂𝒕𝑘 cosh(𝜃) sinh(𝜃) + ̂𝒕−𝑘 ̂𝒕†

−𝑘 cosh(𝜃) sinh(𝜃)

+ ̂𝒕−𝑘 ̂𝒕𝑘 sinh2(𝜃))

−1
4

𝐽 ′ cos(𝑘) ( ̂𝒕𝑘 ̂𝒕−𝑘 cosh2(𝜃) + ̂𝒕𝑘 ̂𝒕†
𝑘 cosh(𝜃) sinh(𝜃) + ̂𝒕†

−𝑘
̂𝒕−𝑘 cosh(𝜃) sinh(𝜃)

+ ̂𝒕†
−𝑘

̂𝒕†
𝑘 sinh2(𝜃)) (C.2a)

= ∑
𝑘

(𝐽 − 1
2

𝐽 ′ cos(𝑘)) ( ̂𝒕†
𝑘

̂𝒕𝑘 cosh2(𝜃) + ̂𝒕†
𝑘

̂𝒕†
−𝑘 cosh(𝜃) sinh(𝜃)

+ ̂𝒕−𝑘 ̂𝒕𝑘 cosh(𝜃) sinh(𝜃) + ̂𝒕†
−𝑘

̂𝒕−𝑘 sinh2(𝜃))

−1
4

𝐽 ′ cos(𝑘) ( ̂𝒕†
𝑘

̂𝒕†
−𝑘 cosh2(𝜃) + ̂𝒕†

𝑘
̂𝒕𝑘 cosh(𝜃) sinh(𝜃) + ̂𝒕†

−𝑘
̂𝒕−𝑘 cosh(𝜃) sinh(𝜃)

+ ̂𝒕−𝑘 ̂𝒕𝑘 sinh2(𝜃))

−1
4

𝐽 ′ cos(𝑘) ( ̂𝒕𝑘 ̂𝒕−𝑘 cosh2(𝜃) + ̂𝒕†
𝑘

̂𝒕𝑘 cosh(𝜃) sinh(𝜃) + ̂𝒕†
−𝑘

̂𝒕−𝑘 cosh(𝜃) sinh(𝜃)
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+ ̂𝒕†
−𝑘

̂𝒕†
𝑘 sinh2(𝜃))

+ [ ̂𝒕−𝑘, ̂𝒕†
−𝑘] (𝐽 − 1

2
𝐽 ′ cos(𝑘)) sinh2(𝜃)

− [ ̂𝒕−𝑘, ̂𝒕†
−𝑘] 1

4
𝐽 ′ cos(𝑘) cosh(𝜃) sinh(𝜃) − [ ̂𝒕𝑘, ̂𝒕†

𝑘] 1
4

𝐽 ′ cos(𝑘) cosh(𝜃) sinh(𝜃) (C.2b)

= ∑
𝑘

(𝐽 − 1
2

𝐽 ′ cos(𝑘)) ( ̂𝒕†
𝑘

̂𝒕𝑘 cosh2(𝜃) + ̂𝒕†
𝑘

̂𝒕†
−𝑘 cosh(𝜃) sinh(𝜃)

+ ̂𝒕−𝑘 ̂𝒕𝑘 cosh(𝜃) sinh(𝜃) + ̂𝒕†
−𝑘

̂𝒕−𝑘 sinh2(𝜃))

−1
4

𝐽 ′ cos(𝑘) ( ̂𝒕†
𝑘

̂𝒕†
−𝑘 cosh2(𝜃) + ̂𝒕†

𝑘
̂𝒕𝑘 cosh(𝜃) sinh(𝜃) + ̂𝒕†

−𝑘
̂𝒕−𝑘 cosh(𝜃) sinh(𝜃)

+ ̂𝒕−𝑘 ̂𝒕𝑘 sinh2(𝜃))

−1
4

𝐽 ′ cos(𝑘) ( ̂𝒕𝑘 ̂𝒕−𝑘 cosh2(𝜃) + ̂𝒕†
𝑘

̂𝒕𝑘 cosh(𝜃) sinh(𝜃) + ̂𝒕†
−𝑘

̂𝒕−𝑘 cosh(𝜃) sinh(𝜃)

+ ̂𝒕†
−𝑘

̂𝒕†
𝑘 sinh2(𝜃)) + const. (C.2c)

We exchange 𝑘 by −𝑘 where necessary, which leaves the expression invariant due to

cos(𝑘) = cos(−𝑘) , (C.3)

to obtain

𝑯S = ∑
𝑘

(𝐽 − 1
2

𝐽 ′ cos(𝑘)) ( ̂𝒕†
𝑘

̂𝒕𝑘 cosh2(𝜃) + ̂𝒕†
𝑘

̂𝒕†
−𝑘 cosh(𝜃) sinh(𝜃)

+ ̂𝒕−𝑘 ̂𝒕𝑘 cosh(𝜃) sinh(𝜃) + ̂𝒕†
𝑘

̂𝒕𝑘 sinh2(𝜃))

−1
4

𝐽 ′ cos(𝑘) ( ̂𝒕†
𝑘

̂𝒕†
−𝑘 cosh2(𝜃) + ̂𝒕†

𝑘
̂𝒕𝑘 cosh(𝜃) sinh(𝜃) + ̂𝒕†

𝑘
̂𝒕𝑘 cosh(𝜃) sinh(𝜃)

+ ̂𝒕−𝑘 ̂𝒕𝑘 sinh2(𝜃))

−1
4

𝐽 ′ cos(𝑘) ( ̂𝒕−𝑘 ̂𝒕𝑘 cosh2(𝜃) + ̂𝒕†
𝑘

̂𝒕𝑘 cosh(𝜃) sinh(𝜃) + ̂𝒕†
𝑘

̂𝒕𝑘 cosh(𝜃) sinh(𝜃)

+ ̂𝒕†
𝑘

̂𝒕†
−𝑘 sinh2(𝜃)) + const. (C.4)

Sorting by operators results in the expression

HS = ∑
𝑘

̂𝒕†
𝑘

̂𝒕𝑘 (𝐽 cosh2(𝜃) + 𝐽 sinh2(𝜃) − 1
2

𝐽 ′ cos(𝑘) cosh2(𝜃) − 1
2

𝐽 ′ cos(𝑘) sinh2(𝜃)

− 1
2

𝐽 ′ cos(𝑘) 2 cosh(𝜃) sinh(𝜃))

+ ̂𝒕†
𝑘

̂𝒕†
−𝑘 (𝐽 cosh(𝜃) sinh(𝜃) − 1

2
𝐽 ′ cos(𝑘) cosh(𝜃) sinh(𝜃) − 1

4
𝐽 ′ cos(𝑘) cosh2(𝜃)

− 1
4

𝐽 ′ cos(𝑘) sinh2(𝜃))

+ ̂𝒕−𝑘 ̂𝒕𝑘 (𝐽 cosh(𝜃) sinh(𝜃) − 1
2

𝐽 ′ cos(𝑘) cosh(𝜃) sinh(𝜃) − 1
4

𝐽 ′ cos(𝑘) cosh2(𝜃)

− 1
4

𝐽 ′ cos(𝑘) sinh2(𝜃)) + const (C.5a)
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for which

0 = (𝐽 cosh(𝜃) sinh(𝜃) − 1
2

𝐽 ′ cos(𝑘) cosh(𝜃) sinh(𝜃) − 1
4

𝐽 ′ cos(𝑘) cosh2(𝜃)

− 1
4

𝐽 ′ cos(𝑘) sinh2(𝜃)) (C.6a)

⇔ 1
2

𝐽 ′ cos(𝑘) cosh(𝜃) sinh(𝜃) = 𝐽 cosh(𝜃) sinh(𝜃) − 1
4

𝐽 ′ cos(𝑘) cosh2(𝜃)

− 1
4

𝐽 ′ cos(𝑘) sinh2(𝜃) (C.6b)

⇔ 1
2

𝐽 ′ cos(𝑘) 2 cosh(𝜃) sinh(𝜃) = 2𝐽 cosh(𝜃) sinh(𝜃) − 1
2

𝐽 ′ cos(𝑘) cosh2(𝜃)

− 1
2

𝐽 ′ cos(𝑘) sinh2(𝜃) (C.6c)

⇔ cosh(𝜃) sinh(𝜃) = 1
4

𝐽 ′

𝐽
cos(𝑘) (cosh(𝜃) + sinh(𝜃))2 (C.6d)

⇔ (1
2

e𝜃 + 1
2

e−𝜃) ⋅ (1
2

e𝜃 − 1
2

e−𝜃) = 1
4

𝐽 ′

𝐽
cos(𝑘) (1

2
e𝜃 + 1

2
e−𝜃 + 1

2
e𝜃 − 1

2
e−𝜃)

2
(C.6e)

⇔ 1
4

e2𝜃 − 1
4

e−2𝜃 = 1
4

𝐽 ′

𝐽
cos(𝑘) e2𝜃 (C.6f)

⇔ 1 − e−4𝜃 = 𝐽 ′

𝐽
cos(𝑘) (C.6g)

⇔ e−4𝜃 = 1 − 𝐽 ′

𝐽
cos(𝑘) (C.6h)

⇒ e−2𝜃 = √1 − 𝜆 cos(𝑘) (C.6i)

has to hold true in order to be diagonal. We substitute equation (C.6a) and (C.6c) into
equation (C.5a) receiving

𝑯S = ∑
𝑘

̂𝒕†
𝑘

̂𝒕𝑘𝐽 (cosh(𝜃) − sinh(𝜃))2 + const

= ∑
𝑘

̂𝒕†
𝑘

̂𝒕𝑘𝐽 (1
2

e𝜃 + 1
2

e−𝜃 − 1
2

e𝜃 + 1
2

e−𝜃)
2

+ const

= ∑
𝑘

̂𝒕†
𝑘

̂𝒕𝑘𝐽e−2𝜃 + const (C.7)

which reads making use of equation (C.6i)

𝑯S = ∑
𝑘

̂𝒕†
𝑘

̂𝒕𝑘𝐽√1 − 𝜆 cos(𝑘) + const. (C.8)

Thus, the triplon dispersion relation is determined by

𝜔T(𝑘) = 𝐽√1 − 𝜆 cos(𝑘). (C.9)

Now, we are enabled to set up equations characterising the two triplon band which according
to equation (4.11) reads

𝜔2(𝑝, 𝑘) = √1 − 𝜆 cos(𝑘 + 𝑝) + √1 − 𝜆 cos(𝑘). (C.10)
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C Triplon Dispersion Relation

For an extreme value in 𝑘

0 = d
d𝑘

𝜔2(𝑝, 𝑘) = 1
2

𝐽 ′

𝐽
sin(𝑘 + 𝑝) (1 − 𝐽 ′

𝐽
cos(𝑘 + 𝑝))

− 1
2

+ 1
2

𝐽 ′

𝐽
sin(𝑘) (1 − 𝐽 ′

𝐽
cos(𝑘))

− 1
2 (C.11a)

⇔ sin(𝑘 + 𝑝) (1 − 𝐽 ′

𝐽
cos(𝑘 + 𝑝))

− 1
2 = − sin(𝑘) (1 − 𝐽 ′

𝐽
cos(𝑘))

− 1
2 (C.11b)

has to hold true. This equation is solved by

𝑘 = −𝑝
2

⇔ 𝑝 = −2𝑘. (C.12)

For the momenta 𝑘 and 𝑝 do only appear in the argument of a sine or a cosine the dispersion
relations 𝜔1 and 𝜔2 are periodic in 𝑘 or antiperiodic in 𝑘 with period 2π. Hence,

𝑘 = −𝑝
2

+ π ⇔ 𝑝 = 2 (π − 𝑘) (C.13)

also solves equation (C.11b). Making again use of the cosine’s symmetry (C.3) as well as
the antiperiodicity of sine and cosine

sin(𝑥) = − sin(𝑥 + π) (C.14a)
cos(𝑥) = − cos(𝑥 + π) (C.14b)

we obtain

min
𝑘

{𝜔2(𝑘, 𝑝)} = 𝜔T(𝑝
2

) + 𝜔T(−𝑝
2

) = 2𝜔T(𝑝
2

) = 2√1 − 𝜆 cos(𝑝
2

) (C.15a)

max
𝑘

{𝜔2(𝑘, 𝑝)} = 𝜔T(π + 𝑝
2

) + 𝜔T(π − 𝑝
2

)

= √1 − 𝜆 cos(π + 𝑝
2

) + √1 − 𝜆 cos(π − 𝑝
2

)

= √1 + 𝜆 cos(𝑝
2

) + √1 + 𝜆 cos(−𝑝
2

) = 2√1 + 𝜆 cos(𝑝
2

) (C.15b)

which yields

𝜔min = 2
√

1 − 𝜆 (C.16a)

𝜔max = 2√1 + 𝜆. (C.16b)

The band’s mean 𝜔m is then determined by

𝜔m =
𝜔max + 𝜔min

2
= √1 + 𝜆 +

√
1 − 𝜆. (C.17)

With 𝜆 = 0.5 we obtain

𝜔min =
√

2 ≈ 1.414 213 562 ≈ 1.5 (C.18a)

𝜔max =
√

6 ≈ 2.449 489 743 ≈ 2.5 (C.18b)
𝜔m ≈ 1.931 851 653 ≈ 2. (C.18c)
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D Above Band Quasi Steady States

We illustrate why a discussion of above band quasi steady states is not helpful as stated in
section 4.2. Figure D.1 equals figure 4.2 where we have plotted a desired time evolution.
Here, however, in figure D.1(d) we find that the triplon density 𝒰(𝑡) does not establish an
oscillation around a value that differs significantly from its initial value, i.e. there is no
non-linear response which we were aiming at. As a result we turn to beneath band cases.
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D Above Band Quasi Steady States
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Figure D.1: Example of an above band time evolution; values: 𝑔 = 0.03𝐽, 𝜔0 = 3.0𝐽,
𝑎 = 0.4𝐽, 𝛾 = 0.1𝐽
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E Above Band Green’s Functions

In section 4.3 we have only presented results for beneath band Green’s functions. Here
we show plots for an above band case. All our findings discussed in section 4.3 are still
valid here. We hereby illustrate that our findings are generic. In particular the equations
describing the peak positions, (4.44), (4.45), (4.61), (4.62) and (4.63), hold. We shall just
give the plots and corresponding fit parameters. For a detailed discussion of the phenomena
c.f. section 4.3.

E.1 Special Case 𝑘 = π/2

We obtain the following parameters according to equation (4.32) for the fits depicted in
figure E.1(c),

𝜉 = 0.000 157 (E.1a)
𝜒0 = 0.999 686𝐽 (E.1b)

𝜁 = 0.000 601𝐽 (E.1c)

for the reative Green’s function 𝐺rel
π/2(0, 𝜔diff),

𝜉 = 0.000 156 (E.2a)
𝜒0 = 0.999 686𝐽 (E.2b)

𝜁 = 0.000 600𝐽 (E.2c)

for the time average Green’s function �̃�π/2(5000𝐽−1, 𝜔diff) and

𝜉 = 0.000 157 (E.3a)
𝜒0 = 0.999 686𝐽 (E.3b)

𝜁 = 0.000 600𝐽 (E.3c)

for the average Green’s function 𝐺π/2(10000𝐽−1, 𝜔).

The fit parameters for the imaginary parts of 𝐺rel
π/2(3000𝐽−1, 𝜔diff) and 𝐺rel

π/2(5000𝐽−1, 𝜔diff)
given in figure E.3(b) are determined by

𝜉 = 0.000 224 (E.4a)
𝜒0 = 0.999 606𝐽 (E.4b)

𝜁 = 0.000 857𝐽 (E.4c)
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E Above Band Green’s Functions
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Figure E.1: Fourier spectrum for momentum 𝑘 = π/2 of the relative, time average
and average Green’s function, 𝐺rel

π/2(0, 𝜔diff), �̃�π/2(5000𝐽−1, 𝜔diff) and 𝐺π/2(10000𝐽−1, 𝜔);
values: 𝑔 = 0.03𝐽, 𝜔0 = 3𝐽, 𝑎 = 0.4𝐽, 𝛾 = 0.1𝐽
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E.1 Special Case 𝑘 = π/2
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Figure E.2: Real and imaginary part of the Fourier spectra for momentum 𝑘 = π/2 of
the relative, time average and average Green’s function, 𝐺rel

π/2(0, 𝜔diff), �̃�π/2(5000𝐽−1, 𝜔diff)
and 𝐺π/2(10000𝐽−1, 𝜔); values: 𝑔 = 0.03𝐽, 𝜔0 = 3𝐽, 𝑎 = 0.4𝐽, 𝛾 = 0.1𝐽
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E Above Band Green’s Functions

and

𝜉 = 0.000 314 (E.5a)
𝜒0 = 0.999 415𝐽 (E.5b)

𝜁 = 0.001 201𝐽 (E.5c)

respectively while we obtain

𝜉 = 0.000 262 (E.6a)
𝜒0 = 0.999 476𝐽 (E.6b)

𝜁 = 0.001 002𝐽 (E.6c)

for �̃�π/2(3000𝐽−1, 𝜔diff) and

𝜉 = 0.000 787 (E.7a)
𝜒0 = 0.998 428𝐽 (E.7b)

𝜁 = 0.003 010𝐽 (E.7c)

for �̃�π/2(1000𝐽−1, 𝜔diff) which can be found in figure E.3(d).
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E.1 Special Case 𝑘 = π/2
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Figure E.3: Investigation of the dependence of relative Green’s function 𝐺rel
π/2(𝑡in, 𝜔diff)

on the initial time 𝑡in and of the time average Green’s function �̃�π/2( ̄𝑡, 𝜔diff) on the average
time ̄𝑡 for momentum 𝑘 = π/2; values: 𝑔 = 0.03𝐽, 𝜔0 = 3.0𝐽, 𝑎 = 0.4𝐽, 𝛾 = 0.1𝐽
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E Above Band Green’s Functions

E.2 Case 𝑘 ≠ π/2

Here fits according to equation (4.32) shown in figure E.4(c) yield

𝜉 = 0.000 159 (E.8a)
𝜒0 = 0.804 046𝐽 (E.8b)

𝜁 = 0.000 600𝐽 (E.8c)

for the reative Green’s function 𝐺rel
π/4(0, 𝜔diff),

𝜉 = 0.000 158 (E.9a)
𝜒0 = 0.804 052𝐽 (E.9b)

𝜁 = 0.000 600𝐽 (E.9c)

for the time average Green’s function �̃�π/4(5000𝐽−1, 𝜔diff) and

𝜉 = 0.000 158 (E.10a)
𝜒0 = 0.804 052𝐽 (E.10b)

𝜁 = 0.000 600𝐽 (E.10c)

for the average Green’s function 𝐺π/4(10000𝐽−1, 𝜔).

Fits applied to the imaginary parts of 𝐺rel
π/4(3000𝐽−1, 𝜔diff) and 𝐺rel

π/4(5000𝐽−1, 𝜔diff) to be
found in figure E.3(b) are given by

𝜉 = 0.000 227 (E.11a)
𝜒0 = 0.803 972𝐽 (E.11b)

𝜁 = 0.000 857𝐽 (E.11c)

and

𝜉 = 0.000 318 (E.12a)
𝜒0 = 0.803 784𝐽 (E.12b)

𝜁 = 0.001 200𝐽 (E.12c)

respectively. For �̃�π/4(3000𝐽−1, 𝜔diff) we obtain

𝜉 = 0.000 265 (E.13a)
𝜒0 = 0.803 843𝐽 (E.13b)

𝜁 = 0.001 001𝐽 (E.13c)

and for �̃�π/4(1000𝐽−1, 𝜔diff)

𝜉 = 0.000 797 (E.14a)
𝜒0 = 0.802 797𝐽 (E.14b)

𝜁 = 0.003 010𝐽. (E.14c)

The corresponding plots can be found in figure E.3(d).
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E.2 Case 𝑘 ≠ π/2
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Figure E.4: Fourier spectrum for momentum 𝑘 = π/4 of the relative, time average
and average Green’s function, 𝐺rel

π/4(0, 𝜔diff), �̃�π/4(5000𝐽−1, 𝜔diff) and 𝐺π/4(10000𝐽−1, 𝜔);
values: 𝑔 = 0.03𝐽, 𝜔0 = 3𝐽, 𝑎 = 0.4𝐽, 𝛾 = 0.1𝐽
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E Above Band Green’s Functions
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Figure E.5: Real and imaginary part of the Fourier spectra for momentum 𝑘 = π/4 of
the relative, time average and average Green’s function, 𝐺rel

π/4(0, 𝜔diff), �̃�π/4(5000𝐽−1, 𝜔diff)
and 𝐺π/4(10000𝐽−1, 𝜔); values: 𝑔 = 3𝐽, 𝜔0 = 1.3𝐽, 𝑎 = 0.4𝐽, 𝛾 = 0.1𝐽
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E.2 Case 𝑘 ≠ π/2
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Figure E.6: Investigation of the dependence of relative Green’s function 𝐺rel
π/4(𝑡in, 𝜔diff)

on the initial time 𝑡in and of the time average Green’s function �̃�π/4( ̄𝑡, 𝜔diff) on the average
time ̄𝑡 for momentum 𝑘 = π/4; values: 𝑔 = 0.03𝐽, 𝜔0 = 3𝐽, 𝑎 = 0.4𝐽, 𝛾 = 0.1𝐽
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